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Abstract: We discuss robust estimations for the variance of normally distributed random 

variables in the presence of interferences. The robust estimators are based on either ranking or 10 

the geometric mean. For the interference models used, estimators based on the geometric mean 

outperform the rank-based ones both in mitigating the effect of interferences and reducing the 

statistical error when there is no interference. One reason for this is that estimators using the 

geometric mean do not suffer from the “heavy tail” phenomenon as the rank-based estimators do. 

The ratio of the standard deviation over the mean of the power random variable is sensitive to 15 

interference. It can thus be used as a criterion to combine the sample mean with a robust 

estimator to form a hybrid estimator. We apply the estimators to the Arecibo incoherent scatter 

radar signals to determine the total power and Doppler velocities in the ionospheric E-region 

altitudes. Although all the robust estimators selected work well in dealing with light 

contaminations, the hybrid estimator is most effective in all circumstances. It performs well in 20 

suppressing heavy contaminations and is as efficient as the sample mean in reducing the 

statistical error. Accurate incoherent scatter radar measurements, especially at nighttime and E-

region altitudes, can improve studies of ionospheric dynamics and compositions.  
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 1 Introduction 

 

In radar signal processing and many other applications, the data samples can often be 30 

modeled as a constant superimposed with a normally distributed random variable. The variance 

of the random process is an important parameter in such applications. In some cases, the variance 

represents the undesired noise power. In other cases, the variance is the desired signal power, 

such as in our study here on incoherent scatter radar (ISR) signals. Our broad objective is to 

explore methods that estimate the variance of a normally distributed random variable accurately 35 

in the presence of interferences. The general problem falls under robust statistics (e.g., Huber and 

Ronchettti, 2009; Wilcox, 2017). Specifically, we attempt to optimize ISR signal processing 

using robust estimators. 

An ISR, with a large aperture and high transmitting power, measures the electron 

concentration and other state variables in the ionosphere. Its versatilities make it the most 40 

important ground-based instrument for ionospheric studies. Several major ISRs started operation 

in the 1960’s. Readers are referred to Evans (1969) for the principle, capabilities, and 

comparisons of the early facilities. An ISR typically transmits a binary phase code to increase the 

signal-to-noise ratio. The received signal consists of sequences of altitude dependent in-phase 

and quadrature voltage samples, which, upon decoding, can be used to obtain a variety of 45 

ionosphere parameters, such as electron density, electron and ion temperatures (e.g., Zhou et al., 

1997; Isham et al., 2000; Hysell et al., 2014). An essential characteristic of the voltage samples is 

that they are normally distributed, with the variance proportional to the electron density at the 

corresponding altitude. Because an ISR measures the tiny amount of power scattered off the 

electrons and ions in space, averaging over 1000 samples is essential in deriving ionospheric 50 

parameters. In the absence of interferences, a simple arithmetic average of the voltage samples 

squared provides the best estimator for the total power or power spectral density estimates, 

which form the foundation for the derivation of various ionosphere and atmosphere variables. 

It’s well known, however, that the sample mean is susceptible to outliers. In many cases, it is 

necessary to use other estimators to obtain meaningful averages.  55 

The ISR signal is subject to both active and passive interference. The former can be from 

other radars and TV stations. The latter can be from scatterings off ships, satellites, and other 

objects. The most significant interference source for ISRs is micro-meteors although they are the 
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desired signal in the context of meteor study (e.g., Zhou et al. 1995; Chau et al., 2007; Li et al., 

2023). Meteor echoes come in diverse strengths and durations and provide the physical basis for 60 

constructing the interference model in our simulations. The incoherent scatter radar signal 

provides a textbook case for a normally distributed random variable that exists in nature. The 

high sensitivity of an ISR makes it susceptible to various interferences. ISR signals thus provide 

a good testbed to evaluate the performance of various estimators.  

In the following section, we discuss the statical characteristics of various estimators and 65 

compare their performances through theoretical analysis and numerical simulations for different 

interference scenarios. The aim here is to find an estimator that performs well with and without 

interference. In Section 3, we compare the performance of several estimators for total ISR power 

and Doppler velocity processing. We show that the hybrid estimator performs the best for 

practically all the interference scenarios and it is essentially as effective as the sample mean in 70 

reducing the statistical error.  

2  Characteristics and comparison of mean power estimators  

2.1 Signal and interference models 

Let X be an independent identically distributed (i.i.d) normal random variable having 

𝑁 = 𝑁1𝑁2 data samples organized as 𝑋 = {

𝑥11 ⋯ 𝑥1𝑁1

⋮ ⋱ ⋮
𝑥𝑁21 ⋯ 𝑥𝑁2𝑁1

}. For radar and many other digital 75 

sampling systems, X ~ N(0, 𝜎2) can be regarded as voltage samples. 𝑌 =

{
1

𝑁1
∑ 𝑥1𝑛1

2𝑁1
𝑛1=1 ,

1

𝑁1
∑ 𝑥2𝑛1

2𝑁1
𝑛1=1 , … ,

1

𝑁1
∑ 𝑥𝑁2𝑛1

2𝑁1
𝑛1=1  } represents the power random variable with 𝑁2 

elements. Each element in Y is a sample mean of 𝑁1 raw power variables, 𝑋2. The expectation of 

𝑌𝑖 is 𝜎0
2, which is the variance of 𝑋. We strive to estimate 𝜎0

2 most accurately given samples of 

𝑋. As there are many types of variances, we will call estimating 𝜎0
2 power estimation to be 80 

specific and to minimize confusion. In the absence of interference, 𝑌𝑖 can be shown to have a 

gamma probability density distribution (pdf): 

𝑓 (𝑦;
𝑁1

2
,

2𝜎0
2

𝑁1
) =

𝑦
𝑁1
2

−1
𝑒

−
𝑦𝑁1
2𝜎0

2
  

Γ(
𝑁1
2

)
(

𝑁1

2𝜎0
2)

𝑁1
2

   ,                                      (1) 
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where 
𝑁1

2
 and 

2𝜎0
2

𝑁1
, are the shape and scale parameters respectively and the support of 𝑦 is (0, ∞) 

(e.g., Wikipedia, Gamma function). The corresponding cumulative distribution function is  85 

𝐹 (𝑦; 
𝑁1

2
,

2𝜎0
2

𝑁1
) =

1

Γ(
𝑁1
2

)
𝛾 (

𝑁1

2
,

𝑁1

2𝜎0
2 𝑦) =

1

Γ(
𝑁1
2

)
∫ 𝑡

𝑁1
2

−1𝑒−𝑡𝑑𝑡
𝑁1

2𝜎2𝑦

0
  ,                (2) 

where 𝛾(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡
𝑥

0
 is the lower incomplete gamma function.  Distribution function 

𝑓(𝑦) can also be viewed as a 𝑁1-degree chi-squared distribution scaled by 𝑁1. The variance of 𝑌𝑖 

is 
2𝜎0

4

𝑁1
. The distribution functions at 𝑁1=1, 2, and 8, which we will study in more detail, are 

𝑓 (𝑦;
1

2
, 2𝜎0

2) =
𝑒

− 
𝑦

2𝜎0
2

  

√2𝜋𝑦𝜎0
  and 𝑓(𝑦; 1, 𝜎0

2) =
𝑒

− 
𝑦

𝜎0
2

  

𝜎0
2 , 𝑓 (𝑦; 4,

𝜎0
2

4
) =

27𝑦3𝑒
− 

4𝑦

𝜎0
2

  

3𝜎0
8 ,  respectively. At large 90 

𝑁1, the pdf is approximately normal, 𝑓 (𝑦;
𝑁1

2
,

2𝜎0
2

𝑁1
) ~ 𝑁(𝜎0

2,
2𝜎0

4

𝑁1
). Of particular interest is the case 

of 𝑁1=2, which corresponds to the in-phase and quadrature samples in a radar system.  

The interference is also modeled as a gamma distribution with a shape parameter of 𝑘 =

4 and scale parameter (𝑎𝜂𝜎0)
2

/𝑘, which has a mean of 𝑎𝜂
2𝜎0

2. Since we are mainly concerned 

with the signal shape parameter being ½ and 1, a larger shape parameter in the interference 95 

model makes it easier to differentiate between interference and signal as the interference is more 

concentrated around a higher mean value. The interference occurs equal-likely at each data point 

with a probability of 𝑝𝜂 =0.01 and is always additive to the signal. The total interference power 

relative to the signal power is thus 𝑝𝜂𝑎𝜂
2. We will mainly consider three cases of interference 

with 𝑎𝜂 = 2, 6, and 18 to represent low, moderate, and strong interferences respectively.  100 

2.2 Estimators and their characteristics in the absence of interference 

The most common estimators are sample mean, geometric mean, and median. The 

sample mean of 𝑌 is the arithmetic average of 𝑁2 samples, i.e.,  𝐴𝑁 ≡
1

𝑁2
∑ 𝑌𝑖

𝑁2
𝑖=1 , where 𝑌𝑖 is the 

sample mean of 𝑋2 averaged over 𝑁1 samples. With a known shape parameter, the sample mean 

is the uniformly minimum-variance unbiased estimator (UMVUE) and maximum likelihood 105 

estimator (e.g., Siegrist, 2022; Wikipedia – Gamma Distribution).  Geometric mean, 𝐺𝑁 ≡

(∏ 𝑌𝑖
𝑁2
𝑖=1 )

1/𝑁2
, and median, 𝐷𝑁 ≡ 𝑚𝑒𝑑(𝑌1, … 𝑌𝑁2

), are more resistant to outliers but not effective 

in reducing the statistical fluctuations. Although the three basic estimators are largely at the 

opposite end of efficiency vs. robustness, they can serve as a building block for other estimators. 
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In the following, we discuss the three basic estimators and compare them with trimmed, two 110 

outlier removal estimators, a weighted mean and a hybrid estimator.  

The effectiveness of a power estimator, Z, in reducing the statistical fluctuation is 

measured by the normalized variance 

𝑅2(𝑍) ≡
𝑁𝜎𝑧

2

2𝜇𝑍
2             (3) 

where 𝜎𝑧
2 and 𝜇𝑍 are the variance and mean of the power estimator while the absolute error is of 115 

importance in some cases as well. For the sample mean estimator, 𝐴𝑁, its distribution is 

expressed by Eq.(1) with 𝑁1 replaced by 𝑁. 𝐸(𝐴𝑛) is 𝜎0
2 and the variance is 2𝜎0

4/𝑁. The 

theoretical expectation of 𝑅2(𝐴𝑛) is thus one for the sample mean, which is the lowest that one 

can obtain. The inverse of 𝑅2(𝑍) is the efficiency of the estimator. It is of interest to note that 

since 𝑁 averages can be expressed as the weighted means of 𝑁1and 𝑁 − 𝑁1 samples, it follows 120 

that the convolution of two gamma distributions remains a gamma distribution. This convolution 

invariance property is also true of most commonly used distributions, including binomial, 

Poisson, normal, and chi-squared distributions. In general, if the distribution function of the sum 

or mean remains the same type for different numbers of samples, it is convolution invariant.  

The median and its variance do not appear to have a closed form for 𝑁1 and 𝑁2 in general 125 

although there are closed forms for specific 𝑁1 and large 𝑁. Here we derive the theoretical 

results for 𝑁1=1, 2, 8, and large N. For large 𝑁2 and an ascending ranking order K relatively 

close to 𝑁2/2, Zhou et al. (1999) show that ranking has an asymptotic normal distribution, with 

the variance being  𝜎𝑁2𝐾
2 =

𝐾(𝑁2−𝐾)

𝑁2
3𝑓2(𝜇𝑟)

, where 𝜇𝑟 is the ranking value (e.g.,  𝐾 = 𝑁2/2 for median). 

𝑓(𝜇𝑟) is the pdf for the rank random variable i.e., Eq.(1) for our study here. For the median 130 

estimator, the normalized variance is  

 𝑅2(𝐷𝑁) =
𝑁1

8𝑓2(𝜇𝑟; 𝑁1/2,   2/𝑁1)𝜇𝑟
2  .        (4) 

The median can be solved from 𝐹(𝜇𝑟) = 1/2. For 𝑁1=1, the median is 2𝑖𝑒𝑟𝑓2 (
1

2
) 𝜎0

2 =

0.4549𝜎0
2, where ierf is the inverse of the error function 

2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
. For 𝑁1=2, the median is 

𝜇𝑟 = 𝜎0
2ln2 = 0.6931𝜎0

2. The median for 𝑁1=8 is 0.9180𝜎0
2, which can be solved from 135 

𝛾(4, 4𝜇𝑟) = 3.  For large 𝑁1, the pdf tends to normal and the median tends to 𝜎0
2. The 𝑅2(𝐷𝑁) 

values for 𝑁1=1, 2, 8, 100, and 𝑁=10000 are 2.7206, 2.0814, 1.6848, and 1.5760, respectively. 

In the limiting case of 𝑁1 and 𝑁2 tending to infinity, 𝑅2(𝐷𝑁) = 𝜋/2, indicating that it takes 𝜋/2 
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times of samples for the median operator to achieve the same error as the sample mean. Zhou et 

al. (1999) also show that taking the 79.7% largest value gives the smallest 𝑅2 at 1.5432. (In Zhou 140 

et al., (1999), 𝜋/2 in Eqs. (24) and (26) should have been  2/𝜋.) 

In Table 1, we list the 𝑅2 values and the absolute errors for eight estimators in the null-

interference case. The second column is the mean of each estimator without scaling for 𝜎0 = 1 

(the mean is proportional to 𝜎0
2). To compare the different estimators on the same scale, the 

mean is divided for the respective estimator so that all the estimators in all the cases have a mean 145 

of one for all subsequent computations of the other columns in Tables 1 and 2. The values not in 

parenthesis listed in the two tables are at least 100000 Monte-Carlo simulations with 𝑁 =10000 

for all estimators except 𝐻𝑁. The values in parenthesis in Table 1 are theoretical predictions that 

we can derive.  

The mean and variance of the geometric mean (𝐺𝑁) can be obtained by first finding the 150 

expectation and variance of one element, 𝑌𝑖
1//𝑁2, in the product. The expectation of 𝑌𝑖

1//𝑁2  is  

𝐸 (𝑦
1

𝑁2)=∫ 𝑦
1

𝑁2
∞

0
𝑓(𝑦)𝑑𝑦 =

Γ(
𝑁1
2

+
1

𝑁2
)

Γ(
𝑁1
2

)
(

2𝜎0
2

𝑁1
)

1

𝑁2
 .      (5) 

The second moment of 𝑌𝑖
1/𝑁2 is 

𝐸 (𝑦
2

𝑁2)=∫ 𝑦
2

𝑁2
∞

0
𝑓(𝑦)𝑑𝑦 =

Γ(
𝑁1
2

+
2

𝑁2
)

Γ(
𝑁1
2

)
(

4𝜎0
4

𝑁1
2 )

1

𝑁2
 .      (6) 

Assuming that 𝑌𝑖’s are independent, the expectation, second moment, and the variance of the 155 

geometric mean are respectively: 

 𝐸(𝐺𝑁) = ( 𝐸 (𝑦
1

𝑁2))

𝑁2

=
ΓN2(

𝑁1
2

+
1

𝑁2
)

ΓN2(
𝑁1
2

)

2𝜎0
2

𝑁1
,        (7) 

𝐸(𝐺𝑁
2 ) = ( 𝐸 (𝑦

2

𝑁2))

𝑁2

=
ΓN2(

𝑁1
2

+
2

𝑁2
)

ΓN2(
𝑁1
2

)

4𝜎0
4

𝑁1
2 ,       (8) 

 𝑉𝑎𝑟(𝐺𝑁) =
4𝜎0

4

𝑁1
2 (

ΓN2(
𝑁1
2

+
2

𝑁2
)

ΓN2(
𝑁1
2

)
−

Γ2N2(
𝑁1
2

+
1

𝑁2
)

Γ2N2(
𝑁1
2

)
).       (9) 

The normalized variance for the geometric mean, 𝑅2(𝐺𝑁),  is thus 160 

𝑅2(𝐺𝑁) =
𝑁1𝑁2

2
[(

Γ(
𝑁1
2

)Γ(
𝑁1
2

+
2

𝑁2
)

Γ2(
𝑁1
2

+
1

𝑁2
)

)

𝑁2

− 1] .       (10) 
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This equation is precise for all 𝑁1 and 𝑁2. 𝐸(𝐺𝑁) and 𝑅2(𝐺𝑁) values for N=10000, 𝑁1=1, 2, 8, 

and 100 are listed in Table 1. We are not aware of a precise distribution function for 𝐺𝑁 in 

general. For the asymptotic case of large 𝑁2, Zhou et al. (1999) show that the geometric mean 

tends to the normal distribution with the variance being 165 

𝑉𝑎𝑟(𝐺𝑁)|𝑁2→∞ =
𝐸2(𝐺𝑁)𝜎𝑙𝑛

2

𝑁2
 ,         (11) 

where 𝜎𝑙𝑛
2  is the variance of 𝑙𝑛(𝑦).  𝜎𝑙𝑛

2  is known to equal to the trigamma function  𝜓1(
𝑁1

2
) (e.g., 

Wikipedia: Gamma Distribution).  Thus,  

𝑅2(𝐺𝑁)|𝑁2→∞ =
𝑁1𝜎𝑙𝑛

2

2
=

𝑁1

2
𝜓1(

𝑁1

2
)  ,        (12) 

For the trigamma function, 𝜓1 (
1

2
) =

𝜋2

2
,  𝜓1(1) =

𝜋2

6
, and other 𝜓1(

𝑁1

2
) values can be found 170 

from the recurrence relation  𝜓1(𝑧 + 1) = 𝜓1(𝑧) − 1/𝑧2. The asymptotic 𝑅2(𝐺𝑁) for 𝑁1=[1, 2, 

8, 100], and 𝑁=10000 are [2.4674, 1.6449, 1.3529, 1.010], respectively. They are accurate to the 

third decimal place compared to the exact values obtained from Eq. (10) for 𝑁2=10000. For large 

𝑁1 and 𝑁2, 𝑅2(𝐺𝑁)~1 +
1

𝑁1
, which gives the number of initial averages, 𝑁1, needed to achieve a 

certain level of efficiency for the geometric mean. The expectation of 𝐺𝑁  for large 𝑁2 is found to 175 

be 

  𝐸(𝐺𝑁)|𝑁2→∞~ 𝜎0
2 (1 +

2

𝑁1𝑁2
) 𝑒

− 
1

𝑁1
 −  

1

3(𝑁1+2/𝑁2)𝑁1  ~ 𝜎0
2𝑒

− 
1

𝑁1
 −  

1

3𝑁1
2
 ,   (13) 

by using the approximation ln(Γ(𝑧)) ~𝑧𝑙𝑛(𝑧) − 𝑧 −
1

2
ln (𝑧) +

1

12𝑧
+

1

2
ln(2𝜋) (Wikipedia: 

Gamma Function). The variance of 𝐺𝑁 at large 𝑁2 is  

𝑉𝑎𝑟(𝐺𝑁)|𝑁2→∞ =
𝐸2(𝐺𝑁)𝜎𝑙𝑛

2

𝑁2
=

𝜓1(
𝑁1
2

)

𝑁2
𝜎0

4𝑒
− 

2

𝑁1
 −  

2

3𝑁1
2
   ,     (14) 180 

In Table 1, we list the theoretical values of the geometric mean and 𝑅2 and their comparisons 

with the simulated values. We see that the theoretical values agree with simulations very well for 

all three basic estimators in the various scenarios. 

As median and other ranks are not efficient in reducing the statistical fluctuation, one can 

average the data within a certain percentile range, which is known as the trimmed or truncated 185 

mean. Since interference is additive, we will only be concerned with one-sided trimming below a 

fraction of 𝛽. Let b be the integer value of 𝛽𝑁2. The trimmed mean at 𝛽 is  𝑇𝛽 ≡

1

𝑏
∑ 𝑠𝑜𝑟𝑡(𝑌𝑖)𝑗

𝑏
𝑗=1 , where 𝑠𝑜𝑟𝑡(𝑌𝑖) is 𝑌𝑖 sorted into ascending order. Let 𝐹(𝑦𝛽) = 𝛽, 𝜇𝛽 =



 

8 

 

1

𝛽
∫ 𝑦𝑓(𝑦)𝑑𝑦

𝑦𝛽

0
 and 𝜎𝛽 

2 =
1

𝛽
∫ 𝑦2𝑓(𝑦)𝑑𝑦 − 𝜇𝛽

2𝑦𝛽

0
. Stinger (1973) shows that the asymptotic mean 

and variance of 𝑇𝛽 for large 𝑁2 is 𝐸(𝑇𝛽) = 𝜇𝛽, and 𝜎𝑇 
2 =

[
𝜎𝛽 

2

𝛽
+

1−𝛽

𝛽
(𝑦𝛽−𝜇𝛽)

2
]

𝑁2
, respectively. The 190 

normalized variance for the trimmed mean is thus 

 𝑅2(𝑇𝛽) = 𝑁1

𝜎𝛽 
2 +(1−𝛽)(𝑦𝛽−𝜇𝛽)

2

2𝛽𝜇𝛽
2   .        (15) 

In the following examples,  𝑁 = 10000, 𝛽 = 0.95, and 𝜎0 = 1. If 𝑁1 = 2, 𝑦𝛽 = 3.843, 

𝜇𝛽 =0.7590, 𝜎𝛽 
2 = 0.7747, and 𝑅2(𝑇95) = 1.1423. If 𝑁1 = 2, we have 𝑦𝛽 = 2.995, 

𝜇𝛽 =0.8422, 𝜎𝛽 
2 = 0.5027, and 𝑅2(𝑇95) = 1.0898. When 𝑁1 is 8, 𝑦𝛽 = 1.9384, 𝜇𝛽 = 0.9320, 195 

𝜎𝛽 
2 = 0.1645, and 𝑅2(𝑇95) =1.0431. For 𝑁1 = 100,  we have 𝑦𝛽 = 1.2435, 𝜇𝛽 =0.9835, 𝜎𝛽 

2 =

0.0153, and 𝑅2(𝑇95) = 1.0178. As seen in Table 1, the 𝑅2 values agree with the simulation very 

well. It’s of interest to note that 𝑅2 is not 1/0.95=1.05 as intuition might suggest. It varies from 

1.142 at 𝑁1=1 to 1.018 at 𝑁1=100. When 𝑁1=1, the tail is long and has more variations, leading 

to a large 𝑅2 value – a tail wagging the dog situation. More averaging makes the tail more stable 200 

and 𝑅2 smaller. The phenomena and effects of “fat tail” or “heavy tail” are extensively discussed 

by Resnick (2007) and Taleb (2022). 

To estimate a parameter robustly, we can attempt to identify outliers and exclude them 

from the average.  Most of the outlier classifying methods involve estimating a nominal 

deviation and using it in a threshold to detect outliers. The median absolute deviation (MAD), 205 

defined as MAD = 𝑚𝑒𝑑(|𝑌𝑖 − 𝑚𝑒𝑑(𝑌)|), is most frequently used to detect outliers (Huber and 

Ronchettti, 2009). Since only a small fraction of the ISR data is contaminated most of the time, 

we will classify a data point having eight MADs above the median as an outlier. The sample 

mean of all non-outlier points is referred to as the 𝑇𝑀𝐴𝐷8 estimator. When there is no 

interference, 𝑅2(𝑇𝑀𝐴𝐷8) is 1.6973, 1.0769, 1.0075, and 0.9984, respectively for 𝑁1=1, 2, 8, and 210 

100. There is a significant improvement in 𝑅2 from 𝑁1=1 to 𝑁1=8 because averaging reduces the 

number of spurious outliers significantly as the trimmed mean discussed above. At 𝑁1=1, the 

proportion of flagged outliers is about 0.2% while at 𝑁1=8 the effective rate of flagged outliers is 

0.0012%. We note that Rousseeuw and Croux (1993) present two robust estimators that are more 

efficient than MAD although computationally more intensive. With a normalized variance larger 215 

than 1.2, their estimators are better suited for heavy contaminations.  
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As the geometric mean is resistant to outliers as well, it may also be used to classify 

outliers conceivably. We define the geometric deviation as 𝜎𝐺 ≡ 𝐺𝑁𝑒𝜎𝑙𝑛(𝑦) − 𝐺𝑁, where 

𝜎𝑙𝑜𝑔(𝑦) = 𝑠𝑡𝑑(ln (𝑦)). (The dimensionless 𝑒𝜎𝑙𝑜𝑔(𝑦) is known as the geometric standard 

deviation.) 𝜎𝐺  is zero if all samples in 𝑌 are a constant and increase in proportion with y although 220 

𝜎𝐺
2 does not have the usual properties of the variance as commonly defined. We average all the 

data points four geometric deviations below the geometric mean and refer to the estimator as 

𝑇𝐺𝐸𝑂4. 𝑇𝐺𝐸𝑂4 and 𝑇𝑀𝐴𝐷8 are chosen to have almost the same normalized variance at 𝑁1=2 as they 

flag out the same number of outliers in the absence of interferences. When 𝑁1=1, 𝑇𝐺𝐸𝑂4 has a far 

better 𝑅2 value in the null-interference case.  225 

Weighted means can also be used to mitigate the effect of outliers and interferences. In 

this method, values far away from the expected mean are weighted less than those points around 

the mean. The weighting function we choose is 𝑤𝑖 = 𝑒
− 

(𝑦𝑖−𝑚𝐺4)
2

40𝜎𝐺4
2

, where 𝑚𝐺4 and 𝜎𝐺4 are the 

sample mean and standard deviation of the 𝑇𝐺𝐸𝑂4 estimator discussed above. The mean values of 

𝑊𝑁 for various 𝑁1 are listed in Table 1.  In the null-interference case, 𝑅2(𝑊𝑁)  is no larger than 230 

1.046 or the efficiency is no less than 95.6%. If the constant 40 is changed to 60, the worst 𝑅2 

becomes 1.031 but the weighted mean is less effective in mitigating the effect of outliers. The 

mean and standard deviation of 𝑇𝐺𝐸𝑂4 are chosen because of their general accuracy and 

computing efficiency.  

 Knowing whether interference exists can help mitigate its effect. We cannot associate the 235 

existence of outliers with interference with certainty for a gamma distribution as there are 

outliers even when there is no interference. Since the expectation of 𝑅2 for the sample mean is 

known in the null-interference case, a deviation from the expectation indicates that the 

underlying process may contain interference. As the sample mean performs the best when there 

is no interference, an expedient strategy to reduce the variance is to combine the sample mean 240 

when no interference is detected with another estimator that is effective in mitigating the 

interference. We have used 𝑁=10,000 for the asymptotic case for all the estimators discussed 

above. In combining different estimators, a smaller 𝑁 value is preferred so that the combined 

estimator will not be dominated by the interference mitigating estimator in the presence of 

interference.  We can also define a mixed 𝑅2 that uses the mean of the 𝑇𝐺𝐸𝑂4 estimator and the 245 

variance normally defined. Such a mixed 𝑅2 is more sensitive to outliers but its variance is 
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larger. Simulations show it does not make a material difference from 𝑅2(𝐴𝑁) using the sample 

mean and standard deviation. Because of its simplicity, we choose 𝑅2(𝐴𝑁)  as the criterion to 

determine if the data samples follow the desired process. The decision rule for this hybrid 

estimator, 𝐻𝑁, is that if 𝑅(𝐴𝑁)  is less than two standard deviations above the mean, it uses the 250 

sample mean, otherwise, the weighted mean is used. The performance of such a combined or 

hybrid estimator compares well with the other estimators. In Table 1, 𝑁 is 1000 for the hybrid 

estimator, 𝐻𝑁.  

As seen in Table 1, all the order-based estimators (𝐷𝑁, 𝑇95, 𝑇𝑀𝐴𝐷8) perform better as 𝑁1 

increases. “The tail wagging the dog” phenomenon discussed for 𝑇95 above is also applicable to 255 

𝐷𝑁 and 𝑇𝑀𝐴𝐷8 as they also truncate the largest values. Although 𝑇𝐺𝐸𝑂4 is also a trimmed mean, 

the tail does not control 𝑅2 in the same manner as in the order-based estimators because the 

length of the tail depends on the largest values. Large sample values increase the geometric 

deviation which diminishes the chance of a large sample value being counted as an outlier. 

Compared to 𝑇𝑀𝐴𝐷8, 𝑇𝐺𝐸𝑂4 flags out fewer outliers at 𝑁1=1 but more outliers at 𝑁1=8. At very 260 

large 𝑁1 (e.g., 100), the pdf of 𝑌𝑖 is approximately normal, and all the estimators perform equally 

well at the theoretical best. It’s of interest to note that 𝑅2(𝑊𝑁) for the weighted mean is not a 

strong function of 𝑁1. The hybrid estimator 𝑅2 is always less than 1.02, making the efficiency 

better than 98% for all 𝑁1’s when there is no interference. 

2.3 Comparison of estimators in the presence of interference 265 

In Table 2, we list the mean and 𝑅2 values with three levels of noise for the eight 

estimators discussed above. The total noise power is the mean of 𝐴𝑁 subtracted by 1, which is set 

as the signal power.  In the low noise case, 𝑎𝜂=2, the total noise power is 4% of the signal power. 

We see that the expectation of the sample mean is 1.04 irrespective of 𝑁1 as the power is 

additive. In this case of low interference power, the performance of all the estimators does not 270 

differ from the null-interference case significantly. For moderate and high noise cases, all the 

estimators perform very poorly at 𝑁1=100 as practically all the 𝑌𝑖’s are contaminated. 𝑇𝑀𝐴𝐷8 

performs the best at 𝑁1=8 and 100 for 𝑎𝜂=18. In general, rank-based estimators do better than 

geometric mean based estimators when a large portion of data is contaminated. Large 𝑁1 is akin 

to having a higher percentage of interferences and therefore should be avoided. The strong 275 

interference case is easier to deal with than the moderate case as it has a very distinct distribution 
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from the signal distribution. The most challenging case is the moderate interference case, 𝑎𝜂=6. 

All the estimators perform worse than the other two interference scenarios. For the moderate 

case of interference, the weighted mean performs the best at 𝑁1=1 while 𝑇𝐺𝐸𝑂4 does the best at 

𝑁1=2.  280 

The last three robust estimators, all of which are based on the geometric mean, have 

about the same performance. They perform better than the rank-based estimators at 𝑁1=1 and 2. 

The averages of the 𝑅2 values for the three noise levels are listed in the last column in Table 2. 

On balance, the hybrid estimator performs the best for the two cases of small 𝑁1. It should be 

noted that simulations for the hybrid estimator are based on N=1000 in Table 2 while N=10000 285 

for other estimators. It is almost a certainty that the hybrid estimator performs the same as 𝑊𝑁 at 

modest and strong interference. At low interference levels, 𝐻𝑁 outperforms 𝑊𝑁 because of the 

inclusion of the sample mean. Thus, the hybrid estimator combining 𝑊𝑁 and 𝐴𝑁 would always 

perform better than 𝑊𝑁. The reason that 𝑅2(𝐻𝑁) is not always smaller than 𝑅2(𝑊𝑁)  in some 

cases in Table 2 is because the statistics at N=1000 are slightly inferior to N=10000. Similarly, 290 

an estimator combining 𝑇𝐺𝐸𝑂4 with 𝐴𝑁 will outperform 𝑇𝐺𝐸𝑂4 for the same 𝑁. Although the 

performances of the estimators will change if the underlying assumptions are changed, 𝐻𝑁, 

𝑇𝐺𝐸𝑂4, and  𝑊𝑁 are the preferred estimators because of their interference mitigating ability, 

efficiency in reducing statistical fluctuation, and lightness in computational intensity. When 𝑝𝜂 is 

less than 0.005, 𝑊𝑁 (by extension, the combination of 𝑊𝑁 and 𝐴𝑁) outperforms 𝑇𝐺𝐸𝑂4 for all 295 

interference levels. In cases of prevalent contamination (e.g., 𝑝𝜂 > 10%, one can combine order-

based estimators (such as median or trimmed mean) with the sample mean.  

3  Application to incoherent scatter radar signal processing 

In this section, we apply four estimators to incoherent scatter total power and Doppler 

velocity processing and compare their performances. The example incoherent scatter radar data 300 

were taken at the Arecibo Observatory, Puerto Rico on Sept. 11-12, 2014. The total power is 

used to derive the electron density. The Doppler velocity is the same as the neutral wind velocity 

below about 115 km while it also depends on the electric field and ion-neutral collision 

frequency above this altitude. Readers are referred to Zhou et al. (1997) and Isham et al. (2000) 

for further description of the Arecibo ISR, especially concerning E-region signal processing. 305 
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3.1 Total power processing 

The most prevalent way to obtain the total power and hence electron density in the 

ionosphere using an ISR is to transmit a 13-baud barker code with a total pulse length duration 

less than 52 s. Barker code is chosen because of its minimized sidelobe. The lack of longer 

Barker codes is not a severe limitation due to the finite correlation time of the ionosphere. The 310 

13-baud Barker data we use here has a baud length of 2 s, making the range resolution 300 m. 

In-phase and quadrature voltage samples from each pulse are stored for post-processing. Inter-

pulse period of 10 ms was used so that range aliasing is negligible. As the antenna was pointing 

vertically, range and altitude are interchangeable here. Although the sampling range in the data 

was from 60 to 766 km, we mostly focus on the altitude range from 90 to 150 km, where 315 

interference is most severe. The raw voltage samples were decoded using a matched filter. 

Figure 1 shows the averaged power returns as a function of time and altitude using 

sample, trimmed, 𝑇𝐺𝐸𝑂4, and hybrid means. Because the radar samples are in in-phase and 

quadrature pairs and larger 𝑁1 contaminates more data samples, 𝑁1 is chosen to be 2. The last 

panel shows the normalized standard deviation 𝑅(𝐴𝑁) for the sample mean, whose expectation is 320 

one when there is no interference. For each data point, we first average 250 pulses using the 

method indicated in the title and then average arithmetically four such groups for a total of 1000 

pulses. Using a smaller number of pulses makes the memory requirement less stringent and the 

trimmed mean more efficient. The ionosphere signal is largely characterized as smooth temporal 

and spatial variations during the daytime and as thin horizontal layers, known as sporadic E’s, 325 

around 100 km at nighttime. The study of sporadic E layers and the associated dynamics has 

attracted much attention and is an active area of research (e.g., Mathews, 1998; Larsen et al., 

2007; Wang et al., 2022; Kunduri et al., 2023). Two types of interferences seen in Fig. 1 are 

represented in Box A, and B. Box A is likely another radar operating at the same inter-pulse-

period (IPP) as that of the Arecibo ISR or an internal system problem. Vertical lines in Box B 330 

and other similar vertical lines that are confined to ~90-120 km, are meteoric echoes. The 

altitude extension of meteor echoes is because fast-moving meteor heads cannot be decoded by 

the matched filter. They do not extend beyond 120 km in altitude in our case because meteor 

echoes are detected below about 115 km (Zhou and Kelly, 1997). Normalized standard deviation 

𝑅(𝐴𝑁) is displayed in the bottom panel in Fig. 1.  335 
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The first panel in Fig. 1 shows the result of arithmetically averaging 1000 pulses (i.e., 

sample mean). All interferences show up prominently as the method does not filter out any 

contamination. The trimmed mean cleans up the first part of heavy contamination in Box A but 

is not effective against the second part, most likely because more than 5% of the pulses were 

contaminated. 𝑇𝐺𝐸𝑂4 and the hybrid method largely filters out the contamination in Box A and 340 

reveals the underlying sporadic layer despite the heavy contamination. Although 𝑇𝐺𝐸𝑂4  appears 

to handle all the contaminations as well as the hybrid method, it is slightly inferior to the latter in 

reducing statistical error as seen in the later part of this section. The only residue contamination 

not filtered out is around 22:30 LT. None of the methods is effective in removing it completely 

and all the three robust estimators appear to perform the same. As the total power of the 345 

interference is relatively low, the interferences may permeate most of the pulses, making it very 

difficult to remove them from each pulse. For this type of interference, one way is to find the 

mean at non-ionosphere heights and subtract it from the entire profile. (Noise samples are 

available at Arecibo. Background noise is not subtracted here to focus on the effect of robust 

estimators in this study.) Trimmed mean, 𝑇𝐺𝐸𝑂4, and the hybrid methods are all effective in 350 

removing meteor interferences, which typically do not last more than 50 ms at Arecibo, i.e., 5 

pulses (Zhou and Kelly, 1997).  

Other than the most obvious interferences highlighted in Boxes A and B, no other 

contaminations appear to be obvious. The R-value in the region indicated by Box C has elevated 

values, indicating likely contamination. Yet, there appears to be little difference between the 355 

sample mean result in Panel A and the results from robust estimators. One effect of the 

interference is that it increases the statistical error, which is more difficult to see from the RTI 

plot. To estimate the statistical error, we use the difference of the power minus the average 

power of the surrounding 15 points in height and 5 points in time as a proxy for the error. The 

square ratio of the sample mean error to the error of the hybrid method is displayed in the upper 360 

panel of Figure 2. The corresponding 𝑅(𝐴𝑁) is displayed at the bottom panel. Larger statistical 

error from the sample mean in Region C is quite evident. Although 𝑅(𝐴𝑁) is not linearly related 

to the error, elevated 𝑅(𝐴𝑁) is a robust indicator of contamination. This is also evidenced from 

1:00 to 3:00 LT in Fig. 2 where sporadic elevations of 𝑅(𝐴𝑁) and statistical errors are seen to be 

correlated.  365 
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An estimator needs to be efficient when there is no interference. Figure 3 shows the ratio 

of the sample mean and 𝑇95 errors to the hybrid error as well as the corresponding standard 

deviation 𝑅(𝐴𝑁) averaged between 7:00 to 13:00 LT, during which period contamination is 

minimal above 120 km as seen in Fig. 2. The error of the hybrid estimator is virtually the same 

as that of the arithmetic average. The error of the 𝑇95 estimator is 1.036 times the error of the 370 

hybrid estimator, which is in good agreement with the simulated value of √1.09/1.018 =1.035. 

Similarly, the error of 𝑇𝐺𝐸𝑂4 is slightly smaller than that of 𝑇95, which is also in good agreement 

with the simulation results shown in Table 1. The mean 𝑅(𝐴𝑁) correlates with the elevated error 

in the region of 90-120 km. We also note that the mean 𝑅(𝐴𝑁) above 120 km is 0.997, which is 

slightly below the expected value of 1. Although the deviation is small, it is statistically 375 

significant. This may be caused by the bias in the receiving channels or the finite dynamic range 

of the analog-to-digital converters.  

3.2  Power spectrum processing and Doppler velocity comparisons 

 The power spectral density (PSD) of an ISR is obtained by transmitting a coded long 

pulse (CLP), 440 s, in our case. The baud length is 2 s, making the bit number of the pulse 380 

220. The inter-pulse-period is 10 ms as in the Barker data. The bit sequence is random for each 

transmitted pulse. The PSD is obtained by the Fourier transform of the data multiplied by the 

complex conjugate of the code. The characteristics of the CLP are discussed by Sulzer (1986). 

Averaging the PSD at each frequency component is identical to that of the total power in the 

above section, which can be viewed as the center frequency component.  385 

 Figure 4 shows the Doppler velocity derived from the four estimators using the phase of 

the auto-correlation function. The vertical ion drift in the altitude range of 90-150 km is typically 

less than 50 m/s above Arecibo. Below 120 km, the plasma drift is the same as the neutral wind 

because of the complete coupling between ions and neutral molecules. During the daytime, there 

are sufficient signals above 95 km to obtain continuous spatial and temporal velocities. During 390 

the nighttime, it’s only possible to obtain velocities within thin ionization layers. While ion 

velocity having the fine height and time resolutions is of great geophysical interest (e.g., Zhou et 

al., 1997; Hysell et al., 2014), our focus here is to study the relative accuracy of the velocities 

obtained from different estimators.  



 

15 

 

 Comparisons of the velocity results largely follow those of the total power. Sample mean 395 

fails in regions A and B. Additionally, during the sunrise hours when the ionospheric signal is 

low and the meteoric interference is strong, the sample mean can only yield valid velocities 

occasionally while the robust estimators can obtain the velocities continuously in altitude and 

time. As in the total power estimation, the trimmed mean does not yield valid results in the 

second part of region A from 21:30 to 22:30 LT while the hybrid and 𝑇𝐺𝐸𝑂4 methods appear to 400 

be not affected by the interference very much.  

To compare the statistical fluctuations, we use the altitudinal difference of the velocity 

divided by the square root of two as a proxy for velocity error. Figure 5 shows the altitude 

variation of the velocity error during 8:00-10:00 LT as well as 14:30-16:30 LT on Sept. 12. All 

the robust estimators have essentially the same error at each altitude while the sample mean has a 405 

much larger error around 100 km. The error of the sample mean converges to those of the robust 

estimators above 145 km. The diminishing error difference of the sample mean with increasing 

altitude is due to the long pulse length (440 s) used. A characteristic of the CLP pulse is that the 

interference at one altitude is uniformly spread into the entire bandwidth randomly at other 

altitudes. A meteor echo at 100 km increases the spectral power fluctuations with diminishing 410 

strength up to 166 km. Meteoric influx peaks at 6:00 LT and varies strongly with the local time. 

The daily variation of meteoric flux is quantitatively analyzed by Zhou et al. (1995) and Li and 

Zhou (2019). It can also be qualitatively seen in Fig. 2(b). The larger error of the sample mean 

during 8-10:00 LT is a reflection of the strong meteoric flux. Although the afternoon period 

suffers from meteoric interference and radio contamination as seen from Fig. 2, both of them are 415 

weak. Statistical averaging of 6000 pulses is able to even out the spectral power fluctuation to 

such a degree that all the estimators produce the same velocity. For spectral processing, the most 

important factor is the total amount of noise power while the percentage of pulses contaminated 

is often more important in total power processing.  

Overall, we see 𝑇𝐺𝐸𝑂4 and hybrid estimators greatly improve over the sample mean in 420 

accurately and consistently producing velocity and total power measurements, which are 

important to studying the E-region dynamics and compositions. The availability of nighttime 

velocities will help reduce the large error in the measurement of atmospheric tides in the E-

region (Zhou et al., 1997; Gong et al., 2013). Accurate measurement of the power spectrum and 

total power will facilitate all the E-region studies, especially concerning the climatology and 425 
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dynamics of sporadic E and intermediate layers (Zhou et al., 2005; Hysell et al., 2009; Raizada et 

al, 2018; Gong et al., 2021). Of particular importance are the vertical wind and ion composition 

in the E-region, which have not been studied much due to the lack of quality data.  

4  Summary and Conclusion  

We have discussed several robust estimators to compute the variance of a normally distributed 430 

random variable, 𝑋, to deal with interferences. This variance is the same as the mean of the 

power variable, 𝑋2. The effectiveness of an estimator is described by the normalized standard 

deviation, 𝑅. We derive the theoretical 𝑅 values for median, geometric mean, and trimmed mean 

for gamma distributions, which result from averaging the power random variables. We discuss 

and compare another four estimators through simulations for various interference scenarios. 435 

Robust estimators found in the literature typically are rank-based (e.g., median, trimmed mean, 

and median absolute deviation). We have used geometric mean and geometric deviation as two 

basic parameters in assessing the likelihood of a data point being contaminated. The methods 

based on the geometric mean have two advantages over the rank-based ones: They are less 

susceptible to the large uncertainties in the tail part of the distributions and they are 440 

computationally more efficient. For the interference model used, the 𝑇𝐺𝐸𝑂4 estimator, which is 

based on the geometric mean, is particularly effective as a stand-alone estimator when there is no 

initial average. Another effective estimator based on the geometric mean is the weighted mean. 

The 𝑅-value of the sample mean can be used to assess whether the process conforms to the 

expected distribution. This knowledge allows us to combine the sample mean with other robust 445 

estimators to mitigate contaminations and achieve statistical accuracy.   

 We apply three robust estimators to incoherent scatter power and velocity processing 

along with the traditional sample mean estimator. We show that the performances of estimators 

with real data agree well with simulations. In the total power processing, the trimmed mean 

performs mostly well except when the contamination is very heavy. The 𝑇𝐺𝐸𝑂4 estimator 450 

performs almost as well as the hybrid method in mitigating interferences. The hybrid method 

performs the best in mitigating interference as well as in reducing statistical errors. For Doppler 

velocity processing, the same conclusion can be drawn in cases of frequent interferences. When 

the interference is weak, all the robust estimators appear to perform well. For the Arecibo ISR 
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data, the sample mean has larger statistical errors even for data that may not appear  containing 455 

obvious interferences. This highlights the need for robust estimation to process or reprocess 

decades of E-region data taken at Arecibo. The hybrid estimator is most advantageous under all 

circumstances. This conclusion is likely applicable to other incoherent scatter radars as well. 

While the interference characteristics differ at each radar site, the study provides a foundation to 

optimize robust estimation, which is an essential step in many data processing applications.  460 
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Table 1 – Monte Carlo simulations and theoretical values (in parenthesis) of the mean, R2  and 

absolute error for eight estimators when there is no interference. 

Method  

𝑵𝟏        

Mean (theory) 𝑹𝟐  |error| 

𝑨𝑵                  1 

N=10000   2 

8 

100 

1.0000 (1) 

1,0000 (1) 

1.0000 (1) 

1.0000 (1) 

1.0020 (1) 

0.9994 (1) 

1.0077 (1) 

0.9945 (1) 

0.0113 

0.0112 

0.0113 

0.0113 

𝑫𝑵                 1 

N=10000   2 

8 

100 

0.4549; (0.4549) 

0.6930 (ln2); 

0.9176 (0.9180) 

0.9917 (1) 

2.7149; (2.7206) 

2.0927; (2.0814) 

1.6980; (1.6848) 

1.5614; (1.5760) 

0.0186 

0.0162 

0.0147 

0.0150 

𝑮𝑵                 1 

N=10000   2 

8 

100 

0.2808; (0.2808) 

0.5615; (0.5616) 

0.8780; (0.8780) 

0.9901; (0.9901) 

2.4841; (2.4672) 

1.6487; (1.6447) 

1.1377; (1.1352) 

1.0028; (1.0100) 

0.0178 

0.0144 

0.0120 

0.0114 

𝑻𝟗𝟓            1 

N=10000   2 

8 

100 

0.7589; (0.7590) 

0.8424; (0.8430) 

0.9317; (0.9320) 

0.9839; (0.9835) 

1.1480; (1.1423) 

1.0901; (1.0898) 

1.0434; (1.0431) 

1.0198; (1.0178) 

0.0121 

0.0117 

0.0116 

0.0114 

𝑻𝑴𝑨𝑫𝟖       1 

N=10000   2 

8 

100 

0.8742 

0.8425 

1.0000 

1.0000 

1.6973 

1.0769 

1.0075 

0.9984 

0.0147 

0.0117 

0.0113 

0.0113 

𝑻𝑮𝑬𝑶𝟒        1 

N=10000   2 

8 

100 

0.9979 

0.9884 

0.9987 

1.0000 

1.0185 

1.0763 

1.0210 

0.9984 

0.0114 

0.0117 

0.0114 

0.0113 

𝑾𝑵            1 

N=10000   2 

8 

100 

0.9576 

0.9563 

0.9888 

1.0000 

1.0419 

1.0431 

1.0167 

0.9995 

0.0115 

0.0115 

0.0114 

0.0113 

𝑯𝑵            1 

N=1000    2 

8 

100 

0.9576 

0.9563 

0.9888 

1.0000 

1.0102 

1.0178 

1.0001 

1.0052 

0.0360 

0.0356 

0.0357 

0.0358 
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Table 2.  Mean and 𝑅2 values for low, moderate and strong interferences. The interference 590 

occurrence rate is 𝑝𝜂=0.01 for all three interference scenarios.  

 

Method,   𝑵𝟏 
𝒂𝜼=2 

 Mean       R2          

         𝒂𝜼=6 

Mean         R2 

𝒂𝜼=18 

Mean          R2 

Avg 

  R2 

𝑨𝑵                   1 

N=10000         2 

8 

100 

1.0400 

1.0400 

1.0400 

1.0400 

1.0166 

1.0091 

1.0136 

1.0193 

1.3599 

1.3600 

1.3601 

1.3600 

4.8437 

4.8794 

4.8697 

4.8984 

4.2393 

4.2404 

4.2391 

4.2396 

36.507 

36.127 

36.015 

36.411 

14.122 

14.005 

13.966 

14.110 

𝑫𝑵                  1 

N=10000        2 

8 

100 

1.0237 

1.0290 

1.0394 

1.040 

2.7454 

2.1082 

1.7302 

1.6002 

1.0239 

1.0294 

1.0555 

1.2779 

2.7388 

2.1277 

1.9460 

8.9737 

1.0238 

1.0295 

1.0554 

3.4042 

2.7317 

2.1273 

1.9503 

111.64 

2.7486 

2.1211 

1.8755 

40.738 

𝑮𝑵                   1 

N=10000         2 

8 

100 

1.0278 

1.0316 

1.0375 

1.0399 

2.4724 

1.6650 

1.1544 

1.0310 

1.0488 

1.0701 

1.1467 

1.3147 

2.5614 

1.8519 

2.0017 

4.3308 

1.0717 

1.1167 

1.3376 

2.9238 

1.6730 

2.2247 

5.1570 

42.091 

2.2356 

1.9139 

2.7710 

15.818 

𝑻𝟗𝟓                  1 

N=10000        2 

8 

100 

1.0358 

1.0380 

1.0394 

1.0400 

1.1711 

1.1079 

1.0594 

1.0394 

1.0430 

1.0561 

1.1450 

1.3243 

1.2202 

1.2533 

3.5711 

4.8256 

1.0430 

1.0562 

1.7359 

3.7994 

1.2239 

1.2498 

94.667 

41.530 

1.2051 

1.2037 

33.099 

15.798 

𝑻𝑴𝑨𝑫𝟖             1 

N=10000        2 

8 

100 

1.0284 

1.0398 

1.0399 

1.0400 

1.7843 

1.0910 

1.0143 

1.0193 

1.0080 

1.0056 

1.1085 

1.3601 

1.6774 

1.1300 

3.1179 

4.9145 

1.0080 

1.0020 

1.0003 

4.2330 

1.6714 

1.0801 

1.0893 

39.909 

1.7110 

1.1004 

1.7405 

15.281 

𝑻𝑮𝑬𝑶𝟒              1 

N=10000       2 

8 

100 

1.0380 

1.0280 

1.0400 

1.0400 

1.0343 

1.0885 

1.0287 

1.0310 

1.0087 

0.9996 

1.0758 

1.3600 

1.1344 

1.1170 

2.4126 

4.9090 

0.9993 

0.9981 

1.0032 

3.9775 

1.0159 

1.0328 

1.1384 

54.270 

1.0615 

1.0794 

1.5266 

20.070 

𝑾𝑵                 1 

N=10000        2 

8 

100 

1.0390 

1.0400 

1.0400 

1.0391 

1.0625 

1.0558 

1.0246 

1.0223 

1.0074 

1.0115 

1.1078 

1.3501 

1.1054 

1.1304 

3.1480 

4.9301 

1.0001 

1.0098 

1.0001 

4.0907 

1.0429 

1.0415 

1.0996 

41.158 

1.0703 

1.0759 

1.7574 

15.703 

𝑯𝑵                 1 

N=1000      2 

   8 

100 

1.0392 

1.0377 

1.0407 

1.0409 

1.0236 

1.0447 

1.0199 

1.0231 

1.0162 

1.0124 

1.1247 

1.3648 

1.1090 

1.1290 

3.3169 

4.9272 

1.0092 

1.0112 

1.0101 

4.1395 

1.0462 

1.0447 

1.1043 

41.780 

1.0596 

1.0728 

1.8206 

15.910 
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Figure 1: Range-time-intensity plots of incoherent scatter total power returns on Sept. 11-12, 

2014. The first four panels, starting from the top, are the power return of the sample mean, 

trimmed mean at 95% level, trimmed mean based on geometric deviation, and a hybrid method, 595 

respectively. The last panel is the normalized standard deviation.  
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Figure 2. (a) Top panel is the square of the relative error of the sample mean method normalized 600 

to that of the hybrid method. (b) The bottom panel is the normalized variance. The yellow color 

in the top panel indicates that the sample mean has a larger error than the hybrid method.  

 

 

 605 
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Figure 3. Mean relative errors (in base 2 logarithms) of the sample mean, trimmed mean and 

TGEO4 normalized to that of the hybrid method (red and blue lines respectively). The black line 610 

is six times the logarithm (base 2) of the mean R. The time duration averaged for all the lines in 

the figure is from 7:00 to 13:00 LT on Sept. 12, 2014.   
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Figure 4. Vertical ion velocities obtained using four estimators. The estimators, from top to 615 

bottom, are sample mean, trimmed mean (at 95%), 𝑇𝐺𝐸𝑂4, and hybrid mean, respectively.  
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Figure 5. Doppler velocity errors for the sample mean, trimmed mean, Tgeo4, and hybrid method 620 

for 8:00 - 10:00 LT (upper plot) and 14:30 – 16:30 LT (lower plot).  

 

 
 


