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Summary 
In this paper the authors describe a new python package for computing radiative feedbacks using 
radiative kernels and a corresponding repository of 11 radiative kernels that have been developed 
by various groups since the technique was introduced in 2008.  The authors have brought these 
kernels together, placed them on consistent grids, given them consistent sign and variable naming 
conventions, and done additional curation in an eAort to better facilitate community usage.  At this 
time, only a subset of the most commonly used kernels (non-cloud kernels for top-of-atmosphere 
radiation) are part of the repository, with future plans to incorporate other kernels that are used in 
the community (e.g., cloud radiative kernels and kernels for surface radiation).  The python package 
that the authors have developed for using the kernels to compute radiative flux anomalies is a 
major advance, as authors wishing to compute radiative feedbacks have generally either had to 
write code from scratch or follow someone else’s code that is generally not well documented, 
commented, etc. It has basically been the wild west on this front for ~15 years.  Given the number 
of methodological choices that need to be made in computing radiative feedbacks with kernels – 
choices that can have sizable impacts on the resulting feedback values – it is not ideal for the 
community of practice to be reinventing the wheel for these calculations.  Having a dedicated 
package to perform these calculations and to quickly assess sensitivity to kernel and some 
methodological choices is very much welcome.  I found the paper to be well written and illustrated, 
and I recommend acceptance of this manuscript after the revisions detailed below. 
 
Major Comments 
• Role of eLective radiative forcing (ERF) in the calculations. First, on L134, I suggest providing 

a little more detail here regarding how ERF is computed. This is an input for the adjusted CRE 
calculation, so if users wanting to compute feedbacks outside of the tutorial dataset will need 
to know how to compute ERF. (Side note: is it worth at some point incorporating an ERF 
calculation capability into ClimKern?) Second, and more importantly, what if the end-user does 
not have ERF or chooses not to provide it? Can the calc_cloud_LW and calc_cloud_SW  
functions still be used if ERF is not provided?  In the case of abrupt-4xCO2 simulations, the 
forcing is not changing through the course of the run, so if one is computing feedbacks via 
regression of the TOA anomalies on global mean surface air temperature (Gregory et al. 2004), 
the ERF term in Eq 4 and the ERF masking term in equation 5 should be zero (I think – correct me 
if wrong). Alternatively, when computing feedbacks from idealized atmosphere-only warming 
experiments (e.g., amip-p4K minus amip), there is no radiative forcing, so this term is zero by 
definition. I suppose the end user could provide a DataArray of zeros for the ERF term, but this is 
sort of klunky relative to the code allowing for this to be an optional input field. 

• Computing water vapor anomalies (L220-234). Feedback junkies like myself have been down 
this dark and lonesome road, but the average reader is likely to get rather lost in this section.  I 
think providing the relevant equations would help the reader to understand that there is some 
ambiguity in the right way to compute humidity anomalies and to better rationalize the four 
choices. A follow up question is have you assessed whether one these four choices is clearly 
superior and/or whether one or more are clearly inferior? Surely they can’t all be equally useful, 
right? I think you may be in a unique position to weigh in on this, or at least report on a null 



result. In my own experimentation, I seem to recall these things tending to be equivocal – some 
methods work better for some models and some work better for others; do you find the same? 

• Clear-sky linearity tests to evaluate kernels. Related to the previous comment, I was 
surprised that you did not present clear-sky linearity tests (Shell et al. 2008), which would allow 
for an evaluation of which kernels best close the TOA energy budget.  There seems to be a 
desire not to evaluate whether certain kernels are better or worse, but this would be a very 
useful thing for the community to know. I suppose one issue is that you have only applied the 
kernels to a single model, one that happens to have a corresponding kernel, which could give it 
an advantage in this test. So I understand the choice not to weigh in on this.  However, I can’t 
understand the statement in the conclusions that using a mean kernel would be advantageous 
in computing feedbacks. If one kernel is superior, then averaging it with inferior kernels should 
not improve things. I would expect, for example, that kernels built in late-2000s era climate 
models (Soden et al. 2008) would be inferior to those built from more modern GCMs or 
reanalyses with vastly better mean-state cloud properties and improved representation of gas 
optics in the radiative transfer schemes (Huang and Huang 2023).  I recommend deleting these 
statements in the conclusions. 

 
Minor Comments 
• Title: should “v1.1.2” be in the title? Most of what is described is applicable beyond this specific 

version, I would presume. 
• L62-66: It may be worth noting that Zelinka et al. (2020) assessed sensitivity of results to kernel 

choice as well (their Figure S2). 
• L135: Why is the IRF provided? 
• L190: suggest clarifying that the tropopause height input is optional 
• L243: Somewhere in here I think you need to mention that the package computes all the 

previously described feedbacks for clear-sky conditions as well, using the respective clear-sky 
radiative kernels. Otherwise when you get to the cloud feedback calculations, it is unclear 
where the clear-sky feedbacks come from. 

• L245: should “most” be “all”? 
• Eq 5: I think there should be parentheses around the two ∆Ri terms that follow the summation. 

Also I think the nomenclature could be confusing, since the subscript “all-sky” appears in some 
equations but not in others. 

• L304-305: it is stated that each kernel exhibits diAerences in the standard deviations; I think you 
mean “as evidenced in the standard deviations” or something like that?  Also, each kernel 
exhibits diAerences between the all- and clear-sky versions. That doesn’t seem surprising to 
me.  Or are you talking about the interkernel diAerences in how diAerent the all- and clear-sky 
kernels are? I think this sentence needs to be re-written for clarity, since the first part deals with 
inter-kernel spread while the latter deals with all- vs clear-sky diAerences within a given kernel (I 
think). 

• L319: I would have thought solar path length through the atmosphere would be highly relevant 
too. 

• L330-334: I think you should provide more explicit detail about how you did your feedback 
calculations here. Which WV feedback option was used? Did you integrate up to the default 
tropopause, or did you compute the tropopause explicitly?  (Side note: is it worth at some point 
incorporating a tropopause calculation function into ClimKern, something like PyTropD?). To 
clarify: are you diAerencing a climatology from the last 30 years of abrupt simulation and a 
climatology from the last 30 years of the piControl simulation, or are you using a climatology 

https://tropd.github.io/pytropd/index.html


from the full 150-year abrupt simulation? In either case, I suggest mentioning that this 
diAerence of perturbed and control climatologies is not ideal for computing feedbacks in abrupt 
2x or 4x CO2 runs because rapid adjustments are aliased into the feedback when computed 
this way. Computing the TOA anomalies throughout the duration of the 150-year abrupt 
experiment and regressing them on coincident global mean surface air temperature anomalies 
is preferred.  Related to this, does the code require that both the perturbed and control data 
inputs have no more than 12 months?  Can one input perturbed climate fields that are length 
N*12 months (where N is the number of years) and have the code diAerence them with the 12-
month long piControl climate, yielding N*12 month TOA anomalies? 

• Figure 2: Why is the standard deviation multiplied by 2? I don’t love how the colorbar scales 
change among the figures, especially for the right column. Could the standard deviation 
colorbars be objectively related to the means (e.g., from 0 to some percentage of the range of 
mean magnitudes)?  Currently the tiny interkernel WV and Planck feedback spreads are over-
emphasized relative to, say, the cloud feedback spread. 

• Section 4.1.1: Suggest reiterating somewhere in here (or at multiple places) that these are just 
results from a single model (CESM1-LE). Also, I may have missed it, but are you using just one 
ensemble member? Are the other members of the LE just used for diagnosing ERF? 

• L363: I don’t really see this (much of the ocean has a positive cloud feedback and much of the 
land has a negative cloud feedback), so I don’t think it should be the primary feature to 
highlight.  

• Figure 3: The fact that the y-axis ranges are so diAerent (some only span 3 W/m2/K while others 
span 12 W/m2/K) tends to mislead regarding interkernel spread. I think these should either be 
put on equal footing or this plotting choice should be pointed out more explicitly. 

• L400: I don’t see this.  Table 2 shows that the interkernel standard deviation of Planck is larger 
than for 3 other feedbacks (WV, surface albedo, and LW cloud).  Are you referring to the 
sensitivity as a fraction of the mean? 
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