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Abstract.

Climate feedbacks are a significant source of uncertainty in future climate projections and need to be quantified accurately

and robustly. The radiative kernel method is commonly used to efficiently compute individual climate feedbacks from climate

model or reanalysis output. Despite its popularity, it suffers from complications, including difficult-to-locate radiative kernels,

inconsistent kernel properties, and a lack of standardized assumptions in radiative feedback calculations, limiting the robustness5

and reproducibility of climate feedback computations. We designed the ClimKern project to address these issues with a kernel

repository and a separate but complementary Python package of the same name. We selected eleven sets of radiative kernels

and gave them a common nomenclature and data structure. The ClimKern Python package provides easy access to the kernel

repository and functions to compute feedbacks, sometimes with a single line of code. The
::::::::
ClimKern

:
functions contain helpful

optional parameters while maintaining standard practices between calculations.10

After documenting the kernels and ClimKern package, we test it with sample climate model output
::::
from

::
an

::::::
abrupt

:
2×CO2

:::::::::
experiment to explore the sensitivity of feedback calculations to kernel choice. Interkernel spread shows

::::::
exhibits

:
considerable

spatial heterogeneity, with the greatest spread in the
::::::
surface

::::::
albedo

:::
and

:::::
cloud

:::::::::
feedbacks

:::::::::
occurring

::
in

:::
the

:
Arctic and over

the Southern Ocean. Considerable sensitivity to kernel choice is found even in the global means, with the surface albedo

and cloud feedbacks showing the greatest spread across different kernels
:
In

:::
the

::::::
global

::::::
mean,

:::
the

::::::
Planck

:::
and

:::::::
surface

::::::
albedo15

::::::::
feedbacks

:::::
show

:::
the

:::::::
greatest

::::::::::
interkernel

::::::::
variability. Our results highlight the importance of using more than one radiative

kernel
:::::::
multiple

:::::::
radiative

:::::::
kernels and standardizing feedback calculations , like those offered by ClimKern, in climate feedback,

climate sensitivity, and polar amplification studies. As ClimKern continues to evolve, we hope others will contribute to its

development to make it even more useful to the
::
an

:::::
even

::::::
greater

:::
tool

:::
for

:::
the

:::::::
radiative

:
feedback community.
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1 Introduction20

One of the fundamental questions in climate science is how much the surface will warm in response to the radiative forcing

imposed by increasing CO2 concentrations. A typical framework for answering this question is expressing the top-of-the-

atmosphere (TOA) radiative imbalance, ∆R, as

∆R=∆F +λ∆T, (1)

where ∆F is the radiative forcing, λ is the net climate feedback parameter, and ∆T is the global mean surface temperature25

response. The feedback parameter λ is the increase in outgoing radiation per degree warming with units of W m−2 K−1 and

represents the effects of all global average radiative feedbacks combined. Using this forcing-feedback framework, we can

compute the equilibrium climate sensitivity (ECS), which is the global mean surface temperature response needed to restore

the TOA imbalance to zero after doubling CO2, (Sherwood et al., 2020), as

ECS =
∆F2×CO2

−λ
. (2)30

The complexity of the climate system and observational uncertainty lead to large uncertainties in estimates of ECS, with the

climate feedback parameter λ considered a greater source of uncertainty in ECS than the forcing ∆F (Sherwood et al., 2020).

The uncertainty in λ stems from the significant uncertainty in its components, notably the cloud and water vapor feedbacks

(Roe and Baker, 2007; Andrews et al., 2012; Vial et al., 2013; Sherwood et al., 2020). Feedback uncertainty is also important

on regional scales. For instance, the Arctic, which is warming faster than the global average in a phenomenon known as Arctic35

amplification (AA), is characterized by
::::
faces

:
considerable feedback uncertainty, making it difficult

:::::::::
challenging

:
to attribute

warming to individual feedbacks (Pithan and Mauritsen, 2014; Hahn et al., 2021; Shi and Lohmann, 2024).

The net feedback parameter can be linearly decomposed into a sum of individual feedbacks: λ=
∑

iλi, where λi represents

the contributions of individual feedbacks: lapse rate, Planck, water vapor, surface albedo, and cloud feedbacks. There are two

caveats to this decomposition worth noting. First, representing λ as a linear combination of individual feedbacks ignores the in-40

teraction between feedbacks, which can be important
:::::
crucial, especially on local scales (Feldl and Roe, 2013; Knutti and Rugenstein, 2015; Feldl et al., 2017; Huang et al., 2021)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Feldl and Roe, 2013; Knutti and Rugenstein, 2015; Feldl et al., 2017; Huang et al., 2021; Bonan et al., 2025). Second, λ and

its individual components are likely not constant, varying with the climate state and with the pattern of surface temperature

change (Knutti and Rugenstein, 2015; Gregory and Andrews, 2016; Dong et al., 2019; Meyssignac et al., 2023). Even with

these caveats, the linear decomposition of feedbacks remains a commonly used framework.45

The most common way to calculate individual radiative feedbacks is by using radiative kernels (Soden et al., 2008). Radiative

kernels are the pre-calculated radiative sensitivities at some vertical level, often the TOA, to incremental changes in climate

variables, such as temperature, water vapor, and surface albedo. The TOA radiative imbalance due to feedbacks, ∆Rλ (equiv-

alent to λ∆T , see Eq. 1), is decomposed as

∆Rλ =
∑
i

∂Ri

∂xi
∆xi, (3)50
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where ∂R
∂x is the radiative kernel, and ∆x is the change in a climate variable (e.g., following 2×CO2). The radiative kernel

method offers several advantages over other methods of calculating radiative feedbacks. For example, radiative kernels can

be applied to virtually any gridded data (e.g., climate model output, reanalysis products, etc.) as long as standard variables ,

such as temperatureand
:::::::::::
(temperature,

:
specific humidity,

::::
etc.) are available. Using existing radiative kernels also alleviates the

need to perform computationally expensive partial radiative perturbation calculations or run offline radiative transfer models55

(Wetherald and Manabe, 1988; Colman and McAvaney, 2011; Smith et al., 2020). Another use of radiative kernels is the

decomposition of the effective radiative forcing into individual components, allowing for the separation and quantification of

specific adjustments, such as changes in cloud properties or aerosol concentrations (Larson and Portmann, 2016).

The underlying assumption of the radiative kernel method is that differences between kernels produced using
:::::::
variations

:::
in

::::::
kernels

::::::::
produced

::::
with

:
different models are minor compared to differences

:::::::::::
discrepancies

:
in the climate responses between60

:::::
across

:
models. This is because interkernel variation stems only from differences in radiative transfer models and model base

states (Pincus et al., 2020) , both of which are, ideally, physically reasonable representations of the real world (Soden et al.,

2008). This
:::
The assumption of minor differences between

:::::
across kernels enables intermodel feedback comparisons and allows

for the use of
::::
using

:
virtually any radiative kernel to calculate feedbacks.

A question naturally follows: are the differences between kernels actually minor? Only a few studies have addressed this65

question.
:::::::::::::::::
Zelinka et al. (2020)

:::::::
assessed

:::
the

::::::::
variability

:::
of

:::::
global

::::::::
radiative

::::::::
feedbacks

::::::
across

:::
six

::::::
kernels

:::::
(their

::::
Fig.

::::
S2).

:
Soden

et al. (2008) found that among three
:::
four

:
kernels calculated using

::::
three

:
different models,

::::::::
vertically

:::::::::
integrated, zonal mean

kernels varied by ∼ 10%except for in ,
::::::
except

:::
for

:
the Southern Ocean, where they varied by ∼ 30%. In the context of the

global mean ,
::::::
Global

:::::
mean temperature and water vapor kernels only varied by

:::::
varied

::
by

:::
less

::::
than

:
∼ 5%, although the surface

albedo kernel varied considerably more
:::::::
(∼ 18%). In a more recent study, Hahn et al. (2021) found considerable spread in global70

and regional surface albedo and cloud feedbacks calculated from different kernels
:::
that

:::
the

::::::
relative

::::::::::
importance

::
of

:::::::::
feedbacks

::
as

::::
polar

:::::::::::
amplification

:::::::::::
mechanisms

::::::
shows

:::::
kernel

::::::::::
dependence. Huang and Huang (2023) documented a new set of kernels and

found agreement in the global mean TOA feedbacks among the seven kernels they considered
:::::
seven

:::
sets

::
of

::::::
kernels

:
but notable

differences in the surface feedbacks
::::::::
feedbacks

::
at
:::
the

::::::
surface. Although we do not seek to completely answer the question of the

importance of interkernel differences , here we note that given the popularity of the radiative kernel method,
:::::::::
completely,

:::
we75

:::
feel

:::
that

:
it deserves more attention ; however

::::
given

:::
the

::::::::
method’s

:::::::::
popularity.

::::::::
However, the current research environment makes

intercomparing different radiative kernels difficult.

Using different
:::
sets

::
of

:
kernels introduces uncertainty that can limit the reproducibility and robustness of climate feedback

studies. First, although many kernels have been produced since the early studies of Soden et al. (2008) and Shell et al. (2008),

they are scattered among different research groups and institutions, making them difficult to locate; even after accessing a80

kernel, there is often little to no guidance on their proper usage. Second, kernels vary considerably in their properties, such

as horizontal and vertical grids, model tops, sign conventions, and nomenclature, which may introduce calculation discrep-

ancies across studies. Lastly, using kernels to calculate radiative feedbacks requires several choices and assumptions; exam-

ples include what base temperature to use when calculating the specific humidity increase from a 1K
:
1
::
K

:
increase in atmo-
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spheric temperature and how to handle vertical integration to the surface while accounting for surface pressure and terrain85

:::::::::::::::::::::::::::::::::::::
(Pendergrass, 2019; Huang and Huang, 2023). These three factors make comparing results between feedback studies difficult,

even when studies may use the same radiative kernels.

To standardize radiative feedback calculations and establish a central kernel repository, we created the ClimKern project.

This project consists of two distinct parts: the ClimKern Python package, an open-source library for computing radiative

feedbacks, and the ClimKern repository, which provides easy access to 11 sets of radiative kernels , as of this writing, computed90

from various climate models, reanalyses, and satellite observations. The package provides functions for calculating radiative

feedbacks using any of the radiative kernels in just one or two lines of code per feedback. The package greatly enhances the

reproducibility of feedback studies by standardizing the assumptions and choices. It also enables straightforward interkernel

comparisons to better understand the role of kernel choice in these
:::::::
feedback studies.

The remaining sections are organized as follows: section 2 provides detailed information about ClimKern radiative kernels95

and the sample data we included for demonstration purposes. Section 3 covers the methodological choices made in crafting

the feedback calculation functions. Section 4 shows the results of using the package with the sample climate model output to

calculate feedbacks. In section 5, we put our package and the sample results in the context of the greater climate feedback and

sensitivity community.

2 Data100

2.1 Radiative kernels

We acquired 11 sets of
::::::
all-sky

:::::
(with

::::::
clouds)

:::
and

::::::::
clear-sky

:::::::::
(cloudless)

:
TOA radiative kernels that were either publicly available

or made available
:::::::
provided

:
to us by the creators. To be included in ClimKern, a kernel product must have 4-dimensional

water vapor and air temperature kernels, as well as 3-dimensional surface temperature and surface albedo kernels. The kernels

must be monthly averages to capture the seasonal variations in TOA radiative fluxes and must be on horizontal latitude-105

longitude grids. The above requirements were chosen to ensure ease of use and that feedback calculations using different

kernels are directly comparable. In this first version of ClimKern, we excluded radiative kernels that require nontraditional

(i.e., considerably different from Soden et al. (2008)) variables to compute feedbacks; examples include the cloud kernels from

Zelinka et al. (2012), which require satellite-simulator produced
::::::::::::::::::::::
satellite-simulator-produced

:
output, and new kernels from the

NASA Goddard Institute for Space Studies that use column precipitable water and sea ice fraction variables (Zhang, 2023). We110

also excluded band-by-band or “spectral” kernels, such as those in Bani Shahabadi and Huang (2014) and Huang et al. (2024).

Seven of the 11 TOA kernel sets had corresponding surface kernels for calculating radiative feedbacks from a surface perspec-

tive, as in Pithan and Mauritsen (2014) and Laîné et al. (2016). Although they are included in the repository for ease of access,

surface feedback calculations have not been implemented in ClimKern, and our discussion exclusively focuses on TOA kernels

and feedbacks. Future versions of ClimKern may expand compatibility to surface kernels and other kernel types.115
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Table 1. The 11 radiative kernel sets included in the ClimKern repository. From left to right, the
:::
The

:
table contains the kernel names, the

horizontal resolution, the number of vertical levels
::
and

::::::
highest

:::::::
pressure

::::
level in the

::::
their ClimKern versionof the kernel,

::
and

:
the highest

pressure level of the kernel
::::
main

:::
data

::::::
source

::::
used.

::::::::::
Additionally, and the paper that first documents

:::::::
reference

::::::::::
documenting

:
the kernel

:
is

::::::
provided.

kernel name
:::::
Kernel horizontal resolution (lat×lon)

:::
Res.

:::::::
(lat×lon) number ofvertical levels

:::
Vert.

::::::
Levels highest pressurelevel (hPa)

:::
Min

:
P
:::::
(hPa) citing paper

:::::
Source

::::::::
Reference

BMRC 3.2°×
::
°×5.6°

:
°
:

19 1
::::::
Climate

:::::
model Soden et al. (2008)

CAM3 2.8°×
::
°×2.8°

:
°
:

17 10
::::::
Climate

:::::
model Shell et al. (2008)

CAM5 0.94°×
::
°×1.25°

:
° 22 3.64

::::::
Climate

:::::
model Pendergrass et al. (2018)

CERES 0.5°×
::
°×1°

:
° 30 0.1

::::::
Satellitea Thorsen et al. (2018)

CloudSat 2°×
::
°×2.5°

:
° 17 10

::::::
Satellitea Kramer et al. (2019)

ECHAM6 1.88°×
::
°×1.88°

:
° 19 1

::::::
Climate

:::::
model Block and Mauritsen (2013)

ECMWF-RRTM 2.5°×
::
°×2.5°

:
°
:

24 1
::::::::
Reanalysis Huang et al. (2017)

ERA5 2.5°×
::
°×2.5°

:
°
:

37 1
::::::::
Reanalysis Huang and Huang (2023)

GFDL 2°×
::
°×2.5°

:
° 17 10

::::::
Climate

:::::
model Soden and Held (2006)

HadGEM2 1.25°×
::
°×1.88°

:
° 19 1

::::::
Climate

:::::
model Smith et al. (2018)

HadGEM3-GA7.1 1.25°×
::
°×1.9°

:
° 39 3

::::::
Climate

:::::
model Smith et al. (2020)

:
a

::
For

::::::
kernels

::::
with

:
a
::::::
satellite

::::
data

:::::
source,

::::::::
reanalysis

:::
data

::::
were

::::
used

::
to

::::::::
supplement

::::::::::
calculations.

Details about each kernel set can be found in Table 1. These 11 kernel sets were developed independently using a variety of

::::::
various data sources for their base states, including :

:
climate model output, reanalysis data, and satellite observations (Soden

et al., 2008; Huang et al., 2017; Kramer et al., 2019). Horizontal resolutions range from several degrees to under one degree in

latitude and longitude. Nearly all the kernels were already available on standard pressure levels, the desired vertical coordinate

to ensure kernel compatibility with various
:::::::::::
compatibility

::::
with climate model output to calculate feedbacks. Kernels available120

on their native model grids (i.e., CAM5 & HadGEM3-GA7.1) were linearly interpolated to pressure levels. The native CAM5

kernels were available on hybrid sigma-pressure vertical coordinates; isobaric levels in the upper troposphere were unchanged,

while hybrid levels in the lower and mid-troposphere were converted to the standard pressure levels used in the Coupled Model

Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). The native HadGEM3-GA7.1 kernels were on a pure sigma

vertical coordinate that lacks isobaric surfaces. Because they were specifically developed with a high model top and enhanced125

vertical resolution to capture stratospheric adjustments (Smith et al., 2020), they were interpolated to 39 pressure levels, the

highest standard CMIP6 vertical resolution. For further details about individual kernels, see the
:::
We

:::
also

::::::::
included

::
in

:::::
Table

::
1

:::::::::
information

:::::::::
regarding

:::
the

:::
data

:::::
used

::
to

:::::::
generate

:::
the

::::::
kernel

::::
sets.

:::
See

:::
the corresponding citing papers in Table 1 .

::
for

:::::::::
additional

:::::::::
information

:::::
about

:::::
each

:::::
kernel

:::
set.

:

After we collected the kernels and performed the necessary regridding
:::::::
collecting

::::
and

:::::::::
regridding

:::
the

:::::::
kernels, we combined130

each kernel set into one netCDF file per kernel source. The native kernel variables were renamed so as to have a standardized
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set of variables, and their units or other metadata were altered for consistency and accuracy. For example, all surface albedo

kernels had their units changed to Wm−2%−1 if needed. We then inspected the kernels to find inconsistencies with their sign

conventions, which were corrected. The resulting dataset was uploaded to Zenodo (Janoski et al., 2024a), from where it
:::::
which

can be downloaded manually or via a built-in script in the ClimKern Python package.135

2.2 Sample climate model output

We also provide a tutorial dataset within the package to calculate, for verification purposes, the feedbacks given in Table 2. The

package includes a function that accesses the sample data derived from pre-industrial and abrupt-2×CO2 fully coupled runs

using the Large Ensemble version of the Community Earth System Model 1 (CESM1-LE). The CESM1-LE model incorporates

the Community Atmosphere Model version 5 (CAM5) with 30 vertical levels and the Parallel Ocean Program version 2140

(POP2) with 60 vertical levels. The model operates at a horizontal resolution of 1◦ across all components (Kay et al., 2015).

These experiments have been extensively documented in prior studies (Mitevski et al., 2021, 2022, 2023). We also provide

the effective radiative forcing (ERF)from these experiments, calculated from simulations with prescribed
:
,
::::::::
calculated

:::
as

:::
the

::::::::
difference

:::::::
between

:::
the

::::::
global

:::::
mean

:::
net

::::
TOA

::::
flux

:::::::
between

:::
an

:::::
abrupt

::
2×CO2 :::

run
:::
and

:
pre-industrial sea surface temperatures

and sea ice concentrations as in Forster et al. (2016). Lastly, we provide the instantaneous radiative forcing (IRF) for the same145

dataset calculated offline with the radiative transfer model SOCRATES (Edwards and Slingo, 1996; Manners, 2015). Note

that because SOCRATES is not the radiative transfer scheme used in CESM, it may not yield perfect energy budget closure

(e.g., following Eq. 1) even with correct kernel decomposition.
::::::
control

:::
run

::::::
where

:::
the

::::::::::
sea-surface

:::::::::::
temperatures

:::
and

:::::::
sea-ice

::::::::::::
concentrations

:::
are

::::
fixed

::
to

:::::::::::
pre-industrial

:::::::::
conditions

::
in

::::
both

::::
runs

:::::::::::::::::
(Forster et al., 2016)

:
.

3 Feedback calculations150

The ClimKern Python package, hereafter referred to as simply “ClimKern,” contains many built-in functions for calculating

radiative feedbacks and other valuable quantities of interest. Note that all output
::::::
outputs from feedback functions is in the form

of the
:::
are

:
TOA radiative perturbations from the feedback in units of Wm−2; if the user wishes to express feedback values

as per unit temperature (Wm−2K−1), that is usually
::
can

:::
be

:
achieved by dividing

:
or

:::::::::
regressing

:
by the surface temperature

response. We avoided incorporating this step into the functions as there are other
:::::
several

:
ways of expressing feedbacks, such155

as in the form of warming contributions (Pithan and Mauritsen, 2014; Goosse et al., 2018; Previdi et al., 2020; Janoski et al.,

2023), and the radiative perturbations in Wm−2 are useful to
:::::
helpful

:::
in calculating rapid adjustments to radiative forcing

(Smith et al., 2018).
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vial et al., 2013; Block and Mauritsen, 2013; Smith et al., 2018).

:::
All

::::::::
functions

::::
can

:::::::
compute

::::::
all-sky

::::
and

:::::::
clear-sky

:::::::::
feedbacks

:::::::::
depending

::
on

:::
the

:::
sky

:::::::::
argument,

:::::
either

:::::::
"all-sky"

::
or
::::::::::
"clear-sky".

:::::::::::
Additionally,

:::::::
because

::::::::
radiative

::::::
kernels

:::
are

:::::::
typically

::::
only

::::::::
available

::
as

::::::::
monthly

:::::
means

::::
and

:::::::
monthly

::::::
means

:::
are

::::::::
standard

::::::
climate

::::::
model

::::::
output,

:::::::::
ClimKern

::::::::
currently

::::
only160

::::::
accepts

:::::::
monthly

:::::
mean

:::::
input

::::::
fields. Below, we document the required user input for the feedback calculation functions and

provide details on their methodologies. This is not an exhaustive list of functions available in ClimKern, and specifics are

6



subject to change in future versions. Still, we hope it will prove helpful to discuss the philosophy behind the design of each

function.

3.1 Temperature feedbacks165

Temperature feedbacks refer to the radiative perturbations at the TOA from changes in the surface and atmospheric temper-

atures. Traditionally, the total temperature feedback is decomposed into the Planck feedback (or Planck response, depending

on the specific definition of “feedback” used) and the lapse rate feedback (Soden and Held, 2006; Bony et al., 2006; Soden

et al., 2008). The Planck feedback is the radiative response to a vertically uniform temperature change of equal magnitude

to that of the surface; it is the most fundamental response of the radiative budget to a change in temperature, following the170

Stefan-Boltzmann law (Previdi et al., 2021). The lapse rate feedback differs in that it reflects
::
is

::::::
instead

:
the deviation from

vertically uniform warming to quantify the radiative effects of an altered tropospheric lapse rate.

ClimKern provides the calc_T_feedbacks function that computes the tropospheric Planck and lapse rate feedbacks using

user-provided 4-D air temperature and 3-D surface temperature and pressure fields from two climate model simulations: a

control
:::::::::
simulation

:::::::::::
(representing

:
a
:::::::
baseline

:::::
state

::
of

:::
the

::::::
climate

:::::::
system)

:
and a perturbed simulation ,

::::::::::
(representing

:::
the

:::::::
climate175

::::::
system

:::::
under

:::::::
changed

:::::::::
conditions,

::::
such

::
as

::::::::
increased

::::::::::
greenhouse

:::
gas

::
or

::::::
aerosol

::::::::::::::
concentrations), the difference of which is used

to calculate the temperature response. In the tutorial data provided with ClimKern, these are a 1×CO2 and a 2×CO2 (relative

to preindustrial levels) simulation, respectively. Reanalysis data can be used in a similar fashion
:::::::
similarly

:
by separating data

into two time periods for comparison.

First, ClimKern checks the input to ensure its format is compatible, including checking the time dimensions and units; then,180

the function will either proceed, issuing a warning to the user if any assumptions are made for missing metadata , or return an

error for major incompatibilities (e.g., not providing input in the form of an Xarray DataArray (Hoyer and Hamman, 2017)). If

the user did not provide an optional model- or user-defined tropopause, ClimKern will create a tropopause defined as 100 hPa

at the Equator and linearly increasing with the cosine of latitude to 300 hPa at the poles. It will also read in the user-selected

temperature and surface temperature kernels from locally stored package data. Using the xESMF module (Zhuang et al., 2023),185

the kernels are horizontally regridded using bilinear interpolation with periodic boundary conditions to match the resolution of

the input model data. We elected to horizontally regrid to the input data’s resolution so that the user always receives output on

the same horizontal grid as the input.

Following this setup, ClimKern creates a monthly climatology from the control simulation surface and atmospheric tempera-

tures and subtracts it from the perturbed simulation fields, yielding a surface and air temperature response.
::::::::
ClimKern

::::
uses

:::
the190

::::::
control

::::::::::
simulation’s

::::::::::::
climatological

:::::::
surface

:::::::
pressure

::
to

:::::
mask

::::::
values

:::::
below

:::
the

:::::::
surface

:::
for

:::
the

:::
air

::::::::::
temperature

::::::::
response.

:
The

air temperature response is linearly interpolated to match the vertical kernel resolution; subsequent testing for tropospheric

feedbacks at the TOA demonstrates little difference if the input vertical resolution is used (not shown). Layer thicknesses are

then calculated to be used in the
::
for

::::
the

:::::::::
subsequent

:
vertical integration of the temperature feedbacksin the subsequent step.

7



Note that the .
::::

The
:
user-supplied perturbed simulation pressure and

::::::
optional

:
tropopause height are used when calculating the195

layer thicknesses to ensure that the vertical integration only extends from the surface to the tropopause.

The total air temperature response is decomposed into a vertically uniform component and a deviation therefrom
::::::::
deviation to

calculate the Planck and lapse rate feedbacks separately. Both feedbacks are calculated by multiplying the respective tempera-

ture response component, temperature kernel, and layer thickness array and taking a sum along the pressure axis. In the case of

the Planck feedback, the surface temperature response is multiplied by the surface temperature kernel and added to this sum.200

The function then returns both feedbacks. To the user, all of this culminates in two lines of code:

1: import climkern as ck

2: LR,Planck = ck.calc_T_feedbacks(ctrl.T,ctrl.TS,ctrl.PS,

3: pert.T,pert.TS,pert.PS,pert.TROP_P,kern="GFDL")205

4:
:::::::::::::::::::::::::::::::::::::::::::

pert
:
.
::
T

:
,

:::::
pert

:
.

::
TS

:
,
:::::
pert

:
.
:::
PS

:
,

5:
:::::::::::::::::::::::::::::::::::::::::::

pert
:
.
::::::::
TROP_P

:
,

:::::
kern

::
="

:::::
GFDL

::
",

6:
::::::::::::::::::::::::::::::::::::::::::

sky
::
="

::::
all

:
-
::::
sky

::
",

::::::
fixRH

:
=
::::::
False

::
)

where LR and Planck are the vertically integrated, monthly- and spatially varying lapse rate and Planck feedbacks, respectively,210

ctrl and pert are Xarray Datasets (Hoyer and Hamman, 2017) holding
::::::::
containing

:
the control and perturbed simulations

::::::::
simulation

:::::
output, T is the 4-dimensional air temperature, TS is the 3-dimensional surface temperature, PS is the 3-dimensional surface

pressure, TROP_P is the
:::::::
optional 3-dimensional tropopause height, and kern is the optional kernel choice argument. All feed-

back calculations share this kern argument, which defaults to "GFDL" , to specify which of the 11 kernels ClimKern should

use.215

This function contains several options
:::::::
optional

:::::::::
arguments, including the kernel name, tropopause heights,

::::::
whether

::
to

::::::::
calculate

::
the

:
all-sky or clear-sky feedbacks, and whether to calculate the feedbacks using

:::
use

:
relative humidity as a state variable, as in

Held and Shell (2012). Further details about the computations and optional parameters can be found in the source code located

in Janoski et al. (2024b).

3.2 Water vapor feedback220

ClimKern also offers a calc_q_feedbacks function to compute water vapor feedbacks:

q_lw,q_sw = ck.calc_q_feedbacks(ctrl.Q,ctrl.T,ctrl.PS,

pert.Q,pert.PS,pert.TROP_P,

kern="GFDL",method=1)

where q_lw and q_sw are the TOA radiative perturbations from the longwave and shortwave water vapor feedbacks, respec-225

tively, Q is the 4-dimensional specific humidity, and all other variables are as they are in Section 3.1. Note that a “control” air

temperature variable is required because water vapor kernels are traditionally calculated not using a unit increase in specific
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humidity but rather the specific humidity change corresponding to a 1K increase in temperature with constant relative humidity

(Shell et al., 2008); consequently, the units of the water vapor kernels are Wm−2K−1.

The basic flow of the function is similar to that of the temperature feedbacks: first, ClimKern checks all input data and tries230

to identify proper units. If the user did not provide a DataArray with tropopause pressure, ClimKern constructs a default one.

Next, ClimKern produces a monthly climatology of the control simulation surface pressure, specific humidity, and air temper-

ature, masking values below the surface. ClimKern then computes the specific humidity response using a linear or logarithmic

approach according to the method argument discussed below. As for the temperature feedbacks.
::::
Like

:::
the

::::::::::
temperature

::::::::
feedback

:::::::
function, the kernels are regridded to the horizontal grid of the input datawhile

:
,
:::
and

:
the climatologies of the specific humid-235

ityand air temperature,
:::
air

::::::::::
temperature,

:
and the specific humidity response are put on kernel pressure levels.

:::::
Values

:::
on

:::::::
pressure

:::::
levels

:::::
below

:::
the

::::::
control

:::::::::::
simulations’s

::::::::::::
climatological

::::::
surface

:::::::
pressure

:::
are

:::::::
masked

:::
and

:::
not

::::::::
included

::
in

::::::
further

::::::::::
calculations.

:
The

product of the kernel, specific humidity response, and layer thickness is vertically integrated over the troposphere; a normal-

ization factor must also be included, as discussed below.

Using a temperature perturbation to produce the
:::::
Water

:::::
vapor

::::::::
feedbacks

:::
are

:::::::::
commonly

::::::::
computed

:::::
using

:::
the

::::::
change

::
in

:::
the

::::::
natural240

:::
log

::
of

:::::::
specific

:::::::
humidity

:::::::
because

:::::
water

:::::::
vapor’s

:::::::::
absorption

::
of

:::::::::
longwave

:::::::
radiation

::
is
:::::::

roughly
:::::::::::
proportional

::
to

:::
the

::::::::
logarithm

:::
of

::
its

::::::::::::
concentration

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Shell et al., 2008; Lacis et al., 2013; Colman and Soden, 2021)

:
.
::::
The

::::::
change

::
in
::::

the
::::::
natural

:::
log

:::
of

:::::::
specific

:::::::
humidity

:::
can

:::
be

::::::
written

:::
as:

∆ln(q) = ln(qpert)− ln(qctrl),
:::::::::::::::::::::::::

(4)

:::::
where

::::
qpert::::

and
::::
qctrl:::

are
:::
the

:::::::::
perturbed

:::
and

::::::
control

:::::::
specific

::::::::::
humidities,

::::::::::
respectively.

::::::
Using

::::::::
logarithm

:::::::::
properties,

::::
this

:::
can

:::
be245

::::::::
expressed

:::
as:

∆ln(q) = ln

(
1+

∆q

qctrl

)
,

:::::::::::::::::::::

(5)

:::::
where

::::::::::::::::
∆q = qpert − qctrl.:::

For
:::::
small

:::::::
changes

::
in

::
q

::::
such

:::
that

::::::::::::::
(∆q/qctrl)≪ 1,

:::
the

::::::
natural

:::::::::
logarithm

:::
can

::
be

::::::::::::
approximated

:::::
using

:
a
::::::::
first-order

::::::
Taylor

:::::::::
expansion:

:

ln

(
1+

∆q

qctrl

)
≈ ∆q

qctrl
,

:::::::::::::::::::

(6)250

::::::
leading

::
to

:::
the

::::::::
fractional

::::::::::::
approximation

::::
used

::
in
::::::::::::::::
Pendergrass (2019)

:
:

∆ln(q)≈ ∆q

qctrl
.

:::::::::::::

(7)

::::::::
ClimKern

::::::
allows

:::
the

::::
user

:::
to

::::::
choose

:::::::
whether

:::
to

:::
use

::::
this

::::::
legacy

::::::::
fractional

:::::::::::::
approximation

::
or

::::
use

:::
the

:::::
more

:::::::
precise,

::::::
actual

::::::::
difference

::
in

::::::
natural

::::
logs

::
of

::::::
specific

::::::::
humidity

::
for

:::::
water

:::::
vapor

::::::::
feedback

::::::::::
calculations

:::
via

::
the

::::::::
method

::::::::
parameter

::
in

:::
the

::::::::::::::::::::
calc_q_feedbacks

:::::::
function,

:::::::
outlined

::::::
below.

:::::::::::
Alternatively,

:::::
users

::::
may

::::::
instead

:::
use

:::
the

:::::
linear

::::::
change

::
in
:::::::
specific

::::::::
humidity,

::::
i.e.,255

∆q = qpert − qctrl.
:::::::::::::::

(8)
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:::
The

:
water vapor kernels requires the water vapor kernels to

::::
must

:
be normalized by the change in specific humidity per unit

temperature before calculating the feedback itself
::::::
increase. Ideally, one would use the change in specific humidity per unit

temperature from the kernel calculation to normalize the kernel
::::
have

::::
this

::::
field

:::::
from

:::
the

::::::::::::::
kernel-producing

::::::::::
simulation, as in

Shell et al. (2008) and Pendergrass (2019), but
:
,
::
in

:::::::
practice,

:
this quantity is rarely included with the distributed kernels. Given260

that we have little information
::
the

:::::
little

::::::::::
information

:::::::
available

:
about the base states used in the individual kernel calculations,

ClimKern utilizes the climatological air temperature from the user-provided control simulation to produce a water vapor kernel

normalization factor using the Buck (1981) empirical formula for saturation vapor pressure.

The calc_q_feedbacks function also contains a unique “method” parameter that accepts one of four numeric arguments

(1-4). Past studies vary in the way they compute the water vapor feedback - namely, whether to use the natural logarithm of265

water vapor concentration and, if so, whether the log is approximated as the fractional change in water vapor. It is most common

to use the natural log of specific humidity
::::
Note

:::
that

:::
the

::::::
change

:
in water vapor feedback calculations because the absorption of

longwave radiation by water vapor is roughly proportional to the logarithm of its concentration (Shell et al., 2008; Lacis et al., 2013; Colman and Soden, 2021)

; however, we also included an option to use the linear change in specific humidity, as in Pendergrass (2019). The difference

in natural logarithms of specific humidity has sometimes been approximated as the fractional change in specific humidity.270

ClimKern includes that option for the specific humidity response and the normalization factor
::::::
specific

::::::::
humidity

::::
per

::::
unit

::::::::::
temperature

:::::::
increase

:::
can

::::::::
similarly

:::::
either

::
be

:::
the

::::::::::
logarithmic

::
or

:::::
linear

:::::::
change

::::
and,

::
in

:::
the

::::
case

::
of

:::
the

::::::
former,

:::
use

::::
the

::::::::
fractional

::::::::::::
approximation.

:

:::
The

::::::::::::::::::::
calc_q_feedbacks

:::::::
function

:::::::
contains

::::
four

::::::::
“method”

::::::
options

::
to

::::::::::::
accommodate

:::
the

::::::::
variations

::
in

:::
the

::::::::
literature

::::::::
described

:::::
above. The options and

::::::::::::
corresponding numeric arguments are:275

1. Uses the actual logarithm for both the specific humidity response and the normalization factor.

2. Uses the fractional change approximation of logarithms only in the normalization factor, with the actual logarithm used

in
:::::
actual

::::::::
logarithm

:::
for the specific humidity response

:::
and

::::::::
fractional

::::::::::::
approximation

:::
for

:::
the

::::::::::::
normalization

:::::
factor.

3. Uses the fractional change approximation of logarithms
::::::::::::
approximation in the specific humidity response &

:::
and normal-

ization factor.280

4. Uses the linear change in specific humidity for both
::
for

::::
both

:::
the

:::::::
specific

:::::::
humidity

::::::::
response

:::
and

::::::::::::
normalization

:::::
factor.

The function defaults to option 1. Further details can be found in the function’s docstring (Janoski et al., 2024b).

3.3 Surface albedo feedback

The calc_alb_feedback function, which computes surface albedo feedback, is relatively straightforward; it requires the

user to provide the upwelling and downwelling shortwave radiation at the surface from the control and perturbed simulations.285

The first step is to compute the surface albedo as the ratio of surface upwelling to downwelling radiation while masking areas

with a downwelling radiation value of 0 Wm−2. ClimKern then takes the difference between the perturbed simulation’s albedo

10



and the control simulation’s monthly climatological albedo. The desired albedo kernel is loaded from memory, regridded to

the input horizontal resolution, and multiplied by the albedo response to produce the surface albedo feedback. As in the other

ClimKern feedback functions, users may specify the kernel to use and whether to compute the all-sky or clear-sky feedback.290

3.4 Cloud feedbacks

Cloud feedbacks are comparatively more complicated than the other feedbacks, owing to nonlinearities in kernel computations

and the vertical overlapping of clouds (Soden and Held, 2006; Soden et al., 2008; Shell et al., 2008). Consequently, most

traditional kernel sets do not include explicit shortwave or longwave cloud kernels, requiring alternate methods for calculating

cloud feedbacks — most commonly, the residual and adjustment methods. ClimKern contains a function for each method,295

which we will detail below. Note that for both methods, ClimKern requires one or more
::::::::
optionally

:::::::
accepts radiative forcing

terms that will vary with the given experimental setup (i.e., control and perturbation simulations). In other words, there is not

a precise type of radiative forcing quantity , including ERF and IRF, that will suit every scenario. ClimKern avoids making

assumptions regarding the forcing, and it is up to the user to ensure that all terms in the radiative budget are being properly

accounted for. In ;
::
if

:::
the

::::
user

::::
does

::::
not

::::::
provide

:::
it,

:::::
cloud

::::::::
feedback

::::::::
functions

::::::
assume

::::
the

:::::::
radiative

:::::::
forcing

:::::
terms

:::
are

::::
zero

:::
by300

::::::
default.

:::
We

::::
use

:::
the

::::
ERF

:::
to

:::::::
compute

:::::
cloud

::::::::
feedback

:::
in our sample results (Section 4), we use the ERF to compute cloud

feedbacks.

3.4.1 Residual method

In the residual method, the cloud feedbacks are computed as a residual of the TOA energy budget, that is:

∆Rcloud =∆Rall−sky −∆F −
∑
i

∆Ri (9)305

where ∆Rcloud is the TOA radiative perturbation from the cloud feedback, ∆Rall−sky is the
::::
∆R

:
is
:::
the

::::::
all-sky

:
net TOA radia-

tive imbalance, ∆F is the radiative forcing (e.g., from CO2), and
∑

i∆Ri is the sum of the TOA radiative perturbations from

other non-cloud feedbacks (Soden and Held, 2006; Zhang et al., 2018; Zhu et al., 2019). Put another way, the cloud feedback is

assumed to be the missing piece in the TOA radiative budget after accounting for other terms. Although this method provides a

“clean” approach that fully closes the radiative budget in a kernel feedback decomposition, it carries two main drawbacks. First,310

it is highly sensitive to uncertainties in the other terms and , especially, in the often unavailable radiative forcing
:
, ∆F (Soden

et al., 2008). Second, since the cloud feedbacks are assumed to close the radiative budget, feedback decompositions using this

method yield no separate error estimate, which is sometimes useful in
:::::::
valuable

::
for

:
evaluating radiative kernels. Despite these

disadvantages, the residual method is still widely used.

ClimKern contains separate calc_cloud_LW_res and calc_cloud_SW_res functions to calculate the longwave and315

shortwave cloud feedbacks, respectively. For the longwave, ClimKern requires net longwave radiative flux at the TOA from

the control and perturbed simulations, the longwave all-sky radiative forcing, and the radiative perturbations from the total

temperature and longwave water vapor feedbacks. The shortwave function instead requires the net shortwave radiative flux at
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the TOA in the control and perturbed simulations, the shortwave all-sky radiative forcing, and the radiative perturbations from

the surface albedo and shortwave water vapor feedbacks. From there,
:::
both

::::::::
functions

::::::::
compute the cloud feedback is computed320

using Eq. 4 in both functions
:
9
:
.

3.4.2 Adjustment method

The adjustment method for calculating cloud feedbacks is named as such because the change in cloud radiative effect (CRE)

is “adjusted” for masking by other feedbacks and the radiative forcing to produce a cloud feedback:

∆Rcloud =∆CRE+
∑
i

(∆Ri,clear−sky
o
i −∆Ri,all−skyi)

:
+(∆F clear−sky

o −∆F all−sky). (10)325

where ∆CRE is the CRE response, ∆Ri,clear−sky and ∆Ri,all−sky ::::
∆Ro

i::::
and

::::
∆Ri:

are the clear-sky and all-sky radiative

feedbacks, and ∆Fclear−sky and ∆Fall−sky ::::
∆F o

:::
and

::::
∆F

:
are the clear-sky and all-sky radiative forcings (Soden et al., 2008;

Zhang et al., 2018). ∆CRE is computed as ∆Rall−sky −∆Rclear−sky , i.e.
::::::::::
∆R−∆Ro,

::::
i.e., the difference in the all-sky and

clear-sky TOA radiative flux. The adjustment method is considered less sensitive to uncertainties in the other terms, especially

the forcing term (Soden et al., 2008). Additionally, since the resulting cloud feedback is not computed as a residual, it allows330

one to separately quantify the error in closing the TOA radiative budget.

The longwave and shortwave adjustment-method cloud feedbacks can be computed via the calc_cloud_LW and calc_cloud_SW

functions. The longwave function uses as input
::::::
accepts the change in the longwave CRE , along with

:::
and

:
the all-sky and

clear-sky radiative perturbations at the TOA from the total temperature feedback, longwave water vapor feedback, and long-

wave radiative forcing. The shortwave function uses the shortwave versions of the longwave function input, except that it335

uses the surface albedo feedback instead of the temperature feedback. ClimKern includes separate calc_dCRE_LW and

calc_dCRE_SW functions that evaluate the change in longwave and shortwave CRE and that require several radiative fields

from the user, including the TOA all-sky and clear-sky LW or SW radiative fluxes in the control and perturbation simulations.

After reading in all the necessary input, the adjustment method cloud feedback functions calculate the differences between the

all-sky and clear-sky perturbations from non-cloud terms and combine them with the change in CRE to return the desired cloud340

feedback.

3.5 Other functions

We included several other utility functions in ClimKern. First, there are stratosphere versions of the temperature and water

vapor feedback functions, named calc_strato_T and calc_strato_q, respectively. They are mostly analogous to their

tropospheric counterparts, but the vertical integration is performed from the tropopause to the TOA. Next, ClimKern provides345

a calc_RH_feedback function to calculate the relative humidity feedback following Shell et al. (2008), Held and Shell

(2012), and Zelinka et al. (2020). Typically, the relative humidity feedback would be a component of a radiative feedback

decomposition if the user calculated the temperature feedbacks with the fixRH option. Finally, the spat_avg function
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computes the spatial average of a DataArray while weighting for the cosine of latitude. We refer the reader to Janoski et al.

(2024b) for additional documentation.350

4 Results with sample data

4.1 Radiative kernels

Having outlined the data and functions packaged with ClimKern, we now focus on the characteristics of the TOA radiative

kernels. Fig. 1 shows the annual- and zonal-average mean kernel values and two across-kernel standard deviation ranges after

linearly interpolating to a common 17 standard pressure levels. Each kernel exhibits remarkably different spatial patterns in the355

kernel mean and standard deviations and even, in some cases, between the all-sky and clear-sky versions of the same kernel.

The mean and standard deviation of the all-sky air temperature kernels (Fig. 1a) have two local maxima
::
in

:::::::::
magnitude, one

in the equatorial upper troposphere and the other in the mid-to-high-latitudes lower troposphere in the Southern Hemisphere

(SH). In the clear-sky kernels, the lower tropospheric maximum is located over the Equator rather than the extratropical SH

(Fig. 1b). Because the all-sky and clear-sky kernels differ only by the existence of cloud effects in their calculations, the360

different maxima locations are likely a result of clouds, which exert considerable influence on temperature kernels via cloud-

top height temperatures(Kramer et al., 2019). Overall, the
:
;
:::
for

::::::::
example,

::::
high,

::::
cold

::::::
clouds

:::::
reduce

::::::::
outgoing

::::::::
longwave

::::::::
radiation

::::::::
efficiency

::
by

:::::::
altering

:::
the

::::::::
effective

::::::::
emission

::::::
height,

:::::::
affecting

:::::::::::
temperature

:::::
kernel

::::::
values

::::::::::::::::::
(Kramer et al., 2019).

::::
The clear-sky

air temperature kernels have considerably less spread
:::::
exhibit

::::
less

::::::
spread

:::::
(max

::
∼

::::
0.06

:::::::::::::::::::
Wm−2K−1100hPa−1)

:
than the all-

sky kernels (
::::
max

::
∼

::::
0.13

:::::::::::::::::::
Wm−2K−1100hPa−1)

:
(Fig. 1a-b), highlighting

:::::::::
implicating

:
the uncertainty introduced by clouds in365

radiative schemes.

The longwave water vapor kernels (Fig. 1c-d) do not appear to show as large sensitivity to clouds as the air temperature

kernels, with the exception of the
:::::
except

:::
for

::::
the deep tropics between 800 and 400 hPa. The longwave water vapor kernel

mean is largest in the Equatorial upper troposphere and decreases with latitude, consistent with the findings of Huang et al.

(2007). The pattern of the standard deviation mostly follows that of the mean with Equatorial maxima in both the high and370

low troposphere
:::::::::::
tropospheres (Fig. 1c-d), indicating that this region is particularly sensitive to the base state and physics used

in kernel production. The shortwave water vapor kernels (Fig. 1e-f) exhibit an increase in mean and standard deviation with

latitude, opposite to that of the longwave kernels. As suggested by Huang and Huang (2023), the higher shortwave reflectivity

of land and ice surfaces vs. ocean surfaces likely causes this behavior. Interkernel spread in the shortwave water vapor kernel

is significantly larger near the poles, which may be due to differences in the radiative characteristics of the surface (e.g., sea375

ice extent, snow cover, etc.) in the kernel base states.

The surface temperature and albedo kernels are 3-dimensional, so the annual- and zonal averages only vary with latitude

(Fig. 1h-k). The surface temperature kernel is highly sensitive to clouds, especially in the extratropics, as evidenced by the

presence of local maxima near 60◦N/S in the clear-sky kernels only (Fig. 1h-i). Interkernel spread is relatively constant with lat-

itude. The
::
In

:::
the

::::
case

::
of

:::
the

:::::
all-sky

:
surface albedo kernelis also sensitive to clouds, especially near 60◦S (Fig. 1j-k) . Interkernel380
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Figure 1. (a-b) The mean (shaded) and twice the standard deviation (contoured, dashed) of the all-sky (left) and clear-sky (right) temperature

kernels, representing the response to a 1K
:
1
::
K
:
increase in temperature. (c-d) as in (a-b), but for the longwave water vapor kernels, which

reflect specific humidity changes associated with a 1K
:
1
::
K warming and fixed relative humidity. (e-f) as in (a-b), but for the shortwave

water vapor kernels. (h-i
::
g-h) The mean (solid line) and two

::::::::
represents

::
±

:::
one

:
standard deviations

:::::::
deviation (shading) of the all-sky (left)

and clear-sky (right) surface temperature kernels. (j-k
::
i-j) as in (h-i

:::
g-h), but for the surface albedo kernels, corresponding to a 1% increase in

surface albedo. 14
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Figure 2. Left column
:::
First

:::
and

::::
third

:::::::
columns

::::
from

:::
left:

:::
The

:
annualmean, kernel-mean

:::::
kernel

::::
mean

:
(a) lapse rate

:
,
:
(c) Planck,

:
(e) water

vapor
:
, (h

:
g) surface albedoand ,

:
(j
:
i)

:::::::
longwave cloudfeedbacks calculated using the adjustment method ,

:::
and

:
(Wm−2K−1

:
k)

:::::::
shortwave

:::::
cloud

:::::::
feedbacks. Right column

:::::
Second

:::
and

:::::
fourth

:::::::
columns: as for the left column

:::
first

:::
and

::::
third

::::::
columns, but showing twice the standard deviation

(SD) among kernels. Feedbacks
:::::
Cloud

:::::::
feedbacks

::::
were

::::::::
calculated

::::
using

:::
the

::::::::
adjustment

:::::::
method.

:::::
Values are expressed in units of Wm−2K−1

by normalizing by the global mean surface temperature response. Note the different color bar
:::::::
nonlinear

::::::
colorbar scales between feedbacks

::
for

:::
both

:::
the

:::::
means

:::
and

::::::
standard

::::::::
deviations

::::
used

::
to

::::
make

::::
maps

:::::::::
comparable.

spread in the all-sky surface albedo kernels is largest in the tropics and largely constant with latitudein the
:
,
:::::::::
interkernel

::::::
spread

:
is
::::::

larger
::
in

:::
the

::::::
tropics

::::::
(∼ 0.4

:::::::::
W/m2/%)

::::
than

:::
the

::::::::::
extratropics

::::::
(∼ 0.2

:::::::::
W/m2/%).

::::
The

:
clear-sky kernels

:::::
version

:::
of

:::
the

::::::
kernel

::::::
exhibits

:::
the

:::::::
greatest

:::::::::
variability

::
in

::
the

::::::::
Northern

::::::::::
Hemisphere

::::::
tropics

::::::
(∼ 0.3

::::::::
W/m2/%)

:::
and

::::::::
decreases

::::
with

:::::::
latitude.

::::
The

::::::::
clear-sky

::::::
surface

::::::
albedo

:::::::::
interkernel

::::::
spread

::
is

:::
less

::::
than

::::
the

::::::
all-sky

:::::
spread

::
at
:::

all
::::::::
latitudes,

:::::::::
indicating

:::
that

::::::
clouds

:::
are

::
a

::::
main

::::::::::
contributor

::
to

:::
the

::::
latter. In the next section, we explore how the spatial structure of the kernel means and interkernel spread influence the385

resulting radiative feedbacks.

4.1.1 Feedback results

4.2
::::::::

Feedback
::::::
results

Having quantified the kernels themselves, we now focus on how the interkernel differences translate into differences in indi-

vidual feedbacks. Recall that all feedbacks are calculated using identical methodologies between kernels and with the same390

CESM1-LE sample model output data described in Section 2.2 , so all
:::
such

::::
that

:
feedback variability is solely the result of
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the kernel choice. All feedbacks
:::::::::
Feedbacks were computed using the difference in the monthly climatology of the last 30

years of the preindustrial control and a standard 150-year-long 2×CO2 simulation.
::::::::::
Temperature

::::
and

:::::
water

:::::
vapor

:::::::::
feedbacks

::
are

::::::::
vertically

:::::::::
integrated

::::
from

:::
the

:::::::
surface

::
to

:::
the

::::::::::::
model-derived

:::::::::
tropopause

::
in

:::
the

::
2×CO2:::::::::

simulation
:::
via

:::
the

::::::::
TROP_P

:::::::
function

::::::::
argument.

:::::
Water

:::::
vapor

:::::::::
feedbacks

::::
were

:::::::::
calculated

:::::
using

:::
the

:::::::
method

:
1
::::::
option,

::::::
which

::::
uses

:::
the

:::::
actual

::::::
change

::
in
:::

the
:::::::

natural
:::
log395

::
of

::::::
specific

::::::::
humidity

::
in

:::::::::::
calculations,

:::::::
although

:::
we

::::
later

::::
show

::::::
global

:::::::
average

:::::
results

::::
with

:::
the

:::::
other

::::
three

::::::::
methods

::
as

::::
well.

::::::
Please

:::
note

::::
that

::
all

::::::
results

:::
use

::
a
:::::
single

:::::
model

::::
run

::::
from

::::::::::
CESM1-LE

::
to

::::::::
compute

::
the

:::::::
climate

::::::::
response.

:::
The

::::::
choice

::
of

:::::::
defining

:::
the

::::::::
response

::
as

:::
the

::::::::
difference

:::::::
between

::::::
abrupt

:
2×CO2 :::

and
:::::::::::
pre-industrial

:::::::
control

:::::::::
simulations

::::
was

:::::
made

::
to

::::::::
minimize

:::
the

::::::
sample

::::
data

::::
size

:::::::::
distributed

::::
with

:::::::::
ClimKern

:::::
while

:::::::
aligning

::::
with

:::
this

:::::::
study’s

::::
goal

::
of

::::::::::
highlighting

::::::::::
interkernel

::::::
spread.

:::::::::::
Additionally,

:::
this

::::::::
approach

:
is
:::::::::
commonly

:::::
used,

::
as

::
in

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Pithan and Mauritsen (2014); Goosse et al. (2018); Previdi et al. (2020); Hahn et al. (2021)400

:
.
::
A

::::::
notable

:::::::::::
consequence

::
of

:::
this

::::::
choice

::
is
::::
that

::::::::
feedback

:::::
values

::::::::
presented

::::
here

:::::::
include

:::::
rapid

::::::::::
adjustments

:::
that

:::::
occur

::::
after

:
CO2

:::::::
increase

::::::::::::::::::::::::::::::::
(Zelinka et al., 2020; Hahn et al., 2021).

:

Fig. 2 shows the kernel mean (left column
:::
first

::::
and

:::::
third

:::::::
columns) and standard deviation (right column

:::::
second

::::
and

::::::
fourth

:::::::
columns) of the lapse rate, Planck, water vapor, surface albedo, and cloud feedbacks, vertically integrated when required

::::::::
longwave

:::::
cloud,

::::
and

::::::::
shortwave

:::::
cloud

:::::::::
feedbacks. Generally, the lapse rate and Planck feedbacks’ mean and standard deviation are of405

greater magnitudes
:::::::::
magnitudes

::::
are

::::::
greater

:
at the poles (Fig. 2a-d). The strong latitudinal gradient and sign change in the

lapse rate feedback (Fig. 2a) are well-recognized features in climate model simulations subjected to increasing CO2. They

are products of latitudinal differences in lower- and upper-tropospheric coupling, sea ice loss, and heat transport (Manabe and

Wetherald, 1975; Graversen et al., 2014; Feldl et al., 2020; Colman and Soden, 2021; Previdi et al., 2021). Similarly, the kernel

mean Planck feedback is most negative over the Arctic
:::
with

::::::
values

::::
less

::::
than

:::
-12

::::::::::
Wm−2K−1

:
(Fig. 2c),

:
.
::::
This

::
is

:
where the410

surface temperature increase is greatest via Arctic amplification, leading to the
::::::::
producing

:
large increases in outgoing long-

wave radiation via the Stefan-Boltzmann law. Another area of strong
:::::::
Strongly negative Planck feedbacks occurs

:
of

::::
less

::::
than

::
-8

:::::::::
Wm−2K−1

:::::
occur

:
over the Southern Ocean (Fig. 2c). The overlapping maxima in interkernel spread in the

:::::
spatial

::::::::::
distribution

::
of lapse rate and Plank feedbacks over

::::::
Planck

::::::::
feedback

:::::::
standard

:::::::::
deviations

:::::
imply

::::::::
enhanced

::::::
kernel

:::::::::
sensitivity

::
in

:
the Arctic

and Southern Ocean indicate that these regions have the greatest sensitivity to kernel choice (Fig. 2b,d)
:
;
:::::::
however,

::::::::
standard415

:::::::
deviation

::::::
values

:::
are

:::::
small

::::::::
compared

::
to

:::::
some

:::::
other

::::::::
feedbacks,

:::::::::
including

::
the

:::::::
surface

::::::
albedo

:::
and

:::::
cloud

::::::::
feedbacks.

The water vapor feedback is most positive in the tropical Pacific, where
:::
with

::::::
values

:::::::
ranging

::::
from

::
2

::
to

:
4
::::::::::
Wm−2K−1

::::
(Fig.

::::
2e).

::::
Here,

:
the increase in water vapor concentration per degree of warming is greatest , following

:::
via

:
the Clausius-Clayperon

relationship(Fig. 2e).
:
. Interkernel spread is also maximized in the tropics but exhibits a markedly different spatial

:::::::
different

::::::::::
longitudinal distribution, with the greatest variability located over the Western Pacific (Fig. 2f). The maximum in standard420

deviation in the Western Pacific extends along the Equator and to the southeast, suggesting
::::::::
indicating

:
that this feature may be

related to the double Intertropical Convergence Zone (ITCZ) bias present in many climate models (Lin, 2007; Tian and Dong,

2020). Additionally, there is a local standard deviation maximum in the South Atlantic Convergence Zone off the southeastern

coast of South America. These maxima suggest large differences in the base states within the tropics across the eleven water
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vapor kernels.
::
As

::::
with

:::
the

::::::::::
temperature

:::::::::
feedbacks,

:::::::::
interkernel

::::::
spread

::
is

:::::
small

::::
(SD

:
<
:::
0.3

:::::::::::
Wm−2K−1)

::::::
relative

::
to

:::
the

:::::::::
feedbacks425

::::::::
discussed

::::
next.

:

The surface albedo feedback is largest over high latitude oceans (Fig. 2h-i
:::
g-h), driven by sea ice loss (Curry et al., 1995;

Riihelä et al., 2021). This sea ice loss leads to large bottom-heavy warming in these regions, resulting in a strong positive lapse

rate feedback, negative Planck feedback, and similarity in the spatial patterns of the lapse rate, Planck, and surface albedo

feedbacks (Croll, 1875; Ingram et al., 1989; Previdi et al., 2021). It is important to note that in the Arctic and Southern Ocean,430

the interkernel spread in
:::::::
standard

::::::::
deviation

::
of

:
the surface albedo feedback is larger than the spread

:::
that of the lapse rate, Planck,

and water vapor feedbacks, with the albedo feedback standard deviation
::::::
values nearly as much as 50% of the interkernel

:::::
kernel

mean. Considering that there is little difference in the spread between the all-sky vs. the clear-sky albedo kernels (Fig. 1j-k
::
i-j),

it is likely not the clouds but the base-state sea ice conditions that produce the polar-amplified spread in albedo feedback.

The last feedback we consider is the total cloud feedback
:::
two

:::::::::
feedbacks

:::
we

:::::::
consider

:::
are

:::
the

::::::::
longwave

::::
and

:::::::::
shortwave

:::::
cloud435

::::::::
feedbacks

:
in Fig. 2j-k

::
i-l. The kernel mean

::::::::
longwave

:
cloud feedback shows considerable spatial inhomogeneity , tending to

be more negative over the oceans and positive over land, and has maxima in Equatorial South America and Africa
:::::
spatial

::::::::::::
inhomogeneity

::::
with

:::::::
maxima

:::
in

:::
the

:::::::
tropical

::::::
Pacific

::::
and

:::::::
western

:::::
Indian

:::::::
Oceans

::::
and

::::::
minima

:::::
over

:::::::
northern

::::::
South

::::::::
America,

::::::
Africa,

:::
and

:::::::::
Indonesia

::::
(Fig.

::::
2i).

::::
The

:::::::
standard

:::::::::
deviation

::
of

:::
the

:::::::::
longwave

:::::
cloud

::::::::
feedback

:::::
tends

::
to

::::::::
increase

::::::::
poleward

:::::
aside

::::
from

::::::::
relatively

::::
large

::::::
values

::::::
(∼ 0.4

::::::::::
Wm−2K−1)

::
in

:::
the

:::::::::
Equatorial

:::::
Pacific

:
(Fig. 2j). However, the interkernel spread in the cloud440

feedback is maximized
::::::::::
Considerable

::::::
spatial

::::::::::::
inhomogeneity

::
is

::::
also

:::::
found

::
in

:::
the

:::::
kernel

:::::
mean

::::::::
shortwave

:::::
cloud

::::::::
feedback,

:::::::
ranging

::::
from

::
-4

::::::::::
Wm−2K−1

::
in

::
the

:::::::
western

:::::::::
Equatorial

::::::
Pacific

::
to

:
7
::::::::::
Wm−2K−1

:
in
::::::::
northern

:::::
South

:::::::
America

::::
(Fig.

::::
2k).

:::
The

:::::::::
shortwave

:::::
cloud

:::::::
feedback

::::::::
standard

::::::::
deviation

::
is

:::::
largest

:
over the Arctic and Southern Ocean (Fig. 2k). We show below that this is mainly due

to the spread of
::
l).

::::
The

::::::
highest

:::::::
standard

::::::::
deviation

::::::
values

::::::
among

:::
all

::::::::
feedbacks

:::
are

:::::
those

::
of

:::
the

:::::::
surface

::::::
albedo

:::
and

:
shortwave

cloud feedbacks
::
in

:::::
these

::::::
regions,

:::::::::::
highlighting

:::
the

:::::::::
importance

::
of

::::::
kernel

::::::
choice

:::
near

:::
the

:::::
poles.445

Having analyzed the spatial distribution of interkernel spread, we focus on the differences between individual kernels in the

zonal mean feedbacks in Fig. 3. The lapse rate and Planck feedbacks show minimal spread throughout the tropics and midlati-

tudes, with the greatest spread in the Arctic (Fig. 3a-b). The lapse rate feedback varies between 4 and 6 Wm−2K−1 poleward of

80◦N but varies by less than 1 Wm−2K−1 elsewhere (Fig. 3a). For the Planck feedback, interkernel spread is
::::::
greatest

::::::::
poleward

::
of

::::
80◦,

:::
but generally less than 1 Wm−2K−1 everywhere and uniform in the zonal mean (Fig. 3b). The

::::
zonal

:::::
mean water vapor450

feedback is most sensitive
:::::
shows

::::
little

:::::::::
sensitivity to kernel choice

:::
but

::
is

::::
most

:::::::
sensitive

:
in the tropics with a spread of 0.5

:::::
∼ 0.5

Wm−2K−1 (Fig. 3c), similar to the spatial map (Fig. 2f).

We find very large interkernel
:::::::::
Interkernel spread in the surface albedo feedback (Fig. 3d). The zonal meanArctic surface albedo

feedback spread is comparable to
:
is
:::::
large

::::::
relative

:::
to

:::
the

:::::
kernel

::::::
mean,

::::::::
especially

:::
in

:::
the

::::::
Arctic.

::::
The

::::::::::
area-average

::::::::::
interkernel

:::::
spread

:::::
north

::
of

:::::
70◦N

::
is

:::
2.8

::::::::::
Wm−2K−1,

:::::::
roughly

:::::::::
two-thirds

::
of

:
the kernel mean feedback value. The Southern Ocean shows a455

similarbut weakerinterkernel
:::::
surface

::::::
albedo

::::::::
feedback

:::
for

:::
the

:::::
same

:::::
region

::::
(4.2

:::::::::::
Wm−2K−1).

:::::
There

::
is

:
a
:::::::

similar,
:::::
albeit

:::::::
weaker,
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Figure 3. Annual zonal mean (a) lapse rate, (b) Planck, (c) total water vapor, (d) surface albedo, (e) longwave cloud, and (f) shortwave cloud

feedbacks calculated using the adjustment method for each of the eleven kernels included in ClimKern
:
in

:::::::::
Wm−2K−1.

:
6

::::::::
Wm−2K−1

::
is
:::::
added

:
to
:::
the

::::::
Planck

::::::::
feedback,

:::
and

:
4
:::::::::
Wm−2K−1

::
is

::::::::
subtracted

:::
from

:::
the

::::::
surface

:::::
albedo

:::::::
feedback

::
for

::::::::::
visualization

:::
and

:::::::::
comparison

:::::::
purposes.

:::::::::
interkernel

::::::
spread

::
in

:::
the

:
surface albedo feedback spread

::
in

:::
the

::::::::
Southern

:::::
Ocean. These features are of particular importance

:::::::::
particularly

::::::::
important

:
in polar amplification studies, which we discuss in Section 5.

The cloud feedbacks are similarly
:::::::::
particularly

:
sensitive to kernel choice because they are prone to uncertainties in the other

feedback and radiative forcing terms, even when using the adjustment method (Soden et al., 2008). The interkernel variation in460

the
:::::
spread

::
in

:::
the

:::::
zonal

:::::
mean longwave cloud feedback is largest at the poles, so even

:::
such

::::
that its sign in the Arctic depends on

kernel choice (Fig. 3e). The shortwave cloud feedback (Fig. 3f) is likewise
:::::::
similarly most sensitive to kernel choice in the high

latitudes, with a zonal distribution of variability similar to that of the surface albedo feedback. This is likely not a coincidence:

the surface albedo feedback is used to calculate the shortwave cloud feedback via the adjustment method, so a large spread in

the former translates to a large spread in the latter.465

::::
How

::
do

:::::
these

::::::::::::
zonal-average

:::::::::
variations

:::::::
manifest

::
in

:::
the

::::::
global

::::::
mean?

:
We include the globalaverage

:
,
::::::
annual

:::::
mean

:
feedback

values for all 11 kernels in Table 2, along with the multikernel
::::::::::
multi-kernel mean and standard deviation: note the significant

interkernel spread in the albedo and cloud feedbacks relative to their mean values. Our results, therefore, demonstrate the

18



Table 2. The global annual mean feedback values (in Wm−2K−1)
:
, calculated using each kernel and the same sample CESM1-LE data;

from
:
.
::::
From

:
left to right, they are the lapse ratefeedback, Planckfeedback, total (longwave + shortwave) water vaporfeedback, surface

albedofeedback, and the shortwave, longwave
::::
cloud,

:::::::
shortwave

:::::
cloud, and total cloud feedbacks.

::::
The

::::
cloud

::::::::
feedbacks

:::
are calculated using

the adjustment method. The last two rows contain the kernel mean and standard deviation of the feedbacks.

Lapse Rate
:::
λLR Planck

:::
λPL Qtotal :::

λQ Albedo
::
λα:

CloudSW,adj ::::::
λCL,LW:

CloudLW,adj ::::::
λCL,SW:

Cloudtotal,adj :::::::
λCL,Total:

kernel

BMRC -0.41 -3.07 1.52 0.57 0.31 0.00 0.31
:::
0.31

:

CAM3 -0.40 -2.99 1.48 0.32 0.51 -0.07
:::
0.51

:
0.44

CAM5 -0.43 -3.16 1.48 0.54 0.28 0.10
:::
0.28

:
0.38

CERES -0.42 -3.14 1.54 0.36 0.27 0.06
:::
0.27

:
0.33

CloudSat -0.42 -3.02 1.34 0.43 0.39 0.02
:::
0.39

:
0.40

ECHAM6 -0.39 -3.07 1.37 0.41 0.38 -0.01
:::
0.38

:
0.37

ECMWF-RRTM -0.38 -3.21 1.53 0.51 0.30 -0.00 0.30
:::
0.30

:

ERA5 -0.37 -3.18 1.51 0.52 0.33 0.01
:::
0.33

:
0.34

GFDL -0.41 -3.12 1.44 0.38 0.38 0.03
:::
0.38

:
0.42

HadGEM2 -0.39 -3.35 1.59 0.49 0.06 -0.03 0.03
:::
0.39

: :::
0.36

:

HadGEM3-GA7.1 -0.39 -3.17 1.50 0.41 0.44 -0.01
:::
0.44

:
0.43

mean -0.40 -3.13 1.48 0.45 0.33 0.01
:::
0.36 0.34

std
::

SD 0.02 0.09 0.07 0.08 0.11 0.04 0.11
:::
0.07

:::
0.05

large sensitivity of feedback .
::::::
While

:::
the

::::
lapse

::::
rate

:::
and

::::::
Planck

:::::::::
feedbacks

:::
are

::::::::::
consistently

:::::::
negative

:::
and

:::
the

:::::
water

:::::
vapor,

:::::::
surface

::::::
albedo,

:::
and

:::::::::
shortwave

:::::
cloud

::::::::
feedbacks

:::
are

::::::::::
consistently

:::::::
positive,

:::
the

::::
sign

::
of

:::
the

::::::::
longwave

:::::
cloud

::::::::
feedback

::
is

:::::::::::::::
kernel-dependent,470

::::
with

:::::
values

:::::::
ranging

::::
from

:::::
-0.07

::
to

::::
0.10

::::::::::
Wm−2K−1.

:::::::::
Interkernel

:::::::::
variability,

:::
as

:::::::
gathered

::::
from

:::
the

::::::::
standard

::::::::
deviation,

::
is

:::::::
greatest

::
in

:::
the

::::::
Planck

:::::::::
feedback,

:::::::
followed

:::
by

:::
the

::::::
surface

::::::
albedo,

:::::
water

::::::
vapor,

:::
and

:::::::::
shortwave

:::::
cloud

::::::::
feedbacks

::::::
(Table

::
2).

:

:
It
::
is
:::::
worth

::::::::::
comparing

::::
how

::::::
global,

::::::
annual

:::::
mean

:::::
water

:::::
vapor

::::::::
feedback

::::::
values

::::::
depend

:::
on

:::
the

:::::::::
calculation

:::::::
method,

:::
as

:::::::
outlined

::
in

::::::
Section

::::
3.2.

:::::
Table

::
S1

::::::
shows

:::
the

::::::
global

:::::
annual

:::::
mean

::::::
all-sky

:::::
water

:::::
vapor

:::::::::
feedbacks

:::
for

::::
each

::::::
kernel

:::
and

:::::::
method.

:::::::
Method

::
3

::::::::
(fractional

::::::::::::
approximation

:::
for

:::
the

:::::::
specific

:::::::
humidity

::::::::
response

:::
and

::::::::::::
normalization

:::::
factor)

::::::
yields

:::
the

::::::
greatest

:::::
water

:::::
vapor

::::::::
feedback475

:::::
values

:::
for

:::
all

:::::::
kernels,

::::::::
followed

:::
by

:::::::
methods

:::
4,

::
1,

::::
and

::
2.

::::
This

::::::
occurs

:::::::
because

::::
the

::::::::
fractional

::::::::::::
approximation

:::::::::::::
systematically

:::::::::::
overestimates

:::
the

::::::
change

:::
in

::::::
natural

:::::::::
logarithms

:::
for

:::::
large

:::::::::::
perturbations

::::
such

:::
as

:::::::
2×CO2,

:::::
while

:::
the

::::::
linear

::::::
change

:::::::
ignores

:::
the

:::::::
damping

::
by

:::
the

:::::::::
logarithm

::::::
entirely.

::::
The

:::::
range

::
in

::::::::::
kernel-mean

:::::
water

:::::
vapor

::::::::
feedback

:::::
values

:::::::::
introduced

:::
by

::::::
method

::::::
choice

::
is

::::
0.26

::::::::::
Wm−2K−1,

::::
with

:::::
kernel

:::::
mean

::::::
values

::::::
ranging

:::::
from

::::
1.41 to kernel choice, a factor often overlooked by many climate feedback

studies
:::
1.67

::::::::::
Wm−2K−1.480

::::::::
Following

:::
this

:::::::
finding,

:
a
::::::
natural

::::::::
question

::
is

::::::
whether

::
a
::::::::
particular

:::::
kernel

:::
set

::::
does

:
a
::::::
better

:::
job

:
at
:::::::
closing

:::
the

:::::::
radiative

::::::
budget

::::
than

:::::
others.

::::
This

:::::
study

::::
only

::::
uses

::::
two

:::::::::
simulations

:::::
from

:::
one

::::::
model

:::
for

::::::
sample

::::
data

:::
and

::
is,

:::::
thus,

::::::::::
ill-equipped

::
to

::::::
answer

:::
this

::::::::
question
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::::
more

:::::::::
generally;

:::::::
however,

:::
we

::::
may

:::
use

::::::::
clear-sky

:::::::
linearity

::::
tests

::
to
:::::::
identify

::::::
which

:::::
kernel

::::
best

:::::
closes

:::
the

::::::
budget

::
in

::::
this

::::::::
particular

::::::
CESM1

::::::::::
experiment,

:::
as

::
in

::::::::::::::
Shell et al. (2008)

:
.
::::::::
Consider

:::
the

:::::::
clear-sky

::::::::
radiative

::::::
budget

::
at

::::
some

:::::
point

::
in

::::
time

::::
after

::
2×CO2:

:

∆Ro =∆F o +λo∆T +Re,
:::::::::::::::::::::::

(11)485

:::::
where

:::::
∆Ro

::
is

:::
the

:::::::
clear-sky

:::::
TOA

::::::::
radiative

:::::::::
imbalance,

:::::
∆F o

::
is

:::
the

::::::::
clear-sky

:
2×CO2 ::::

ERF,
:::
λo

::
is

:::
the

::::::::
clear-sky

::::
total

::::::::
feedback

::::::::
parameter,

::::
and

:::
Re

::
is

:::
the

:::::::
residual

::::
term

:::::::::
accounting

:::
for

::::::::
feedback

::::::::::::
nonlinearities,

::::::
kernel

::::::
errors,

:::
etc.

:::
All

:::::
terms

:::
are

::::::
global

::::::
annual

::::::
means.

:::::
Kernel

::::
sets

:::
that

:::::::
produce

:::
the

:::::::
smallest

:::::::::
magnitude

:::
Re

::::::
values

::
do

:::
the

::::
best

:::
job

::::::
closing

:::
the

::::::::
clear-sky

:::::::
radiative

:::::::
budget.

:::::
Table

::
S2

::::
lists

:::
the

:::::::
residual

::::::
values

:::
for

:::
all

::
11

::::::
kernel

::::
sets

:::
and

:::::
four

:::::
water

:::::
vapor

::::::::
feedback

:::::::::
calculation

::::::::
methods.

::::
The

::::::::::::::
best-performing

:::::
kernel

:::
set

:::::::
depends

:::::::
heavily

:::
on

:::
the

:::::
water

:::::
vapor

::::::::
feedback

::::::::::
calculation

:::::::
method;

:::
for

::::::::
example,

::::
the

::::::
BMRC

::::::
kernel

:::
set

::::
does

::::
the490

:::
best

:::
job

:::
of

::::::
closing

:::
the

::::::::
radiative

::::::
budget

:::::
using

:::::
water

:::::
vapor

::::::::
feedback

:::::::
method

:
1
::::

(no
::::::::
fractional

:::::::::::::
approximation)

::::
with

::
a
:::::::
residual

::
of

:::::
-0.01

::::::::::
Wm−2K−1,

:::
but

::
is
::::

the
:::::::::::
second-to-last

::::::
kernel

:::
set

::
in
::::::

terms
::
of

::::::
budget

:::::::
closure

:::::
when

:::::
using

:::::::
method

:
3
:::::

(with
:::::::::

fractional

::::::::::::
approximation)

::::
with

::
a

::::::
residual

:::
of

::::
-0.25

::::::::::
Wm−2K−1

:::::
(Table

::::
S2).

::::::::
Focusing

::::
only

::
on

:::
the

::::
first

:::::::
method,

:::::
which

::
is

:::
the

::::
most

:::::::::
physically

:::::
sound

:::
and

::::
uses

:::
the

::::::
fewest

:::::::::::
assumptions,

::::
both

::::::
CAM3

::::
and

::::::
CAM5

::::::
kernel

:::
sets

:::::::
perform

::::
well

::::
and

:::
are

:::
the

::::::
second

:::
and

::::::
fourth

::::
best

:
at
:::::::
closing

:::
the

:::::::
clear-sky

::::::::
radiative

::::::
budget,

:::::::::::
respectively.

::::
This

:::::
result

::
is,

:::::::
perhaps,

:::::::::::
unsurprising

:::::
given

:::
that

::::::
CAM5

::
is

:::
the

::::::::::
atmosphere495

:::::
model

:::::::
included

:::
in

:::::::
CESM1,

::::
and

::::::
CAM3

::
is

::
an

::::::
earlier

::::::
version

:::
of

::::::
CAM5.

::::
We

:::::
avoid

::::::
making

::::::
claims

::::::::
regarding

:::::
these

:::::
kernel

:::::
sets’

::::::::::
performance

:::::
when

:::::::
applied

::
to

:::::
other

::::::
models

:::
and

::::::::::
simulations

::::
and

::::::
simply

:::::
assert

::::
that

:::::
kernel

::::::
choice

::
is
:::::::::
potentially

:::::::::
important

:::
for

::::::::
accurately

:::::::::::
decomposing

::
a
:::::
model

:::::::::::
simulation’s

:::::::
radiative

::::::
budget.

:

5 Conclusions

The radiative kernel method is a popular and efficient way of diagnosing radiative feedbacks in climate model simulations. We500

were motivated to develop ClimKern to streamline these sometimes complicated calculations, shed light on kernel choice’s

importance in feedback studies, and provide access to a growing collection of existing kernels. We used ClimKern to compute

basic radiative feedbacks from a sample climate model output to quantify kernel differences, leading us to the following

conclusions.

ClimKern makes radiative feedback calculations with kernels considerably easier while standardizing the underlying505

assumptions and methods. The ClimKern python
::::::
Python package contains straightforward, one-line commands for the most

common calculations required for computing radiative feedbacks and can automatically load in data from the ClimKern data

repository. The code is well-documented and easily accessible on GitHub and the Python Package Index for full transparency.

Operations like vertical integration or horizontal regridding are consistent across the functions, even while offering the user

different options. The repository similarly employs a standard and consistent nomenclature across all kernels, making it a510

practical resource for anyone wishing to compute radiative feedbacks.

Kernel choice is a nonnegligible source of uncertainty in radiative feedback calculations, especially in the polar regions.

In terms of global average feedbacks, the lapse rate and Planck feedbacks appear
:::::::
feedback

::::::
appears

:
to be the least sensitive to

kernel choice. In contrast, the surface albedo and cloud feedbacks show considerably more sensitivity to the choice of kernel
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(Table 2). Interkernel spread is horizontally and vertically inhomogeneous, with all but the water vapor feedback showing515

::
the

:
greatest kernel sensitivity at the poles (Fig. 2); this

:::::
spread

:
may be a result of either differences in the base states or

radiative schemes used to produce the radiative kernels. In the case of the
:::
The

::::::
spread

::
in

:::
the

::::::::
clear-sky

::::::::::
temperature

:::
and

:
surface

albedo kernels , we note that the spread is not appreciably different between the
:
is

:::::::
smaller

::::
than

::::
their

:
all-sky and clear-sky

versions
::::::::::
counterparts, suggesting that clouds are not the dominant cause of the spread across kernels

::
an

::::::::
important

::::::
source

:::
of

:::::::::
interkernel

::::::::
variability.520

Polar amplification studies frequently use the radiative kernel method to compare surface warming contributions at the poles to

the global or tropical average , and then rank the relative importance of the individual feedbacks (Pithan and Mauritsen, 2014;

Stuecker et al., 2018; Previdi et al., 2020; Hahn et al., 2021; Janoski et al., 2023). From the Arctic (> 70◦N) values in Fig. 3

and the global average values in Table 2, the most important feedback contributing to Arctic amplification appears to be
::::
Two

::
of

:::
the

::::::::
feedbacks

:::::
most

::::
often

::::::::
identified

:::
as

::::::::
dominant

::::
polar

:::::::::::
amplification

:::::::::::
contributors,

:
the lapse rate or surface albedo feedback,525

depending on the kernel used. Therefore, kernel choice can affect the conclusions of polar amplification studies,
:::
and

:::::::
surface

:::::
albedo

:::::::::
feedbacks

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pithan and Mauritsen, 2014; Goosse et al., 2018; Previdi et al., 2020; Hahn et al., 2021; Previdi et al., 2021)

:
,
::::::
exhibit

::::::::
maximum

::::::::::
interkernel

:::::::::
variability

::
in

:::
the

::::::
Arctic

::::
(Fig.

:::
2),

::::::
further

:::::::::::
complicating

:::::::::::
comparisons

:::::::
between

:::::::
studies

:::
that

::::
use

:::::::
different

:::::::
radiative

:::::::
kernels.

:

:::::
Kernel

::::::
choice

:::
can

::::::
impact

::::::
climate

:::::::::
sensitivity

::::::
studies

:::
that

:::
use

::::::
global

::::
mean

::::::
values.

::::
The

::::
mean

::::::
Planck

:::
and

:::::::
surface

:::::
albedo

:::::::::
feedbacks530

::::
show

:::
the

:::::::
greatest

::::::::::
interkernel

:::::::::
variability,

:::::
while

::::
the

::::
sign

::
of

:::
the

:::::
mean

:::::::::
longwave

:::::
cloud

::::::::
feedback

::
is

:::::::::::::::
kernel-dependent

::
in

::::
this

:::::
single

:::::::
CESM1

::::::::::
experiment.

::::::::
Although

::
it

::
is

::::::
unclear

::::
how

:::
the

:::::::::
variability

:::::::::
introduced

:::
by

::::::
kernel

::::::
choice

::::::::
compares

::
to

::::
that

::
of

:::::
other

::::::::::::
methodological

:::::::
choices,

::::
e.g.,

::::::
model

::
or

::::::
forcing

::::::::
scenario,

:
it
:::::::::
highlights

::
its

::::::
impact

::::::
across

:::::
spatial

::::::
scales,

:
leading to our final point.

Future studies invoking the calculations of climate feedbacks can be more robust if they include a discussion of the sen-

sitivity of the results to kernel choice. One option would be to use multiple kernels from the ClimKern repository in a sensi-535

tivity analysis to explore this. Another option would be to employ a kernel mean we provide here, instead of individual kernels,

to limit the influence—and potential biases—of any one kernel. This option is particularly promising, given the consistent

outperformance of multi-climate-model ensemble means over individual models in various metrics (Kharin and Zwiers, 2002; Tebaldi and Knutti, 2007; Bellucci et al., 2015)

:::
take

:::
the

::::::
kernel

::::::
average

::
of

:::::::::
feedbacks

::::::
instead

::
of

::::::
relying

:::
on

::::::::
individual

:::::::
kernels.

::::::::
Although

:
a
::::::
kernel

::::::
average

::::
may

:::::
dilute

:::
the

:::::::
benefits

::
of

::::
using

:::::
more

::::::::
advanced

::
or

:::::::::::::::
better-performing

::::::
kernels,

::
it
::::
may

::::::
reduce

:::
the

::::::::
sensitivity

::
to

:::::::::
individual

:::::
kernel

::::::
biases.

::::
This

::::::
choice

::::
may540

::
be

::::::::
especially

::::::::::
appropriate

::
in

::::::
studies

:::::
using

::::::::::
multimodel

:::::::::
ensembles

::
to

:::::
avoid

::::::
relying

::
on

::
a
:::::
single

:::::
kernel

::::
that

::::
may

::
or

::::
may

:::
not

:::::
align

:::
well

:::::
with

::
all

::::::
models. Future work may

:::
will

:
include comparing the sensitivity to kernel choice to other sources of uncertainty

in climate studies and evaluating kernel mean performance compared to individual kernels in the computation of radiative

feedbacks.

We intend for ClimKern to become a community-wide project and invite potential collaborators to contribute. The easiest way545

is to visit the ClimKern GitHub and fork the repository. New features and bug fixes can also be requested there.
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Supplementary Information

Kernel Method

1 2 3 4

BMRC 1.52 1.45 1.71 1.69
CAM3 1.48 1.41 1.68 1.66
CAM5 1.48 1.41 1.66 1.64
CERES 1.54 1.47 1.75 1.73
CloudSat 1.34 1.28 1.52 1.50
ECHAM6 1.37 1.31 1.54 1.52
ECMWF-RRTM 1.53 1.45 1.73 1.72
ERA5 1.51 1.43 1.70 1.68
GFDL 1.44 1.38 1.62 1.60
HadGEM2 1.59 1.52 1.78 1.76
HadGEM3-GA7.1 1.50 1.43 1.69 1.67

mean 1.48 1.41 1.67 1.65
std 0.07 0.07 0.08 0.08

Table S1: The global annual mean water vapor feedback values (in Wm−2K−1) calculated using each
kernel and each of the four water vapor feedback methods. The last two rows contain the kernel mean
and standard deviation of the water vapor feedbacks for each method.

Kernel Method

1 2 3 4

BMRC -0.01 0.08 -0.25 -0.23
CAM3 0.05 0.14 -0.19 -0.16
CAM5 0.09 0.17 -0.13 -0.10
CERES 0.24 0.32 0.01 0.04
CloudSat 0.18 0.26 -0.03 -0.01
ECHAM6 0.22 0.30 0.02 0.04
ECMWF-RRTM 0.15 0.24 -0.07 -0.06
ERA5 0.08 0.17 -0.15 -0.12
GFDL 0.19 0.27 -0.02 0.01
HadGEM2 0.21 0.29 0.01 0.01
HadGEM3-GA7.1 0.12 0.21 -0.10 -0.08

mean 0.14 0.22 -0.08 -0.06
std 0.08 0.08 0.09 0.09

Table S2: The global annual mean TOA residual terms (in Wm−2K−1) for each kernel and water vapor
feedback methods. The last two rows contain the kernel mean and standard deviation of the residuals.
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