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Abstract. A key uncertainty in reanalysis-based snow-on-sea-ice reconstructions is the choice of reanalysis product used for

snowfall input. Although reanalysis products have many similarities in their precipitation output over the Arctic Ocean, they

nevertheless have relative biases that impact derived snow-on-sea-ice estimates. In this study, snowfall from the ERA5, JRA-55

and MERRA-2 reanalysis products is used as input to the NASA Eulerian Snow On Sea Ice Model (NESOSIM). A Markov

chain Monte Carlo (MCMC) approach is used to calibrate the wind packing and blowing snow parameters in NESOSIM run5

with these different snowfall inputs. A multi-input-averaged snow-on-sea-ice product is then constructed from NESOSIM run

with the three reanalysis products. JRA-55 shows the largest departure from the previously-used values (Bayesian priors) when

the MCMC calibration is run, and also has the largest posterior uncertainty due to parameter uncertainties. The MCMC calibra-

tion reconciles snow depths between NESOSIM run with different reanalysis snowfall inputs, but produces larger discrepancies

in snow densities, due to the sensitivity of snow density in NESOSIM to parameter values and weak observational constraints10

on density. Regional climatologies and trends in the calibrated products are examined and compared to another reanalysis-

based snow-on-sea-ice reconstruction, SnowModel-LG. NESOSIM and SnowModel-LG show close agreement in snow depth

climatologies in the Central Arctic Ocean region, but differ more in peripheral seas. Trends are found to be region-dependent,

and the magnitude of Central Arctic Ocean snow depth trends is more sensitive to the choice of reanalysis input than to the

choice of model.15

1 Introduction

Snow on Arctic sea ice plays a key role in controlling Arctic climate and ecosystem function, and is a crucial input to altimetry-

derived sea-ice thickness retrieval, but is challenging to characterize consistently across the Arctic Ocean at basin scales (Web-

ster et al., 2018). Satellite remote sensing data using, for example, depth retrievals from passive microwave data (Brucker and

Markus, 2013; Rostosky et al., 2018) and altimetry-based snow depth retrievals (Lawrence et al., 2018; Kwok et al., 2020),20

provide basin-wide estimates of snow depth on Arctic sea ice, but are subject to significant retrieval limitations and uncertain-

ties. Airborne (MacGregor et al., 2021) and in situ (Wagner et al., 2022; Radionov et al., 1997) observation campaigns and

automated snow buoys (Perovich et al., 2019; Nicolaus et al., 2017) provide more localized observations. A complementary

approach to estimate snow on Arctic sea ice on basin scales is through reanalysis-based snow reconstructions, in which re-
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analysis snowfall forces a model that simulates snow processes while accounting for sea-ice concentration and drift. A few25

examples of such reconstructions include SnowModel-LG (Liston et al., 2020), the University of Washington snow-on-sea-ice

reconstruction (Blanchard-Wrigglesworth et al., 2018), and the NASA Eulerian Snow on Sea Ice Model (NESOSIM, Petty

et al., 2018), which is the focus of our study.

Not surprisingly, reanalysis snow-on-sea-ice reconstructions are strongly sensitive to snowfall input, which depends on sev-

eral factors such as atmospheric process representation in reanalysis products (e.g. microphysical processes and partitioning30

between solid, liquid, and mixed phase precipitation), data assimilation inconsistencies, and product resolution. Reanalysis

precipitation assessment for the Arctic (Behrangi et al., 2016; Boisvert et al., 2018; Barrett et al., 2020; Cabaj et al., 2020)

is challenged by uncertainty in polar precipitation observations, especially over the Arctic Ocean. Reanalysis precipitation

intercomparison work by Barrett et al. (2020) recommends that ERA5 be used to provide precipitation for sea ice thickness es-

timates over other contemporary reanalysis products, but acknowledges that other reanalysis products investigated in that study35

are of similar value for that application, given the difficulty of observational validation and bias-adjustment. Biases between

reanalysis products can be reduced through calibration to satellite snowfall observations, but differences between products

nevertheless persist, and satellite snowfall measurements themselves may be biased (Cabaj et al., 2020). This motivates the

need for further calibration of snow-on-sea-ice reconstructions.

The purpose of this study is to improve consistency and characterize uncertainty amongst several reanalysis snowfall inputs40

for NESOSIM’s snow-on-sea-ice reconstruction, using bias-adjusted snowfall input and automated calibration of NESOSIM’s

snow-model parameters. We will also assess climatic variability and change for basin-wide and regional snow on Arctic sea-

ice produced by NESOSIM using these newly recalibrated snow depth estimates. Our starting point is the latest version of

NESOSIM, version 1.1 (v1.1; Petty et al., 2023). In Cabaj et al. (2023), NESOSIM v1.1 free parameters for the wind packing

(densification) and blowing snow (loss) processes were calibrated to snow-on-sea-ice depth and density observations using a45

Markov chain Monte Carlo (MCMC) approach, and uncertainty estimates for these free parameters were obtained. NESOSIM

was run with ERA5 snowfall input for the study. The uncertainty in snow depth and density was small, and not representative

of the overall uncertainty in snow depth on sea ice. Furthermore, the uncertainty due to the choice of reanalysis snowfall

input was not accounted for in this estimate. To better reconcile differences between NESOSIM run with different snowfall

inputs, and to incorporate estimates of uncertainties due to the choice of model snowfall input, we run the MCMC optimization50

for NESOSIM with additional reanalysis snowfall inputs, introducing MERRA-2 and JRA-55 to this study in addition to

ERA5. This also necessitates a revisiting of the CloudSat calibration for reanalysis snowfall first performed in Cabaj et al.

(2020), since a longer time record and an additional reanalysis product are used in this study. We estimate resulting snow

depth uncertainties and examine the impact of this parameter optimization on the agreement between snow depth and density

derived using these products. Then, we construct a consensus snow depth estimate that accounts for variability in reanalysis55

snowfall from the average of calibrated NESOSIM output for different reanalysis snow inputs, motivated by work combining

land snow products (Mudryk et al., 2015). We evaluate the consistency of the outputs across different snowfall forcing inputs,

examining the climatologies, the interannual variability, and trends, and compare the NESOSIM output to SnowModel-LG,

another reanalysis-based snow-on-sea-ice model.
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2 Data products and models60

2.1 Reanalysis products

Snowfall rates from the ERA5, MERRA-2, and JRA-55 reanalysis products are used as input to NESOSIM in this study. ERA-

Interim is examined for reference, but not used as input to NESOSIM, since it has been superseded by ERA5. A summary of

the reanalysis products used in this study is shown in Table 1, and each product is discussed in more detail in the subsections

below.65

To format the reanalysis snowfall for use as input to NESOSIM, the snowfall rate from each reanalysis product is aggregated

by day to produce daily snowfall, and then regridded to the 100 km × 100 km equal-area NESOSIM model grid. NESOSIM

also uses 10-m wind input from reanalysis products, but for this study, ERA5 winds were used for all model runs.

Reanalysis Spatial Resolution Time Resolution Assimilation scheme Reference

ERA-Interim 0.75° × 0.75° 6-hourly 4DVar Dee et al. (2011)

ERA5 0.25° × 0.25° Hourly 4DVar Hersbach et al. (2020)

MERRA-2 0.5° × 0.625° Hourly 3DVar Gelaro et al. (2017)

JRA-55 1.25° × 1.25° 3-hourly 4DVar Kobayashi et al. (2015)
Table 1. Reanalysis products examined in this study. Spatial resolution refers to the regular lat-lon grid used for the products in this study.

To provide input to NESOSIM, all reanalysis products are regridded to the equal-area 100 km × 100 km polar grid used by the model.

2.1.1 ERA-Interim

The European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Project ERA-Interim (Dee et al., 2011)70

reanalysis product is widely used in studies of Arctic snow, and is often used for precipitation input in snow models (Kwok and

Cunningham, 2008; Petty et al., 2018; Blanchard-Wrigglesworth et al., 2018). It has been found to have high correlations and

low biases with respect to observations of Arctic land precipitation (Lindsay et al., 2014). Sea ice concentration is represented

as a fractional quantity for grid cells with concentration greater than 20%, while grid cells with less than 20% concentration

are designated as open ocean. ERA-Interim is produced using a 4DVar assimilation scheme, and it features a T255 (∼ 79 km)75

resolution spectral dynamical core. The ERA-Interim snowfall product is provided on a N128 Gaussian grid, re-gridded to a

0.75°× 0.75° latitude/longitude grid in this study. Production of ERA-Interim has stopped as of August 2019.

2.1.2 ERA5

The ECMWF Reanalysis v5 (Hersbach et al., 2020), the successor to ERA-Interim, features many improvements, such as a

finer model resolution, an updated assimilation scheme, and an improved cloud scheme, including improvements to the repre-80

sentation of mixed-phase clouds and ice-phase cloud microphysics (Hersbach et al., 2020). It has been found to produce more

snow than ERA-Interim, especially in the Atlantic sector (Wang et al., 2019). Like ERA-Interim, ERA5 uses a 4DVar assim-
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ilation scheme. The representation of sea ice concentration is also the same as in ERA-Interim, with fractional concentration

above a 20% open ocean threshold. In this study, the ERA5 snowfall rate product is interpolated from its native N320 Gaussian

grid to a 0.25°×0.25° grid. Currently, ERA5 is used as the default snowfall and 10-m wind input for NESOSIM v1.1 (Petty85

et al., 2023; Cabaj et al., 2023).

2.1.3 MERRA-2

NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (Gelaro et al., 2017) is produced on

a cubed-sphere grid, with a finite-element dynamics scheme, and is used in this study with its native horizontal resolution

of 0.5°×0.625° (∼ 55 km). Unlike the other reanalysis products investigated in this study, which use a 4DVar assimilation90

scheme, MERRA-2 uses a 3DVar assimilation scheme, with an Incremental Analysis Update procedure which applies the

analysis increment as a constant term over the assimilation window instead of only correcting the initial condition, as is

done conventionally for 3DVar (Gelaro et al., 2017). Sea ice is distinguished from open ocean based on a 50% concentration

threshold. MERRA-2 is known to produce more total precipitation over the Arctic compared to other reanalysis products

(Barrett et al., 2020; Boisvert et al., 2018).95

2.1.4 JRA-55

The Japanese Meteorological Agency’s Japanese 55-year Reanalysis (Kobayashi et al., 2015) is another widely-used product

for Arctic snowfall estimates, and it is interpolated onto a 1.25°×1.25° grid from its native TL319 (∼ 55 km) spectral resolution.

The product uses a 4DVar assimilation scheme. Sea ice is represented in JRA-55 with a binary classification based on a 55%

concentration threshold. JRA-55 has been previously used as a source of snowfall input for snow-on-sea-ice reconstructions,100

and was investigated as an input for NESOSIM version 1.0 (v1.0; Petty et al., 2018). In comparisons of total precipitation over

the Arctic Ocean, JRA55 has been found to produce less precipitation overall than other reanalysis products (Barrett et al.,

2020).

2.2 CloudSat

CloudSat was a satellite equipped with a 94-GHz Cloud Profiling Radar (CPR) instrument which measured vertical profiles of105

cloud and hydrometeor reflectivity, from which snowfall rate was retrieved (Kulie and Bennartz, 2009). The satellite had an

observational footprint of 1.4 × 1.7 km (along and across track), and a 16-day repeat cycle. The instrument was operational

from 2006-2023, with an interruption in 2011 due to a battery malfunction, and a change to a lower orbit in 2018. In this study,

surface snowfall rates from the 2C-SNOW-PROFILE product, version P1 R05 (Wood et al., 2013, 2014) are used to bias-

correct snowfall rates from reanalysis products by scaling the reanalysis monthly climatologies to the monthly climatology of110

regionally-aggregated CloudSat snowfall, following the approach in Cabaj et al. (2020). CloudSat measurements from 2006-

2016 are used in this study.
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2.3 NESOSIM and MCMC calibration

The NASA Eulerian Snow on Sea Ice Model (NESOSIM) produces estimates of snow depth and bulk snow density over

Arctic sea ice on a 100 × 100 km polar grid (Petty et al., 2018). The model is a 2-layer Eulerian snow-on-sea-ice model, and115

includes parameterized representations of snow accumulation, densification through wind packing, loss from blowing snow to

the atmosphere and open ocean, and redistribution of snow due to sea ice motion. NESOSIM was initially developed to provide

estimates of snow depth to enable the rapid production of sea ice thickness estimates from ICESat-2.

Several observational and reanalysis inputs are used in NESOSIM. Snowfall input for NESOSIM is provided from reanalysis

products, with ERA5 being used as the default product as of v1.1, and ERA-Interim previously used as the default in v1.0.120

In this study, multiple reanalysis products are investigated as a source of snowfall input. Reanalysis products are also used

for wind input to NESOSIM; this study uses ERA5 10 m wind as input to the model. Sea ice concentration is provided

by the NOAA/NSIDC Climate Data Record (CDR) product (Peng et al., 2013). Sea ice drift for the MCMC calibration is

obtained from the low resolution sea ice drift product of the EUMETSAT Ocean and Sea Ice Satellite Application Facility

(OSI SAF; Lavergne et al., 2010). Since the OSI SAF drift product is not available for years prior to 2009, sea ice drift from125

the NSIDCv4 Polar Pathfinder product (Tschudi et al., 2019) was used to generate the full 1980-2019 datasets. Aside from

reanalysis products, these inputs are the same as those used in previous work using NESOSIM v1.1 (Petty et al., 2020, 2023;

Cabaj et al., 2023).

Representations of snow processes in NESOSIM are highly simplified. Since NESOSIM is a 2-layer model, bulk snow

density in the model is represented as a weighted sum of the prescribed densities for old snow (350 kg/m3) and new snow130

(200 kg/m3), respectively. The old snow density represents both wind slab and depth hoar (Petty et al., 2018). These prescribed

values impose maximum and minimum values on the bulk density represented by the model.

The wind packing and blowing snow parameters in NESOSIM are free parameters, and previous work introduced an auto-

mated calibration of these parameters using an MCMC process (Cabaj et al., 2023). Wind packing controls the amount of snow

transferred between layers, impacting the snow depth and density. The blowing snow process acts only on the upper snow layer,135

and decreases the snow depth in the upper layer linearly with wind speed. The blowing snow term includes an atmosphere loss

and an open-water loss term, which are prescribed separately in NESOSIM v1.1 (Petty et al., 2023). For the purpose of this

study, the blowing snow term parameters are treated as a single term, as was done in previous work (Cabaj et al., 2023), with the

atmospheric loss factor being 0.15 times the blowing snow parameter. Both the wind packing and blowing snow processes are

subject to a wind action threshold of 5 m/s. This current study will extend previous parameter calibration work by investigating140

the impact of using different reanalysis snowfall input products in NESOSIM.

Previous work (Cabaj et al., 2023) demonstrated a successful calibration of NESOSIM’s wind packing and blowing snow

parameters using an MCMC process when NESOSIM was run with ERA5 snowfall. An overview of the process is provided

below, for reference.

MCMC is a Bayesian process where, given prior parameters and observational constraints on the parameters, posterior145

parameters may be obtained which produce model output that is more closely aligned to observations, as determined by a cost
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function; in this case, a log-likelihood function. The MCMC process is iterative, and is conducted for NESOSIM as follows

(Cabaj et al., 2023):

1. Begin with a model run with prior parameter values a0 and observed values y, and calculate the log-likelihood log(p(y|a0)).

In the following iterative loop, set acurrent = a0150

2. For each subsequent step in the Markov chain:

(a) Choose new parameters atest a small step from acurrent, with step size chosen from the distribution p(a0) (i.e.

determined by the prior parameter uncertainty).

(b) Calculate the new test log-likelihood function log(p(y|atest)).

(c) Calculate the log-likelihood difference R = log(p(y|atest))−log(p(y|acurrent)). If R > log(U(0,1)) (where U(0,1)155

is chosen from a uniform distribution between 0 and 1), then the new parameters are accepted, and acurrent :=

atest.

As in Cabaj et al. (2023), the observations used for the calibration of NESOSIM are snow depth measurements from the

median of airborne Operation IceBridge (OIB) measurements (Petty et al., 2020) and from CRREL-Dartmouth buoys (Perovich

et al., 2019), and historical snow density measurements from Soviet drifting stations (Radionov et al., 1997; Mallett et al.,160

2022). OIB measurements are available exclusively in March and April, and represent the majority of the observations used

for calibrating the parameters. Basin-averaged monthly climatologies are used for the drifting station and buoy measurements,

and OIB measurements are aggregated to daily averages over the NESOSIM model grid.

Log-likelihood is used to reduce the number of exponential operations calculated, and thus reduce computational costs. The

log-likelihood function used in this study is the same as that used in Cabaj et al. (2023), shown below:165

L =−1
2

M∑

i=1

(hN,i−ho,i)2

u2
ho

− 1
2

8∑

j=1

(⟨ρN,j⟩− ⟨ρd,j⟩)2
⟨uρd,j⟩2

− 1
2

8∑

k=1

(⟨hN,k⟩− ⟨hb,k⟩)2
⟨uhb,k⟩2

. (1)

Here, M denotes the number of grid points with Operation IceBridge snow depth measurements, hN,i denotes NESOSIM

snow depth output values for a given grid point, and ho,i denotes corresponding OIB snow depth measurements aggregated

to a single grid point for a single day. uho
denotes OIB observational uncertainty. ρ denotes snow density, with subscripts

N for NESOSIM and d for drifting stations, respectively, and with uρd,j
denoting the corresponding uncertainty. hb denotes170

CRREL-Dartmouth buoy depth measurements, with corresponding uncertainties uhb,k
. Angle brackets denote basin-averaged

monthly climatologies, and the indices j and k denote months from September to April.

The acceptance step in the MCMC algorithm allows for the avoidance of local maxima, and posterior parameter distributions

are obtained from the distributions of accepted parameters. As in Cabaj et al. (2023), all distributions are assumed to be

Gaussian. The modes of the posterior distributions provide optimal values for the parameters. Parameter uncertainty can be175

estimated from the spread of the posterior distributions. This parameter uncertainty may be propagated through the model to
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provide estimates of model uncertainty due to parameter uncertainty. Additional parameters may also be calibrated using the

MCMC process, but in previous work, limitations were found due to observations not providing sufficiently strong constraints

for the optimization to provide suitable optimal parameter values (Cabaj et al., 2023).

To enable NESOSIM to be run with MCMC parameter calibration, the model was modified to keep model output in memory,180

minimizing the number of file I/O operations and providing a 20% speedup for MCMC model runs (Cabaj et al., 2023). The

NESOSIM-MCMC code was also adapted to enable the calibration to be run with different reanalysis snowfall input products

for this study. This highlights the versatility of NESOSIM as a model well-suited to observational calibration.

2.4 SnowModel-LG

SnowModel-LG (Liston et al., 2020; Stroeve et al., 2020) is a Lagrangian snow-on-sea-ice model. Like NESOSIM, it takes185

snowfall input from reanalysis products. However, the representation of snow processes in SnowModel-LG is considerably

more complex than NESOSIM, with the notable inclusion of snow melt, snowpack metamorphosis processes, and multiple

snow layers (a maximum of 25 layers for the product used in this study). Output is provided with a daily temporal resolution

and a spatial resolution of 25× 25 km. SnowModel-LG output has been found to compare favourably with several observational

campaigns (Stroeve et al., 2020), though agreement depends on the region and time period of comparison.190

The ERA5 and MERRA-2 reanalysis products are used to provide snowfall input to SnowModel-LG. For SnowModel-LG,

scaling factors are applied to the reanalysis snowfall based on a correction empirically derived from Operation IceBridge snow

depth measurements (Liston et al., 2020).

In this study, output from SnowModel-LG run with ERA5 and MERRA-2 input is used for comparison with NESOSIM

(Liston and Itkin, 2021). SnowModel-LG does not include the Canadian Arctic Archipelago region, so this region is not195

considered for the comparisons between SnowModel-LG and NESOSIM in this study. Furthermore, whereas NESOSIM is

initialized in September, SnowModel-LG is initialized in August and run through the melt season. For consistency, only months

during which NESOSIM and SnowModel-LG data are both available will be considered in this study.

3 Investigating different reanalysis snowfall products

Here, we present a comparison of the reanalysis snowfall products used in this study as input to NESOSIM. Reanalysis snowfall200

products are calibrated to CloudSat following the approach from Cabaj et al. (2020), but in this study, additional products are

used and a longer time series is examined, as discussed below.

3.1 Reanalysis snowfall calibration to CloudSat

Figure 1 shows regionally-aggregated monthly-mean snowfall rates from reanalysis products and CloudSat, from 1980-2016,

without and with scaling to the CloudSat monthly climatology as described in Cabaj et al. (2020). Before the scaling is applied205

in Fig. 1, there is some variation between the reanalysis products, although they have similar seasonal cycles and generally

coincident seasonal maxima and minima. ERA5 and MERRA-2 have relatively high snowfall compared to ERA-Interim and
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Figure 1. Monthly mean snowfall rates from reanalysis products and CloudSat, regionally-averaged over the ocean region in the 60-82°N

latitude band (i.e. excluding land), (a) without scaling to CloudSat, and (b) scaled to the CloudSat monthly snowfall climatology. Panel (c)

shows the difference between the reanalysis products and CloudSat for the no-scaling (dashed) and with-scaling (solid) cases, from 2006-

2016.

JRA-55. Snowfall rates from CloudSat, which are available from 2006-2016 with a gap in 2011, are comparable to the snowfall

rates of the other products. MERRA-2 is known to be wetter compared to other reanalysis products over the Arctic, when total

precipitation is considered (Barrett et al., 2020; Boisvert et al., 2018). This is particularly reflected in the summer months,210

where MERRA-2 snowfall rates are the largest relative to the other products.
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As in Cabaj et al. (2020), we bias-adjust reanalysis snowfall input to climatological CloudSat snowfall for 2006-2016 (ex-

cluding months in 2011 where CloudSat observations are absent due to instrument malfunctions). The adjustment uses mul-

tiplicative scaling interpolated across four Arctic quadrants, a level of aggregation that was found to be a necessary to obtain

robust results (Cabaj et al., 2023). CloudSat scaling improves agreement amongst the reanalyses both within and outside the215

2006-2016 calibration period (Fig. 1b). Although MERRA-2’s seasonal cycle in snowfall is consistently of greater amplitude

than the other products prior to 2006, the level of disagreement of MERRA-2 with the other products is considerably reduced

with the scaling. JRA-55, which was not previously investigated in this context, is also brought into agreement with the other

products using this approach. This highlights the continued benefits of this bias-adjustment approach for reconciling reanalysis

snowfall products.220

3.2 Snowfall comparison over ocean and sea ice for the NESOSIM domain

The CloudSat scaling was found to improve agreement in basin-averaged and regionally-averaged snow depths in NESOSIM

v1.0, as was discussed in Cabaj et al. (2020). Some adjustments were made to the scaling for NESOSIM v1.1, which has a

larger model domain (Petty et al., 2023), extending down to 50°N, compared to 60°N for NESOSIM v1.0 (Petty et al., 2018).

The model domain of NESOSIM v1.1 is shown in the map in Fig. A1, with shading indicating the 60-82°N latitude band.225

To apply CloudSat scaling over the NESOSIM model domain, reanalysis snowfall rates are scaled to CloudSat measurements

from 60-82°N over four quadrants, as discussed in Cabaj et al. (2020), and are linearly interpolated over the model domain

from the corners. The longitudinal boundaries of the quadrants are at longitudes 135°W, 45 °W, 45°E, and 135 °E, respectively,

as illustrated in Fig. A1. In NESOSIM v1.1, the scaling factors are unchanged, but are extrapolated southward as constant

values to cover the extended model domain.230

Figure 2 shows the impact of CloudSat scaling as applied to NESOSIM model input for monthly climatologies of reanalysis

snowfall rates over ocean (which includes both ice and open ocean, with land masked out), and over sea ice only, respectively,

regionally-averaged over a representative subset of the different Arctic regions shown in Fig. A1.

CloudSat scaling effectively reconciles differences between reanalysis products for the pan-Arctic ocean region in Fig. 1

during the satellite era, but shows less consistency for individual regions and when ice-covered scenes are broken out. Over the235

ice-plus-ocean region, for which the CloudSat scaling was originally developed, the CloudSat scaling reconciles differences

between the products for most months in most regions. A notable exception is in the Central Arctic region, where the September

snowfall values are excessively large for JRA-55 following the application of the CloudSat scaling. This may be because

JRA-55 is biased relatively low compared to CloudSat and the other products, so the CloudSat scaling, determined using ice-

plus-ocean scaling factors, greatly increases the snowfall rates, especially in the early part of the sea ice season. Furthermore,240

since CloudSat observations are limited to latitudes south of 82 °N, the scaling factors may be less reliable over more poleward

regions. Over the ice-covered region alone, the CloudSat scaling reduces inter-product consistency in some regions and months.

In the Barents and East Greenland Sea regions, for example, JRA-55 and MERRA-2 are closely reconciled by the CloudSat

scaling, but ERA5 is less changed by the scaling, which results in it being biased relatively low with respect to the other

products.245
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Regional snowfall climatologies from reanalysis products before and after CloudSat scaling

Figure 2. Monthly climatologies of regionally-averaged snowfall rates from reanalysis products from 1980-2019; over the ocean region (i.e.

including both ice-covered and ice-free ocean) and over sea ice only, without and with CloudSat scaling (CS) applied. Shading represents

the interannual standard deviations of the climatologies. Note the differing scales on the vertical axes between regions.

Seasonal cycles of snowfall over sea ice may be similar to snowfall over the ice-plus-ocean region in some regions, but

other regions show stark differences. Of the regions shown, the seasonal cycles and magnitudes differ considerably between

the two cases in the Chukchi Sea, Barents Sea, and East Greenland Sea regions. By comparison, the differences are notably

less stark in the Central Arctic region, which has considerable ice cover even in the early season. In the Kara and Beaufort

seas, the seasonality is similar between the two cases, although the magnitudes differ. Many of the regions show a relatively250

low snowfall over the ocean-plus-ice region in September, but those same snowfall minima are not as prominent in the plots

for the ice-covered regions. This suggests that much of the snow that is present during the early part of the season is coincident

with the presence of sea ice. This may be due to ice-covered regions having lower temperatures, which permits the presence of

early-season snowfall where other regions may have rainfall. Despite these regional inconsistencies, due to the limited overlap

between CloudSat orbits and ice-covered regions which would likewise adversely impact CloudSat scaling if it were restricted255
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Configuration WP (s−1) σWP (s−1) CVWP BS (m−1) σBS (m−1) CVBS AR

Model default (prior) 5.8× 10−7 - - 2.9× 10−7 - - -

MCMC-ERA5 2.05× 10−6 3.11× 10−7 15% 4.01× 10−7 5.30× 10−8 13% 29%

MCMC-JRA-55 2.35× 10−6 9.82× 10−7 42% 1.05× 10−6 4.01× 10−7 38% 46%

MCMC-MERRA-2 1.59× 10−6 3.40× 10−7 21% 6.03× 10−7 1.12× 10−7 19% 33%
Table 2. Optimal parameters from MCMC optimization for different reanalysis inputs, with the default (prior) configuration included in the

first row for reference. WP refers to wind packing and BS refers to blowing snow. MCMC-derived standard deviations are denoted by σ.

CV refers to the respective coefficients of variation for each parameter. AR refers to the acceptance rate of the MCMC optimization; i.e. the

percentage of iterations whose test parameter values are accepted.

to ice-covered regions, we proceed with the established CloudSat scaling factors. We will return to the discussion of issues

related to CloudSat scaling in Section 6.

Discrepancies in reanalysis input yield discrepancies in the output from NESOSIM driven by different reanalysis snowfall

products. This motivates the observation-constrained calibration of NESOSIM run with different reanalysis snowfall inputs

using an MCMC method, as was previously done in Cabaj et al. (2023). The following section discusses an updated calibration260

of NESOSIM and the impact on model-derived snow depth and density.

4 Impact of MCMC calibration on NESOSIM output

4.1 Posterior model parameters

In this study, the same MCMC approach in Cabaj et al. (2023) is repeated, but with the addition of other reanalysis snowfall

inputs; MERRA-2 and JRA-55 snowfall are used in addition to ERA5. The MCMC process was run for 10,000 iterations for265

each snowfall input product. The first 5,000 iterations are discarded to exclude “burn-in” values, as was done in Cabaj et al.

(2023). Nevertheless, in each case, the optimal posterior parameters values did not differ significantly between the first and

subsequent sets of iterations, demonstrating robust convergence of the MCMC process.

Figure 3 shows the posterior distributions obtained from the MCMC calibrations of NESOSIM run with snowfall input

from ERA5, JRA-55, and MERRA-2, respectively. The posterior distributions are aggregated from parameter values that are270

accepted during the MCMC process, and provide both the optimal (maximum-likelihood) parameter values, and estimates of

the parameter uncertainties (Gelman et al., 2013). Numerical values for the optimal parameters and associated uncertainties

are shown in Table 2, along with the coefficients of variation and the acceptance rates. The acceptance rate, calculated from the

ratio of accepted parameters to the total number of iterations, indicates the efficiency of the process. The posterior distribution

of ERA5 is considerably narrower than the distributions of MERRA-2 and JRA-55, with the latter being noticeably broad275

relative to the posterior distributions of the other two products. The respective coefficients of variation for the wind packing

(blowing snow) parameters are 15% (13%) for ERA5, 42% (38%) for JRA-55, and 21% (19%) for MERRA-2. The JRA-55
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Figure 3. Posterior wind packing and blowing snow parameter distributions from MCMC calibration using snow input from ERA5, JRA-

55, and MERRA-2, respectively. Note that the distributions have some overlap. The red dot indicates the prior parameter values and the

other coloured dots indicate the optimal parameter values for the three respective products. The side panels show the marginal distributions,

highlighting the overlap.

parameter distribution has a slight bimodality in both wind packing and blowing snow, although the maximum-likelihood

parameter corresponds to the larger mode. The spreads of the parameters for ERA5 and MERRA-2 are more comparable,

with the MERRA-2 posterior distributions being somewhat wider than those of ERA5. In terms of departure from the prior280

values, ERA5 has the closest blowing snow value to the prior, and MERRA-2 has the closest wind packing to the prior. JRA-55

demonstrates the largest departure from the prior parameter values overall. The acceptance rates are included primarily as an

indicator of the efficiency of the MCMC process; ERA5 and MERRA2 are relatively close to the optimal (23%) efficiency for

a 2-parameter MCMC optimization (Gelman et al., 2013). The comparatively large acceptance rate for JRA-55 suggests that a

larger step size could be used for the MCMC optimization for this product, but given that the NESOSIM-MCMC optimization285

is not excessively computationally expensive, the existing configuration is sufficient for the scope of this study.

These results highlight that model parameter tuning is heavily dependent on the forcing dataset. Care must be taken when

using reanalysis-based snow-on-sea-ice reconstructions such as NESOSIM with different snow input datasets, since model

processes may be less physically representative when different inputs are used. When developing parameterizations for such

model processes, it is important to consider that biases in model inputs will be likewise reflected in model parameterizations.290
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Figure 4. Single-year daily snow depth and density time series for each MCMC-calibrated NESOSIM configuration (with snowfall input

from ERA5, JRA-55, and MERRA-2 reanalysis products) and for the multi-product average. Shading denotes uncertainty estimated based

on the MCMC parameter uncertainty.

Biases in observations used for calibration will also impact the model output, but may be inevitable given the relative scarcity

of in situ observations of snow on sea ice. Overall, MCMC can be used to objectively determine model parameters and their

uncertainty given uncertainty of inputs.

4.2 Snow depth and density uncertainty estimates

Given posterior parameter uncertainties provided from the MCMC calibration, uncertainty in the NESOSIM output can be295

calculated. Figure 4 shows the depth and density for a single representative late-decade year, with shading representing the

associated MCMC-estimated uncertainty for each respective product. The uncertainty is calculated from a 100-parameter en-

semble run with the wind packing and blowing snow parameters sampled from the posterior distribution for each respective

MCMC calibration, as in Cabaj et al. (2023). This represents uncertainty due to the model parameter uncertainty, and therefore

does not characterize all the uncertainties in the model. The day-to-day variability is quite similar between the time series,300

although some differences remain between the products. NESOSIM with JRA-55 input shows a sharper early-season increase

13

https://doi.org/10.5194/egusphere-2024-2562
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



20
18

-09

20
18

-10

20
18

-11

20
18

-12

20
19

-01

20
19

-02

20
19

-03

20
19

-04

20
19

-05
0.0

00
0.0

05
0.0

10
0.0

15
0.0

20

Sn
ow

 d
ep

th
 u

nc
er

ta
in

ty
 (m

)
a)

20
18

-09

20
18

-10

20
18

-11

20
18

-12

20
19

-01

20
19

-02

20
19

-03

20
19

-04

20
19

-05
0.0
2.5
5.0
7.5

10
.0

12
.5

15
.0

17
.5

Sn
ow

 d
ep

th
 p

er
ce

nt
 u

nc
er

ta
in

ty
 (%

)

b) Average
ERA5
MERRA-2
JRA-55

20
18

-09

20
18

-10

20
18

-11

20
18

-12

20
19

-01

20
19

-02

20
19

-03

20
19

-04

20
19

-05
0.0
2.5
5.0
7.5

10
.0

12
.5

15
.0

17
.5

20
.0

Sn
ow

 d
en

sit
y 

un
ce

rta
in

ty
 (k

g/
m

3 ) c)

20
18

-09

20
18

-10

20
18

-11

20
18

-12

20
19

-01

20
19

-02

20
19

-03

20
19

-04

20
19

-05

1

2

3

4

5

6
Sn

ow
 d

en
sit

y 
pe

rc
en

t u
nc

er
ta

in
ty

 (%
)

d)
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Figure 5. Daily uncertainty estimates for snow depth (a,b) and density (c,d) for a single season (2018-2019) of NESOSIM run with all the

products separately, and the multi-product average. The absolute uncertainties are shown in (a,c) and percent uncertainties are shown in (b,d).

Grey shading indicates the first 15 days of the season.

in snow depth compared to the other products, although the late-season snow depth is comparable to those of the other prod-

ucts. Snow density values for the NESOSIM-JRA-55 output are also largest overall, reflecting its stronger wind packing. The

agreement in day-to-day density variations is likely a consequence of the identical ERA5 wind inputs to each NESOSIM run,

since wind packing is dependent on wind input to NESOSIM. NESOSIM-JRA-55 has the largest uncertainty in snow depth305

and snow density, which is consistent with the spread of the posterior parameter distributions.

The multi-product average was calculated as the average of the MCMC-calibrated output from NESOSIM for the three

different reanalysis inputs. The uncertainty in the multi-product average was calculated using the standard deviation of the

three 100-parameter model-run ensembles for the three reanalysis products. It thus quantifies both the uncertainty due to

model parameter uncertainty, and the spread from the use of different model snowfall inputs. Initially, a bootstrap sampling310

approach was attempted to produce potentially more robust estimates, but it was found that the bootstrap-estimated standard

deviations differed from the directly-calculated standard deviations by at most only 0.05%. Hence, the standard deviation of

the combined parameter ensemble was used to calculate the multi-product average uncertainty for the depth and density.
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Figure 6. Basin-average monthly snow depth climatologies from NESOSIM for 1980-2019, (a) with the model run using the MCMC-ERA5

configuration for all products (i.e. using the same wind packing and blowing snow parameters), and (b) with the parameter values re-tuned

to each respective reanalysis input. Shading denotes interannual variability, which is also shown separately in Fig. A2.

To enable more direct uncertainty comparisons, uncertainties and percent uncertainties for depth and density due to model

parameter uncertainty are shown in Fig. 5. As in Fig. 4, the percent uncertainty magnitudes reflect the shape of the posterior315

distributions. The relative insensitivity of NESOSIM snow output to model parameter values, as was observed in Cabaj et al.

(2023), persists here; the percent uncertainties are considerably smaller than the NESOSIM parameter uncertainty, represented

by coefficients of variation, as discussed in Section 4.1. The NESOSIM-ERA5 uncertainties are relatively small compared to

the other products. The percent uncertainties for all the products attain their initial maxima within approximately 15 days from

when the model is initialized, despite the differing snow inputs. This further justifies the choice of 15 days as a “ramp-up”320

period for uncertainty in Cabaj et al. (2023).

The multi-product-average percent uncertainty is larger than the ERA5 percent uncertainty because it accounts for the spread

across snowfall input products, reaching a range of 8-18% snow depth uncertainty, and a lower range of 2-5% uncertainty

for snow density. The relatively low percent uncertainty for density may be because the density values are constrained to

a relatively narrow range with a maximum prescribed by the model. The multi-product density percent uncertainty is also325

notably lower than the JRA-55 density percent uncertainty, which suggests that the JRA-55 density data alone has more relative

spread compared to all the ensemble data aggregated together. In particular, as seen in Fig. 4, the JRA-55 uncertainty overlaps

considerably with ERA5, and to some extent with MERRA-2. Hence, there is some reduction in the standard deviation when

the parameter ensembles are consolidated to construct a single inter-product spread.
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4.3 Impact of MCMC calibration on snow depth330

Figure 6 shows basin-average monthly snow depth climatologies from NESOSIM, illustrating how re-calibrating NESOSIM

parameters for each individual reanalysis forcing brings the output snow depths from NESOSIM into better consistency across

the datasets. The average snow depth is lowered somewhat overall, with the multi-product average in April (27.6 cm) now

very close in value to the ERA5 end-of-season value (27.4 cm). Given that in both Fig. 6a and b, ERA5 is plotted with its

posterior parameters, it follows that the other products have values that more closely match the ERA5 output in Fig. 6b,335

after the remaining two products have likewise been MCMC-calibrated to the same target observations to which ERA5 was

calibrated previously. Some of the relative biases between the products persist; JRA-55 continues to have a relatively large

early-season snow depth which is not seen in the other products. Conversely, at the end of the season, JRA-55 and MERRA-2,

which previously both exceeded ERA5 at the end of the season, now bracket it on either side, with the multi-product average

closely matching the ERA5 values.340

The shading in Fig. 6 shows interannual variability of the ERA5-calibrated and individually-calibrated model runs. (These

quantities are also plotted separately in Fig. A2). The interannual variability reaches its seasonal peak at the beginning of the

season for JRA-55 and ERA5, and at the end of the season for MERRA-2, though the seasonal cycle attains its minimum for all

products in October. JRA-55 has the largest interannual variability in September, and in October and onward, MERRA-2 has

the largest interannual variability of all the products. MCMC calibration reconciles some of the overall spread in interannual345

variability between the snow depth outputs, although there is less agreement in interannual variability between JRA-55 and

MERRA-2 in October following the calibration. Both JRA-55’s high early-season variability and MERRA-2’s high late-season

variability decrease somewhat following the MCMC calibration, bringing them into closer agreement with the rest of the

products.

4.4 Impact of MCMC calibration on snow density350

Although the MCMC calibration reconciles snow depths for NESOSIM run with different snowfall inputs, the opposite is

seen for bulk snow density. Figure 7 shows plots of the basin-average monthly bulk snow density climatologies before and

after the calibration. The climatologies show very close agreement when the same (MCMC-ERA5) parameters are used for

each NESOSIM run, but differ considerably when the individually-calibrated MCMC parameters are used. This is likely a

consequence of how snow density is represented in the model. Since snow density in each layer of NESOSIM is fixed, bulk355

density is a function of the ratio of snow depths in the two layers. Hence, the bulk density in NESOSIM is strongly sensitive to

the strength of the wind packing process, which transfers snow between the layers. Model runs with different snowfall inputs

can still produce similar bulk densities, so long as the same wind packing parameter and wind input are used. Conversely, if the

wind packing parameter changes, the modelled density will shift accordingly. The inter-product density differences following

MCMC calibration are consistent with the posterior parameter values shown in Fig. 3: the wind packing parameter is largest360

in JRA-55, which reports the highest bulk snow density value, whereas the smallest wind packing parameter is obtained in the

MERRA-2 calibration, which reports the lowest density value.
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Figure 7. Basin-average bulk snow density monthly climatologies for 1980-2019, (a) for the MCMC-ERA5 configuration, (b) with each

product calibrated separately. Shading represents the standard deviations of the climatologies, indicating interannual variability.

The widened spread between products following the calibration also reflects the fact that the density values are relatively

under-constrained by the MCMC calibration approach due to the small number of density measurements used. Monthly cli-

matologies of basin-averaged historical density measurements are used as observational constraints for the calibration, due365

to a relative lack of widespread contemporary density measurements. These density observations are vastly outnumbered by

the Operation IceBridge depth observations used in the optimization, which puts more weight on the OIB measurements in

the likelihood function. Hence, because the snow depth constraint is stronger, the MCMC calibration will tend to reconcile

differences in snow depth while potentially introducing discrepancies in density. Some of this spread may also be related to

how the wind packing and blowing snow parameters vary in tandem during the calibration, which may also be a consequence370

of relatively few density measurements provided. Given that previous work in Cabaj et al. (2023) found that sea ice thickness

estimates produced using NESOSIM snow input are more sensitive to snow depth than differences in snow density, we proceed

with using the individually-calibrated density values to produce the NESOSIM multi-product-average density, despite their

wider spread.

4.5 Regional snow-on-sea-ice climatologies and trends375

Figure 8 shows regionally-averaged snow depth, density, and volume climatologies by region (with regions as defined in Meier

and Stewart (2023)), from NESOSIM-MCMC output, and from SnowModel-LG. Sea ice area calculated from the NOAA/N-

SIDC Climate Data Record (CDR) product (Peng et al., 2013) is also shown; this product is used in NESOSIM. The sea ice

product used in SnowModel-LG differs in that it uses the NASA Team algorithm, whereas the CDR product uses the highest

value from the NASA Team and Bootstrap algorithms (Cavalieri et al., 1996; Peng et al., 2013). NESOSIM and SnowModel-LG380

snow depths agree well in the Central Arctic, Beaufort Sea, and Chukchi Sea regions, but NESOSIM exceeds SnowModel-LG
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Regional snow and sea ice climatologies from NESOSIM and SnowModel-LG

Figure 8. Climatologies of regionally-averaged snow depth, density, and volume from MCMC-calibrated NESOSIM output and SnowModel-

LG output, for 1980-2019. Regional CDR sea ice area climatologies also shown. “Average” indicates the inter-product average for the three

NESOSIM configurations. Climatologies from SnowModel-LG driven with ERA5 and MERRA-2 are also shown, with dashed lines. Regions

are as described in Fig. A1. Shading indicates interannual variability.

in the Kara, Barents, and East Greenland Sea regions. Notably, NESOSIM shows the greatest snow depths in the East Green-

land Sea region, as expected from the presence of the North Atlantic storm track (Webster et al., 2019), but SnowModel-LG

records this as a region with much less snow depth (∼27 cm versus∼72 cm in the late-season). Knowing that NESOSIM’s sim-

plicity might challenge its realism in high latitude North Atlantic regions like the East Greenland Sea, improved observations385

of snow on sea ice are critical in such regions. In several peripheral seas of the Arctic Ocean, SnowModel-LG demonstrates

a leveling off of the snow depth in March and April (as can be seen in the Beaufort, Chukchi, and Kara Seas). Conversely,

snow depth in NESOSIM steadily increases in the late-season months in these same regions. This discrepancy may be due to

a lack of representation of melt or other snow metamorphosis processes in NESOSIM, since even at high latitudes, some melt

is expected at the end of the season. However, other inter-model process differences may also contribute.390

For regionally-averaged snow densities from NESOSIM and SnowModel-LG, the limitations of the simple representation of

snow density in NESOSIM are apparent, since the density in NESOSIM does not exceed 350 kg/m3, the prescribed maximum
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density of the model. The seasonal cycles of density in NESOSIM exhibit few regional differences. By contrast, in SnowModel-

LG, snow densities and their seasonal cycles vary considerably by region. There is an early-season decline in density in

several regions for SnowModel-LG that is not represented in NESOSIM, including the Beaufort, Chukchi, and Kara Seas. The395

densest snow in SnowModel-LG is present in the East Greenland Sea region, exceeding the maximum snow density possible

in NESOSIM as early as January. This high density may explain some of the representational discrepancies for NESOSIM in

this region. Because the snow cannot become as dense in NESOSIM, given equal amounts of snowfall input, lower density will

yield a deeper snowpack. Nevertheless, differences in snow density representation do not entirely explain differences between

SnowModel-LG and NESOSIM. In some regions where NESOSIM has a higher density (e.g. Barents Sea), it likewise has a400

deeper snowpack.

Given that the regions have differing surface areas, the magnitudes of snow volume cannot be directly compared between

regions, but they can be compared to the snow depths. The relative biases between snow volume climatologies are similar to

those between snow depth for the NESOSIM and SnowModel-LG products. Early-season snow volume is high in the Central

Arctic region, which is consistent with the relatively large early-season sea ice area in the region. Some regions, in particular405

the Beaufort and Chukchi Sea regions, become fully (or almost-fully) ice-covered towards the end of the season. This reduces

the interannual variability in ice area in those regions. The Barents and East Greenland Sea regions, however, have much larger

interannual variability in ice area. This larger variability is expected, since these regions extend further south towards warm

North Atlantic waters.

5 Trends in MCMC-calibrated NESOSIM output410

Trends were calculated using a Theil-Sen trend estimator, consistent with the approach used by Mudryk et al. (2015). The

Theil-Sen trend estimator produces estimates of trends by finding the median of slopes between all pairs of points in a dataset.

This approach allows for the estimation of a trend uncertainty based on a chosen confidence interval; a 95% confidence interval

was chosen for this study. In the following discussion, trends are considered significant if the 95% confidence interval does not

overlap with zero.415

Basin-average trends from NESOSIM for snowfall over sea ice, snow depth, snow density, snow volume, and sea ice area

are shown in Fig. 9. The trends in snowfall over sea ice are not statistically significant for most products except for a significant

decline for MERRA-2. The products also disagree on the sign of the trend for several months. The basin-average trends in snow

depth from MCMC-calibrated NESOSIM output vary in magnitude by product, but are all broadly similar in sign. MERRA-2

has the strongest trends in the basin-average overall. The trend is found to be negative (declining snow depth) in all months420

except September, where the trend is significantly positive for all products, and October, where the trend is not significant

for the multi-product average; MERRA-2 shows a significant decline but the other products show no significant trend. Snow

density trends are generally consistent between the products, which is consistent with the fact that snow density in NESOSIM

is less sensitive to snow input, being primarily dependent on wind speed. Since snow density in NESOSIM is limited to the

range of 200-350 kg/m3, the density trends may be spuriously low, particularly towards the end of the season, where density425

19

https://doi.org/10.5194/egusphere-2024-2562
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



Sept Nov Jan Mar

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

Tr
en

d 
fo

r s
no

wf
al

l (
se

a 
ice

) (
m

m
/y

)

Reanalysis snowfall rate
product

ERA5
MERRA-2
JRA-55
Average

Sept Nov Jan Mar

0.25

0.20

0.15

0.10

0.05

0.00

0.05
Tr

en
d 

fo
r s

no
w 

de
pt

h 
(c

m
/y

)
NESOSIM snow depth

Sept Nov Jan Mar

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Tr
en

d 
fo

r s
no

w 
de

ns
ity

 (k
g/

m
3 /y

)

NESOSIM snow density

Sept Nov Jan Mar

40

30

20

10

0

Tr
en

d 
fo

r s
no

w 
vo

lu
m

e 
(k

m
3 /y

)

NESOSIM snow volume

Sept Nov Jan Mar

8

6

4

2

0

Tr
en

d 
fo

r s
ea

 ic
e 

ar
ea

 (m
illi

on
 k

m
2 /y

)

CDR sea ice area

CDR

Basin-average snow and sea ice trends from NESOSIM

Figure 9. Basin-average monthly trends from 1980-2019 for snowfall over sea ice from reanalysis products, MCMC-calibrated NESOSIM

snow depth, density, and volume, and CDR sea ice concentration, calculated using a Theil-Sen trend estimator for all products. “Average”

denotes the multi-product average. Shading indicates a 95% confidence interval as given by the trend estimator. The grey dashed lines indicate

the zero line for reference. SnowModel-LG is excluded from this plot due to differences in model domains.

values approach the maximum and interannual variability is low (Fig. 7). Snow volume trends are significantly declining in all

months, likely enhanced by the declining trend in sea ice area, which is particularly strong in the earlier parts of the season.

The comparatively large declining trends in MERRA-2 for depth and volume may result from its high early-decade snowfall

bias relative to the other products. Higher early-year snowfall rates in MERRA-2 can be seen in Fig. 1 and are consistent with

findings on Arctic total precipitation in MERRA-2, which is likewise consistently higher in early years (Barrett et al., 2020).430

Regional trends in reanalysis snowfall over sea ice are shown in Fig. 10 along with trends in snow depth, snow density, snow

volume, and sea ice area. Although the trend magnitudes and seasonal cycles for snowfall vary by region, most of the trends

for most products are not statistically significant at a 95% confidence interval, likely due to high interannual variability of

snowfall. Different reanalysis products disagree on the sign of snowfall trends in the Central Arctic, with MERRA-2 indicating

declining trends throughout the season, and ERA5 and JRA-55 suggesting early-season increases. Trends in the East Greenland435

Sea region are large in some months but generally not significant, except for some products in February and April, where a

declining trend is observed. A large and significant early-season decline is apparent in the Kara Sea region.

Trends in snow depth are generally stronger and more statistically significant than trends in snowfall. Many of the peripheral

seas show a significant declining trend for all products from October onward. These trends are consistent with results from

Webster et al. (2019), who find delays in sea ice formation particularly in the Chukchi Sea region, and attribute declining snow-440

on-sea-ice trends partly to the increasingly late sea ice onset in this region. The East Greenland Sea region differs noticeably

in seasonality from the other regions shown, with a slight but not significant increase until February-March, where a declining

trend is found. This declining trend is weak in SnowModel-LG, but strong and significant in NESOSIM. In the Central Arctic

region, all products show a declining trend after September, but this trend is not significant in SnowModel-LG driven by ERA5

and NESOSIM driven by JRA-55.445

Despite the differences in the snow depth climatologies between NESOSIM and SnowModel-LG, the trends show con-

siderably more overlap between the two models, with inter-product differences of a comparable magnitude to inter-model
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Regional snow and sea ice trends from NESOSIM and SnowModel-LG

Figure 10. Monthly trends for regionally-averaged quantities over the 1980-2019 time period: reanalysis snowfall over sea ice, snow depth,

density and volume (from NESOSIM and SnowModel-LG), and sea ice area (from the Climate Data Record product). Shading indicates

95% confidence intervals.
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differences. This demonstrates that the choice of snowfall input to reanalysis-based snow-on-sea-ice reconstructions can im-

pact the magnitude and significance of derived snow depth trends. Furthermore, the choice of snowfall input impacts snow

depth trends more than climatologies. In most regions, the strongest declining trends are found in MERRA-2, whereas the450

weakest trends are found in ERA5, for both NESOSIM and SnowModel-LG.

Several regions demonstrate near-zero snow depth trends in September followed by an abrupt decline in the following

months. These patterns are not reflected in the snowfall trends, and are likely to be related to sea ice decline. In the Central

Arctic region, where more sea ice is present during the early months, the early-season change in the trend is less steep. However,

in the Kara Sea region, which experienced a significant declining trend in snowfall over sea ice in September and October, a455

corresponding decline in snow depth is not observed in September in either NESOSIM or SnowModel-LG. Nevertheless,

significant declines are found in this region for other months.

For snow density trends, inter-model differences tend to be larger than inter-product differences. Declining trends are

strongest around October-November for most products and regions, except in the Barents and East Greenland Seas. Densi-

ties in SnowModel-LG tend to show large and significant declines. As discussed previously, NESOSIM end-of-season density460

trends may be spuriously low due to NESOSIM snow densities approaching their maximum towards the end of the season,

although end-of-season density trends as represented in SnowModel-LG also tend to be weaker.

Trends in snow volume closely mirror snow depth trends in several regions, though differences are nevertheless apparent. In

the Central Arctic, Beaufort Sea and Chukchi Sea regions, there is a notable significant early-season decline in snow volume

for all products, whereas the snow depth declines, if present, are not so significant in the early season for these regions.465

These declines are associated with strong early-season sea ice area declines. The inter-product spread in trends increases

towards the end of the season, however. In the Kara Sea region, September snow volume trends remain not significant, but

become significant from October onward. In the Barents and East Greenland Sea regions, early-season trends are small and not

significant, but later-season declines are apparent. Snow volume trends in these two regions differ considerably in seasonality

from the snow depth trends, with stronger late-season declines, likely influenced by sea ice area decline in these regions. There470

is a large inter-model difference in trend magnitude between NESOSIM and SnowModel-LG in the East Greenland Sea region,

with NESOSIM showing much larger declines overall. The largest snow volume declines are found in the Central Arctic for

NESOSIM driven by MERRA-2, although this region also has a very wide inter-product spread, with NESOSIM driven by

ERA5 and JRA-55 and SnowModel-LG driven by ERA5 not showing significant snow volume declines. Thus, the choice

of reanalysis also has an impact on snow volume trends, though inter-model differences are more readily apparent in some475

regions.

Sea ice area trends vary by region, but strong declines are found for at least part of the season in all regions shown. In the

Central Arctic and the Siberian sector, as well as the Beaufort Sea, the strongest declining trends are in the earlier months of the

cold season. (Stronger trends may be present in months outside of the NESOSIM study period.) When sea ice in these regions

attains its maximum extent, the trends largely vanish, suggesting a persistent cold-season cover. Towards the North Atlantic480

(Barents, East Greenland), stronger declines are seen in later months.
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Figure 11. Snowfall trend maps over ocean for March 1980-2019 for ERA5, MERRA-2, JRA-55 and the average of the three reanalysis

products (Average). Snowfall is provided for each respective reanalysis product regridded to the NESOSIM domain. Grey hatching indicates

values that are not significant to a 95% confidence interval. Snowfall trends over land-covered regions are not shown.

To provide a more regional perspective on snow trends, Fig. 11 shows maps of March snowfall trends in the reanalysis

products and their average. Maps of snow depth trends in NESOSIM and SnowModel-LG output are shown in Fig. 12. For

these plots, trends were also calculated using a Theil-Sen estimator, but only grid squares containing at least 20 years of values

were included to exclude spurious trends. Consistently with results from the regional monthly trend plots, snowfall trends are485

not significant for most of the Arctic basin, due to the high interannual variability of Arctic snowfall relative to the magnitude

of the trends. The depth trends are more robust, highlighting a decline in the peripheral seas consistent with the results shown

in the regional plots, as well as some slight declines around Hudson Bay and Labrador Sea. Some significant increasing depth

trends north of the Beaufort Sea are found in both SnowModel-LG products, as well as in NESOSIM driven by ERA5 and JRA-

55, though the products differ on the significance of the increasing trend near the North Pole. The spatial pattern of increasing490

trends north of Greenland and the Canadian Arctic Archipelago and decreasing trends elsewhere is consistent with the pattern

of springtime trends found by other studies, including Webster et al. (2019) and Zhou et al. (2021), although the spatial extent

23

https://doi.org/10.5194/egusphere-2024-2562
Preprint. Discussion started: 2 September 2024
c© Author(s) 2024. CC BY 4.0 License.



ERA5 MERRA-2

JRA-55 Average

SM-ERA5 SM-MERRA-2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

March snow depth trend (cm/y)

Figure 12. Snow depth trend maps for March 1980-2019 from NESOSIM run with snowfall input from ERA5, MERRA-2, and JRA-55,

and SnowModel-LG with snowfall input from ERA5 and MERRA-2. The snow depth is output from NESOSIM with parameters specific to

each separate reanalysis product. The trend in the average of the output of the three NESOSIM runs is also plotted (Average). Grey hatching

indicates values that are not significant to a 95% confidence interval. Note that SnowModel-LG is not provided within the Canadian Arctic

Archipelago, so data from that region is absent in this map.
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of the significant trends differs. Some differences are expected, since the other studies mentioned examine different months

and time periods. There is broad consistency, however, in the strong declining trend observed in the Barents Sea region. The

overall strong declining trends in depth derived from MERRA-2 are particularly apparent in Fig. 12; the increasing depth trends495

around the central Arctic are not significant and have a narrower spatial extent than those in ERA5 and JRA-55. ERA5 and

JRA-55 agree better on the spatial pattern of the snow depth trends compared to MERRA-2.

The impact of model resolution is apparent, since some of the strong trends seen in the SnowModel-LG output are highly

localized. There are small but significant increases in snow depth in Hudson Bay that are absent from the NESOSIM output,

and some strong significant increases east of Greenland that are not significant in the NESOSIM output. This highlights500

the continued need for further analysis of snow on sea ice in these regions, as well as a need for further observations to

validate models in these difficult-to-characterize regions. Nevertheless, the broad patterns of trends between NESOSIM and

SnowModel-LG are similar, and there is good agreement between NESOSIM and SnowModel-LG for the Central Arctic and

adjacent regions.

6 Discussion505

The results of this study highlight the value of producing a snow-on-sea-ice product that accounts for uncertainty in model

input and formulation, and sparse observations. We find that snowfall climatologies differ considerably between the ice-covered

region of the Arctic Ocean and the full ice-plus-ocean region. This result is expected, given that sea ice controls atmosphere-

ocean moisture and heat fluxes, which in turn influence high-latitude precipitation. In particular, cumuliform snowfall observed

by CloudSat has been shown to vary seasonally with sea ice cover (Kulie and Milani, 2017; Kulie et al., 2016). This impacts510

the CloudSat scaling, which performs well over the ocean basin, but has more difficulty reconciling snowfall over sea ice in

some cases, particularly in September where the largest basin-average accumulation takes place as seen in Fig. 2. This was

not considered in Cabaj et al. (2020). The CloudSat scaling factors applied to NESOSIM were calculated over ocean regions,

including both sea-ice-free and sea-ice-covered regions, with new factors calculated for JRA-55. Although the scaling of model

snowfall input to CloudSat reconciled inter-product differences in snow depth for NESOSIM v1.0, inconsistencies remain in515

NESOSIM v1.1 snow depth output even with the application of the CloudSat calibration. Re-calculating the CloudSat scaling

factors masked exclusively over sea ice may not be feasible due to the relative lack of CloudSat measurements over sea ice.

In particular, in regions such as the Greenland Sea where sea ice is present only in a very narrow region along the coast,

coincident CloudSat transects may be lacking, producing a low bias. This is illustrated in Supporting Fig. A3, where CloudSat

fails to reproduce the climatology and interannual variability found in the reanalysis products when restricted to over-ice520

observations in the Greenland/Norwegian Sea region. As a result, constructing scaling factors using CloudSat restricted over

the ice-covered region yields excessively low (< 18 cm) basin-average snow depths. Hence, in this work, CloudSat scaling

factors are calculated based on snowfall over land-free regions, including both open ocean and ice-covered ocean. Nevertheless,

future work may entail some revision of the existing CloudSat scaling factors over sea ice, particularly for JRA-55. A more

regionally-refined calibration may be appropriate, with the caveat that aggregating CloudSat observations over smaller regions525
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may introduce additional uncertainty. Refining the calibration using more contemporary forthcoming snowfall measurements

from satellite missions such as EarthCARE (Wehr et al., 2023) and using more sophisticated calibration techniques may be

other options for future work.

This study also investigates calibration of NESOSIM wind packing and blowing snow parameters using an MCMC process

when different reanalysis products are used for NESOSIM snowfall input. The MCMC parameter tuning is dependent on the530

choice of snowfall input to NESOSIM. Given the discrepancies between the NESOSIM output products prior to the MCMC

calibration, and the fact that they are all being calibrated to the same observational target, it is unsurprising that the posterior

parameter distributions obtained from the calibration differ. This has some implications for the model physics, since it suggests

that the representation of the physics in the calibrated model is highly dependent on the input. Caution must be taken, then,

when interpreting the wind packing and blowing snow parameters at face value, because wide ranges of these parameters can535

produce physically reasonable model output. This also has implications for other reanalysis-based snow-on-sea-ice estimates,

which tend to make use of a selected reanalysis product. As with NESOSIM, snow depth and density in SnowModel-LG are

dependent on the choice of reanalysis input, even with the corrections applied in SnowModel-LG to the reanalysis snowfall

inputs used (Liston et al., 2020). Using automated model parameter recalibration when changing snowfall inputs used for

NESOSIM and other snow-on-sea-ice models provides an objective means to deal with this issue.540

The MCMC calibration improves agreement in both the magnitude and the interannual variability of the snow depths output

from NESOSIM forced with different reanalysis snowfall products, but it reduces agreement in snow density. This is likely a

consequence of two factors: the relative lack of density constraints in the MCMC calibration, and the snow density being more

sensitive to the wind packing factor than to the snow inputs examined in this study. With different snow inputs, when the wind

packing and blowing snow parameters were the same for all runs, there was relatively minimal variation in the density. Given545

that the density does not depend on the total snow depth, but rather, on the proportion of snow in each layer, one expects the

density to be relatively insensitive to snow input and more sensitive to differences in the parameters. Nevertheless, the lack

of density constraints in the MCMC calibration may also be an influence, since if density were more strongly constrained,

the parameters would be optimized to produce output with a narrower spread in density between the products. Despite this,

the estimated density uncertainty in the multi-product average is also quite low, highlighting how the densities produced by550

NESOSIM are limited to a relatively narrow range due to constraints imposed by the model itself. Since other models produce

higher densities (as seen in the comparison with SnowModel-LG), and observations indicate the presence of denser snow than

what can be produced by NESOSIM (King et al., 2020), the density assumptions in NESOSIM may need to be revisited. The

matter of scale must also be considered, because density measurements are highly localized, and NESOSIM represents the bulk

density over large regions, consistent with its coarse resolution. Overall, this result highlights the need for including additional555

observational density constraints in the calibration, and an eventual reformulation of NESOSIM’s representation of density.

In regional comparisons with SnowModel-LG, NESOSIM snow depth is found to generally agree over the Central Arctic

region, but agreement is weaker in the peripheral seas, particularly towards the end of the sea ice season. Overall, NESOSIM

snow depth tends to be biased high relative to SnowModel-LG. SnowModel-LG includes loss processes not currently cap-

tured by NESOSIM, such as snow melt, which may contribute to the inter-product differences. Limitations in NESOSIM’s560
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representation of snow density may also impact the agreement with SnowModel-LG; snow density in NESOSIM is limited

to a maximum value of 350 kg/m3, whereas it can attain larger values in SnowModel-LG. NESOSIM snow depth is biased

especially high relative to SnowModel-LG in the East Greenland Sea region, where its density conversely has a low bias.

SnowModel-LG includes snow grain parameterizations that are absent in NESOSIM, which allows for the representation of

processes that may be essential to quantifying variations in snow density. Nevertheless, discrepancies in snow density repre-565

sentation are likely not the sole explanatory factor for inter-model differences, since in some regions, NESOSIM is biased high

relative to SnowModel-LG even while the densities are more comparable.

In addition to adjusting NESOSIM’s representation of density, further refinements to the model could be made. NESOSIM is

a comparatively low-resolution model with highly parameterized snow processes. This makes it computationally inexpensive,

facilitating both MCMC optimization and the rapid production of ice thickness estimates, but future work could investigate570

impacts of a similar calibration using more complex models, or added complexity in NESOSIM. Given the warming conditions

in the Arctic, it may be particularly beneficial to represent melt processes in NESOSIM. NESOSIM is run over the September-

April period to exclude the melt season, but melt also occurs throughout the year, with a trend towards earlier onset (Stroeve

and Notz, 2018). In the current calibration process, observed melt may hence be misrepresented in NESOSIM as a decrease in

depth due to densification or blowing snow.575

Additional reanalysis products not examined in this study could also be investigated as inputs, especially when existing

products are inevitably superseded by updated versions. A key advancement presented by the MCMC calibration lies in the

ease of quickly generating updated parameter estimates as new input products are introduced. The MCMC calibration itself

could also be adjusted; future work could investigate the use of additional constraints on snow depth and especially on snow

density. High-quality contemporary snow density observations exist from several observational campaigns such as MOSAiC580

(Wagner et al., 2022), and although the measurements available during a single day may be highly localized, making use of

these observations with an appropriate uncertainty estimate could help better constrain the wind packing parameter, yielding

more representative estimates of snow on Arctic sea ice. With the inclusion of additional observational constraints, calibration

of additional model parameters in NESOSIM could also be explored.

Uncertainties derived from the MCMC parameter uncertainty for each product reflect the widths of the posterior distributions585

produced from the MCMC process. The percent uncertainties in the model depth and density output are considerably smaller

than the percent uncertainty of the posterior parameters (expressed as coefficients of variation). This is consistent with the

result in Cabaj et al. (2023) that highlights the relative insensitivity of NESOSIM to the model parameters. However, the snow

depth and density uncertainties for NESOSIM run with MERRA-2 and JRA55 are larger than the uncertainties for NESOSIM-

ERA5 alone, and likewise, the aggregated multi-product uncertainties exceed the MCMC-ERA5 values. This highlights the590

value of accounting for uncertainties due to differences in reanalysis input products. The multi-product snow depth uncertainty

spans a more reasonable 8-18% range compared to the <3% uncertainty of MCMC-ERA5 alone. The estimated snow density

uncertainty is relatively small, particularly when compared to the 40 kg/m3 uncertainty prescribed for the ICESat-2 product

(Petty et al., 2020) based on the in-situ snow observations compiled and analyzed by Warren et al. (1999). The uncertainty

estimated for NESOSIM in this study is likely underestimated due to the limited density range represented by the model. Near595
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the end of the season, the densities in many grid cells may be near the maximum 350 kg/m3 density value, limiting the possible

density variation and thus decreasing the spread in parameter-ensemble density values. This calls into question the assumption

of Gaussian uncertainty distributions, and it may be beneficial to revisit the calibration with non-symmetrical distributions in

future work. An analogous underestimate of uncertainty takes place in the early season, where uncertainties are artificially low

due to the common point of initialization for all the parameter ensemble runs. However, in general, by around the 15th model600

day, the percent uncertainty saturates, and moreover, this saturation is observed not just for ERA5, (as in Cabaj et al. (2023),)

but for each individual product. Overall, the estimated uncertainties in the NESOSIM-MCMC-average product must be treated

with caution, since they do not fully characterize all sources of uncertainty, but they can be used to provide a more robust

estimate of uncertainty from the NESOSIM model input and calibration assumptions.

Intercomparisons of reanalysis products (and quantities derived from them) have some associated caveats. Insight into Arctic605

precipitation can be gained from the analysis of reanalysis precipitation trends (Boisvert et al., 2018), but caution may be nec-

essary in their interpretation due to discontinuities in the assimilation (Barrett et al., 2020), although contemporary reanalysis

systems include bias corrections that mitigate some of the issues introduced from these discontinuities. There are also discrep-

ancies between the representation of sea ice cover in the three reanalysis products used, which may yield larger inter-product

differences particularly in regions with thinner sea ice (Barrett et al., 2020). Averaging multiple data products together is a well-610

established approach, and the development of blended land snow products motivates this study (Mudryk et al., 2015, 2018).

Constructing a multi-product average using a wider range of input products, and incorporating other models and observations,

could be of future interest.

7 Conclusions

Quantifying snow on Arctic sea ice is an ongoing challenge, and existing approaches face difficulties due to spatial and temporal615

sampling discrepancies, relative biases, and the sparse availability of in situ validation data. Nevertheless, NESOSIM has free

parameters which can be observationally calibrated for different snowfall inputs to reconcile inter-product biases. Averaging

together model outputs run with different snow inputs can also account for relative differences between the products, and thus,

we construct a snow-on-sea-ice product that averages the output of NESOSIM with calibrated snowfall input from ERA5,

JRA-55, and MERRA-2, after calibrating each model output to depth and density observations using an MCMC process.620

MCMC calibration of NESOSIM with different snowfall inputs following the approach in Cabaj et al. (2023) reconciles

differences in snow depth between NESOSIM run with different reanalysis inputs, but enhances differences in snow density.

The posterior parameter distributions obtained from the calibration differ between the products, with JRA-55 yielding the

largest values for the wind packing and blowing snow parameters, and yielding posterior parameter distributions with the

largest spread compared to those of the other two products.625

When MCMC-calibrated regionally-aggregated NESOSIM monthly climatologies from 1980-2019 are compared to SnowModel-

LG, good agreement in snow depth is found in the Central Arctic Ocean and nearby regions, though NESOSIM has a high bias

relative to SnowModel-LG in more peripheral regions. Snow densities differ greatly between NESOSIM and SnowModel-LG,
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both in magnitude and seasonality, likely as a consequence of the comparatively simpler representation of snow density in NE-

SOSIM and the weaker constraints in the calibration, although it is challenging to ascertain accuracy in this poorly-observed630

quantity.

Trends in MCMC-calibrated NESOSIM run with the different products over the 1980-2019 time period broadly agree, with

decreasing trends being strongest for NESOSIM run with MERRA-2 snow input. Basin-average snow depth on Arctic sea ice

from NESOSIM is declining in most months and for most products except in September, where there is a slight increasing

trend, and trends are not statistically significant in October except for MERRA-2, where there is a modest decline. Regional635

snow depth trends vary in magnitude and statistical significance, but most regions show a declining trend in snow depth on sea

ice over the mid-to-late season. Despite differences in climatologies between NESOSIM and SnowModel-LG, trends between

the models are in agreement within uncertainty for many regions. The choice of reanalysis snow input can greatly impact the

magnitude and statistical significance of snow depth trends, and thus, trends derived from reanalysis-based reconstructions of

snow on sea ice must be treated with caution. In general, when using reanalysis-based reconstructions of snow on sea ice,640

the impact of reanalysis input must be accounted for, since changing the reanalysis input may yield less representative model

processes.

The uncertainties from MCMC-ERA5 are low relative to other products, and combining uncertainties from the MCMC

calibrations for additional reanalysis products yields a more reasonable estimate of basin-average snow depth uncertainty.

Estimates of snow density uncertainty remain relatively low, likely due to the implicit constraints on snow density imposed in645

the model, since the fixed density values in each layer impose minimum and maximum density values.

Overall, the findings in this study motivate the continued need for widespread in situ observations of snow on Arctic sea

ice, particularly for snow density. In the meantime, however, synthesizing existing models and observations can help provide

best-guess estimates of snow on Arctic sea ice. The consensus snow depth product produced in this work incorporates un-

certainties from both reanalysis and parameter uncertainties, albeit limited by the simplicity of NESOSIM. Future work in650

synthesizing models and observations could entail incorporating additional observations and reanalysis products, or possibly

applying similar calibration and blending approaches to other snow-on-sea-ice products.
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Appendix A: Supporting Figures

Figure A1. Map of the NESOSIM v1.1 model domain, with NSIDC-defined regions (Meier and Stewart, 2023) investigated in this study

identified. The lower (60°N) and upper (82°N) limits of the latitude band from which CloudSat measurements were aggregated for the

CloudSat climatology scaling are indicated with dark grey contours. The quadrants of the domain used for the CloudSat scaling as applied

to the NESOSIM reanalysis input are likewise indicated.
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Figure A2. Interannual variability (IAV) of snow depth for NESOSIM, as shown in the shading in Fig. 6 (a) with MCMC-ERA5 calibration,

(b) with all products calibrated. This value is calculated as the standard deviation over the time period for the monthly mean for each given

month.
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Figure A3. Monthly climatologies (left column) and interannual variability (IAV, right column) of snowfall over sea ice in the 60-82°N

latitude band within the four quadrants, which are illustrated on the map in Fig. A1. CloudSat fails to adequately represent the monthly

climatology in the Greenland/Norwegian Sea region.
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Code and data availability. The NASA Eulerian Snow On Sea Ice Model (Petty et al., 2018) is available at https://zenodo.org/records/

6342069, modified for MCMC at https://doi.org/10.5281/zenodo.7644948. The final calibrated multi-product average with uncertainties, in-655

cluding the individually-calibrated model runs and the CloudSat scaling factors, is provided at https://zenodo.org/records/13307801 (Cabaj

et al., 2024). SnowModel-LG (Liston et al., 2020; Stroeve et al., 2020) output was obtained from the NSIDC at https://nsidc.org/data/

nsidc-0758/versions/1. Forcing data for NESOSIM (including atmospheric input from ECMWF ERA5 (Hersbach et al., 2020), NOAA/N-

SIDC sea ice concentration (Peng et al., 2013), EUMETSAT OSI SAF sea ice drift (Lavergne et al., 2010), and NSIDCv4 Polar Pathfinder

sea ice drift (Tschudi et al., 2019)) and processed Operation IceBridge data (Petty et al., 2023) is available on Zenodo at https://zenodo.660

org/record/7051062. Additional forcing data for NESOSIM was regridded from MERRA-2 (Gelaro et al., 2017), obtained from NASA

GES DISC at https://doi.org/10.5067/7MCPBJ41Y0K6, and JRA-55 (Kobayashi et al., 2015), obtained from the NCAR RDA at https:

//doi.org/10.5065/D6HH6H41. In addition to the processed Operation IceBridge data mentioned above, NESOSIM MCMC calibration also

makes use of processed snow input from Soviet drifting stations (Mallett et al., 2022; Radionov et al., 1997), and CRREL-Dartmouth buoy

observations (Perovich et al., 2022).665
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