REPLY TO REVIEWERS

Dear editor and reviewers:

Thanks for your time and comments for our manuscript entitled “A Data-Efficient Deep
Transfer Learning Framework for Methane Super-Emitter Detection in Oil and Gas Fields
Using Sentinel-2 Satellite”. The manuscript has certainly benefited from these insightful
revision suggestions. Below we provide point-wise response to reviewers’ comments. In the
manuscript, revised or newly added sentences are in deep blue which relates to the reviewers’

comments.

[Major point 1]

The dataset description needs to be improved. As itis now, the description of various parts
of the used data is split into many sections. Currently, the description of the training
dataset starts in section 2.1, later the validation subset is detailed in 2.5.1 and the test
initially mentioned in 2.5.2, while in more detail explained in section 3. Overall this makes
it quite difficult to read, which data was used when. -> Please unify this and clear up the
existing split sections.

Reply:

Thank you for your valuable comment. We have reorganized Section 3 to consolidate all
information related to the dataset into a single section, which should improve readability. As
part of this, we moved the content from the original Section 2.5 into Section 3. Only the
introduction to Sentinel-2 data has been retained in Section 2.1 (Satellite data). The revised
structure of Section 3 is as follows:

3 Methane dataset and Experimental design

3.1 Methane retrieval (AR) imagery dataset construction

3.1.1 Data preprocessing

3.1.2 Data annotation

3.2 Experimental design

3.2.1 Performance evaluation on transfer tasks

3.2.2 Real-world application for new source discovery

Please refer to manuscript Lines 264-384 for the specific changes.

Additionally, some details are missing - practical ones which would make it easier to
understand the exact training process used. For example, it is not exactly clear which
input resolution does the data have - is it 200x200 px, or 224x224 px? - Please clarify this

and explicitly write this in the paper. Please also detail the exact number of tiles used in



the different dataset splits.

Reply:

Thank you for pointing this out. Following the suggestion, we have added the following

information:

* Forinputresolution, we now specify that the Sentinel-2 observations were divided into 16
km?patches (200x200 pixels), which resulted in 200x200 AR matrix. We then applied a
colormap to the matrix and resized them into 224x224x3 AR RGB images to align with
the input of ResNet-50 structure and ensure compatibility with ImageNet-based pre-
trained parameters. Please refer to manuscript Lines 306-310 for this clarification.

* Regardingthe exact number of tiles used in the different dataset splits, for each ‘5—1’
task, we roughly have 250 AR images in the source domain and other 250 in the target
domain. Each ‘5—1’task contains about 1,250 AR images in the source domain and 250
images in the target domain. Please refer to manuscript Lines 348-350 and 351-342 for the

specific details.

Also please highlight if and what measures to detect overlap between samples in the
created train/val/test datasets were used (temporal split? spatial split?). This is quite clear
for the train/test sets, but less so for the validation set used for the other model
architectures. A more explicit description of these details is expected in typical machine
learning literature (which is not just reusing existing benchmark datasets).

Reply:

Thank you for your constructive comment. To address your concern, we have supplemented
explanation in Section 3.2.1 and Section 3.2.2, as well as Table S1. In this study, we employ
two types of models: conventional CNN models like MethaNet, which involve train/val/test
datasets, while DSAN does not require a validation set. Therefore, we deploy different
partitioning ways of the training, validation, and test set for different models and tasks, as
shown in Table S1. For conventional CNN models, which lack a feature adaptation layer, they
directly rely on the feature mappings learned during the training process. So, an independent
validation set is required to tune hyperparameters of the model and prevent overfitting. Under
the ‘1—1"task, the training and validation sets are derived from one of the AR datasets listed
in Table 3, with an 80:20 random split, and test sets are the target of transfer tasks (another AR
dataset). Similarly, for the ‘5—1" task, five of the AR datasets are combined and shuffled, with
an 80:20 random split for the training and validation sets, while the remaining dataset is used
as the test set. DSAN is capable of adapting to distribution changes during training, eliminating
the need for a validation set to tune hyperparameters. Under the ‘1—1" task, the training set
(source domain) consists of one AR dataset, and the test set is another dataset from a different

region. In the ‘5—1’ task, the training set (source domain) includes five AR datasets, and the



test set is one from a different region.

Table S1 Training, validation, and test sets separation for different types of models and tasks.

Model Task Training set Validation set Test set
‘1-1 80%Dataset#x;* 20%Dataset#x; Dataset#x; b
MethaNet,
n=5 n=5
ResNet-50 S—1 80% i:1Dataset#xi 20% i:1Dataset#xi Dataset#x;
‘1-1°, Dataset#x; n/a Dataset#x;
n=5
S5—-1° z Dataset#x; n/a Dataset#x;
DSAN i=1
application for new n=6 3537 AR
. Z Dataset#x; n/a
source detection i=1 images

ab Dataset#x; and Dataset#x; refer to one of the Dataset#1~#6 as listed in Table 3. Here, i # j, meaning that

the source and target datasets in each task are distinct, ensuring no overlap between them.

[Major point 2]

Right now, itis not clear how much have the proposed steps helped for the real data prediction.
There, we see only one result, butit would be informative to see results from other used models.
If it's possible and feasible, please add an ablation study of what would happen if we didn't
use the proposed pre-filtering step LRAD? Would the scores degrade significantly? These
results don't need to be analysed in such a detail as the rest, a simple single row of results in
Table 4 would suffice (as the labeling has been already done for this data, it should be easy to
recalulate these scores for another model variants).

Reply:

Thank you for your constructive comment. We agree that it is important to assess how much
the proposed steps have helped in methane plume detection on real data. To address this
question, we conducted an ablation study on boththe ‘1—1’and ‘5—1’ transfer tasks, as well
as the application experiment. The results indicate that LRAD shows little to no improvement
on homogeneous surfaces, including Dataset# 1, Dataset#4, Dataset#5, and application regions
which feature homogeneous surface conditions. In contrast, it demonstrates significant
improvement in heterogeneous regions, such as Dataset#2, Dataset#3, and Dataset#6. The
LRAD denoising step significantly reduces the false negative rate but has little improvement
on the false positive rate. We have summarized these results in Sections 6.1 “Impact of the
denoising method on methane detection”.

Please refer to manuscript Lines 515-545 for the specific details.

Lines 525-545:

To further investigate the impact of LRAD, we conduct additional ablation experiments



using the 30 ‘1—1"tasks and 6 ‘5—1" tasks (Section 2.5.1) to evaluate its influence on model
performance. Fig. 14 shows the macro-F1 scoresfor the transfer tasksusingthe detectionmodel
without applying LRAD (WoLRAD-DSAN). The average macro-F1 scores are 0.72 (ranging
from 0.53t00.92) forthe ‘1—1"tasks and 0.74 (ranging from0.55to0 0.92) for the ‘5—1’tasks,
significantly lower than those achieved by the LRAD-DSAN model on the same tasks (Fig. 8).
The effect of LRAD is particularly pronounced on Dataset #2, #3, and #6, where the absence
of LRAD leads to macro-F1 score reductions of approximately 33%, 28%, and 23%,
respectively. These results from the ablation experiments are consistent with the SNR
improvements shown in Fig. S7, further underscoring the efficacy of LRAD, especially over
heterogeneous surfaces.

The impact of LRAD can be further elucidated by analyzing the false negative rate (FNR)
and false positiverate (FPR) for the transfer tasks (Fig. S10). LRAD substantially reduces the
FNR (e.g., by 52%,46%, and 33% for Dataset#2, #3, and #6, respectively), but only moderately
reduces the FPR by 3% to 24%. These findings demonstrate that LRAD is primarily effective
in reducing omissions of methane super-emitters.
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Fig. 14. Macro-F1 scores on the transfer tasks given by the WoLRAD-DSAN model. Each square
represents a transfer task. ‘5—1’ indicates that the source domain is fused from five datasets
excluding the target domain dataset. WoLRAD-DSAN refers to the DSAN framework without
incorporating the LRAD denoising algorithm.

[Minor point 1]

The background literature sections is missing some recent works. For example [RiZicka,
V., Mateo-Garcia, G., Gomez-Chova, L. et al. Semantic segmentation of methane plumes

with hyperspectral machine learning models. Sci Rep 13, 19999 (2023).



https://doi.org/10.1038/s41598-023-44918-6] proposed a U-Net based model working with
a mixture of source instruments and shows performance for both multispectral
(WorldView-2) and hyperspectral data (AVIRIS-NG and EMIT). Relevant to this work,
it also demonstrated zero-shot generalisation. That is using a model pre-trained on first
dataset (with relatively local samples) on data from near-global sensor (with larger
diversity of background scenes) -> please relate this to the used source / target domain
adaptation used in this work. It also should be added to page 4 among other deep learning
techniques used to detect methane leaks in multispectral and hyperspectral data.
Reply:

Thank you for pointing out this important relevant work. The study by Razickaetal. (2023)is
indeed closely related to our study, as both approaches use data from labeled source domain to
build models for tasks in the unlabeled target domain, addressing the challenge of limited
training data. We have added a reference to this work in Line 99 and discussed its relevance to
our study, particularly in the context of zero-shot generalization and deep transfer learning, in
Lines 114-123.

[Minor point 2]

Please describe which exact model variant was used for the real data prediction (results
shown on Fig 11) - can this be related to one of the already used scenarios (1-1, 5-1, ...)?
Reply:

Thank you for your comment. We have supplemented a description of the exact model variant
used for the real data prediction in Section 3.2. Specifically, we applied DSAN to detect new
sources (target domain), where the training set (source domain) consists of Dataset#1 —#6 (1627
AR images), and the test set (target domain) includes 3527 AR images collected from the
application area. Please refer to Lines 381-383 and Table S1 for further details.

[Minor point 3]

On page 8 clarify if the used formula is the multiband-multi-pass (MBMP) method of
[Varon, D. J., et al. High-frequency monitoring of anomalous methane point sources with
multispectral Sentinel-2 satellite observations, Atmos. Meas. Tech., 14, 2771-2785,
https://doi.org/10.5194/amt-14-2771-2021,2021.] and name it as such, or highlight if there
are any notable differences.

Reply:
Thank you for your suggestion. To clarify, we did not use the MBMP method, but instead



employedthe bandratio method, asusedin Ehretetal. (2022) and Irakulis-Loitxate etal. (2022),
which directly calculates band differences. We have clarified this in Line 164 of the manuscript

by explicitly stating the method used in the calculation.



