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Abstract. Grapevine water status exhibits substantial variability even within a single vineyard. Understanding how edaphic, 

topographic and climatic conditions impact grapevine water status heterogeneity at the field scale, in non-irrigated vineyards, 

is essential for winemakers as it significantly influences wine quality. This study aimed to quantify the spatial distribution of 10 

grapevine leaf water potential (Ψleaf) within vineyards and to assess the influence of soil properties heterogeneity, topography 

and climatic conditions on this intra-field variability, in two non-irrigated vineyards during two viticultural seasons. By 

combining multilinearly vegetation indices from very-high spatial resolution multispectral, thermal and LiDAR imageries 

collected with unmanned aerial systems, we efficiently and robustly captured the spatial distribution of Ψleaf across both 

vineyards, at different dates. Our results demonstrated that in non-irrigated vineyards, the spatial distribution of Ψleaf was 15 

mainly governed by the within-vineyard soil hydraulic conductivity heterogeneity (R² up to 0.81), and was particularly marked 

when the evaporative demand and the soil water deficit increased, since the range of Ψleaf was greater, up to 0.73 MPa, in these 

conditions. However, topographic attributes (elevation and slope) were less related to grapevine Ψleaf variability. These findings 

show that soil properties within-field spatial distribution and climatic conditions are the primary factors governing Ψleaf 

heterogeneity observed in non-irrigated vineyards, and their effects are concomitants. 20 

 

mailto:louis.delval@uclouvain.be
mailto:mathieu.javaux@uclouvain.be


2 

 

 

1 Introduction 

 

Accurately quantifying grapevine water status is crucial for winemakers as it significantly impacts wine quality (Dry and 25 

Loveys, 1999; van Leeuwen et al., 2009). Detailed spatial information on grapevine water status can be particularly useful for 

providing guidelines on viticultural management to optimize grape production. This is especially important in the context of 

climate change, which poses crucial challenges for fresh water use in viticulture (Gambetta et al., 2020). Many authors have 

demonstrated that grapevine water status exhibits substantial variability even within a single field, particularly when significant 

water restriction is found (Acevedo-Opazo et al., 2010; Brillante et al., 2017a; Tisseyre et al., 2005). Measuring leaf and/or 30 

stem water potential is an effective method to assess grapevine water status (Choné et al., 2001) but accurate measurements of 

leaf and stem water potentials are usually achieved on single plants using a Scholander pressure bomb (Scholander et al., 1965) 

or with psychrometers. Several authors reported high magnitude of variation of leaf water potential over the viticultural season 

(e.g. 1.6 MPa in Ojeda et al. (2005)) and at the within field level (e.g. 1.2 MPa in Ojeda et al. (2005);  0.7 MPa in Brillante et 

al. (2017a)). Yet, these methods are time-consuming and labor-intensive and are therefore not effective to capture 35 

instantaneously within-field heterogeneity of grapevine water status (Romero et al., 2018), particularly under heterogeneous 

soil and microclimatic conditions generally observed in a vineyard. 

  

Remote sensing technological advances give good opportunities for time- and cost-efficient detection of spatial and temporal 

variability of plant water status (Acevedo-Opazo et al., 2008). Particularly, unmanned aerial systems (UAS) are useful tools 40 

to assist precision viticulture thanks to high spatial resolution imagery, allowing differentiation of row and inter-row 

information. UAS can transport different sensors to measure and estimate plant traits, e.g., canopy area, biomass, leaf pigment 

concentration or grapevine water status, through vegetation indices (VIs) (Baluja et al., 2012; Poblete et al., 2017; Romero et 

al., 2018; Serrano et al., 2010; Zarco-Tejada et al., 2013). Most of the sensors used in precision viticulture are multispectral 

sensors, allowing to calculate VIs based on the visible (red, green, blue), red-edge and near infrared (NIR) reflectance of plants 45 

(Ferro and Catania, 2023). Several studies found low to moderate correlations between multispectral VIs and grapevine leaf 

water potential, with maximum R² ranging between 0.4 and 0.5 (Baluja et al., 2012; Espinoza et al., 2017; Romero et al., 2018; 

Tang et al., 2022). VIs based on NIR and red-edge bands are better correlated with grapevine water potential as they are greatly 

affected by leaf structure and chlorophyll content, both being considered as indicators of grapevine water status (Penuelas et 

al., 1997; Rapaport et al., 2015). Recently, machine learning models (i.e., random forest) have been applied to combine 50 

multispectral information from grapevines and predict grapevine water potential. These models performed better (R² around 

0.85) than using single multispectral VIs (Poblete et al., 2017; Romero et al., 2018), however, there was a significant loss of 

predictive power between calibration and validation (R² decreased and RMSE increased significantly) (Tang et al., 2022). 
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Nevertheless, the combination of several VIs to predict grapevine water status is more efficient since each VI can bring 

complementary information (Xue and Su, 2017). 55 

 

In dry conditions, grapevine closes stomata, limiting transpiration but preventing it from reaching excessively negative water 

potentials that could lead to xylem cavitation and death (Gambetta et al., 2020). Once stomata are closed and transpiration is 

restrained, leaves temperature increases (Costa et al., 2010). Canopy temperature can therefore potentially be used to develop 

index giving information on stomatal conductance and leaf water potential (Jones et al., 2002). Thermal VIs such as crop water 60 

stress index (Idso et al., 1981) has shown moderate (but better than multispectral VIs) correlations with grapevine water 

potential, with a R² of 0.55 (Romero et al., 2018). Some studies even showed a significant correlation, with R² around 0.80, 

between leaf water potential and crop water stress index in Mediterranean vineyards (Bellvert et al., 2014; Möller et al., 2007). 

Thermal sensors are not as used as multispectral sensors in precision viticulture (Ferro and Catania, 2023). These sensors are 

generally more expensive and subjected to less straightforward calibration (Berni et al., 2009). Thermal data processing is less 65 

simple than multispectral data but complementary information obtained by multispectral and thermal sensors could improve 

the ability to remotely monitor grapevine leaf water potential (Tang et al., 2022). 

 

The use of laser scanning sensors (Light Detection and Ranging - LiDAR) for estimating biophysical parameters of vineyard 

canopy is still relatively uncommon compared to other available sensors (Ferro and Catania, 2023). Point clouds obtained from 70 

LiDAR sensors are suitable for detecting structural features of grapevine such as canopy height, canopy width or even leaf 

area index (Bates et al., 2021; Comba et al., 2018). These structural features reflect the result of cumulative water potential of 

grapevine, and could therefore contain information on grapevine water status (Baluja et al., 2012). As a result, the combination 

of multispectral, thermal and LiDAR (structural) data obtained from different sensors onboard unmanned aerial vehicles could 

potentially be used to improve the mapping of grapevine leaf water potential within a vineyard. 75 

 

In addition to the value of remotely monitoring grapevine leaf water potential in an accurate way through UAS, it is also 

interesting to study which factors spatially determine leaf water potential at the vineyard scale. Several studies try to assess 

the influence of irrigation management on grapevine water status with UAS platforms (De Bei et al., 2011; Bellvert et al., 

2012, 2015; Espinoza et al., 2017; Möller et al., 2007). However, most of these studies were conducted on vineyards with 80 

homogeneous edaphic conditions, but different irrigation treatments. It remains unclear how robust these water status mapping 

approaches are when applied across vineyards with varying edaphic and meteorological conditions (Helman et al., 2018). Few 

studies evaluated how spatialized information of grapevine water status give us information about how environmental 

heterogeneity within a vineyard affects the distribution of grapevine water potential (Brillante et al., 2017a). It is known that 

the soil and the climate mainly affect grapevine water potential, and their effects are concomitant (Van Leeuwen et al., 2004). 85 

The soil, through its texture and its ability to retain and conduct water, determines the water supply to the root system. Soil 

depth, texture, structure and percentage of coarse elements, also affect the growth of the root system and therefore the available 
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water for the plant (Van Leeuwen et al., 2018). Grapevine water status is also affected by the vapor pressure deficit (VPD, 

corresponding to the atmospheric evaporative demand), which depends on temperature and air humidity (Soar et al., 2006). 

Grapevine should therefore find an equilibrium between water supply, in the soil, and water demand, in the atmosphere, by 90 

regulating its water potential and stomatal conductance, to maintain gas exchanges for photosynthesis, while preventing 

excessive negative water potential leading to xylem cavitation (Gambetta et al., 2020). Topographic attributes, such as slope 

and elevation, can also impact grapevine performance (Bramley et al., 2011; Karn et al., 2024). On the one hand, this influence 

is indirect since topography control the redistribution of soil particles within the vineyard and therefore creates soil texture 

spatial heterogeneity (Fraga et al., 2014). On the other hand, topography can directly influence grapevine water status through 95 

its impact on water drainage and runoff, sunlight exposure and temperature variations within the vineyard (Brillante et al., 

2017a; Karn et al., 2024). These effects foster microenvironments within a vineyard that could affect grapevine water status 

(Rabia et al., 2022). 

 

In this study, we aimed to quantify the spatial distribution of grapevine leaf water potential within a vineyard and to assess the 100 

impact of edaphic, topographic and climatic conditions on this intra-field heterogeneity. We evaluated the capabilities of UAS 

equipped with multispectral, thermal and LiDAR sensors to monitor grapevine leaf water potential, on two non-irrigated 

vineyards, during two viticultural seasons. 

 

2 Methodology 105 

 

2.1 Site descriptions 

 

This study was conducted on two non-irrigated Belgian vineyards, grassed in the inter-rows, namely the Château de Bousval 

vineyard and the Domaine W vineyard (Fig.1.a). At the Château de Bousval vineyard (Genappe, Belgium, 50°36’45.0’’N 110 

4°31’19.6’’E), we focused on an east-facing plot of Chardonnay grafted on 3309C rootstock, planted in 2014 with vertical 

shoot positioning, 1.6 m inter-row and 0.8 m inter-cep. The field rises between 110 m and 125 m above sea level (Fig.1.b), 

and the average slope is 6 %. At the Domaine W vineyard (Tubize, Belgium, 50°41'19.4"N 4°09'36.9"E), two Chardonnay 

plain fields grafted on 101-14Mgt rootstock were selected for this study, rising between 52 m and 54 m above sea level 

(Fig.1.g), with rows oriented north-south. The grapevines were planted in 2016 with vertical shoot positioning, a 2.2 m inter-115 

row and 1 m inter-cep. These vineyards were selected due to their similar pedogenesis but contrasted layering. In the Château 

de Bousval vineyard, the soil is made of a loamy top layer overlying a sandy subsoil, but the depth of the interface between 

these two layers changes within the plot, reaching more than 3 m at the lowermost side (east side) of the field, due to an 
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accumulation of loamy colluviums. At the upper part (west side) of the field, the loamy layer is around 0.4 m depth. We know, 

on the whole field, the depth of the interface between the loam and the sand (Fig.1.c). Moreover, in this vineyard, we also 120 

know that grapevine roots reach a depth of at least 2.5 m on the whole field (Delval et al., 2024b). In the Domaine W vineyard, 

the soil heterogeneity is less marked in terms of soil texture. The north-western part of the field is defined by a silty loam soil 

on the first horizons of the profile and silty clay loam soil thereafter. The south-eastern part is defined by a silty loam soil on 

the whole profile (Fig.1.h). These differences in terms of soil texture have only been observed in a single location in each 

subplot. Therefore, unlike Bousval, the depth of the interface between silty loam soil and silty clay loam soil is not accurately 125 

known on the whole field. A stream runs adjacent to the southeast parcel, raising the water table in this area within the reach 

of the roots. Root depth on this vineyard is at least 2 m everywhere in the field (Delval et al., 2024a). 

 

Figure 1 – (a) Location of the vineyards in Belgium. (b-f) Topographic attributes, edaphic properties and location of 

measurements in the Château de Bousval vineyard: (b) Elevation; (c) Kriged map of the depth of the interface between the 130 

loamy soil and the sandy subsoil (the black points are locations of soil samples used to determine the depth of the interface in 

situ and used for kriging); (d) Water holding capacity (WHC) on 2.5 m depth (equation 6); (e) Averaged soil hydraulic 

conductivity (K̃soil) on 2.5 m depth (equation 7); (f) Locations of the leaf water potential (Ψleaf_meas) and volumetric water 

content (θv) profile measurements.  (g-i) Topographic attributes, edaphic properties and location of measurements in the 

Domaine W vineyard: (g) Elevation; (h) Soil type (the black points are locations of soil samples to determine soil type in situ); 135 

(i) Locations of the leaf water potential (Ψleaf_meas) and volumetric water content (θv) profile measurements. In (g), (h) and (i), 

the blue line is a stream adjacent to the south-eastern plot. 
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2.2 Meteorological conditions  

 140 

Both vineyards are equipped with weather stations providing hourly meteorological data. The meteorological conditions during 

each flight are provided in Table 1. The atmospheric conditions and the evaporative demand are characterized with the vapor 

pressure deficit (VPD). The daily water deficit, which refers to the standardized precipitation evapotranspiration index (SPEI 

- Vicente-Serrano et al., 2010), is calculated as follows:   

 145 

𝑆𝑃𝐸𝐼 =  ∑(𝑃𝑖 −  𝐸𝑇0𝑖
),

𝑖

 (1) 

 

with i = 1 corresponds to the 1st April of the respective year (budburst of grapevines), Pi the daily precipitation, and ET0i the 

daily reference evapotranspiration. The more negative the SPEI, the greater the water deficit. ET0 is calculated from the FAO 

Penman-Monteith method (Allen et al., 1998). 150 

 

Table 1 – Meteorological conditions during each flight campaign.   

 Bousval Domaine W 

Date Air 

temperature 

(°C) 

VPD (kPa) SPEI (mm) Air 

temperature 

(°C) 

VPD (kPa) SPEI (mm) 

27/07/22 18.9 1.02 -273.9    

10/08/22 28.3 1.95 -334.6 28.9 1.89 -276.2 

31/08/22 22.5 1.15 -411.3 23 1.32 -340.2 

20/07/23 20.9 1.02 -193.0 21 1.2 -193.8 

10/08/23 23.1 1.53 -197.4    

06/09/23 27.9 2.17 -223.6 29.9 2.08 -236.9 

  
 

Despite relatively similar air temperatures and VPDs during the 2022 and 2023 flights, 2022 was a drier year than 2023. The 155 

SPEI for any date in 2022 is significantly more negative than that for any date in 2023 in both vineyards (Table 1), indicating 

drier conditions in 2022 than in 2023. 
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2.3 Data acquisition and processing 

 160 

Unmanned aircraft systems (UAS) data acquisition took place during the vine growth period in 2022 and 2023. Three flight 

campaigns were carried out in 2022 and three in 2023, for a total of six flight campaigns. Data were acquired before the 

veraison (27/07/22 and 20/07/23), at the start of the veraison (10/08/22 and 10/08/23) and just before harvest (31/08/22 and 

06/09/23). Flights started around 12:00 (UTC +2) at Bousval and around 13:30 (UTC +2) at Domaine W. Three sensors were 

used in this study, a Micasense RedEdge-M multispectral sensor (Micasense Inc., Seattle, WA, USA), a FLIR Vue Pro R 165 

thermal camera (FLIR Systems, Wilsonville, OR, USA) and a YellowScan Surveyor LiDAR (YellowScan, Saint-Clément-

De-Rivière, France), mounted on a DJI Matrice 600 (SZ DJI Technology Co Ltd., Shenzen, China). The Micasense RedEdge-

M is a five narrowband multispectral camera,  capturing blue (465-485 nm), green (550-570 nm), red (663-673 nm), red-edge 

(712-722 nm) and NIR (820-860 nm) wavelengths of the electromagnetic spectrum. Just before and after each flight, the 

Micasense RedEdge-M sensor was calibrated thanks to a reflectance panel to ensure accurate and consistent reflectance 170 

measurements, enabling reliable comparisons of data captured under varying light conditions and at different times. Images 

were acquired to ensure approximately 90 % forward and lateral overlap. To process the multispectral imagery, orthomosaics 

were first created for each band of the sensor, using Pix4D (Pix4D, Lausanne, Switzerland). Ground control points (GCP) were 

used for georeferencing. 

 175 

The FLIR Vue Pro R is a radiometric thermal sensor that captured longwave infrared radiation in the 7.5-13.5 µm range. This 

sensor needs radiometric calibration parameters such as emissivity of the canopy, air temperature and humidity to capture 

accurately the surface temperature. Thermal imagery was also processed using Pix4D. The same GCPs as for multispectral 

imagery were used, enabling georeferencing consistent with multispectral data. 

 180 

The LiDAR system, operating with a wavelength of 903 nm, is composed of a Velodyne LiDAR puck, onboard computer, 

Inertial Measuring Units (IMU), and Global Navigation Satellite System (GNSS) receiver. Ranging data are provided by the 

LiDAR puck. The IMU measured the variations in attitude and orientation, and the GNSS provided positioning. To process 

the LiDAR data, YellowScan’s CloudStation software was used to align the flight strips for georeferencing and to apply 

corrections through GNSS offset (lever-arms), sensor-angle (boresight), and GNSS post-processing with precise position 185 

techniques (Bates et al., 2021).  

 

Multispectral and thermal sensors were mounted on the same DJI Matrice 600 and data were collected at the exact same time. 

The LiDAR data were collected directly after the multispectral and thermal data. Multispectral and thermal flights were 

conducted at an altitude of 100 m above ground level and at a flight speed of 6 m.s-1, yielding flight durations of approximately 190 

7 minutes, and resulting in a native pixel resolution of 7 cm for multispectral and thermal data. For the LiDAR flight, the UAS 
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maintained an altitude of 50 m aboveground, with a ground speed of 5 m.s-1, giving a spatial resolution of 16 cm for LiDAR 

data. Due to technical issues, there is no thermal data at Bousval the 27/07/22 and 31/08/22, no multispectral data at Domaine 

W the 10/08/22, and no multispectral, thermal and LiDAR data at Domaine W the 27/07/22 and 10/08/23 (Table 2). 

 195 

 

Table 2 – Availability of the UAS data during the six flight campaigns in the two vineyards. 

 Bousval Domaine W 

Date Multispectral Thermal LiDAR Multispectral Thermal LiDAR 

27/07/22 Yes No Yes No No No 

10/08/22 Yes Yes Yes No Yes Yes 

31/08/22 Yes No Yes Yes Yes Yes 

20/07/23 Yes Yes Yes Yes Yes Yes 

10/08/23 Yes Yes Yes No No No 

06/09/23 Yes Yes Yes Yes Yes Yes 

 

 

 200 

At the same time as collecting UAS data, we measured grapevine leaf water potential (Ψleaf_meas) on various 2x2 m² zones 

homogeneously distributed across the fields, using a Scholander pressure bomb (670 Pressure Chamber, PMS Instrument 

Company). The Ψleaf_meas was measured on 14 2x2 m² zones at Bousval (Fig.1.f), and on twelve 2x2 m² zones at Domaine W 

(Fig.1.i). For each sampled grapevine, Ψleaf_meas were recorded on three to five mature leaves, covered by an aluminium zip 

bag 45 minutes before the measurement. In addition, the soil water content profile to a depth of 105 cm (every 15 cm) was 205 

also measured in eight measurement zones in each vineyard (Fig.1.f and Fig.1.i) , before each flight, with a TRIME-FM3 time 

domain reflectometry combined with access T3 tube (IMKO GmbH, Ettlingen, Germany). 

 

 

2.4 Pure grapevine pixels extraction 210 

 

The fine spatial resolution of the UAS data makes it possible to distinguish rows and inter-rows. We used the k-means 

algorithm to generate a binary mask that distinguishes pure grapevine canopy pixels from inter-row soil and grass pixels. The 

k-means algorithm determined the optimal thresholding value to maximize the between-class variance and minimize the 

within-class variance (MacQueen, 1967). K-means algorithm has already shown good ability to extract pure vine pixels based 215 
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on multispectral vegetation indices (Cinat et al., 2019). This segmentation enables the computation of vegetation indices on 

grapevine only and facilitates the derivation of Ψleaf prediction model specifically focused on the grapevine itself. The 

workflow of the segmentation method used in this study is illustrated in Fig.2. The algorithm was performed using RStudio 

(RStudio Team, 2022). The method consists of six steps, and was performed for each date, generating a mask per date:  

1) The initial step was to use the canopy height, derived from the LiDAR data, to get a first raw distinction between 220 

rows and inter-rows. We derived the height of the canopy (canopy height model CHM) thanks to the difference 

between the Digital Surface Model (DSM) and the Digital Terrain Model (DTM): CHM = DSM - DTM. We 

considered that grapevine rows are represented by every pixel greater than 1 m. This step allowed to remove a large 

part of pixels representing inter-rows.  

2) Due to a coarser spatial resolution of LiDAR data, we used multispectral data to get a finer separation and be sure 225 

that we extracted only pure grapevine pixels. We identified the most relevant spectral bands capable of distinguishing 

between vineyard rows and inter-row vegetation to choose a proper vegetation index for the mask creation. The 

Modified Soil Adjusted Vegetation Index (MSAVI), suggested by Qi et al. (1994), was selected due to its 

incorporation of the red and NIR bands known for their sensitivity to vegetation density, and its ability to minimise 

soil brightness influences in sparse crops (Binte Mostafiz et al., 2021). We applied the mask obtained in step 1 on the 230 

MSAVI raster.   

3) We subdivided the new MSAVI raster into smaller areas (rectangles of 10 m x 1.5 m). By reducing the area in which 

the k-means algorithm was applied, the non-vine pixels in that area exhibited greater similarity, allowing the algorithm 

to better discriminate between grapevine and grass pixels. 

4) The k-means algorithm was then applied in each rectangle. The number of clusters was set to three to distinguish 235 

among the three classes identifiable within the rectangles: pure grapevine pixels, mixed pixels, pure grass pixels. 

5) Following the algorithm execution, only the class with the highest mean value of MSAVI was retained, aiming to 

automatically extract grapevine class. This class was expected to have the highest MSAVI value since it represents 

the class with highest biomass density. 

6) Finally, the outputs of the algorithm were combined to create a unified shapefile, representing a binary mask that 240 

isolates pure grapevine canopy pixels across the field. This mask was subsequently utilized to filter out non-vine or 

mixed pixels spatial resolution of 7 cm x 7 cm) from UAS data, and only the remaining grapevine pixels were used 

for further analysis. 
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Figure 2 – Process of segmenting grapevine pixels from inter-row pixels to generate a pure grapevine mask. (1) First raw 

distinction between rows (>1 m) and inter-rows (<1 m) using the canopy height derived from the LiDAR data; (2) Application 

of the raw grapevine mask obtained in (1) on the Modified Soil Adjusted Vegetation Index (MSAVI) raster; (3) Subdivision 

of the new MSAVI raster obtained in (2) into smaller areas (rectangles of 10 m x 1.5 m); (4) Application of k-means algorithm 265 

in each rectangle. The number of clusters was set to three (pure grapevine, mixed, pure grass); (5) Selection of pure grapevine 

pixels, based on the clustering obtained with the k-means algorithm; (6) Creation of a unique mask to extract pure grapevine 

pixels (spatial resolution of 7 cm x 7 cm) from each raster of vegetation indices. 

 

 270 
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2.5 Generation and extraction of UAS-based variables 

 

We calculated multiple widely used multispectral vegetation indices (VIs), exploiting different band combinations. The 

multispectral VIs used in this study were obtained from the review of Giovos et al. (2021). 43 multispectral VIs were retained 

in this study, as they constitute the most frequently used to monitor and estimate vine water stress and delineation of 275 

management zones in viticulture. We also exploited the specific red, blue, green, NIR and red-edge bands alone. The complete 

list of all the indices and how they are calculated can be found in Table S1. 

 

In addition, we calculated thermal VIs, namely the canopy surface temperature (CST [°C]) and the difference between CST 

and air temperature (dT = CST - Ta [°C]). The Crop Water Stress Index (CWSI) was also computed using the simplified 280 

formula suggested by Jones (1992): 

𝐶𝑊𝑆𝐼 =  
𝐶𝑆𝑇 −  𝑇𝑤𝑒𝑡

𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡

. (2) 

Two different CWSI were derived: 

(a) CSWIa: Tdry and Twet were measured during the UAS surveys by a meteorological station. 

(b) CWSIb: Tdry and Twet were derived from the pure canopy pixels and were respectively considered as CSTmax and 285 

CSTmin.  

 

Structural features of the grapevines were derived from the LiDAR data. We derived the height of the canopy (CH) thanks to 

the difference between the DSM and the DTM as explained before. We also derived the leaf area index (LAI) with the LiDAR 

method developed by Bates et al. (2021). From the LiDAR data, we also derived the elevation and the slopes of the different 290 

vineyards, but these parameters were not used to predict Ψleaf since they do not vary over time. However, they were used to 

interpret the spatial distribution of Ψleaf. 

 

After applying the binary mask to isolate pure vine pixels on each index map described above, we extracted the averages of 

the index values within the 2x2 m² zones defined before for the grapevine leaf water potential measurements (Fig.1.f and 295 

Fig.1.i), in order to predict leaf water potential. 

 

2.6 Leaf water potential prediction 

 

As a preliminary step, we examined the univariable relationships between in situ Ψleaf_meas and the different VIs, based on 300 

Pearson’s coefficient (Pearson’s ρ), to account for linear relations, and based on Spearman’s coefficient (Spearman’s ρ), to 

account for monotonic relations. Person’s ρ quantifies the strength and direction of a linear relationship, while Spearman’s ρ 
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is valuable for detecting and quantifying associations when non-linear relationships are assumed. We therefore compared 

Pearson’s ρ and Spearman’s ρ to evaluate if the relation between Ψleaf_meas and a VI was linear or not. These analyses enable 

us to assess the capability of simple remotely sensed VIs to evaluate Ψleaf. All in-situ measurement data points (n=132; 6x14 305 

at Bousval and 4x12 at Domaine W) across all vineyards and days, were used for a comprehensive analysis.  

 

We then used the stepwise regression method to develop a multiple linear regression model to predict leaf water potentials 

(Ψleaf_pred) based on a multiple linear combination of the VIs presented previously (equation 3). We also predicted an 

uncertainty, quantified by the confidence interval of 95 % on Ψleaf_pred (IC0.95
Ψleaf). Stepwise regression is a step-by-step iterative 310 

construction of a linear regression model that involves the selection of independent variables to be used in a final model 

(Wilkinson, 1979). Stepwise regression can be achieved either by trying out one independent variable at a time and including 

it in the regression model if it is statistically significant (forward selection), or by including all independent variables in the 

model and eliminating those that are not statistically significant (backward elimination). A combination of both methods is 

also possible and was used in this study (bidirectional elimination). This method used the Akaike Information Criterion to add 315 

or remove VIs from the multiple linear regression model, minimizing the number of predictor variables but keeping a high 

predictive power (Akaike, 1974). Stepwise regression models were implemented in RStudio (RStudio Team, 2022), using 

respectively the stats package.  

 

 320 

Ψ𝑙𝑒𝑎𝑓_𝑝𝑟𝑒𝑑 = 𝛽1 × 𝑉𝐼1 + 𝛽2 × 𝑉𝐼2 + ⋯ +  𝛽𝑛 × 𝑉𝐼𝑛 + 𝛼, (3) 

 

 

with βi the regression weights (or beta coefficients) and α the intercept. βi can be interpreted as the average effect on the 

predicted variable (Ψleaf_pred) of a one unit increase in VIi, holding all other predictors fixed. We applied this method on different 325 

combinations of VIs and single bands to predict Ψleaf. We tested a total of seven data combinations: (1) multispectral only (M), 

(2) thermal only (T), (3) LiDAR only (L), (4) multispectral and thermal (M+T), (5) multispectral and LiDAR (M+L), (6) 

thermal and LiDAR (T+L), and (7) multispectral, thermal and LiDAR (M+T+L). 

 

For each date, we randomly selected 70 % of the data to train the different models and 30 % to validate them. The data used 330 

for calibration and validation were the same for each model. We evaluated the performance of the models thanks to the 

coefficient of determination (R²) and the root mean squared error (RMSE). The model with the best performance was then 

employed to predict the Ψleaf over the fields for each flight.  

 

We then verified the reliability of the model. To evaluate that there is no redundancy and similar information in the multiple 335 

linear regression model, we used the Variance Inflation Factor (VIF). The VIF assesses if a predictor variable is collinear with 
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the other predictor variables (multicollinearity) in the multiple linear regression model, which could degrade the precision of 

an estimate, and reduce the reliability and the robustness of the model (Allen, 1997). VIF less than 5 indicates a low correlation 

between a predictor variable and the other ones, VIF between 5 and 10 indicates a moderate correlation, and VIF greater than 

10 indicates a high correlation (James et al., 2021).VIF was computed using the car package in RStudio. We also used partial 340 

regression plots to show the effect of a predictor variable on the prediction of Ψleaf, after considering the effects of the other 

predictor variables. If the slope of the linear regression in a partial regression plot is significantly different from 0 (p-value < 

0.001), then it justifies the presence of a predictor variable in the multiple linear model (Moya-Laraño and Corcobado, 2008). 

The correlation (R²) of the linear model in a partial regression plot allows to quantify the unique relationship between the 

predicted variable (Ψleaf) and a predictor variable (VI) while controlling the effects of the other variables. The higher the R², 345 

the greater the influence of the predictive factor (VI) on the predicted variable (Ψleaf) (Zhou et al., 2008). 

 

We carried out unpaired Wilcoxon tests to statistically compare if the median of the Ψleaf_pred are significantly different (p-

value < 0.05) or not (p-value > 0.05) between dates and vineyards. We performed the Wilcoxon test using the stats package 

(v4.1.1) of the R Statistical Software (v4.0.4) (RStudio Team, 2022). 350 

 

2.7 Relations between leaf water potential and environmental factors 

 

To understand how environmental conditions influence spatial distribution of Ψleaf_pred, we analyzed the relations between the 

linear combination of VPD and SPEI (Table 1), and the median Ψleaf_pred (Ψleaf_pred_median) (equation 4), and between the linear 355 

combination of VPD and SPEI, and the distribution of Ψleaf_pred (Ψleaf_pred_max - Ψleaf_pred_min) (equation 5). 

 

𝛹𝑙𝑒𝑎𝑓_𝑝𝑟𝑒𝑑_𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑎 × 𝑆𝑃𝐸𝐼 + 𝑏 × 𝑉𝑃𝐷 + 𝑐, (4) 

 

(𝛹𝑙𝑒𝑎𝑓_𝑝𝑟𝑒𝑑_𝑚𝑎𝑥 − 𝛹𝑙𝑒𝑎𝑓_𝑝𝑟𝑒𝑑_𝑚𝑖𝑛) = 𝑎 × 𝑆𝑃𝐸𝐼 + 𝑏 × 𝑉𝑃𝐷 + 𝑐, (5) 360 

 

with a and b the regression coefficients, and c the intercept. We applied analysis of covariance (ANCOVA) on to assess if 

these relations are vineyard-specific or not. Relations were considered statistically different for p-values less than 0.05. For 

each date, we also quantified the correlation between Ψleaf_pred and the elevation, and Ψleaf_pred and the slope. At Bousval, since 

we accurately know the depth of interface between the loamy soil and the sandy subsoil (Fig.1.c), we also quantified the 365 

correlation between Ψleaf and the water holding capacity (WHC), and between Ψleaf and an averaged soil hydraulic conductivity 

(K̃soil). We used the coefficient of determination R² as we assumed that these relations are linear. For these relations, we 

assumed that grapevines have a uniform root depth of 2.5 m throughout the vineyard. We also assumed, in this study, that the 

soil unsaturated hydraulic properties of the loamy and sandy soils are the same everywhere in the field. The soil hydraulic 
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properties were measured by Hyprop (METER Group Inc., Pullman, WA, USA) evaporation method (Bezerra-Coelho et al., 370 

2018). The soil water content at the permanent wilting point (pF 4.2) was measured by pressure plate (Ridley and Burland, 

1993). Hyprop-fit software was used to optimize the unsaturated hydraulic parameters of van Genuchten-Mualem (1980), for 

each soil texture (Table 3). Everywhere in the Bousval vineyard, we calculated the WHC [cm] (Fig.1.d) and Ksoil [cm.d-1] 

(Fig.1.e) for a depth of 2.5 m thanks to the following equations:  

 375 

𝑊𝐻𝐶 = [𝑧𝐿𝑆 ∗ (𝜃(ℎ𝐹𝐶) −  𝜃(ℎ𝑃𝑊𝑃))]
𝑙𝑜𝑎𝑚

+ [(250 − 𝑧𝐿𝑆) ∗ (𝜃(ℎ𝐹𝐶) −  𝜃(ℎ𝑃𝑊𝑃))]
𝑠𝑎𝑛𝑑

 (6)  

 

with zLS [cm] the depth of the interface between the loamy soil and the sandy subsoil, θ(h) the water content [cm³.cm-3] at the 

suction h [cm] of the respective soil texture, hFC the suction at the field capacity (in this study we assumed that hFC = -300 cm) 

and hFC the suction at the permanent wilting point (in this study we assumed that hPWP = -15000 cm).  380 

 

𝐾𝑠𝑜𝑖𝑙 = [
𝑧𝐿𝑆

250
∗

∫ 𝐾(ℎ)𝑑ℎ
ℎ𝑃𝑊𝑃

ℎ𝐹𝐶

ℎ𝐹𝐶 − ℎ𝑃𝑊𝑃

]

𝑙𝑜𝑎𝑚

+ [
(250 − 𝑧𝐿𝑆)

250
∗

∫ 𝐾(ℎ)𝑑ℎ
ℎ𝑃𝑊𝑃

ℎ𝐹𝐶

ℎ𝐹𝐶 − ℎ𝑃𝑊𝑃

]

𝑠𝑎𝑛𝑑

 (7) 

 

with K(h) the soil hydraulic conductivity [cm.d-1] at the suction h [cm]. 

 385 

Table 3 – Unimodal van Genuchten hydraulic parameters of the loamy soil and the sandy subsoil at the Château de Bousval 

vineyard. 

 θsat θres n α Ksat τ 

cm3.cm-3 cm3.cm-3 - cm-1 cm.day-1 - 

Loam 0.419 0.117 1.483 0.00669 1.12 0.701 

Sand 0.358 0.08 3.11 0.0182 72 1.039 

 

3 Results 

 390 

3.1 In situ measurements of leaf water potential and relations with UAS-based VIs 
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Ψleaf was measured (Ψleaf_meas) at the same time as the collection of UAS data, at different dates in 2022 and 2023, with a 

Scholander pressure bomb (Fig.3). We measured a more negative median leaf water potential (Ψleaf_meas_median) in 2022 than in 

2023 in both vineyards, linked to warmer and drier conditions (table 1). Moreover, in each vineyard, the soil was significantly 395 

drier in 2022 than in 2023 (Fig.S1). For a same date, we also measured a slightly lower Ψleaf_meas_median at Bousval compared to 

Domaine W (e.g. on 31/08/22 Ψleaf_meas_median = -0.74 MPa at Bousval and Ψleaf_meas_median = -0.71 MPa at Domaine W), except 

on 20/07/23 (table 4). We observed a greater Ψleaf_meas heterogeneity (Ψleaf_meas_max - Ψleaf_meas_min) at Bousval compared to 

Domaine W. This heterogeneity is even more marked in 2022, when conditions were hot and dry. At Bousval, at each date, 

the minimum Ψleaf_meas was measured at the upper part (west side) of the parcel, where the loamy soil is shallower, while the 400 

maximum Ψleaf_meas were measured at the lowermost side (east side) (Fig.3.a), where the loamy soil is deeper. At Domaine W, 

there is less Ψleaf_meas heterogeneity, but we generally measured a lower Ψleaf_meas in the north-western plot than in the south-

eastern plot (Fig.3.b). 

 

 405 
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 420 

Figure 3 – Leaf water potential measured (Ψleaf_meas) with a Scholander pressure bomb in (a) 14 zones at the Château de 

Bousval vineyard and (b) 12 zones at the Domaine W vineyard, at the same time of UAS flights. Points surrounded in blue 

have been used for the calibration of the multiple linear regression models. 
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 430 

Table 4 – Median leaf water potential (Ψleaf_meas_median), maximum (Ψleaf_meas_max) and minimum (Ψleaf_meas_min) leaf water 

potentials (all in MPa) measured in the two vineyards during each UAS flight. 

 Bousval (n=14 by date) Domaine W (n=12 by date) 

 Ψleaf_meas_median Ψleaf_meas_max Ψleaf_meas_min Ψleaf_meas_median Ψleaf_meas_max Ψleaf_meas_min 

27/07/22 -0.73 -0.45 -1.00    

10/08/22 -0.82 -0.48 -1.15 -0.80 -0.70 -0.95 

31/08/22 -0.74 -0.49 -1 -0.71 -0.55 -0.83 

20/07/23 -0.54 -0.42 -0.60 -0.63 -0.53 -0.70 

10/08/23 -0.69 -0.50 -0.9    

06/09/23 -0.72 -0.49 -0.95 -0.70 -0.55 -0.90 

 

 

 435 

By examining the univariable relationships between Ψleaf_meas and the different VIs, including both vineyards and all dates 

(Fig.S2), we found that the correlation (Pearson’s ρ) between Ψleaf_meas and VIs are low to moderate, ranging from ρ = -0.61 to 

ρ = 0.63 (Fig.4). We found a maximum ρ of 0.63 between Ψleaf_meas and Chlorophyll Red-Edge (CLRededge). The second-best 

ρ was found with Normalized Difference Red Edge Index NDRE (ρ = 0.62). These two VIs are the only ones, considered in 

this study, to contain both NIR and red-edge bands, which have been shown to be strongly correlated with the chlorophyll 440 

content of grapevines and therefore influenced by the water status (Laroche-Pinel et al., 2021b; Tang et al., 2022). However, 

in our case, these ρ values indicate a moderate correlation of these VIs with Ψleaf_meas. The third best correlation was found 

with the thermal index CWSIb, with a Pearson’s ρ of -0.61. All others VIs have a lower correlation with Ψleaf_meas, with ρ 

ranging between 0.55 and -0.59. This suggests that single VIs cannot accurately predict Ψleaf in the investigated vineyards and 

more complex approaches, such as multiple linear regression models, are needed to better estimate Ψleaf. For all indices, the 445 

Pearson’s ρ (linear relation – Fig.4) is larger than the Spearman’s ρ (non-linear relation – Fig.S3). Linear relations between 

Ψleaf_meas and VI have therefore a higher predictive power than non-linear relations (Rebekić et al., 2015), justifying the use of 

partial linear regression (and not non-linear), to construct a multiple linear regression and predict Ψleaf.  

 

 450 
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 455 

Figure 4 – Pearson’s coefficient (Pearson’s ρ) quantifying the linear correlation between measured Ψleaf (Ψleaf_meas) and each 

vegetation index (VI), by taking all the measurements in both vineyards and at all dates. 

 

 

3.2 Predicting leaf water potential based on multiple linear regression models 460 

 

In response to the limited correlations obtained from simple linear regressions between Ψleaf_meas and VIs, we explored multiple 

linear regression models to better predict Ψleaf (Fig.S4). We used the stepwise regression method to minimize the number of 

VIs in the multiple regression, and to keep the most significative to predict Ψleaf. Figures 5.a and 5.b show respectively the R² 

and RMSE obtained by comparing measured Ψleaf (Ψleaf_meas) and predicted Ψleaf (Ψleaf_pred), for the datasets used for calibration 465 

(70 % of the data) and validation (30 % of the data), and for the seven data combinations (see Methodology section). The 

models showed a high consistency between the calibration and validation datasets, with small differences in terms of R² and 

RMSE. This showed a great robustness of these models. For example, the model using multispectral, thermal and LiDAR data 

to predict Ψleaf_pred (Fig.5.c) has a R² = 0.80 and R² = 0.78 for the calibration and validation respectively, and a RMSE = 0.07 
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MPa and RMSE = 0.08 MPa for the same respective datasets. It is interesting to note that R² and RMSE respectively increase 470 

and decrease by adding information from different sensors to the model. For example, the predictive power of the model 

containing multispectral and thermal data is greater than the predictive power of the model constructed with multispectral data 

only. The best multiple linear model was the one containing information from all sensors, i.e., multispectral, thermal, and 

LiDAR data. We therefore used this model (model 1 in Table 5; Fig.5.c) to predict Ψleaf_pred at Bousval the 10/08/22, 20/07/23, 

10/08/23 and 06/09/23, and at Domaine W the 31/08/22, 20/07/23 and 06/09/23. Due to the technical problems not being able 475 

to obtain data from all sensors for certain dates (Table 2), we predicted Ψleaf_pred at Bousval the 27/07/22 and 31/08/22 by using 

the multiple linear model combining multispectral and LiDAR data (model 2 in Table 5; Fig.5.d); we used the multiple linear 

model combining thermal and LiDAR (model 3 in Table 5; Fig.5.e) to predict Ψleaf_pred at Domaine W the 10/08/22. Models 2 

and 3 in Table 5 are the most robust and have the best R² and RMSE for the data available at the respective dates and vineyards 

(Fig.5.a,b). In each model, the confidence interval on Ψleaf_pred increase with decreasing Ψleaf_pred (more negative Ψleaf_pred). The 480 

model 1, combining multispectral, thermal and LiDAR data (Fig.5.c), has the lowest uncertainty on the prediction of Ψleaf_pred 

, with a 95 % confidence interval (CI0.95) varying between 0.14 MPa (when Ψleaf_pred is high) and 0.28 MPa (when Ψleaf_pred is 

low). This is not surprising since this model has the highest predictive power (R²). Model 2 (Fig.5.d), combining multispectral 

and thermal data, shows a lower uncertainty (0.18 MPa <  CI0.95 < 0.36 MPa) than the model 3 (Fig.5.e), combining thermal 

and LiDAR data (0.20 < CI0.95 < 0.40). 485 

 

 

Table 5 – Vegetation index (VI), spectral bands or structural features, and regression weights (βi) and intercept (α) used in the 

different multiple linear regression models (equation 3) to predict Ψleaf (Ψleaf_pred). CI0.95 are 95 % confidence interval on the βi 

and α of each model; the p-value shows the significance of the variable (βi or α) in the model assuming that all other variables 490 

exist in the model (significance: p-value < 0.001***; p-value < 0.01**; p-value < 0.05*). Model 1 was constructed based on a 

combination of multispectral (M), thermal (T) and LiDAR (L) data; Model 2 was constructed based on a combination of 

multispectral (M) and LiDAR (L) data; Model 3 was constructed based on thermal (T) and LiDAR (L) data. The equations for 

calculating the VIs contained in each model are given in Table S1. 

  Vegetation index (VI), spectral bands or structural feature Intercept α 

  CLRedEdge CWSIb Blue CH RedEdge ARI GNDVI CST 

Model 1 

(M+T+L) 

βi 0.27 -0.49 8.40 0.28 0 0 0 0 -1.55 

CI0.95 [0.18;0.36] 
[-0.63;-

0.34] 
[4.46;12.35] [0.11;0.44] 0 0 0 0 

[-1.87;-

1.23] 

p-

value 
<0.001*** <0.001*** <0.001*** 0.006** / / / / <0.001*** 

Model 2 (M+L) 

βi 0.81 0 6.78 0.38 1.49 0.02 -3.32 0 -0.77 

CI0.95 [0.63;0.98] 0 [3.19;10.36] [0.22;0.54] [0.88;2.11] [0.01;0.03] 
[-4.47;-

2.17] 
0 

[-1.43;-

0.12] 
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p-

value 
<0.001*** / 0.04* <0.001*** <0.001*** 0.015* <0.001*** / 0.04* 

Model 3 (T+L) 

βi 0 -0.28 0 0.38 0 0 0 -0.011 -0.94 

CI0.95 0 
[-0.51;-

0.05] 
0 [0.22;0.54] 0 0 0 

[-0.017;-

0.005] 

[-1.20;-

0.68] 

p-

value 
/ 0.04* / <0.001*** / / / 0.002** <0.001*** 

 495 

 

In models 2 and 3 (Table 5), we retrieved the same VIs (CLRedEdge, CWSIb), spectral bands (blue) and structural features 

(canopy height CH) used to predict Ψleaf_pred in the model 1, showing consistency in the parameters used to estimate grapevine 

Ψleaf_pred. Multicollinearity between the predictors was controlled by calculating the Variance Inflation Factor (VIF). For each 

model, the VIFs were lower than 5 for each VI (Tables S2 to S4), suggesting low multicollinearity between them and enforcing 500 

the reliability of each model (James et al., 2021). This absence of multicollinearity between VIs shows that each predictor 

variable provides significant additional information in the prediction of Ψleaf_pred. This is confirmed by the partial regression 

plots (Fig.S6 to S8), showing that each VI used in each model has a significant influence on the prediction of Ψleaf_pred (p-value 

< 0.05). In the model 1, accounting for multispectral, thermal and LiDAR data, the partial correlations (R²) showed that the 

CLRedEdge and the CWSIb have the most significant influence on the prediction of Ψleaf (R² = 0.49 and R² = 0.56 respectively), 505 

while the blue band (R² = 0.21) and the canopy height (R² = 0.13) have less impact (Fig.S5). For the model 2 accounting for 

the multispectral and LiDAR data, CLRedEdge is also the VI influencing the most the prediction of Ψleaf_pred (R² = 0.47), while 

the other VIs have less impact (R² < 0.30) (Fig.S6).  CWSIb influenced the most Ψleaf_pred (R² = 0.37) for the model 3 accounting 

for the thermal and LiDAR data (Fig.S7). Regardless of the model, the VIs with the greatest influence on Ψleaf_pred are therefore 

the same (CLRedEdge and/or CWSIb). There is therefore a high consistency in the VIs, and in the explanatory power of each 510 

VI, for the prediction of Ψleaf_pred. 
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 515 

Figure 5 – (a) R² and (b) RMSE obtained by comparing measured Ψleaf (Ψleaf_meas) and predicted Ψleaf (Ψleaf_pred) by multiple 

linear models, for the different data combinations. (c, d, e) Relations between Ψleaf_meas and Ψleaf_pred for the three multiple linear 

models used in this study. The relationships were fitted with 95% confidence intervals (CI0.95
Ψleaf – shaded area). The relation 

in (c) was used to predict Ψleaf at Bousval the 10/08/22, 20/07/23, 10/08/23 and 06/09/23, and at Domaine W the 31/08/22, 

20/07/23 and 06/09/23, by using multispectral (M), thermal (T) and LiDAR (L) data; the relation in (d) was used to predict 520 

Ψleaf at Bousval the 27/07/22 and 31/08/22, by using multispectral (M) and LiDAR (L) data; the relation in (e) was used to 

predict Ψleaf at Domaine W the 10/08/22, by using thermal (T) and LiDAR (L) data.  

 

3.3 Leaf water potential mapping 

 525 

Ψleaf_pred maps (Fig.6.a), predicted with multiple regression model obtained with the stepwise regression method, showed a 

relatively constant pattern over time in both vineyards. At the Bousval vineyard, we observed more negative Ψleaf_pred in the 

western part of the plot. In the Domaine W vineyard, Ψleaf_pred was lower in the north-western plot than in the south-eastern 

plot. The spatial heterogeneity of Ψleaf_pred is much larger at Bousval than at Domaine W, particularly during the drought 

conditions in 2022 (Fig.7.a). For example, the 10/08/22 which was the driest day (Table 1), Ψleaf_pred was distributed between 530 

-0.52 MPa and -1.25 MPa at Bousval, but between -0.70 MPa and -0.97 MPa at Domaine W.  Although the ranges of Ψleaf_pred 

are different, for a same date, the median Ψleaf_pred (Ψleaf_pred_median) are similar (p-value < 0.05) in both vineyards, excepted for 
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the 20/07/23 for which Ψleaf_pred_median was slightly greater at Bousval (Ψleaf_pred_median = -0.50 MPa at Bousval; Ψleaf_pred_median = 

-0.54 MPa at Domaine W). Regarding the temporal dynamics, at Bousval Ψleaf_pred decreased between 27/07/22 (Ψleaf_pred_median 

= -0.74 MPa)  and 10/08/22 (Ψleaf_pred_median = -0.84 MPa), then re-increased the 31/08/22 (Ψleaf_pred_median = -0.76 MPa). We 535 

observed similar temporal dynamics at Domaine W, with a re-increase of Ψleaf_pred between the 10/08/22 (Ψleaf_pred_median = -0.83 

MPa) and 31/08/22 (Ψleaf_pred_median = -0.75 MPa). At Bousval, Ψleaf_pred_median are similar (p-value < 0.05) the 27/07/22 and 

10/08/22. In 2023, Ψleaf_pred decreased over the season, with Ψleaf_pred_median was -0.50 MPa and -0.54 MPa the 20/07/23 at 

Bousval and Domaine W respectively, and was -0.74 MPa and -0.73 MPa the 06/09/23 in the same respective vineyards. In 

both vineyard we observed similar Ψleaf_pred_median for the last date of 2022 and the last date of 2023 (Fig.7.a). 540 

 

The uncertainty on Ψleaf_pred (CI0.95
Ψleaf_pred), quantified by the 95 % confidence interval on the prediction (Fig.6.b) follows the 

same spatial pattern than predicted Ψleaf_pred (Fig.6.a), with greater uncertainty when Ψleaf_pred is more negative. The median 

value of the uncertainty (median CI0.95
Ψleaf_pred) seems also particularly affected by the model used (Table 5) to estimate Ψleaf_pred 

(Fig.6.c). Ψleaf_pred at Domaine W the 10/08/22 shows the greatest uncertainty with a median value of 0.28 MPa. This is not 545 

surprising since the model used to predict Ψleaf_pred at this date (model 3 in Table 5) only considers thermal and LiDAR data, 

and is the one showing the lowest predictive power (R²) and the greatest uncertainty (Fig.5.e). For the same date at Bousval, 

and for a same Ψleaf_pred_median (Fig.7.a), the uncertainty is significantly lower (median CI0.95
Ψleaf_pred = 0.22 MPa – Fig.6.c), since 

we used the model involving multispectral, thermal and LiDAR data to estimate Ψleaf_pred (model 1 in Table 5), which is the 

one showing the highest predictive power (R²) and the lowest uncertainty (Fig.5.c). Ψleaf_pred predicted with the model involving 550 

multispectral and LiDAR data (model 2 in Table 5) shows the second greater uncertainty, with a median value of 0.26 MPa at 

Bousval the 27/07/22 and 31/08/22. In both vineyards, the lowest uncertainty was the 20/07/23 (median CI0.95
Ψleaf_pred = 0.17 

MPa), for which we also predicted the highest Ψleaf. 

 

There is a high correlation between Ψleaf_pred_median and the range of Ψleaf_pred (Ψleaf_pred_max - Ψleaf_pred_min) with a R² = 0.97 at 555 

Bousval, and R² = 0.94 at Domaine W (Fig.7.b). The range of Ψleaf_pred increased when Ψleaf_pred_median decreased. These relations 

are vineyard-specific (p-value of ANCOVA test is lower than 0.05). The slope of the linear relation between Ψleaf_pred_median and 

distribution of Ψleaf_pred is significantly greater at Bousval (slope = -1.38) than at Domaine W (slope = -0.31).  

 

 560 
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Figure 6 – (a) Maps of Ψleaf predicted (Ψleaf_pred) with multiple linear regression model in both vineyards. (b) Maps of 565 

uncertainty on Ψleaf_pred, quantified by the 95 % confidence interval on the prediction (CI0.95
Ψleaf_pred). Ψleaf_pred at Bousval the 

10/08/22, 20/07/23, 10/08/23 and 06/09/23, and at Domaine W the 31/08/22, 20/07/23 and 06/09/23 was predicted with the 

model involving multispectral, thermal and LiDAR data (model 1 in Table 5); Ψleaf_pred at Bousval the 27/07/22 and 31/08/22 

was predicted with the model involving multispectral and LiDAR data (model 2 in Table 5); Ψleaf_pred at Domaine W the 

10/08/22 was predicted with the model involving thermal and LiDAR data (model 3 in Table 5). (c) Relation between Ψleaf_pred 570 

and CI0.95
Ψleaf_pred. The points correspond to the median, and the horizontal and vertical bars show respectively the quartiles 

around Ψleaf_pred and CI0.95
Ψleaf_pred. The dashed black line is the linear regression; the slope of this regression is different from 

0 (p-value < 0.001). 

 

 575 
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Figure 7 – (a) Boxplots indicating the median and quartiles, minimum and maximum of the spatial distribution of the predicted 

Ψleaf (Ψleaf_pred). The letters above each boxplot are the results of the Wilcoxon tests; a same letter indicate a statistically similar 580 

(p-value > 0.05) median. (b) Relation between the median Ψleaf_pred (Ψleaf_pred_median) and the distribution of Ψleaf_pred (Ψleaf_pred_max 

- Ψleaf_pred_min). The horizontal bars are the median CI0.95
Ψleaf_pred (median uncertainty) on Ψleaf_pred_median.  

 

 

3.4 Environmental factors influencing spatial distribution of leaf water potential 585 

 

At Bousval, Ψleaf_pred was the most correlated with the averaged soil hydraulic conductivity on 2.5 m depth K̃soil (Fig.8). The 

correlation was better in 2022 than in 2023, with the best correlation the 10/08/22 (R² = 0.81), the driest day (Table 1). The 
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water holding capacity on 2.5 m depth (WHC) is less correlated with Ψleaf_pred, however we also find the best correlation the 

10/08/22 (R² = 0.67). At Bousval, the elevation was moderately correlated with Ψleaf_pred, particularly in 2022 (e.g. R² = 0.42 590 

the 10/08/22). This is not surprising since the interface between the loamy and sandy soil horizons is shallower in the upper 

part of the parcel (western part) and deeper in the lower part due to an accumulation of loamy colluviums (Fig.1.c). However, 

the correlation between Ψleaf_pred and elevation is lower than the correlation between Ψleaf_pred and K̃soil, and between Ψleaf_pred 

and WHC, showing that soil properties have a greater influence on the spatial distribution of Ψleaf_pred than the elevation. The 

slope showed the lowest correlation with Ψleaf_pred (maximum R² = 0.15 the 31/08/22). It is interesting to note that the 20/07/23, 595 

the correlation between Ψleaf_pred and all topographic and soil properties is low (e.g. R² = 0.24 between Ψleaf_pred and K̃soil). At 

Domaine W, the slope and elevation showed a low correlation with Ψleaf_pred. The maximum R² between Ψleaf_pred and slope 

was 0.09, and was 0.24 between Ψleaf_pred and elevation both the 20/07/23. These low correlations are not surprising since this 

vineyard is almost flat (Fig.1.g). 

 600 

 

 

Figure 8 – Coefficient of determination (R²) of the linear relation between predicted Ψleaf (Ψleaf_pred) and elevation, between 

Ψleaf_pred and slope, between Ψleaf_pred and the water holding capacity on 2.5 m (WHC – only at the Château de Bousval 

vineyard), and between the averaged soil hydraulic conductivity (K̃soil – only at the Château de Bousval vineyard). 605 

 

 

 



25 

 

 

As shown in Fig.7.b, the slope of the linear relation between  Ψleaf_pred_median and distribution of Ψleaf_pred is significantly greater 610 

at Bousval than at Domaine W,  showing that environmental conditions at Bousval are much more heterogeneous (i.e. 

heterogeneity of soil properties), which is reflected in a larger range of distribution of Ψleaf, particularly when conditions are 

drier. In this study, we quantified the water deficit thanks to the standardized precipitation evapotranspiration index (SPEI – 

equation 1). More negative SPEI indicates a greater water deficit. We also used VPD to characterize the atmospheric conditions 

and quantify the evaporative demand. Ψleaf_pred_median is highly correlated (R² = 0.82) with the linear combination of SPEI and 615 

VPD (Fig.9.a). Interestingly, this relation is not vineyard specific (p-value of ANCOVA test is greater than 0.05). Ψleaf_pred_median 

is positively correlated with SPEI (regression coefficient a in equation 4 is 0.001) and negatively correlated with VPD 

(regression coefficient b in equation 4 is -0.13). This means that Ψleaf_pred_median decreases when SPEI decreases and when VPD 

increases. In other words, the median Ψleaf in a vineyard is more negative for greater water deficit (SPEI) and evaporative 

demand (VPD). The distribution of Ψleaf_pred (Ψleaf_pred_max - Ψleaf_pred_min) is also correlated (R² = 0.54) with the linear 620 

combination of SPEI and VPD (Fig.9.b). This relation, unlike the one with Ψleaf_pred_median, is vineyard-specific (p-value of 

ANCOVA test is lower than 0.05). The distribution of Ψleaf_pred is negatively correlated with SPEI (regression coefficient a in 

equation 5 is -0.001) and positively correlated with VPD (regression coefficient b in equation 5 is 0.08). This means that the 

range of distribution of Ψleaf_pred increases when SPEI decreases and VPD increases. In other words, in a vineyard, the spatial 

heterogeneity of Ψleaf is more important for greater water deficit (SPEI) and evaporative demand (VPD). 625 

 

 

 

Figure 9 – (a) Relation between median Ψleaf_pred (Ψleaf_pred_median) and the linear combination of SPEI and VPD (equation 4 – 

a = 0.001; b = -0.13; c = -0.26). (b) Relation between the distribution of Ψleaf_pred (Ψleaf_pred_max - Ψleaf_pred_min) and the linear 630 

combination of SPEI and VPD (equation 5 – a = -0.001; b = 0.08; c = -0.17). In each subplot, the brown lines are the linear 
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regressions on the brown circles; the blue lines are the linear regressions on the blue triangles; the black lines are the linear 

regressions on all points; the dashed grey lines are the 1:1 lines. 

 

4 Discussion 635 

 

In this study, we attempted to map grapevine leaf water potential (Ψleaf) intra-field heterogeneity, to assess the impact of 

topographic, edaphic and climatic conditions on the spatial distribution of Ψleaf. Our study demonstrated that multilinear 

combination of multispectral VIs, thermal VIs and structural features from LiDAR data, collected with UAS collecting high-

spatial resolution imagery, is efficient (R² = 0.80 and RMSE = 0.07 MPa for the calibration; R² = 0.78 and RMSE = 0.08 MPa 640 

for the validation) to capture the spatial distribution of grapevine Ψleaf across different vineyards during two viticultural 

seasons. We showed that the heterogeneity of edaphic conditions has the greatest influence on the spatial heterogeneity of 

Ψleaf, particularly when the water deficit and evaporative demand increase. 

 

4.1 Discrimination between grapevine canopy and inter-row pixels 645 

 

The k-means algorithm, which is a standard and well-known unsupervised method for classification, is regularly and efficiently 

applied on multispectral UAS data to discriminate between the grapevine (or other row-crop cultivations) rows and bare soil 

inter-rows of a vineyard (Calvario et al., 2017; Cinat et al., 2019; Gavrilović et al., 2024). In vineyards with inter-row 

vegetation (i.e., grass), segmentation tasks become more challenging. This complexity arises because the spectral signature of 650 

such vegetation often closely resembles that of grapevine canopy, making differentiation difficult and leading to overestimation 

or underestimation of grapevine pixels (Nolan et al., 2015). Relying solely on multispectral data is insufficient for 

distinguishing between grapevine and grass pixels when using the k-means algorithm (Poblete-Echeverría et al., 2017). In this 

study, we discriminated the grapevine canopy and inter-row soil and grass pixels, using the k-means algorithm, by first 

applying the algorithm on the canopy height, derived from the LiDAR data, to get a first raw distinction between rows 655 

(grapevine) and inter-rows (grass and soil). We then applied it a second time on the multispectral data to get a finer 

discrimination and to extract only pure grapevine canopy pixels, with a spatial resolution of 7 cm x 7 cm, which is almost 

similar to other recent studies (Berry et al., 2024; Laroche-Pinel et al., 2024). Integrating additional data sources, such as 

structural (LiDAR), likely improved classification accuracy with the k-means algorithm. Other studies highlighted a best 

performance in the detection of grapevine canopy when using complemented unsupervised method and/or data sources 660 

(Poblete-Echeverría et al., 2017). Other methods to discriminate rows and inter-rows, such as Artificial Neural Network or 

Random Forest, could delivered satisfactory results, but their accuracy depends on proper training. This requires creating a 



27 

 

manually labelled dataset to calibrate the models effectively. Additionally, these both supervised methods involve numerous 

parameters that must be carefully tuned to optimize performance, and demand more computational (Nolan et al., 2015; Poblete-

Echeverría et al., 2017). 665 

 

4.2 Leaf water potential prediction with a combination of multispectral, thermal and LiDAR UAS-data 

 

We used the stepwise regression method to find the best multilinear regression to predict Ψleaf with several UAS-based 

multispectral VIs, thermal VIs and structural features (LiDAR) measured on grapevines (Wilkinson, 1979). The univariable 670 

linear relation between measured Ψleaf and VIs (Pearson’s ρ > Spearman’s ρ – Fig.S3.b) justifies the use of this statistical 

method to better predict Ψleaf . Other statistical methods could also be used to predict Ψleaf, such as principal component 

regression (PCR) or random forest. To support our approach (stepwise regression), we also implemented the PCR and random 

forest methods (Fig.S4). However, while the random forest models gave the highest R² and lowest RMSE for the calibration 

dataset, there was a great loss of predictive power when we validated the model (R² decreased and RMSE increased). This 675 

showed some evidence of model overfitting, affecting the robustness of the model constructed with the random forest. 

Generally, the R² and RMSE were respectively higher and lower for the stepwise regression model compared to the PCR 

model. The stepwise regression method showed therefore more robustness than the random forest method when we validated 

models, and a better predictive power compared to PCR (Fig.S8). Other studies using random forest or artificial neural 

networks to predict Ψleaf with UAS-based multispectral VIs lost predictive power when they validated their model, showing 680 

that the model structure was overfitted (Poblete et al., 2017; Romero et al., 2018; Tang et al., 2022). Our analysis highlighted 

the importance of incorporating multispectral, thermal and LiDAR data to improve the prediction of Ψleaf. The use of data from 

different sensors also makes it possible to limit the uncertainty on Ψleaf (Fig.5). Tang et al. (2022) already mentioned that data 

combination from multiple sensors acquiring data in different regions of the electromagnetic spectrum will allow mapping 

Ψleaf with more accuracy. In our model, the multispectral VI CLRedEdge (calculated based on the NIR and red-edge bands), 685 

the reflectance in the blue band, the thermal VI CWSIb, and the canopy height (CH) all significantly influence Ψleaf and are 

used in the multilinear regression to predict it (model 1 in Table 5). It is interesting to note that these indices, bands and features 

are also used in the models for which only multispectral and LiDAR data (model 2 in Table 5), or thermal and LiDAR data 

(model 3 in Table 5) are used to predict Ψleaf. Although they are not significantly correlated with measured Ψleaf when taken 

one by one (Fig.4), information contained in these indices is complementary and their combinations enables Ψleaf to be 690 

predicted with high predictive power (e.g. R² = 0.80 and RMSE = 0.07 MPa for calibration, and R² = 0.78 and RMSE = 0.08 

MPa for calibration, for model 1). It is not required to discard VIs which are not directly correlated with Ψleaf, since multilinear 

modelling techniques can identify the patterns in the data and assign individual weights to inputs, allowing multilinear models 

to fit accordingly (Romero et al., 2018). NIR and red-edge spectral regions, used to calculate CLRedEdge, have already been 

investigated to predict vegetation water potential (Giovos et al., 2021; Pôças et al., 2015; Soubry et al., 2017; Zygielbaum et 695 
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al., 2009). Although these bands, and derived VIs, are commonly associated with plant structural traits (e.g., biomass, vigour), 

red-edge region is often used as a reference to detect chlorophyll content on vegetation (Clevers and Gitelson, 2013; Gamon 

and Surfus, 1999; Rallo et al., 2014). Plant water status is indicative and closely related to chlorophyll content, as changes in 

this pigment content induce changes in leaf spectral properties in the red-edge region (Carter and Knapp, 2001). NIR 

electromagnetic region has also been shown to be affected by leaf structure and leaf water content of grapevine (De Bei et al., 700 

2011; Marañón et al., 2023; Tardaguila et al., 2017). VIs calculated based on NIR and red-edge bands, such as CLRedEdge, 

have good potential to quantify grapevine water potential (Becker et al., 2020; Giovos et al., 2021). Additionally, bands in the 

visible domain, such as the blue band, can provide valuable information about plant water status, as pigment contents and 

composition govern reflectance in this domain (Gamon et al., 1992; Moya et al., 2004) and are related to processes associated 

with grapevine water status (Zarco-Tejada et al., 2013). Blue wavelengths are strongly absorbed by carotenoids (carotenes and 705 

xanthophylls). These pigments, and their proportion, also serve as indicators of plant water status (Gitelson et al., 2006). 

Moreover, the blue reflectance enable atmospheric corrections and allow for a more linear relationship with vegetation status 

(Gitelson et al., 2002). Thermal VIs, also provide information on grapevine water status. Strong relationships have been found 

between CWSI and stomatal conductance of grapevine (Pagay and Kidman, 2019; Pou et al., 2014), which is directly linked 

(non-linearly) to Ψleaf. During drought, grapevines close stomata to prevent the plant from reaching excessively negative water 710 

potentials leading to xylem cavitation (Gambetta et al., 2020). Stomatal closure can also induce lower grapevine growth, by 

reducing photosynthesis (Dry and Loveys, 1998). This could explain why canopy height (CH), retrieved with LiDAR point 

clouds, is also used to predict Ψleaf. García-Tejera et al. (2021) showed that changes in plant canopy structure, including canopy 

height and width, influence the water flow between the soil and the atmosphere, thereby affecting Ψleaf. Thermal remote sensing 

metrics provide short term information on grapevine water status, such as Ψleaf or stomatal conductance variations (Acevedo-715 

Opazo et al., 2010; Santesteban et al., 2017), while multispectral VIs and structural features (LiDAR) reveal mid-to-long-term 

water status effect on grapevine structure and traits like leaf pigment content (Baluja et al., 2012; Zarco-Tejada et al., 2013). 

The three approaches (multispectral, thermal and LiDAR) therefore provide complementary information and their multilinear 

combinations, through VIs and structural features, allow the accurate and robust assessment of intra-field variability of 

grapevine leaf water potential, thanks to high-spatial resolution sensors mounted on UAS. 720 

  

Other sensors could also be tested and used to spatially monitor grapevine Ψleaf. Adding information from more and narrower 

spectral bands, collected with hyperspectral sensors, could improve the capability to remotely monitor grapevine Ψleaf (Pôças 

et al., 2015; Tang et al., 2022). Studies using hyperspectral sensors to measure plant water potential generally get higher 

correlations than studies using multispectral sensors (Pôças et al., 2015; Rodríguez-Pérez et al., 2007; Zarco-Tejada et al., 725 

2013). For example, the photochemical reflectance index (PRI, calculated with spectral reflectance at 545 nm and 567 nm) is 

a good indicator (R² between 0.5 and 0.6) of crop water status (Stagakis et al., 2012; Suárez et al., 2008). Zarco-Tejada et al. 

(2013) even obtained a better correlation (R² = 0.82) in vineyards by combining PRI with other hyperspectral VIs, such as the 

renormalized difference vegetation index (RDVI, based on reflectance at 700 nm and 761 nm) and the ratio R700/R670 (based 
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on reflectance at 670 nm and 700 nm), highlighting that the combination of several VIs brings complementary information to 730 

better estimate leaf water potential of grapevine. Short-wave infrared (SWIR) data (1000-2200 nm) also has a good potential 

to monitor grapevine water status, since this spectral range contains the water absorption bands (Laroche-Pinel et al., 2021a). 

VIs calculated with SWIR bands, such as the normalized drought water index (NDWI) (Gao, 1996), showed good correlations 

(R² = 0.58) with grapevine Ψleaf (Caruso and Palai, 2023).  

 735 

4.3 Intra-field variability of grapevine leaf water potential 

 

We observed a good stability in Ψleaf pattern for each date, in both vineyards (Fig.6.a). At the Domaine W vineyard, the spatial 

heterogeneity of Ψleaf is less marked than at the Bousval vineyard. For example, the 10/08/22 (driest day), although median 

Ψleaf was similar in both vineyards, range of distribution of Ψleaf was 0.73 MPa at Bousval, but only 0.27 MPa at Domaine W. 740 

The magnitude of variation Ψleaf at the within field level predicted at Bousval is consistent with other studies. Brillante et al. 

(2017a) also observed a difference of 0.70 MPa between maximum and minimum Ψleaf within a vineyard in California. They 

hypothesized, without directly proving it, that this variability was due to the short distance differences of soil properties in the 

vineyard. Tang et al. (2022) observed a spatial variability up to 0.67 MPa, but this was due to differences in irrigation treatment 

in a vineyard with gravelly loam soil. At Bousval, the spatial distribution of Ψleaf is highly correlated (Fig.8 – R² up to 0.81) 745 

with an averaged soil hydraulic conductivity K̃soil. In this vineyard, Ψleaf was significantly more negative in the western part 

of the plot, where the interface between the loamy soil and the sandy subsoil is more superficial, compared to the eastern part 

where the loamy soil is clearly deeper. Grapevine water potential is significantly influenced by the soil texture. It is well known 

that the soil water potential around the roots affects Ψleaf, since the difference between both water potentials is the driving force 

for transpiration (Tyree and Zimmermann, 2002). The soil water potential in the vicinity of the roots decreases as the plant 750 

takes up water, resulting in a significant loss of soil hydraulic conductivity around the roots (Cai et al., 2022). This reduction 

of hydraulic conductivity generates large gradients in soil water potential at the vicinity of the roots, leading to a significant 

drop of Ψleaf to support a slight increase in transpiration (Carminati and Javaux, 2020). The soil texture determines soil 

hydraulic properties, thereby influencing grapevine hydraulics (Lavoie-Lamoureux et al., 2017; Tramontini et al., 2013). 

Therefore, in a sandy soil, the decline in soil hydraulic conductivity around the roots is sharper than in a fine-textured soil, 755 

leading to a significantly greater reduction of water potential at the soil-root interface, which directly impacts Ψleaf which also 

decreases more rapidly (Cai et al., 2022). In soil-water limited conditions, such as in 2022 (Fig.S1), we can assume that soil 

hydraulic conductivity drop is larger in the western part of the Bousval vineyard, where most of the grapevine roots are found 

in the sandy subsoil (Delval et al., 2024a), leading to a greater drop of soil-root interface water potential and consequently to 

a larger decline of Ψleaf. We can therefore affirm that in a non-irrigated vineyard, the edaphic heterogeneity (i.e. in terms of 760 

soil hydraulic conductivity) governs the spatial heterogeneity (and patterns) of grapevine Ψleaf, particularly during drought. At 

the Domaine W vineyard, we always predicted lower Ψleaf in the north-west parcel than in the south-east plot. We observed, 
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but only in a single location in each subplot, that the north-west parcel is made of a silty loam soil on the first horizons and 

silty clay loam soil thereafter, while the south-east parcel is composed by a silty loam soil on the whole profile (Fig.1.h). 

Although the vertical distribution of soil texture is not accurately known in the whole field, we could assume that this spatial 765 

difference of soil properties has an influence on the spatial heterogeneity of Ψleaf, since other factors such as the elevation (R² 

= 0.24) and the slope (R² = 0.09) have low correlation with the spatial distribution of Ψleaf (Fig.8). However, other studies 

comparing loamy and loamy clay soils showed only a moderate effect on grapevine Ψleaf (Brillante et al., 2017b), explaining 

the lower range of Ψleaf observed in this vineyard. Other factors could potentially influence the spatial distribution of Ψleaf at 

the Domaine W. For example, in this vineyard, the level of the water table is higher in the south-eastern parcel, due to the 770 

stream running parallel to the plot (Fig.S1.c). It has been observed that this water table reach the roots, and water consumed 

by the grapevines is therefore certainly replaced by vertical soil-water movements (capillary rises) (Van Leeuwen et al., 2018). 

The presence of a water table within the reach of the roots prevent or mitigate decrease of Ψleaf (Tramontini et al., 2013). 

Further investigations should be done to better understand the spatial heterogeneity of Ψleaf in the Domaine W vineyard. 

 775 

We showed that the linear combination of SPEI and VPD was correlated with the median (Ψleaf_median – R² = 0.82) and the 

range (Ψleaf_max - Ψleaf_min – R² = 0.54) of leaf water potential (Fig.9). In a vineyard, the Ψleaf_median is more negative when the 

water deficit and the evaporative demand is greater (i.e. respectively when SPEI is lower and VPD is higher). Interestingly, 

we showed that this relation was independent of the vineyard (p-value > 0.05). The range of Ψleaf is more important for greater 

water deficit and evaporative demand. This relation was vineyard-dependent (p-value < 0.05). While the edaphic heterogeneity 780 

can explain the Ψleaf spatial heterogeneity observed within a vineyard, the median and range of Ψleaf are particularly affected 

by the weather conditions (i.e. evaporative demand) and the intensity of water deficit. When evaporative demand and/or water 

deficit are greater, the spatial heterogeneity of Ψleaf is particularly marked, and follows K̃soil intra-field patterns. Therefore, 

weather conditions also have a great influence on the temporal variability of Ψleaf  (Brillante et al., 2017a). The impact of 

weather conditions on Ψleaf can explain why we observed a re-increase of Ψleaf_median between the 10/08/22 and 31/08/22 in 785 

both vineyards, since VPD on 10/08/22 was significantly higher than VPD on 31/08/22. Plants exposed to a higher evaporative 

demand experience a greater loss in water potential at the soil-root interface, resulting in more negative Ψleaf. Conversely, for 

grapevines exposed to lower VPD, the drop in Ψleaf is more limited since the water potential at the soil-root interface is higher 

(Cai et al., 2022; Carminati and Javaux, 2020). Spatial soil properties distribution, weather conditions and intensity of water 

deficit mainly influence grapevine leaf water potential heterogeneity, and the median and range of Ψleaf observed in a vineyard, 790 

and their effects are concomitants (Van Leeuwen et al., 2018).  

 

It is interesting to note that the 20/07/23, Ψleaf is relatively homogeneous within both vineyards  and its distribution (Ψleaf_max - 

Ψleaf_min) is therefore low (Fig.7.a). At Bousval, Ψleaf was still slightly lower in the western part of the parcel, but the difference 

was significantly less marked compared to the other dates (Fig.6). Same observations can be made at Domaine W, with slightly 795 

more negative Ψleaf in the north-western plot, but a less marked variability compared to other dates. The 20/07/23, the soil was 
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the wettest ever measured for this study (Fig.S1), as well as the water deficit (SPEI) and the evaporative demand was the 

lowest among all dates (Table 1). In non-limiting soil conditions, water flow is primarily governed by plant hydraulic 

conductance, instead of soil hydraulic conductivity, even in sandy soils (Draye et al., 2010; Passioura, 1980). Therefore, plant 

hydraulic conductance mainly affects leaf water potential distribution in these conditions. Although it is well-known that 800 

edaphic conditions influence grapevine hydraulic conductance (Tramontini et al., 2013), notably through their impact on xylem 

(Hochberg et al., 2015), root (Ollat et al., 2015) and canopy (Pereyra et al., 2023) architecture, we can assume that the within-

field grapevine hydraulic conductance is significantly less heterogenous than within-field soil hydraulic conductivity. This is 

not surprising since in this study, for a given vineyard, we only worked on one cultivar-rootstock combination. Although some 

studies highlighted the predominance of the soil effect on grapevine water potential (Taylor et al., 2010; Tramontini et al., 805 

2013), it would be interesting to carry out research to understand how, within a same vineyard with different cultivar-rootstock 

combinations, this affects the range of within-field Ψleaf. 

 

Other studies showed that topographic attributes, such as slope and elevation, could also impact grapevine performance 

(Bramley et al., 2011; Karn et al., 2024). In this study, we only observed a maximum R² = 0.13 and R² = 0.54 respectively 810 

between Ψleaf and slope, and between Ψleaf and elevation. This is consistent with Brillante et al. (2017a) who showed that slope 

and elevation differences are less significantly related to grapevine water status heterogeneity in vineyards with moderate or 

no slope, which is the case in the present study. It has been shown that topographic attributes have a real influence on grapevines 

for vineyards with steep slopes (Brillante et al., 2017b).  

 815 

 

5 Conclusion 

 

We aimed to accurately map the grapevine leaf water potential (Ψleaf) within non-irrigated vineyards and assess the impact of 

edaphic, topographic and climatic conditions on the Ψleaf intra-field heterogeneity. We combined UAS-based multispectral, 820 

thermal and LiDAR data to spatially predict grapevine Ψleaf. The data provided by different sensors acquiring data in different 

regions of the electromagnetic spectrum brought complementary information on grapevine water status and allowed the 

development of a robust and high-predictive power model (R² = 0.80 and RMSE = 0.07 MPa for the calibration; R² = 0.78 and 

RMSE = 0.08 MPa for the validation) to estimate grapevine Ψleaf in two vineyards, during two viticultural seasons. While 

thermal VIs (e.g. CWSI) provide short term information, such as Ψleaf variations, multispectral (e.g. CLRedEdge and blue 825 

reflectance band) and LiDAR (from which we can derived grapevine structural features) data are associated to mid-to-long 

term water status effect on grapevine structure (e.g. canopy height) and traits like leaf pigment content. Our results provided 

evidence that in non-irrigated vineyards, grapevine water status is highly variable within a vineyard, up to 0.73 MPa. This 
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spatial distribution of Ψleaf is mainly governed by the within-vineyard soil hydraulic conductivity heterogeneity, and is 

particularly marked when the evaporative demand and the water deficit are greater, since the range of Ψleaf increases in these 830 

conditions. Knowledge of spatial variability of grapevine water status, through grapevine Ψleaf, could help winegrowers to 

accurately optimize the viticultural management during the different phenological stages of the grapevine. Although promising, 

our results are limited to one grapevine cultivar (cv. Chardonnay) and two vineyards. To further improve the robustness and 

reliability of the method used in this study, additional UAS observations should be done to represent a broader range of 

cultivars, rootstocks, management systems and environmental conditions, to examine how other viticultural factors may affect 835 

grapevine Ψleaf spatial heterogeneity. Moreover, accurate spatialized information of grapevine Ψleaf could be used in functional-

structural grapevine models (Yang et al., 2023) to predict berry growth and quality (i.e. sugar content) and its variation at the 

field scale. 
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