
1 

 

Retrieval and Validation of Total Seasonal Liquid Water Amounts in 1 

the Percolation Zone of Greenland Ice Sheet Using L-band 2 

Radiometry 3 

Alamgir Hossan1, Andreas Colliander1, Baptiste Vandecrux2, Nicole-Jeanne Schlegel3, Joel Harper4, 4 

Shawn Marshall5, Julie Z Miller6 5 
 6 
1Jet Propulsion Laboratory, California Institute of Technology 7 
2Geological Survey of Denmark and Greenland 8 
3NOAA/OAR Geophysical Fluid Dynamics Laboratory (GFDL) 9 
4Department of Geosciences, University of Montana 10 
5Department of Geography, University of Calgary 11 
6Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder 12 

 13 

Correspondence to: Alamgir Hossan (alamgir.hossan@jpl.nasa.gov) and Andreas Colliander 14 

(andreas.colliander@jpl.nasa.gov) 15 

Abstract. Quantifying the total liquid water amounts (LWA) in the Greenland ice sheet (GrIS) is critical for understanding 16 

GrIS firn processes, mass balance, and global sea-level rise. Although satellite microwave observations are very sensitive to 17 

ice sheet melt and thus can provide a way of monitoring the ice sheet melt globally, estimating total LWA, especially the sub-18 

surface LWA, remains a challenge. Here, we present a microwave retrieval of LWA over Greenland using enhanced resolution 19 

L-band brightness temperature (TB) data products from the NASA Soil Moisture Active Passive (SMAP) satellite for the 20 

2015-2023 period. L-band signals receive emission contributions deep in the ice sheet and are sensitive to the liquid water 21 

content (LWC) in the firn column. Therefore, they can estimate the surface-to-subsurface LWA, unlike higher frequency 22 

signals (e.g., 18 and 37 GHz bands), which are limited to the top few centimeters of the surface snow during the melt. We used 23 

vertically polarized TB (V-pol TB) with empirically derived thresholds to detect liquid water and identify distinct ice sheet 24 

zones. A forward model based on radiative transfer in the ice sheet was used to simulate TB. The simulated TB was then used 25 

in an inversion algorithm to estimate LWA. Finally, the retrievals were compared with the LWA obtained from two sources. 26 

The first source was a locally calibrated ice sheet energy and mass balance (EMB) model, and the second source was the 27 

Glacier Energy and Mass Balance (GEMB) model within the National Aeronautics and Space Administration’s (NASA) Ice-28 

sheet and Sea-Level System Model (ISSM). Both models were forced by in situ measurements from six automatic weather 29 

stations (AWS) of the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and Greenland Climate Network 30 

(GC-Net) located in the percolation zone of the GrIS. The retrievals show generally good agreement with both the references, 31 
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demonstrating the potential for advancing our understanding of ice sheet physical processes to better project Greenland’s 32 

contribution to the global sea level rise in response to the warming climate. 33 

1 Introduction 34 

Continuous mass loss of the Greenland Ice Sheet (GrIS) has been a significant concern in the context of climate change and 35 

associated sea level rise (Khan et al., 2015; Mouginot et al., 2019; Otosaka et al., 2023; Shepherd et al., 2020). Greenland has 36 

lost about 330 billion tons of mass, equivalent to around 1 mm global sea level rise, per year on average for the last two decades  37 

(Greene et al., 2024; Khan et al., 2022). This will likely accelerate in the coming decades, even with the most optimistic 38 

warming scenario.  39 

Mass loss occurs through surface melt and the subsequent runoff of meltwater towards the ice sheet margin and solid 40 

ice discharge (calving) at marine-terminating outlet glacier termini. While meltwater runoff has been the dominant contributor 41 

to mass loss in Greenland, both have increased in the last few decades (Van Den Broeke et al., 2016; Greene et al., 2024; 42 

Mouginot et al., 2019; Vandecrux et al., 2023a). In the ablation area, the winter snowpack is melted out every summer and the 43 

meltwater enter an efficient drainage network of streams and lakes toward the margin (Smith et al., 2017). Higher up on the 44 

ice sheet, in the accumulation area, there is less melt, and a porous snow layer accumulated over the years, called firn, leads to 45 

the percolation and refreezing of surface melt, buffering additional sea level rise (Harper et al., 2012; Samimi et al., 2020). 46 

However, with intense and frequent melt events, thick ice layers, called ice slabs, are formed from meltwater refreezing, 47 

impeding vertical percolation of meltwater and promoting horizontal runoff (Culberg et al., 2021; Jullien et al., 2023; 48 

MacFerrin et al., 2019; Miller et al., 2022b, 2020b; Tedstone and Machguth, 2022). Increased refreezing resulted in a loss of 49 

approximately 5% of GrIS firn air content (FAC) between 1996 and 2019 (Medley et al., 2022). These effects gradually 50 

diminish the ice sheet's inherent capability to retain meltwater and buffer sea level rise (Harper et al., 2012; Mikkelsen et al., 51 

2016; Vandecrux et al., 2019).  52 

Furthermore, increased melting contributes to forming supraglacial, englacial, and subglacial meltwater features (e.g., 53 

lakes, rivers, slush, crevasses, moulins, and firn aquifers, etc.) that can augment dynamical discharge and calving losses by 54 

lubricating the basal sliding surface and accelerating the flow of outlet glaciers (Hoffman et al., 2011; Schoof, 2010; Sundal 55 

et al., 2011; Zwally et al., 2002). Therefore, meltwater not only contributes to sea-level rising through direct runoff, but it can 56 

also alter the physical structure that governs the dynamics and evolution of the ice sheet. Hence, quantification of total surface 57 

and subsurface liquid water is essential to understand ice sheet response to climate changes and project sea level rise accurately.  58 

Surface melt and liquid water amount (LWA) can be estimated with various techniques. In situ AWS networks 59 

provide meteorological observations (Fausto et al., 2021), which can drive surface energy and mass balance (EMB) models to 60 

derive surface melt and LWA. Other in situ measurements such as upward-looking radar (Heilig et al., 2018) or time domain 61 

resistivity probes(Samimi et al., 2021) can also be used to measure LWA at a given site. Due to logistical constraints, these 62 

point observations have a limited spatial and temporal coverage.  63 



3 

 

Regional climate models (RCM) are primarily used to estimate ice sheet-wide LWA, surface mass balance (SMB), 64 

and their changes (Fettweis et al., 2020). The results of RCMs are difficult to validate on the scale of the ice sheet, given the 65 

scarcity of in situ data to constrain and calibrate these models. Moreover, diversity exists in representation of the surface and 66 

sub-surface firn processes among RCMs, leading to significant uncertainties in LWA estimates and their temporal and spatial 67 

variabilities (Fettweis et al., 2020; Thompson-Munson et al., 2023; Vandecrux et al., 2020; Verjans et al., 2019).  68 

Satellite-based observations, especially microwave sensors, are very sensitive to ice sheet melting, manifested by 69 

large changes in dielectric constant with liquid water and can provide global coverage in day-night and all-weather conditions 70 

(Abdalati and Steffen, 1997; Mote and Anderson, 1995; Picard et al., 2022; Tedesco, 2007; Tedesco et al., 2007; Zwally and 71 

Fiegles, 1994). Accordingly, both active (radars) and passive sensors (radiometers) have been used to monitor surface melting 72 

across Greenland and Antarctica ice sheets (Abdalati and Steffen, 1995, 2001; Hall et al., 2009; Mote, 2007; Nghiem et al., 73 

2001; Tedesco, 2007; Wismann, 2000; Zwally and Fiegles, 1994). However, these conventional approaches applying high-74 

frequency bands (i.e., 18 and 36 GHz) from the legacy and operational radiometers (Abdalati and Steffen, 1997; Ashcraft and 75 

Long, 2006; Colosio et al., 2021; Fettweis et al., 2007, 2011; Tedesco, 2007, 2009; Tedesco et al., 2007; Zwally and Fiegles, 76 

1994) can only track the surface and near-surface binary melt status, not the meltwater propagation into the deeper layers 77 

because of their limited penetration depth and sensitivity to LWC (Colliander et al., 2022a, b, 2023; Mousavi et al., 2022). The 78 

emergence of L-band (1 - 2 GHz) radiometry, marked by the launch of ESA’s Soil Moisture and Ocean Salinity (SMOS) 79 

mission (November 2009 - present) and the collaborative effort between NASA and Argentina's space agency CONAE in the 80 

Aquarius mission (October 2011 - June 2015), followed by NASA’s Soil Moisture Active Passive (SMAP) mission (March 81 

2015 - present), has opened up the possibilities for monitoring ice sheet meltwater at greater depths. L-band signals can 82 

penetrate deeper and provide a more accurate estimate of sub-surface liquid water (Colliander et al., 2022b; Miller et al., 2020a, 83 

2022a, b; Mousavi et al., 2022). Nevertheless, only a few attempts have been made to quantify the amount of liquid water 84 

(Colliander et al., 2022a; Houtz et al., 2019, 2021; Mousavi et al., 2021; Schwank and Naderpour, 2018).  85 

Houtz et al. (2019) used the SMOS multi-angle L-band radiometric observations with a two-layer configuration of 86 

the L-band specific Microwave Emission Model of Layered Snowpacks (LS-MEMLS) model (Schwank et al., 2014) in an 87 

inversion-based retrieval framework for simultaneous estimation of snow liquid water content and density at the Swiss Camp 88 

site located in the ablation zone of the western Greenland ice sheet (GrIS). This initial study evaluated the results with in situ 89 

air temperature and another satellite-based empirical melt detection algorithm, called the XPGR (the cross-polarized gradient 90 

ratio of 19 GHz and 37 GHz TBs) (Abdalati and Steffen, 1995, 1997); however, it did not include any in situ validation of 91 

actual LWA. Naderpour et al. (2021) supported Houtz et al. (2019) findings using a close-range (CR) single-angle L-band 92 

microwave radiometer measurements and the same L-band specific forward model (LS-MELMS) at the Swiss Camp location. 93 

Houtz et al. (2021) extended the Houtz et al. (2019) approach to estimate LWA over the entire GrIS where they tuned the wet 94 

layer thickness (10 cm – 100 cm) to provide variable estimates of liquid water which also were not validated against any 95 

reliable reference. Field observations and modelling results provide evidence of meltwater infiltration for more than 100 cm, 96 

especially in the percolation zone of the GrIS (e.g., Samimi et al. 2021; Vandecrux et al., 2020). Mousavi et al. (2021) 97 
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developed an L-band specific snow/firn radiative transfer model to derive multidimensional brightness temperature look up 98 

tables for the frozen and melt season considering a four-layer ice sheet structure. The algorithm uses frozen season brightness 99 

temperature to determine the baseline emissions (temperature, density, scattering coefficient) which are then used in melt 100 

season to estimate liquid water content and corresponding wet layer thickness. In this paper, we extend Mousavi et al., (2021) 101 

approach with improved and updated LUT to quantify and validate the LWA with two state-of-the-art surface energy balance 102 

models forced with in situ observations, and to examine their spatial and temporal variability.  103 

 104 

2 Methods 105 

2.1 SMAP L-band Enhanced Resolution Brightness Temperatures 106 

SMAP was launched on January 31, 2015, and has been operational since March 31, 2015 (Entekhabi et al., 2010). It was 107 

placed in a 685-km altitude and 98.1◦ inclination sun-synchronous polar orbit with 6 AM/6 PM equator-crossing.  It carries a 108 

conically scanning radiometer operating at 1.41 GHz (L-band) with a constant incidence angle of 40◦ that results 1000-km 109 

wide swath giving twice daily coverage of GrIS. It measures brightness temperature (TB) in fully polarimetric mode giving 110 

the horizontal and vertical polarizations, as well as the 3rd and 4th Stokes parameters with native 38-km spatial resolution. 111 

The radiometric precision of the SMAP radiometer is within 0.5 K (Chaubell et al., 2018, 2020; Piepmeier et al., 2017). For 112 

Jun 20 – July 23, 2019, and Aug 6 - Oct 16, 2022, SMAP does not have results because of an operational outage of the satellite. 113 

Here, we used SMAP L-band enhanced-resolution TB products generated using the radiometer form of the 114 

Scatterometer Image Reconstruction (rSIR) algorithm and projected on the EASE-2 3.125 km grid (Brodzik et al., 2021; Long 115 

et al., 2019). The rSIR algorithm leverages the measurement response function (MRF) of each observation and combines the 116 

overlapping MRFs to reconstruct enhanced-resolution TB images. The effective resolution of SMAP enhanced-resolution TB 117 

products posted on a 3.125 km grid is ~30 km compared to the 46 km effective resolution of the SMAP original data products 118 

(Long et al., 2023). Therefore, it improves the overall effective resolution of about 30% compared to coarser grid postings 119 

(Long et al., 2023; (Zeiger et al., 2024). The data product provides two TB images daily – the morning and evening facilitating 120 

the resolution of diurnal variability. The spatial oversampling and resolution enhancement enables an improved 121 

characterization of spatial heterogeneity (Long et al., 2023). The land–ocean mask used to locate the ice sheet edge comes 122 

from PROMICE (Citterio and Ahlstrøm, 2013).  123 

2.2 Microwave Radiometric Response of GrIS 124 

2.2.1 Theoretical Background 125 

Microwave radiometers measure the naturally emitted thermal radiation, called the brightness temperature (TB), by the firn as 126 

observed in the microwave portion of the electromagnetic spectrum. It is related to the emissivity e and the effective physical 127 
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temperature Tphy of snow/firn/ice media for a given frequency f, polarization p, and incidence angle 𝜃. If firn were vertically 128 

homogeneous or isothermal, the TB could be found according to Rayleigh-Jeans approximation (Ulaby and Long, 2014): 129 

𝑇𝐵(𝑓, 𝑝, 𝜃)  =   𝑒 𝑇𝑝ℎ𝑦           (1) 130 

However, firn is not a vertically homogenous medium. Both the emissivity and temperature vary with depth. As a 131 

result, the TB is given by a depth-integrated product of physical temperature and emissivity, weighted by the emissive, 132 

absorptive, and scattering properties of the snow/firn/ice layers (Jay Zwally, 1977) which is strongly dependent on the 133 

frequency of observation. 134 

To account for the depth dependencies of snow and ice properties, firn is considered as a complex multilayer dense 135 

medium. For each layer, an effective physical temperature and permittivity is determined from firn absorptive and scattering 136 

properties. Then the microwave emission and its propagation are typically modeled using equation of radiative transfer (RT). 137 

Considering firn as a stack of N plane-parallel layers consisting of isotropic and homogeneous material in each layer, the RT 138 

equation can be given as (Jin, 1994, 1997; Picard et al., 2013; Tsang et al., 2000): 139 

cos 𝜃
𝑑

𝑑𝑧
𝑻𝑩(𝑧, 𝜃, ∅) =  𝜅𝑎𝑻(𝑧)𝑰 − 𝜅𝑒𝑻𝑩(𝑧, 𝜃, ∅) +  ∫ ∫ sin 𝜃′ 𝑑𝜃′𝑑∅′𝑷(𝜃, ∅,

2𝜋

0
𝜃′, ∅′)𝑻𝑩(𝑧, 𝜃′, ∅′)

𝜋

2
0

  (2) 140 

Here, 𝑻𝑩(𝑧, 𝜃, ∅) denotes the vertically and horizontally polarized brightness temperatures at depth z propagating along a 141 

direction characterized by θ (zenith angle) and ϕ (azimuth angle). 𝜅𝑒 , 𝜅𝑎, and 𝜅𝑠  are the extinction, absorption, and scattering 142 

coefficients, respectively, representing medium properties. For an isotropic medium, the extinction coefficient can be described 143 

as,  𝜅𝑒 = 𝜅𝑎 + 𝜅𝑠. θ′ and ϕ′ are slant angles and 𝑷 is bistatic scattering phase function. 𝑻(𝑧) is the physical temperature of 144 

snow at depth z, and I is a unit vector. Thus, the first term on the right-hand side of Eq. 2 represents the microwave emission 145 

(𝑇𝐵) of snow/fir/ice from depth z, and the second term denotes the extinction (attenuation) of the emission due to absorption 146 

and scattering. The third term represents the sum of total scattered emission in the direction of the receiver (as specified by θ 147 

and ϕ). Eq. 2 is solved analytically or numerically subject to boundary conditions at each layer interface and at the top and 148 

bottom of the medium 149 

The extinction coefficient, 𝜅𝑒 is function of the effective dielectric constant of the layer and frequency of the 150 

observation. Thus, the overall TB is given by the depth-integrated profiles of the effective physical temperature and dielectric 151 

constant of each layer. So, penetration depth plays a key role in determining the variability of TB, especially in low-frequency 152 

bands. For a low-loss media like firn, the penetration depth can be approximated as (Elachi and Zyl, 2021): 153 

𝛿 =
𝑐√𝜖′

2𝜋𝑓𝜖"           (3) 154 

where c is the speed of light and, 𝜖′ and 𝜖" are the real and imaginary parts of the dielectric constant of the firn. As shown, 𝛿 155 

is inversely proportional to both, f and 𝜖". L-band signal thus penetrates a significantly thicker layer than the higher frequency, 156 

like Ka-band signal. Liquid water markedly increases 𝜖" (compared to √𝜖′ in proportion), decreasing the penetration depth for 157 



6 

 

any frequency. For a typical snow density (measured for dry snow) in the percolation zone, it can be more than 4 m for an 158 

average LWC of less than 1% with the Ulaby and Long (2014) model’s wet snow dielectric constant, decreasing exponentially 159 

with the LWC. Thus, for an average LWC of 3% and higher, it is around 1 m and less. The average LWC in the percolation 160 

zone is typically not higher than 4%, except for extraordinary melt years (like 2012, not included in the study), and typical 161 

infiltration of liquid water is also generally within upper 4 m (Samimi et al., 2020, 2021). 162 

There are two types of scattering processes in the snow/firn medium affecting the propagation: surface scattering and 163 

volume scattering. The relative size of the scatterers compared to the wavelength determines the degree and types of scattering. 164 

For high frequency bands (>10GHz), the impact of volume scattering is critical because the fractional volume of scatterers 165 

(snow/firn) is significant. This is why the high-frequency signals interact more with fresh snow, grain size, and roughness at 166 

the surface. Low-frequency signals (<10GHz) are relatively insensitive to volume scattering from snow grains because the size 167 

of the scatterers is much smaller than the wavelength. Surface scattering occurs due to surface irregularities at the interface 168 

between layers of different dielectric constants, affecting all the frequencies when present. Horizontal and vertical ice layers 169 

(strata) are formed at various depths in the firn primarily from the refreezing of seasonal snow melts.  Over time, older ice 170 

layers move downward due to the snow accumulation while new ice layers are formed for subsequent melts at the top layers, 171 

creating a complex set of stratigraphy and significantly influencing the L-band signals from the deeper layers. Therefore, L-172 

band TB is determined by the subsurface temperature, stratigraphy, and LWA. 173 

2.2.2 Frozen Season Response 174 

L-band TB exhibit some distinct spatial features over GrIS during a frozen season. Along a typical west-east transect, TB is 175 

the highest in the ablation zone, then it gradually decreases to its lowest value in the percolation zone, followed by a gradual 176 

increase towards a moderate value in the upper accumulation zone. A mirror image is seen on the eastern side of the ice sheet. 177 

The spatial features of H-pol TB are similar to V-pol TB, but it is more affected by sub-surface layering. This is illustrated in 178 

Figure 1 with V- and H-pol mean frozen season TBs and their normalized polarization ratio (NPR, defined as NPR = (TBV-179 

TBH)/(TBV+TBH)). The ablation zone is characterized by exposed glacial ice with a high density and internal temperature 180 

than those of the ice sheet towards Greenland’s interior. It is soaked and swept by a large amount of meltwater every year. 181 

During the frozen season, the L-band emission has a high effective emissivity, radiating the warmer physical temperature of 182 

the deeper layers. In the percolation zone, on the other hand, moderate, but varying melt occurs almost each or every few years 183 

that percolates down and refreezes at different depths forming discrete ice layers and ice pipes, causing substantial scattering 184 

of mean TB (Jezek et al., 2018). High NPR values highlight the area with dense ice layers (strata).  The upper accumulation 185 

zone experiences light or no melt but accumulates snow, resulting in less density variation compared to the percolation zone. 186 

For detecting melt and quantifying LWA, we used vertically polarized TB (V-pol TB) considering its lower sensitivity to sub 187 

surface stratigraphy.  188 

 189 
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 190 

Figure 1: L-band radiometric response of GrIS during frozen season. Vertically polarized TB (a), horizontally polarized TB (b) 191 

averaged over Jan 1 – Apr 7th, 2015 – 2023, and their normalized polarization difference (c). 192 

2.2.3 Melt Season Response 193 

During summer season in presence of melt, the L-band TB generally decreases in the ablation and upper accumulation zones 194 

compared to the frozen season, while it increases significantly in the percolation zone. Fig. 2 illustrates this for a sample 195 

summer day (Jul 31, 2019) when melt was detected across the K-transect (~ 67° constant latitude; see the red line in Figure 196 

2a). The melt flags (square symbols over dashed line) specify the TB samples for which melt was detected (Sec. 3.2). The 197 

presence of LWC in the snow and firn increases the absorption and emission in turn (Mote and Anderson, 1995). However, at 198 

the lower elevation around the ablation zone, the TB decreases from its very high level (~260 K) as the LWC of the seasonal 199 

snow layer increases. This is because, when the LWC in the snow layer exceeds a threshold, snow becomes saturated and it 200 

creates a reflective boundary at the ice and snow interface, suppressing the emission from the ice layer and resulting in overall 201 

lower TB. This is caused by intense melting common in the ablation zone (Figure 2b). The percolation zone experiences 202 

moderate melt, making the snow and firn highly absorptive during melt season. As a result, the TB gradually increases from 203 

its winter references (Figure 2b), making the L-band sensitive to the total amounts of melt. In the upper accumulation zone, 204 

melt seldom occurs. But when it occurs, it may percolate and refreezes quickly in the colder snow creating ice layers that cause 205 

reflection, reducing L-band TB signals.  206 

 207 
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 208 

Figure 2: Radiometric response of L- band TB during frozen and melt season. The location of K-transect is highlighted by red line 209 
over the mean frozen season TBV map (a). Corresponding TBs across the transect are shown in (b): the black line represents the 210 
mean V-pol TB during the frozen season (Jan 1 – Apr 7th of the same year). The red dash-dotted line indicates TB responses on a 211 
sample melt day (Jul 31, 2019). The blue square symbols on the red dashed-dotted line depict melt flags (melt detections). 212 
Approximate location of ablation, percolation, and upper accumulation zones are depicted along the K-transect for reference. 213 

Figure 3 shows the L-band V-pol TB time series during Mar – Oct 2016 at the DY2 AWS, a location representative 214 

of the percolation zone. During the frozen season, the L-band TB is relatively lower and stable. During the melt season, it 215 

captures the diurnal signals during melting phases (melt generation). However, it diminishes as the melt percolates to deeper 216 

layers.  From the onset through the end of the melt season, the density and grain size increase in the snow and firn layers due 217 

to melt (Vandecrux et al., 2022). Although the L-band TB is relatively insensitive to the grain growth, the post-melt TB level 218 

may still decrease because of increased reflection from newly formed ice layers. This effect is pervasive, especially across the 219 

accumulation zone justifying a dynamic threshold in threshold-based melt detection algorithms.  220 
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  221 

Figure 3: L- band V-pol TB time series at the DY2 automatic weather station location during during Mar – Oct, 2016 illustrating 222 

the change of TB level caused by melting, snow accumulation, and other physical processes.  223 

2.3 Melt Retrieval Algorithm 224 

We used a threshold-based empirical detection algorithm to detect surface and subsurface melt events. The threshold is 225 

determined by: 226 

T = 𝜇 ± mσ                  (4) 227 

where 𝜇 is a reference TB (the mean during the frozen season), σ is the standard deviation of the TB during the reference 228 

period, and m is an empirically derived constant. A constant value of 10 was chosen for m. First, to detect the first and last 229 

melt during a year for a grid point, mean TB during Jan 1 – Apr 7th, and October 24 – December 31 was used as the reference 230 

values, respectively. Jan 1 – Mar 31 is generally considered fully frozen conditions regardless of elevation and latitudes. SMAP 231 

does not have data for Jan 1 – Mar 30, 2015, because the data production started on March 31, 2015; therefore, we extended 232 

the reference period to Apr 7th for all the years to make it consistent. October 24 – December 31 was determined based on 233 

visual observations of the time series during 2015-2023. An averaged value of 𝜎𝑠𝑝𝑟𝑖𝑛𝑔and 𝜎𝑓𝑎𝑙𝑙  is used with final adjustment 234 

of m in such a way that the threshold does not miss the first and last melts. Then a linearly transitional reference value is used 235 

between the first and last melt days to account for the change in TB value for subsequent melt because of refreezing.  236 
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We used an inversion of a simplified ice sheet emission model to estimate the LWA and physical properties of the 237 

detected melt events. The retrieval algorithm consists of a forward model (Fig. 4) simulating the L-band TB (Mousavi et al., 238 

2021) and a cost function minimization between the simulated and observed TB. The forward model represents the ice sheet 239 

as a stack of 4 vertical layers, where each layer is characterized by its complex dielectric constant (𝜖), density (ρ), physical 240 

temperature (T), and thickness (d). The top layer is air above the snow and assumed to be semi-infinite (surface to radiometer 241 

antenna) and the bottom layer (Layer 3 in Fig. 4) is also assumed semi-infinite, while the intermediate layers are configured 242 

with variable thicknesses. The first snow/firn layer (Layer 1 in Fig. 4) holds dry and wet snow/firn during frozen and melt 243 

seasons respectively. To account for the combined reflective effects by the complex stratigraphy due to numerous ice layers 244 

common in the percolation zone of the GrIS, as well as the effects of multiple scattering in the snow/firn layer, we designate 245 

Layer 2 (underneath the dry/wet snow/firn layer) as a highly reflective layer by explicitly specifying its dielectric constant 246 

(with high real part that varies spatially). The TB is then modelled using the incoherent approach of radiative transfer (RT) 247 

theory, without considering the effects of volume scattering analytically (but considering its dielectric effects explicitly).  For 248 

a specific depth z, the upwelling TB, for a given polarization, p, is given by: 249 

𝑇𝐵𝑛𝑝
𝑢 (𝜃𝑛, 𝑧) = [𝛤𝑛𝑝 𝑇𝐵𝑛𝑝

𝑑 (𝜃𝑛, ˗ 𝑑𝑛)  + (1 − 𝛤𝑛𝑝)𝑇𝐵(𝑛+1)𝑝
𝑢 (𝜃(𝑛+1), ˗ 𝑑𝑛)]𝑒−𝑘𝑎𝑛(𝑧+𝑑𝑛) 𝑠𝑒𝑐𝜃𝑛  + (1 − 𝑒−𝑘𝑎𝑛(𝑧+𝑑𝑛) 𝑠𝑒𝑐𝜃𝑛) 𝑇𝑛        250 

            (5) 251 

where 𝑇𝐵𝑛𝑝
𝑢  and 𝑇𝐵𝑛𝑝

𝑑  represents the upwelling and downwelling p-polarized TB at the interface z = ˗ 𝑑𝑛 characterized by 252 

reflectivity 𝛤𝑛𝑝. 𝜃𝑛 is the incidence angle determined from the Snell’s law and dielectric constant, and 𝑘𝑎𝑛 is the power 253 

absorption coefficient given by 𝑘𝑎𝑛 = - 2Re{ ω√ε𝑛𝜇0 }, where ω is the angular frequency, ε𝑛 is the complex permittivity of 254 

the layer, and 𝜇0 is the magnetic permeability for a nonmagnetic material.  𝑇𝑛 is the physical temperature of the layer and 255 

assumed to be homogenous within the layer. The downwelling part of the TB,  𝑇𝐵𝑛𝑝
𝑑 (𝜃𝑛, ˗ 𝑑𝑛), is given by: 256 

 𝑇𝐵𝑛𝑝
𝑑 (𝜃𝑛, ˗ 𝑑𝑛) =  𝛤(𝑛−1)𝑝 𝑇𝐵𝑛𝑝

𝑢 (𝜃𝑛, ˗ 𝑑𝑛−1)  + (1 − 𝛤(𝑛−1)𝑝) 𝑇𝐵(𝑛−1)𝑝
𝑑 (𝜃(𝑛−1), ˗ 𝑑𝑛−1)   (6) 257 

It is assumed that there are no downward and upward emissions beyond the top and bottom semi-infinite layers 258 

respectively, and the atmospheric attenuation is also to be negligible considering L-band frequency. Therefore, the top-of-the 259 

atmosphere TB is found from equation (1), 260 

𝑇𝐵𝑃(𝜃0, 𝐻) ≈  𝑇𝐵0𝑝
𝑢 (𝜃0, 0) = (1 − 𝛤0𝑝) 𝑇𝐵1𝑝

𝑢 (𝜃1, 0)        (7) 261 



11 

 

 262 

Figure 4: L-band multilayer ice sheet forward model. 263 

For faster processing during retrieval, we developed separate look-up-tables (LUTs) for dry and melt season 264 

prescribing layer parameters by sweeping over a realistic range of each parameter. The LUTs were revised compared to their 265 

original versions (Mousavi et al., 2021) in the following way. Mousavi et al., 2021 and 2022 generated LUTs with a larger 266 

range for background temperature (110-265K)for highly reflective layer (Layer 2 in Fig. 4), and the semi-infinite ice layer 267 

(Layer 3 in Fig. 4). We used a similar procedure to derive the LUTs, but with different range and resolutions of the background 268 

parameters. For each layer, dry snow density varied from a fresh snow density of 50 kg/m3 to that of solid ice of 917 kg/m3. 269 

Physical temperature was prescribed from 200 K to 273.15 K. For the melt season, the wet snow layer is inserted with a volume 270 

fraction of meltwater, mv, which is varied from 0 to 5% in 40 equally spaced steps, and thickness, dwet, which is varied from 271 

10 cm to 20 m, in 10 cm steps for the top 60 cm, 20 cm steps for next 1.4 m, 40 cm steps for next 8 m, and 1 m steps for the 272 

next 10 m. For mv > 0, Twet must be 0 C. Colbeck, (1974) suggested because of capillary retention, the irreducible water 273 

saturation of dense snow/firn is about 7% of its pore volume. Coléou and Lesaffre, (1998) showed that the irreducible water 274 

content can be up to 6.5 - 8.5 % of the pore volume depending on the density. Based on these studies and considering snow/firn 275 

density in the percolation zone, we determined the maximum volume fraction to be 5%. The dielectric constant of the dry snow 276 

was calculated using Mätzler (2006), and wet snow following Ulaby and Long (2014). Ulaby and Long (2014) model of wet 277 

snow dielectric constant is an empirical model, called the ‘modified Debye-like model,’ which is an extension of Hallikainen 278 

et al. (1986). Then, the emission model was run for each combination. The model computes the top-of-the-atmosphere L-band 279 

TB at the V- and H-pol assuming fully transparent atmosphere. With all these constraints, the tuning finally results in two 280 

LUTs with six and eight dimensions for the dry and melt seasons, respectively. 281 
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The inversion was performed by optimizing a cost function that minimizes the distance between the LUT-modeled 282 

TB and the corresponding SMAP-measured TB for each 3.125 km grid cell. The optimization was carried out in two steps for 283 

each melting grid. First, the frozen season snow/firn density, physical temperature, and dielectric constant were estimated. 284 

Second, using that information, the volume fraction of meltwater mv, and corresponding wet layer thickness dwet, were 285 

determined for a time stamp during the melt season. The LWA is thus the product of the two, i.e., LWA = mv dwet [m] m.w.e. 286 

This represents the instantaneous total LWA present in the SMAP footprint for that time stamp within the SMAP sensing 287 

depth, covering the typical infiltration of the meltwater in the percolation zone as per the climatological records (Samimi et 288 

al., 2020; Vandecrux et al., 2020). The detection algorithm uses both increasing and decreasing summer TBs (w.r.t threshold 289 

T from Eq. 4) to generate melt flags; however, the inversion only considered increasing TBs for LWA quantification. We 290 

averaged twice daily LWA outputs to compute daily samples. 291 

2.4 Automatic Weather Station Measurements 292 

Direct measurements of LWA are not available for validation. However, AWS networks, such as the Greenland Climate 293 

Network (GC-Net) (Steffen et al., 1996; Steffen and Box, 2001) or the Programme for Monitoring the Greenland Ice Sheet 294 

(PROMICE) (Fausto et al., 2021), provide essential surface parameters that can be used to estimate LWA with an energy 295 

balance model. The Geological Survey of Denmark and Greenland (GEUS), now manages these two AWS networks, which 296 

cumulate 33 active ice sheet sites in Greenland that provide a suite of measurements, such as incoming/outgoing short and 297 

longwave radiation fluxes, snow-surface height, air temperature, air pressure, vector winds, as well as subsurface temperature 298 

and density profiles (Fausto et al., 2021).  299 

We used the hourly measurements from six PROMICE and GC-Net AWSs in the percolation zone to force an EMB 300 

model that produce a reference LWA, which was then used to validate the LWA retrieved from SMAP observations. The 301 

stations were selected considering their locations (see Fig. 5) and melt climatology. The meteorological forcing governs the 302 

surface energy budget (SEB) and was used to derive a coupled energy balance and snow/firn hydrology model (Ebrahimi and 303 

Marshall, 2016; Samimi et al., 2021) that provide an estimate of hourly LWC evolution within snow and firn.  304 

2.5 Ice Sheet Energy Balance and Hydrology Model 305 

The energy balance model (EBM) determines the net energy available for melt by considering the SEB along with modelled 306 

surface temperature, thermal emissivity, and albedo. The coupled model also accounts for the hydrological processes like 307 

meltwater infiltration, refreezing, and retention within the firn. We used two ice sheet EBMs for comparisons with the SMAP 308 

LWA retrievals. A detailed description of these models is out of the scope of this article, but brief descriptions are given below. 309 

Readers are referred to relevant cited articles for further details.  310 
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2.5.1 Energy Balance and Hydrology Model 311 

A locally calibrated and validated EBM  (Ebrahimi and Marshall, 2016; Samimi et al., 2020, 2021)  was used as the primary 312 

reference for comparison. The EBM was initialized with ice core density profiles, stratigraphy, and the sub-surface temperature 313 

profiles (Vandecrux et al., 2023b) and forced with the hourly surface forcing from PROMICE and GC-Net AWS. The model 314 

first calculates the net energy balance from the surface forcing by combining the energy fluxes towards the surface layer. Then, 315 

it runs a subsurface model to calculate heat conduction and melt rates in the upper 20 m of the snow/firn by resolving the 316 

profile into 43 vertical layers, with gradually decreasing thickness near the surface.  317 

When the surface temperature reaches the melting point, and the net energy is positive, melting occurs. Conversely, 318 

if net energy is negative and the surface layer is at the melting point, any existing liquid water will freeze, releasing latent heat 319 

and causing the surface layer to cool until all liquid water is refrozen, depending on the energy balance. When surface layer 320 

temperatures are below the melting point, and there is either an excess or deficit of energy leading to warming or cooling, the 321 

energy balance within a one-dimensional model of subsurface temperature evolution determines the subsurface temperature 322 

and density profiles. The model determines hydraulic conductivity and permeability after Meyer and Hewitt (2017), while 323 

thermal conductivity was modeled following Calonne et al., (2019). The profile then governs the availability of local water at 324 

any level for the next time stamp. The model relates to a basic approach to how meltwater flux percolates downward using 325 

Darcy's law. The local water balance is determined by mass conservation in each subsurface layer. Once a layer becomes 326 

temperate, it can retain liquid water within its pore space or allow it to percolate deeper (Coléou and Lesaffre, 1998). The 327 

subsurface model is coupled with a hydrology model that redistributes the meltwater; depending on the subsurface temperature 328 

profile, the meltwater may refreeze. Due to refreezing, density may increase, and ice layers may form that may reduce or 329 

completely block meltwater infiltration. The firn densification was modeled as in Vionnet et al., (2012). We henceforth refer 330 

to this model as the EBM for simplicity. To evaluate the LWA retrieval, we calculate the daily average LWA from the hourly 331 

EBM output. 332 

2.5.2 Glacier Energy and Mass Balance (GEMB) Model 333 

We used output from GEMBv1.0 as a secondary source of comparison. It is a module in the Ice-sheet and Sea-level System 334 

Model (ISSM, https://issm.jpl.nasa.gov/) that models the ice sheet surface-energy and mass exchange and snow/firn state in a 335 

1D column over time (Gardner et al., 2023). It has more than 100 vertical layers with <5 cm thickness in the top layers and 336 

employs spatially variable grid size based on the ice sheet dynamics. GEMB formulates irreducible water content according 337 

to Colbeck, (1973), and uses bucket scheme (Steger et al., 2017) for liquid water infiltration. Parameterization of firn 338 

densification and thermal conductivity follow Herron and Langway, (1980) and Sturm et al., (1997) respectively. Readers are 339 

referred to Gardner et al., (2023) and references therein for further details. The model was forced with the same hourly surface 340 

forcing from PROMICE and GC-Net AWS, but gap filled with ERA5 (Hersbach et al., 2020) atmosphere and radiation 341 

conditions, after the methods described by Paolo et al., (2023). The ERA5 surface temperature and downwelling longwave 342 
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radiation forcing were spatially bias-corrected for each month, such that all values were adjusted by the difference between 343 

the RACMO2.3 (Noël et al., 2016) and the ERA5 1980-2015 monthly means. GEMB outputs include temperature, density, 344 

and LWC profiles.  345 

2.5.3 Evaluation Metrics 346 

To compare SMAP daily LWA time series with corresponding LWA from EBM and GEMB model, we considered the standard 347 

evaluation metrics including mean difference, standard deviation (STD), mean absolute difference (MAD), Pearson linear 348 

correlation coefficient (r), root mean square error (RMSE) for summer seasons (Jun 1 – Oct 31), 2021-2023. We also compared 349 

day of melt onset (the first day of summer melt) and melt freeze up (the last day of summer melt), summer melt duration 350 

(difference of melt onset and freeze up), maximum summer LWA, and annual sum of daily LWA (LWAYS). To determine the 351 

day of melt onset and freeze up, we only considered melt events with LWA > 2 mm, to avoid any spurious melts that may 352 

result from any instrumental noise or other sources. The LWAYS is the sum of daily LWA over a year. It is a measure of the 353 

total seasonal LWA, but it does not represent the total surface melt generated over a year. This is because SMAP observes the 354 

instantaneous LWA, the net water balance, which is the cumulative sum of surface melt, refreezing, and runoff over SMAP 355 

footprint. When the net water balance remains positive overnight, it can be considered multiple times in the total integrated 356 

LWA as long as it persists.  357 

3 Results 358 

3.1 Liquid Water Amount 359 

3.1.1 Comparison to Locally Calibrated EBM 360 

Figure 5 shows a comparison of the SMAP-retrieved LWA with the LWA derived from the EBM at six different PROMICE 361 

and GC-Net AWS sites for 2023 summer season (Jun 1 – Oct 31). The melt season at CP1 site (Figure 5a) began at the fourth 362 

week of June according to both, SMAP and the EBM, and continued through the first week of September according to SMAP, 363 

while it extended through the end of September in the model estimate. Shortly after complete refreezing of the first melt event 364 

in late June, SMAP resumed recording LWA in first week of July. Both SMAP and the EBM closely agree in both phase and 365 

magnitude of LWA during first half of July. Afterwards, the EBM reports overall higher LWA for the rest of the season and it 366 

seemed to retain liquid water for an elongated period when SMAP showed a fully refrozen firn. The overall agreement is given 367 

by the Pearson linear correlation coefficient (r) of 0.79 and root mean square difference (RMSD) of 19 mm. The onset of melt 368 

event at KAN_U site (Figure 5b) is concurrent to CP1 in accordance with the EBM. However, SMAP did not record melt at 369 

this site until the first week of July. Unlike CP1 site, SMAP reports persistent LWA through the first week of October, whereas 370 

EBM shows complete refreezing by the second week of September. Both SMAP and the EBM captured less LWA at KAN_U 371 

site compared to CP1. This is somewhat counter-intuitive because the KAN_U site is located at a lower elevation than CP1 372 
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site (see the elevation in Figure 5d). In fact, KAN_U is characterized by having a lower accumulation and higher melt rate 373 

every year (MacFerrin et al., 2019; Machguth et al., 2016). However, excessive melt have also created thick ice slabs in this 374 

location (MacFerrin et al., 2019; Machguth et al., 2016). As a result, liquid water cannot percolate to the deeper layers and run 375 

off horizontally. The model excludes this liquid water in the form of ‘drainage’, and SMAP only sees the existing meltwater 376 

in its field of view. At the DY2 site (Figure 5c), LWA estimated by SMAP, and the EBM resemble more closely both in phase 377 

and magnitude (except the difference in timing of complete freeze up). This is reflected by nearly perfect correlation (r=0.98) 378 

and a small overall RMSD (4 mm) as shown.  379 

SMAP LWA also closely aligns with the EBM at NSE site in magnitude and duration of liquid water presence (r = 380 

0.98 and RMSD = 3 mm) although SMAP seemed to miss the late August small melt event (Figure 5e). The agreement however 381 

exhibits the greatest deficiencies at SDL site for this melt season (Figure 5f). Although the timing of the melt onset and late 382 

August secondary melt event matches precisely, the EBM reports overall a higher LWA and an extended summer melt duration 383 

at this location. This is manifested in the performance metrics shown by a relatively higher RMSD (24 mm) and comparatively 384 

lower correlation coefficient (0.77). The performance at SDM site is generally good (r = 0.92, and RMSD = 6 mm), except the 385 

EBM demonstrates a delayed refreezing than SMAP (Figure 5g).  386 

It is pertinent to highlight that while in situ LWA at all these AWS were derived from the energy balance model 387 

forced by the pointwise measurements at the AWS locations, the SMAP retrievals estimated a spatially averaged LWA 388 

corresponding to the ~30 km effective resolution of the enhanced-resolution TB. Approximately, during the first half of the 389 

melt season, the LWA is primarily determined by meltwater generation in response to the net radiation flux at the surface. 390 

Whereas, roughly during the second half when the net radiation flux remains negative, refreezing becomes the dominant 391 

process. Hence, the model’s representation of the surface melt infiltration, heat transfer, and other physical processes play a 392 

significant role, posing additional uncertainties. The AWS measurements used to run the model also add some inherent 393 

uncertainties. Therefore, assessing relative accuracies is not straightforward. Nevertheless, the general agreements between 394 

the model and SMAP retrieved LWA in magnitude and phase at these locations suggest that the spatial heterogeneity of melt 395 

processes is not acute in these areas.  396 

 397 
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 398 

Figure 5: Comparison of the total daily liquid water amount retrieved from SMAP (red dashed lines labeled SMAP) and estimated 399 
by the EBM forced with in situ measurements (blue lines labeled EBM) at selected PROMICE and GC-Net AWS within the GrIS 400 
percolation area for Jun 1 – Oct 31, 2023. The locations of the AWSs are shown in the middle panel along with the ice sheet surface 401 
elevation (Howat et al., 2014). 402 

3.1.2 Three Way Comparison: SMAP, EBM, and GEMB Model 403 

We performed a pairwise comparison among SMAP, EBM, and GEMB models (Figure 6) for the 2021, 2022 and 2023 melt 404 

seasons (based on available meteorological data) at the 6 AWS locations. In detail performance metrics are documented in 405 

Table 1 (mean difference, STD, mean absolute difference, Pearson linear correlation coefficient, and RMSD) and Table 2 406 

(melt onset, freeze up, duration of summer melt, maximum summer melt, and annual sum of daily LWA). Because of SMAP 407 

outage for 2022 summer, performance metrics in Table 1 only considered the operational part of SMAP. Table 2, however, 408 

excludes SMAP for 2022 melt season except the melt onset information as the other metrics were impacted by the outage.  409 

At KAN_U site, the overall agreement between SMAP and the EBM was determined to be better (r > 0.75) than the 410 

agreement between SMAP and GEMB model (r < 0.55), for the 2021 and 2023 melt seasons (Figure 6a-6c). All the AWS data 411 

required to run the EBM for 2022 melt season were not available. GEMB used ERA5 data to gap fill this period, and SMAP 412 

LWA closely aligns with GEMB estimates for the first part of the summer season till the outage. However, GEMB model 413 

demonstrates earlier melt onset in 2021 and 2023 melt seasons compared to both SMAP and the EBM. SMAP estimated a 414 

maximum summer melt of 56 mm at this site in 2021 melt season, while both the EBM and GEMB model recorded maximum 415 

summer melt of 30 and 45 mm respectively in 2023 melt season. No pair shows consistent superiority at CP1 site  416 
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 417 

Figure 6: Comparison of the SMAP retrieved total daily liquid water amount (red dashed lines) with the estimated LWA from EBM 418 

(blue solid lines), and GEMB model (black dotted lines) at selected PROMICE and GC-Net AWS within the GrIS percolation area. 419 

SMAP data gap is depicted in shade for 2022 summer season, and EBM results were not included when AWS data were missing 420 

where GEMB used ERA5 forcing.  421 

SMAP Outage
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(Figure 6d-6f). SMAP LWA generally aligns closer with GEMB model LWA in 2021 melt season, and with the EBM in 2022 422 

melt season, whereas in 2023 melt season, the EBM and GEMB model matches closer to each other than to SMAP. DY2 lacks 423 

AWS forcing during 2021 melt season. So, EBM result is missing for this melt season. Between SMAP and GEMB model, 424 

the later estimates overall more LWA (LWAYS 1196 mm vs 2101 mm). But there is a reasonable alignment between the peaks 425 

of the two LWA time series (Figure 6g). The overall RMSD was found to be 10.67 mm. For the other two melt seasons (Figure 426 

6h-6i), SMAP and the EBM results show superior agreements (r > 0.96 and RMSD ~ 4 mm). GEMB model reports slightly 427 

higher LWA in 2023, both in magnitude and duration (4214 mm LWAYS compared to 2893 mm (SMAP) and 2608 mm (EBM) 428 

resulting in a higher overall RMSD (>12 mm) with the other two. 429 

Table 1: Pairwise performance comparison among (a) SMAP, (b) EBM, and (c) GEMB models for 2021-2023 summer 430 

seasons (Jun 1 – Oct 31). Cells are left blank for missing either SMAP or AWS data. 431 
  

Mean Difference 

(mm) 

Standard Deviation 

(STD) (mm) 

Mean Absolute 

Difference (MAD) 

(mm) 

Pearson Correlation 

Coefficient (r) 

Root Mean Square 

Difference (RMSE) 

(mm) 

AWS Year a-b a-c b-c a-b a-c b-c |a-b| |a-c| |b-c| a, b a, c b, c a-b a-c b-c 

KAN_U 2021 8.0 6.0 -3.9 12.72 17.78 9.24 8.82 12.53 5.44 0.85 0.43 0.65 14.99 18.73 10.02 

2022 
 

-1.5 
  

5.61 
  

3.66 
  

0.91 
  

5.76 
 

2023 -1.2 0.9 2.2 7.17 10.26 7.96 5.19 7.51 5.19 0.79 0.53 0.77 7.25 10.26 8.23 

CP1 2021 -12.3 -3.3 8.7 10.68 6.41 9.31 12.35 4.43 9.22 0.88 0.90 0.87 16.30 7.21 12.72 

2022 -0.5 -3.1 -3.0 1.07 6.26 6.04 0.59 3.50 3.46 0.96 0.48 0.64 1.16 6.93 6.72 

2023 -12.3 -17.0 -4.8 14.57 17.88 5.94 12.79 17.66 5.81 0.79 0.77 0.98 19.00 24.62 7.62 

DY2 2021 
 

-6.0 
  

8.86 
  

6.62 
  

0.86 
  

10.67 
 

2022 -2.8 -4.5 -1.2 3.45 5.74 4.97 2.85 4.75 3.01 0.96 0.73 0.84 4.42 7.26 5.09 

2023 2.2 -8.4 -10.5 3.72 9.68 10.70 2.96 9.49 10.81 0.98 0.94 0.93 4.30 12.78 14.97 

SDM 2021 -5.3 -5.0 0.3 8.07 8.93 4.55 5.37 5.26 2.39 0.60 0.53 0.90 9.65 10.19 4.55 

2022 -0.2 -0.8 -0.5 0.45 2.29 2.23 0.23 0.79 0.81 
  

0.37 0.50 2.41 2.28 

2023 -2.9 -2.2 0.5 5.62 5.69 2.81 3.09 2.75 1.35 0.92 0.92 0.98 6.33 6.09 2.85 

SDL 2021 -6.7 -4.7 1.9 8.65 8.13 6.28 6.75 5.12 4.20 0.69 0.65 0.83 10.94 9.38 6.53 

2022 -0.7 -1.6 -0.9 1.75 3.53 2.78 0.73 1.58 1.12 0.69 0.35 0.62 1.88 3.84 2.91 

2023 -18.1 -6.1 11.1 16.40 10.53 9.88 18.13 6.53 11.19 0.77 0.89 0.92 24.37 12.16 14.81 

NSE 2021 -2.1 -3.6 -1.5 4.46 6.74 4.08 2.08 3.61 2.19 0.15 0.16 0.80 4.90 7.62 4.33 

2022 
 

-0.3 
  

1.50 
  

0.34 
     

1.53 
 

2023 -1.2 -9.4 -8.8 2.48 14.90 14.07 1.16 9.48 9.07 0.98 0.83 0.80 2.73 17.59 16.57 

As per maximum summer melt and LWAYS, SDL, SDM and NSE sites experienced the highest LWA in 2023 melt 432 

season compared to the other two melt seasons under consideration (Figure 6j-6r). SMAP did not record any LWA in any of 433 

these sites during 2022 melt season when EBM (except NSE where AWS data were not available), and GEMB models also 434 

reported the least LWA in three melt seasons (Figure 6k, 6n, and 6q). In 2021 melt season, SMAP estimated overall lower 435 
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LWA and shorter summer melt duration than that of EBM and GEMB models in these sites. But the agreements between EBM 436 

and GEMB models are in the same orders (see Table 1 and Table 2), with both exhibited delayed refreezing consistently 437 

compared to SMAP.  438 

Table 2: Comparison of individual performances: (a) SMAP, (b) EBM, and (c) GEMB models. A threshold of 2 mm 439 

LWA was considered to avoid any spurious melt event. Comparisons were performed based on daily matchup dataset. 440 

Cells are left blank when significant data were missing during summer. 441 

  Melt Onset (DOY) Melt Freeze up (DOY) 
Summer Melt Duration 

(days) 

Maximum Summer LWA 

(mm) 

Annual Sum of Daily 

LWA (mm-year) 

AWS Year SMAP EBM GEMB SMAP EBM GEMB SMAP EBM GEMB SMAP EBM GEMB SMAP EBM GEMB 

KAN_U 

2021 179 175 164 254 248 247 76 74 84 56 24 40 2212 736 1351 

2022 186   171     303     133     36    1709 

2023 188 176 154 277 254 251 90 79 98 22 30 45 1302 1504 1205 

CP1 

2021 179 175 177 251 277 254 73 103 78 39 61 51 842 2471 1288 

2022 181 181 182   252 272   72 91   16 33   175 589 

2023 175 176 154 246 273 280 72 98 127 61 76 91 1569 3458 4191 

DY2 

2021 179   175 251   260 73   86 35   61 1196  2101 

2022 185 185 171   270 273   86 103   30 38   838 1003 

2023 187 187 154 313 265 286 127 79 133 61 64 77 2893 2608 4214 

SDM 

2021 200 175 177 232 256 251 33 82 75 35 40 46 164 857 812 

2022   245 171   269 270   25 100   8 14   32 104 

2023 188 187 188 213 237 236 26 51 49 48 52 55 775 1202 1129 

SDL 

2021 200 185 177 235 261 249 36 77 73 21 41 40 195 1096 839 

2022   169 171   248 252   80 82   7 17   68 188 

2023 187 187 166 235 282 245 49 96 80 43 77 69 919 3383 1879 

NSE 

2021 201 185 180 201 241 243 1 57 64 3 19 27 5 271 469 

2022     188     249     62     10    37 

2023 188 187 178 214 234 244 27 48 67 23 32 70 338 508 1789 

 442 

3.1.3 SMAP LWA Time Series 443 

Figure 7 shows the SMAP retrieved LWA time series at the mentioned six AWS locations on the southwest and southeast 444 

sides of the GrIS percolation zone. The time series do not include results during 2019 and 2022 outage. As evidenced, the 445 

AWS sites in the southwest sites (Figure 7a-7c) experienced more average LWA and longer summer melt duration than the 446 

AWS sites in southeast sites (Figure 7d-7f). SDL, SDM, and NSE witnessed an insignificant LWA (<10 mm) during 2015 - 447 
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2020 melt seasons. However, it was found to be increasing in recent years (Figure 7d-7f). SMAP recorded the highest LWA 448 

in 2023 melt season during 2015 - 2023 at all the AWS locations, except at KAN_U where 2021 marked the highest melt 449 

season. 450 

 451 

452 

Figure 7: SMAP retrieved LWA time series for 2015-2023 period at six selected PROMICE and GC-Net AWS within the GrIS 453 

percolation area. 454 

3.1.4 Spatial Variability 455 

Figure 8 illustrates the annual sum of daily LWA (LWAYS) for 2015 – 2023. Here, we masked the area where melt is detected 456 

by decreasing summer TBs (compared to winter reference). As mentioned in Sec. 2.2.3, current LWA quantification algorithm 457 

applies to increasing TBs only. This excluded the melt flags in the ablation zone and upper accumulation zone as indicated by 458 

grey shades in Figure 8. There were also some occasions when summer TB decreases below the winter threshold in the 459 

percolation too. Those anomalies were probably caused by short lived melt events that refroze between SMAP passes and 460 

impacted TBs. These anomalies are also masked and not included in the results. As depicted, SMAP captured the similar 461 

spatial trends of LWA distribution across the percolation zone of GrIS as reported by previous studies (Van Den Broeke et al., 462 

2016; Houtz et al., 2021). In the time frame under consideration, 2023 melt season (Figure 8i) had the highest LWAYS (2634 463 

mm on average for the percolation area) while 2017 (Figure 8c) had the lowest value (757 mm on average for the percolation 464 
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area). In 2015 (Figure 8a), the northern ice sheet exhibited a relatively high LWAYS; similar intensity and extent were also 465 

recorded for 2023 (Figure 8i). Notably, the melt extended to upper elevations in the dry snow zone in 2021 and 2023. 466 

Unfortunately, SMAP outages in 2019 (Figure 8e) and 2022 (Figure 8h), lead to incomplete coverage for those years and lower 467 

LWAYS. It is worthwhile to reiterate that the integrated LWA is a measure of the total seasonal LWA in the specified area. 468 

 469 

 470 

Figure 8: Total annual sum of SMAP daily LWA for 2015 - 2023. The black solid line represents GrIS edges, and the grey color 471 
masks inside the ice sheet indicate melt detections by decreasing TB, which were not quantified. 472 

4 Discussion 473 

The L-band radiometry has the unique advantage of receiving the emission from the deep layers of ice sheets, offering the 474 

opportunity to track meltwater from deeper layers. We have demonstrated its capability to estimate the seasonal LWA that 475 

generally agrees with two state-of-the-art ice sheet models, forced with independent in situ AWS measurements. The 476 

legitimacy of spatial and temporal variability shown in SMAP retrieval for the percolation area of the GrIS is promising. 477 

There are some disagreements as well, but those do not necessarily indicate a deficiency of the SMAP retrievals since 478 

both the references are models with their own limitations. The differences between model results and SMAP retrievals are not 479 

systematic, so they are difficult to explain; but there is no evidence of a consistent bias. Nonetheless, some of the discrepancies 480 

between these estimations of LWA stem from the scale at which those datasets operate. The SMAP LWA was estimated from 481 

the TB measurements averaged over a large footprint and a short integration time. Further, rSIR enhanced-resolution data 482 
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products involve overlapping observations to produce the 3.125 km gridded data but still has an effective spatial resolution of 483 

~30 km. Thus, it represents near-instantaneous vertically integrated LWA, averaged over the grid point, whereas the AWS 484 

data is the hourly average of ‘point’ measurements representative of the 0.1-1 km surrounding the station. The total LWA from 485 

AWS-forced data is the hourly-averaged, vertically integrated net water balance which is determined as the cumulative sum 486 

of hourly surface melt generation, refreezing, and drainage. The surface melt generation is driven by the net surface energy 487 

balance (net radiation and turbulent heat fluxes), which involves uncertainties (e.g., the surface albedo and roughness; errors 488 

in the meteorological inputs), while how the melt and heat are distributed in subsurface firn involves additional uncertainties, 489 

including sensitivity to initial conditions (e.g., the firn temperature and density profile; Samimi et al., 2020). These models 490 

transform surface meteorological information into an amount of surface melt relying on loosely constrained parameterizations 491 

(Covi et al., 2023). Eventually, the models’ formulation for the meltwater infiltration is still poorly constrained (e.g. Vandecrux 492 

et al., 2020). Additionally, both the models we used (like other state-of-the-art firn models) are one dimensional – they only 493 

consider vertical movement of water and heat and do not account for horizontal advection. However, firn hydrological 494 

processes are complex and heterogeneous, and processes such as ice layer formation are intrinsically three-dimensional. What 495 

the models consider as ‘drainage’ (meltwater that moves out of the system) both vertically and horizontally could still be within 496 

the SMAP sensing depth and horizontal footprints. Hence, the comparison should be considered accordingly.  497 

One important disagreement between SMAP and EBM LWA estimation, especially during the refreezing periods, is 498 

that EBM retained LWA for an extended period when SMAP showed complete refrozen condition (Figure 6). We used SUMup 499 

subsurface temperature measurements (Vandecrux et al., 2023b) to verify the cases for which SUMup data are available. One 500 

example is shown in Figure 9. It compares the model-estimated subsurface temperature (Figure 9a) corresponding to the 2021 501 

LWA at CP1 (Figure 6d) to the in situ measured subsurface temperature (Figure 9b). It is evident that although the penetration 502 

depth of the model wetting front closely matches the observation, the measurement demonstrates a higher and faster refreezing 503 

compared to the model. The subsurface measurement shows a fully refrozen condition by early September (closely agreeing 504 

with what was revealed by SMAP, see Figure 6d). However, the model seems to retain the subsurface meltwater with a 505 

persistent wetting front even past the beginning of October, which seems unlikely. Speculating extra melt production due to 506 

possible error in the AWS surface forcing, and other surface processes in the EBM, we examined modelled subsurface 507 

temperature profile by reducing surface melt with different factors (<1). We also performed similar analysis with irreducible 508 

water content, thermal conductivity. In either case (not shown), we could not match the subsurface profile with measured 509 

profile within reasonable agreements. This incites questions regarding the model representation of meltwater infiltration, heat 510 

transfer, and refreezing.  511 

The models do not include meltwater infiltration by finger flow (piping). Some recent studies have shown that this is 512 

an important mechanism for moving liquid water from the surface to deep depths (e.g., Vandecrux et al, 2020). The piping 513 

events are short-lived penetration and refreezing events. SMAP will measure the LWC in the piping event, even when it passes 514 

the wetting front, unless the water is refrozen before the SMAP measurement (as is the case with all short-lived melt events). 515 

The model would calculate a certain amount of meltwater based on the surface energy balance, and it would put all this water 516 
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into the wetting front layer. However, from the literature and as confirmed by the subsurface temperature measurements (Figure 517 

9b), some fraction of this water would be partitioned into deep piping. The model only includes top-down migration of a 518 

wetting front. This may explain why there are discrepancies between the modelled subsurface temperature profile and the 519 

observed subsurface temperature profile in some cases. Indeed, the deep penetration events causing warming spikes beyond 520 

the wetting front distort the temperature profiles. Therefore, some differences between SMAP and the EBM and GEMB model 521 

could be attributed to this weakness in process representation in the model. But overall, these problems are multifaceted, and 522 

additional works are required to understand the basis for these discrepancies. Yet, to this day, there is no observational dataset 523 

that allows to evaluate directly the LWA retrieved from satellite observations or calculated by a snow and firn model.  524 

Besides the coarser spatial resolution, SMAP algorithm has its own shortcomings. The emission model simulated 525 

TBs with a simplified view of the stratigraphy which lacks detailed representation of snow and firn microstructures. The model 526 

also neglected atmospheric contributions and assumed homogenous medium and smooth surface within each layer. Although 527 

these effects are not significant at L-band, a detailed characterization was not done. The detection algorithm follows a 528 

threshold-based technique that uses winter reference of the TB to detect melt events. As a result, it is capable quantifying the 529 

seasonal LWA only, not the LWA in perennial firn aquifers which stores a large quantity of saturated liquid water on the GrIS 530 

throughout the year (Montgomery et al., 2017;Miller et al., 2020b;Miller et al., 2020a). Miller et al., (2022a, b) developed 531 

empirical technique to map Greenland’s perennial firn aquifers with SMAP L-band brightness temperature; however, without 532 

complementary observations of firn aquifers via other means such as radar sounding, while the detection itself is ambiguous, 533 

the quantification would be more challenging. Current algorithm also excluded areas where TB decreases during summer melt. 534 

Future work will be continued to overcome some of these limitations and refine the algorithm.  535 

To extend the algorithm for GrIS-wide LWA quantification, the ablation zone presents a major challenge. Although 536 

SMAP can detect melt events in the ablation zone, the quantification is difficult for several reasons. The hydrological features 537 

of the ablation zone are markedly different from the percolation or upper accumulation zone. There are widespread networks 538 

of many supraglacial lakes and rivers, crevasses, and other complex heterogeneous factors, such as surface topography, dust 539 

deposition, slush saturation, etc. (Cooper and Smith, 2019; Poinar and C. Andrews, 2021; Smith et al., 2017). This generates 540 

an intricate radiometric response. The average LWA in ablation zone is also significantly higher limiting the L-band emission 541 

in the upper layer only. Houtz et al., (2019) used L-band observations from SMOS satellite to derive LWA at the Swiss Camp 542 

GC-Net AWS located in the ablation zone with a simplistic assumption of fixed (10 cm) wet layer thickness. More in situ 543 

observations are needed to characterize the spatial and temporal variability of LWA in the ablation zone.    544 
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 545 

Figure 9: Modeled (a) and measured (b) subsurface temperatures corresponding to total LWA at CP1 site during 2021 melt season. 546 
The 0℃ isotherm is highlighted by green color. 547 

5 Conclusion 548 

We have demonstrated quantification of the total surface and subsurface meltwater amount over the Greenland ice sheet using 549 

the L-band radiometric observations from the SMAP mission. The retrieval algorithm was described, and the validation results 550 

with six in situ weather station measurements and reanalysis data were provided. The comparison results were analysed, 551 

showing that the retrieval generally agrees with the AWS-driven LWA across the percolation zone. The model uncertainties 552 

in representing firn hydrological and thermal processes were explored, and the greatest differences involve the timescale for 553 

internal refreezing. The model results commonly predict a longer season for liquid water content in the snow and near-surface 554 

firn, i.e., delays in refreezing relative to the SMAP data. Limitations of the SAMP and model estimates LWA, and possible 555 

reasons for the discrepancies between them were discussed. Further work is required to understand the basis for these 556 

discrepancies and refine the algorithm. A detailed sensitivity analysis and uncertainty characterization of the LWA retrieval 557 

algorithm, including dielectric mixing models is required. The results demonstrate the potential for providing an observational 558 

dataset at time and space scales that will advance our understanding of ice sheet physical processes, helping to better project 559 
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Greenland’s contribution to global sea level rise in response to climate change and variability. To create a longer time data 560 

product, integrating SMOS observations (2010 - present) with SMAP will be beneficial. The algorithm can easily be extended 561 

for LWA estimation in Antarctic Ice Sheet. ESA’s upcoming CIMR mission (Copernicus Imaging Microwave Radiometer to 562 

be launched in 2029) will include coincident L (1.4 GHz) - Ka (36 GHz) channels for the first time (Colliander et al., 2024; 563 

Kilic et al., 2018), Future works should explore the added benefits of other complementary frequencies (6 GHz up to 36 GHz 564 

bands) in order to provide a possible depth profile of the LWC.  565 

 566 
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