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Abstract. This review of recent advances in biosphere research aims to provide information on selected issues related to

changes in biodiversity, ecosystem functioning, social and economic interactions with ecosystems, and the impacts of climate

change on the biosphere. An interdisciplinary panel of experts selected eight topics from a public survey based on relevance

and scientific evidence that have the potential to guide future actions as well as inspire future research questions. Our focus is

on the interactions between climate, biosphere and society, and on strategies to sustain, restore or promote ecosystems and their5

services. The themes focus on innovative opportunities for coastal habitats, forests linkages to droughts, and increase of fire

risks. We further discuss nature-based CDR implementation risks, and the share of (semi-) natural habitats in the landscape.

Finally we highlight the improtance of comprehensive international policy packages, the social-economic value of ecosystems

in the future and present the idea of convivial conservation. Analysing the offered solutions of the eight topcis we synthesis four

central insights: (i) Improve mechanisms of inclusive decision making, (ii) establish and strengthen incentives for sustainable10

practices, (iii) measure and share regional features and finally (iv) adopt long lasting holistic landscape management strategies.

This review emphasises that the interlinked challenges for ecosystems, including the socio-economic dimensions, require

interdisciplinary and integrative approaches to develop effective and sustainable solutions.

1 Introduction

The dynamics and diversity of life on Earth as we know it and its role in the Earth system are increasingly under threat as15

human activities have changed and continue to change the planet in unprecedented ways. (Watson et al., 2019; Ripple et al.,

2023; Rockström et al., 2023; Crutzen, 2006; Stubbins et al., 2021; Cowie et al., 2022; Friedlingstein et al., 2023). As we

are entering uncharted territories, it is critical that we use scientific evidence as a foundation for decision-making, taking into

account the interrelationships within the complex Earth system. The science has been clear for years on the need to significantly

cut greenhouse gas emissions, halt biodiversity loss, reduce chemical pollution, and manage ecosystems sustainably to ensure20

a livable planet (Hill, 2020; Jaureguiberry et al., 2022; Meinshausen et al., 2022). The intertwined crises of climate change,

pollution, and biodiversity loss have their nexus in the biosphere, as all these crises impact natural processes that support life

quality, livelihoods, and economies, and thus creating a comprehensive Earth system crisis that threatens human well-being

(Pörtner et al., 2021b, 2023).

There is growing recognition from governments and business actors that our economies need to take full account of the25

impacts on nature and rebalance our demands of resources (Dasgupta and Treasury, 2022; TNDF, 2023). A whole-of-society

perspective is needed, as scholars also highlight that fair and just transformations are crucial to reach the global sustainability

goals for climate and biodiversity in the areas of food supply, energy and material systems and thus ensuring human well-being

in the long term. (Griggs et al., 2013; Leach et al., 2018; Martin et al., 2020; Folke et al., 2021; Pickering et al., 2022; Obura

et al., 2023; McDermott et al., 2023; Schlesier et al., 2024). This first report and future reports in this series are intended to30
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support decision-making processes in the coming years by summarizing selected recent findings from biosphere research, thus

supplementing existing reports and bridging the gap until the next comprehensive assessment reports are published.

The Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science and Policy Platform on Biodi-

versity and Ecosystem Services (IPBES) were established to summarize the state of the science on climate change, biodiversity

and ecosystem services for policy-makers and thus provide a basis for science-based decision-making. Their reports compre-35

hensively inform stakeholders and decision-makers about the scientific understanding of climate change and biodiversity loss,

its impacts, risks and solutions, and the progress of climate action under international pledges and agreements (e.g., IPBES,

2019; IPCC, 2021, 2022a, 2023). However, given the thematic breadth and procedural requirements, IPCC and IPBES as-

sessments take several years to complete. For example, more than eight years elapsed between the publication of the IPCC

Assessment Report (AR5) and AR6 Synthesis Report (Pachauri et al., 2014; Lee et al., 2023). The first global IPBES assess-40

ment report was published in 2019 (IPBES, 2019), and the second global assessment report is scheduled to be completed in

2028. In addition, major reports provide scientific insights with a considerable time lag. For example, the AR6 Synthesis Re-

port was published in 2023. Still, the cut-off date for the scientific literature reviewed by the three working groups was more

than two years earlier . Hence negotiators and decision-makers profit from additional authoritative syntheses and summaries of

recent scientific advances relevant to decision-making in the multi-year intervals between these major global reports.45

The IPCC and IPBES regularly publish reports on specific aspects of climate change, biodiversity and nature (known as

Special Reports). Such reports summarize scientific knowledge related to that aspect from several disciplines, but these reports

are not updated after some years and hence get outdated over time. In addition to these special reports, many scientists have

published summaries on a wide range of topics under the heading "Scientists’ Warning".(e.g. Cavicchioli et al., 2019; Pyšek

et al., 2020; Ripple et al., 2020). Additionally, there are regular reports like the State of the Global Climate and the Global50

Carbon Budget (e.g., Pörtner et al., 2019; 2024, 2024; Le Quéré et al., 2013; Friedlingstein et al., 2023) and more recently

the State of Wildfires (Jones et al., 2024). Further, FAO publications such as the State of the World’s Forests and the State of

Agricultural Commodity Markets report on biodiversity loss and ecosystem services (e.g., IPBES, 2023; FAO, 2022a, b). In

addition to these reports at international level, there is also a plethora of regular national reports on various aspects of the crisis

in the Earth system. These well-recognized reports update diagnostic indicators and measures familiar to those involved in or55

following corresponding negotiations. Due to their specific focus on certain topics and indicators, these reports sometimes lack

the interdisciplinary perspective that can be observed in the above-mentioned Special Reports of IPCC and IPBES. The "10

New Insights in Climate Science" reports address many of the challenges mentioned above, focusing on new findings from

recent climate-related research. They are published annually and contains contributions from various disciplines (e.g. Martin

et al., 2022; Bustamante et al., 2023). This series should be complemented by similar reports from other research areas related60

to the Earth system crisis.

Given the lack of such an integrative, annually published report focused on issues related to the biosphere, this publication

summarizes recent advances in this field of research by addressing biosphere related challenges and bridging the time between

the comprehensive assessment reports of IPCC and IPBES. Here, we define the biosphere as the global ecological system that

includes all living organisms and their interactions. We have also integrated social and economic links to the biosphere. In65
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doing so, it crosses the boundaries of the established sciences to provide an interdisciplinary view of the biosphere. Further, it

will not be about repeating well-known findings such as drastically reducing fossil fuel emissions from all sectors, the biggest

lever in the fight against climate change. Instead, this international collaboration aims to inform stakeholders and decision-

makers about the latest policy-relevant, peer-reviewed, biosphere-related research findings. We further hope that it may inspire

scientists to develop interdisciplinary questions and holistic solutions to pressing problems linking biosphere research, which70

includes biodiversity issues, to climate change and other anthropogenic stressorson the one hand and social and economic

research areas on the other (e.g. Mahecha et al., 2024).

Here, we present eight recent and significant findings from biosphere research, based predominantly from peer-reviewed

literature published since January 2022. Our topics present background information as well as challenges, and offer strategies

for maintaining vivid ecosystems or enhancing degraded ecosystems and their services to human society. In addition, these75

topcis are gaining traction in the scientific community and stimulate future research questions. For each topic, not only the key

findings are presented, but also the links and implications for related topics are emphasized, contributing to a comprehensive

understanding of processes in the biosphere and their interactions with human systems.

We note that threats to coastal habitats (section 3.1), changes in the hydrological cycle due to changes in forest cover

(section 3.2), and shifts in fire regimes (section 3.3) pose significant societal challenges that require transboundary cooperation80

for efficient and fair resource allocation and distribution. Climate change mitigation is expected to reduce many of these risks

and associated costs . The effectiveness and risks of nature-based carbon dioxide removal is discussed in section 3.4 . In this

context, adequate conservation measures in human-modified landscapes are key to maintaining nature’s contribution to people

(section 3.5). At the international level, interconnected and comprehensive policy packages are needed to address the root

causes of environmental degradation and revitalize a just human-nature relationship (section 3.6). In the future, the socio-85

economic value of ecosystems will increase with rising real market incomes and the changing scarcities of ecosystems (section

3.7) For the local and regional level, we present convivial conservation principles which as aguiding strategy for coexisting

with biodiversity within planetary boundaries (section 3.8).

With this study, we hope to raise awareness of the various challenges within the biosphere - emphasising links across

environmental and socio-economic domains - and their interlinkages with other crises within the Earth system, to provide90

synergistic strategies for addressing complex challenges, and to stimulate future research questions.

2 Method

We followed a similar methodology to that used for the "10 new insights in climate change" (Martin et al., 2022). First, we set

up an editorial board of experts from different fields of ecology, sociology and economics. Meanwhile, we issued an open call

inviting the scientific community to submit thematic proposals for this review based on peer-reviewed publications not older95

than January 2022. The call for proposals (see Appendix A) was disseminated through social media, mailing lists and individual

invitations. Despite our efforts to achieve global outreach, we anticipate that we may not have reached some important groups

or that they may have chosen not to respond. Hence, this first synthesis has to be seen as a preliminary effort with caveats that
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Figure 1. Origin of the authors from the geopolitical regional groups of member states of the United Nations: African Group (AG); Asia and

the Pacific Group (APG), Latin American and Caribbean Group (GRULAC), Western European and Others Group (WEOG)

can be improved in the subsequent iterations. We expect that this approach is the first step towards future annual biosphere

research synthesis reports that will evolve into more substantial, comprehensive assessments, with a larger pool of contributions100

from a more diverse and globally distributed group of researchers.

We initially received a total of 20 topic proposals. The editorial board made the final selection of based on the following

criteria: (i) sufficient evidence from peer-reviewed publications in the last two years; (ii) emerging general consensus; (iii)

relevance to international negotiations and decision-making processes.

The editorial board decision process consisted of two steps. First, each member independently rated the proposals on a105

scale of 0 to 10, with 0 being ’not recommended’ and 10 being ’highly recommended’. The issues were then discussed in

a virtual meeting of the editorial board, starting with the highest-rated proposals. During the discussion, the board members

could adjust their previous rating. Following internal discussion of authors and the review process, the editorial board’s original

recommendation was reduced from 10 topics to eight by merging them.

Each topic was written by a team of two to five experts. These topic authors were selected by the editorial board based on their110

scientific expertise, as evidenced by their recent scientific publications. Diversity in terms of gender, geography, and scientific

discipline was also considered (Figure 1, Table 1). We emphasize that there are differences between some perspectives and

want to be open about the fact, therefore, not all authors necessarily support all of them and we emphasise that this collection

does not claim to be comprehensive nor absolute.
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Table 1. Web of Science research areas represented by the authors. Several research areas could be selected by one author.

research area
∑

research area
∑

research area
∑

environmental sciences 23 biodiversity conservation 13 ecology 12

social science, interdisciplinary 9 geography 6 meteorology, atmospheric sciences 5

geosciences, multidisciplinary 4 remote sensing 4 agriculture, multidisciplinary 3

forestry 3 agricultural economics & policy 2 anthropology 2

computer science, interdis. appl. 2 economics 2 environmental studies 2

plant sciences 2 biology 1 cultural studies 1

engineering, multidisciplinary 1 ethics 1 marine & freshwater biology 1

mathematics, interdis. appl. 1 physics, applied 1 planning & development 1

political science 1 social issues 1 urban studies 1

3 Insights115

3.1 Innovative and inclusive solutions offer opportunities to support coastal habitats under threat

3.1.1 Background

Coastal habitats mainly refer to mangroves, saltmarshes, seagrass beds and coral reefs, which are important ecosystems that

provide resilience services such as fisheries that contribute to human well-being (Costanza et al., 2014; Trégarot et al., 2024).

Coastal habitats are important for marine biodiversity (Trégarot et al., 2024) as they function as breeding grounds for fish (Nodo120

et al., 2023) and shelter for water birds. They sequester carbon at a much greater rate per area than most terrestrial ecosystems

(e.g. mangroves sequester 174 gC m−2year−1 on average Alongi, 2012). Finally, they prevent coastal erosion, which protects

human settlements.

3.1.2 Challenges

The importance of a healthy coastal habitat is well established (NOAA, 2024), but coastal ecosystems are under threat at125

concerning rates due to unsustainable development and climate change (IPCC, 2022c). For example, 35% of mangroves have

been lost due to local drivers, but 50% of mangrove ecosystems are at risk of collapse due to climate change and local factors

(Hagger et al., 2022). The widespread retreat of coastal habitat is likely to occur at warming levels greater than 1.5◦C (Saintilan

et al., 2023). 500 million people are projected to experience challenges (e.g. loss of food source) within decades due to the

likely loss and degradation of coral reefs that they currently depend for food, tourism, or as coastal barriers (Hoegh-Guldberg130

et al., 2017). Global warming of 1.5◦C to 2.0◦C would double the area of tidal marsh exposed to 4 mm/yr of rising sea level by

the end of this century. With 3◦C of warming, nearly all of the world’s mangrove forests and coral reef islands and almost 40%

of mapped tidal marshes are estimated to be affected by this rice in sea level (Saintilan et al., 2023). Yet, each coastal habitat
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responds differently to climate change (Trégarot et al., 2024), making it important to consider local responses. The pressure on

coastal habitats from climate change accumulates on top of other anthropogenic stressors such as overtourism, invasive species135

(Roy et al., 2024), land reclamation (Yamano et al., 2007), pollution (Wakwella et al., 2023), aquaculture, and development of

hard infrastructure, making it a challenge to involve all relevant stakeholders.

3.1.3 Offering solutions

Research on nature-based solutions demonstrate co-benefits of biodiversity provides numerous co-benefits locally (e.g., en-

suring livelihoods while increasing resilience to coastal hazards such as storms) compared to engineered solutions with hard140

infrastructure (which can be expensive and often can have negative consequences on habitats) (Hahn et al., 2023). This means

that investing in the space to preserve and recover coastal habitats can help restore biodiversity, mitigate help to adapt to cli-

mate change, while also providing leisurely functions or a source of livelihood. Doing so improves resilience to a variety of

identified hazards (such as coastal erosion, storms etc.) and restore a healthy environment (Hahn et al., 2023). Moreover, many

stakeholders already prefer nature-based over gray infrastructure (Apine and Stojanovic, 2024). This was also the case in the145

Philippines for the "Bakhawan Mangrove Eco-Park" in Aklan province, which is widely considered a successful multispecies

mangrove reforestation project, led by the local government and the Kalibo Save the Mangroves AssociationMarquez et al.

(2024). Studies suggest that mangrove reforestation also provides great benefits for mitigation globally. Mangroves provide

60% more blue carbon benefit than afforestation on marginal tidal flats for the same area (study conducted on 370 restoration

sites in various parts of the world) (Song et al., 2023). Utilizing the right mangrove species for the right location may further150

prevent retreat of the coastal zones, reduce impacts from storms on human settlements, and positively contribute to fishing ,

among other expected co-benefits (Sunkur et al., 2023). Similarly, recent studies point to the potential of coral reef restoration,

combined with coral adaptation and climate change mitigation, to hold off mass coral deterioration and enable reefs to keep up

with sea level rise of low to moderate carbon emissions scenarios (Toth et al., 2023; Webb et al., 2023).

Stakeholders have insufficiently considered locally relevant species when planning with nature-based solutions. For example,155

China introduced an invasive species called Spartina alterniflora (saltmarsh cordgrass) to reduce soil erosion and provide a

number of other ecosystem services in 1979. Although successful in fulfilling its purpose, it occupies the niche of some local

plant species (such as Phragmites communis and Scirpus mariqueter) and degrades the habitat of some species of water birds

(Nie et al., 2023). Managing invasive species such as Spartina alterniflora can be costly and complex. Wise use of biomass

can contribute to the local economy, prevent coastal erosion, and still benefit wildlife that depends on it. Hence, local species160

should be prioritized when vegetation re-establishment efforts are being planned to ensure greater co-benefits (e.g., when using

mangrove or saltmarsh).

Mitigation of coastal habitat loss/degradation can be realized through management and restoration. In doing so, ensuring

sustainable development, it is alsoimportant to take on a watershed approach to protect coastal habitats (e.g., preventing nutrient

enrichment, coastal development, hydrological disturbances, anchoring or sedimentation (Trégarot et al., 2024)). Trade-offs and165

synergies between biodiversity conservation/restoration and other services such as carbon sequestration, coastal protection,

water purification, aquaculture, and eco-tourism should be holistically considered. For example, dedicated locations where
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coastal habitats serve productive purposes and contribute to biodiversity conservation may hold a solution for socio-ecological

balance.

Community involvement in coastal habitat restoration can increase willingness to participate in stewardship activities,thus170

improving biodiversity and climate change outcomes (Dean et al., 2024). As demonstrated by the nascent concept of “blue

justice” that protests the marginalization of small-scale fishers (Isaacs, 2019), coastal stakeholders (incl. communities, In-

digenous peoples, and small-scale fishers) have tended to be excluded from marine decision-making (Blythe et al., 2023) yet

meaningful community engagement in projects can result in equitable and resilient project outcomes (Fox et al., 2023). Better

allowing space for stewardship practices by Indigenous and local communities can provide meaningful lessons for societies175

across borders by ensuring livelihoods and biodiversity are restored or conserved (e.g., in California USA, Sanchez et al., 2023,

See also section 3.5 & 3.8). New practices of restoring coastal habitats with co-benefits for people and nature have also been

documented (e.g., nature reserve Zwin that consists of dunes, marshes and mudflats along the Belgian and Netherlands border

open to tourists and the Mai-po Wetland in Hong Kong managed for the benefit of migrating birds, aquaculture and tourism

(Cheung, 2011)).180

Institutional mechanisms must align to enable innovative or unconventional practices. Institutional barriers to nature-based

solutions are currently higher than for gray infrastructure (Jones and Pippin, 2022). Structural recognition of co-benefits of

nature-based solutions (Apine and Stojanovic, 2024) could include project funding schemes that recognize the multiple benefits

of restoring coastal habitats (e.g., beyond mitigating flood risks), incorporation of feedback from engaged stakeholders into the

project design, and robust monitoring beyond the implementation phase (Palinkas et al., 2022). Researchers have also begun185

exploring the role of art in raising awareness around coastal sustainability (Matias et al., 2023). Institutional mechanisms

also play an important role in jurisdiction. Coastal habitats are inseparable from upstream land-based activities. Integrated

watershed management that transcends jurisdictional boundaries including through financing for long-term action can foster

healthy coastal ecosystems (Wakwella et al., 2023, See also section 3.6).

3.2 Forest protection avoids worsening future droughts and keeps regional, seasonal rain patterns stable190

3.2.1 Background

Climate change is altering rainfall patterns and intensity in the tropics (IPCC, 2012; Robinson et al., 2021; IPCC, 2022b, 2023)

with implications for ecological and human water security. Also, changes in the seasonal variability in rainfall patterns across

the tropics have been observed (Feng et al., 2013; Fu et al., 2013; Fu, 2015). Tropical forests can play a mitigating role of

climate change not only because they take up almost half of fossil fuel emissions (Pan et al., 2024) but also through their195

key role in the global water cycle (Bonan, 2008). About 40% of the global land precipitation is estimated to originate from

evapotranspiration (Ellison et al., 2017), which is regulated by vegetation cover.

The tropical water cycle is essential for the health of ecosystems, supports biodiversity, and maintains regional rainfall. (e.g.,

Makarieva and Gorshkov, 2007; van der Ent et al., 2010; Spracklen et al., 2012). High rates of evapotranspiration occur across

the tropics due to a combination of intense radiation, large evaporation surface (the leaves, up to 10 m2 leaves /m2 ground)200
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and high temperatures and significantly contribute to atmospheric moisture. For example, about one-third of the moisture in

the Amazon Basin is recycled regionally with evapotranspiration from the Amazon forest specifically contributing to up to

70% of precipitation in some basins (van der Ent et al., 2010). Likewise, about half of the moisture in the Congo Basin is

recycled regionally (Sorí et al., 2017; Staal et al., 2018; Tuinenburg et al., 2020). Furthermore, in tropical montane forests,

interception of water from clouds is estimated to contribute by 5% of total precipitation in wet regions and up to 75% in dry205

regions (Bruijnzeel et al., 2011). This contributes to cloud formation and generation of rainfall patterns and other regional

climatic conditions intricately linked to forest cover (e.g., Poveda and Mesa, 1997; Ellison et al., 2017). In South America,

evaporated water is transported further across the continent, contributing to regional rainfall (e.g., Zemp et al., 2014, 2017). In

some regions, this rainfall provides a large fraction of the water needed for rainfed agriculture (e.g., Zemp et al., 2014, 2017). In

model simulations, deforestation in the tropics was shown to decrease cloud cover not only locally but also over extra-tropical210

regions (Luo et al., 2024).

3.2.2 Challenges

Despite efforts to curb deforestation, tropical forest loss has accelerated over the last two decades (Feng et al., 2022; Bourgoin

et al., 2024). Several lines of research suggest that deforestation reduces regional and downwind rainfall, highlighting again the

role of forests in sustaining regional hydrological cycles (Spracklen and Garcia-Carreras, 2015; Leite-Filho et al., 2021; Staal215

et al., 2023). Loss of forest cover disrupts transpiration and reduces precipitation, leading to a drier climate, reduced agricultural

productivity and increased stream flow in large watersheds (Zhang et al., 2017; Zhang and Wei, 2021). In the Amazon basin,

this has led to a measurable decrease in precipitation across South America (Lawrence and Vandecar, 2015). Across the whole

tropics, a 1% reduction in forest cover is thought to have reduced precipitation by an average of 0.25 ± 0.1 mm per month over

the past two decades (Smith et al., 2023). Deforestation in South America might delay the onset of the rainy season by 30-40220

days compared to historical periods up to mid-century (Commar et al., 2023; Bochow and Boers, 2023). Modelling studies

indicate that future deforestation in the Congo can reduce local precipitation by 8–10% in 2100 (Smith et al., 2023).Current

Earth system models are known to underestimate water recycling in the tropical forests, especially in the Amazon (Baker and

Spracklen, 2022). In this context, recent studies show that the coupling between the water cycle and vegetation is tightening

in many regions across the globe such that LAI affects ET more strongly over time (Forzieri et al., 2020), and LAI gets more225

sensitive to soil moisture availability (Li et al., 2022). However, such an increase in water-vegetation coupling is not reported

in the tropics so far.

Droughts during heat waves appear to be intensified by deforestation and can spread via teleconnections (Miralles et al.,

2019; Staal et al., 2020). Droughts have recently increased in many tropical regions. For example, severe and exceptional

droughts occurred in the Amazon region in 2005, 2010, 2015 and 2023 (e.g., Jiménez-Muñoz et al., 2016; Papastefanou et al.,230

2022). Other tropical rainforests have also been affected (Phillips et al., 2009; Lewis et al., 2011; Tao et al., 2022). Droughts

can also lead to forest loss and thus cause a positive feedback with decreasing precipitation (Zemp et al., 2017; Bochow and

Boers, 2023).
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Uncertainty in the analysis of tropical water-vegetation interactions results from limited soil data and the challenges to

estimate evapotranspiration using remote sensing techniques, due to dense vegetation. Therefore, hydrological datasets derived235

with machine learning techniques that extrapolate water variables in space are limited in the tropics (O. and Orth, 2021; Nelson

et al., 2024). Due to these uncertainties, it is not yet clear when the tipping point at which the rainforest turns into a dryland

or grassland will be reached. The reduced soil moisture as a result of deforestation would lead to severe dieback due to a drier

climate (Lovejoy and Nobre, 2018), with severe consequences for the water and carbon cycle (Lenton et al., 2019).

In addition to impacts on natural systems, increasing droughts also result in increasingly heavy socio-economic losses.240

Globally, droughts are estimated to affect 1.8 million people and cost more than USD 307 billion each year (Thomas et al.,

2024). For example, droughts in Africa are estimated to have affected almost half a billion people and resulted in 700,000 deaths

from 1950 to 2021, with associated damages of about USD 6.6 billion (Ayugi et al., 2022). In Europe, economic consequences

of drought have been estimated to cost about Euro 6.2 billion per year on average between 1991 and 2020, and even more for

extreme droughts such as 2003 (8.3 billion Euro)(EEA, 2010). Future impacts of drought on critical infrastructure in Europe245

is expected to increase in the next years (Forzieri et al., 2018).

3.2.3 Offering solutions

Increased efforts are needed to halt deforestation, forest degradation, and accelerate forest restoration by 2030, as pledged in

the New York Declaration on Forests and the Glasgow Leaders’ Declaration on Forests and Land Use (Gasser et al., 2022).

Particularly in areas with high rates of deforestation (Feng et al., 2022; Lapola et al., 2023; Climate Focus, 2023).250

Protecting forests is essential to mitigating future droughts and maintaining stable seasonal rainfall patterns. Evidence indi-

cates that deforestation arises from speculative land clearing, land tenure conflicts, transient agricultural practices, abandoned

farmland, and agriculture-related fires encroaching on adjacent forests (Pendrill et al., 2022). Effective measures to curb de-

forestation require sustainable economic alternatives for intact forests (e.g. Griscom et al., 2020, see sections 3.8, 3.7), the

establishment of protected areas, the enforcement of substantial penalties for illegal logging (e.g. Brancalion et al., 2018, see255

also section 3.5), and broader improvements in land governance and rural development (e.g. Latawiec et al., 2017; Bastos Lima

and Persson, 2020). International supply chain interventions can help reduce tropical deforestation and forest degradation, but

will be most effective if they target high-risk areas with initiatives that promote sustainable rural development and strengthen

territorial governance (Pendrill et al., 2022). Indigenous peoples are also crucial to forest conservation, as their traditional

land management practices have proven exceptionally effective in conserving forest ecosystems (Fa et al., 2020). Empowering260

indigenous communities and legally securing their land rights are, therefore, crucial to long-term conservation success.

Restoring degraded and deforested areas worldwide can increase precipitation and thus mitigate the reduction caused by

forest loss (Hoek van Dijke et al., 2022, see also section 3.6). An increase in forest cover increases both precipitation and

evapotranspiration. For instance, in the southern and eastern Amazon, reforestation could increase precipitation, which is

critical given the risk of climate change-induced drying and a possible tipping point at which a forest transitions to a dryland265

or grassland due to decreased moisture (Zhao et al., 2017). Similarly, reforestation in middle America and SEA (including

southern China) could largely offset projected drying, and Mediterranean Europe would also benefit from regional reforestation
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efforts. Additionally, afforestation have also an impact on low cloud cover in Europe (Caporaso et al., 2024). Furthermore, due

to moisture-recycling of forests, reforestation in the south-eastern Amazon would increase gross primary productivity (Staal

et al., 2023).270

Yet, afforestation for carbon sequestration in savannahs and other naturally tree-poor ecosystems can disrupt local water

balances and biodiversity (Veldman et al., 2015; Fernandes et al., 2016). Trees often use more water than grasslands, which

can lower the water table and reduce the availability of water for other plants and animals native to these areas. This change

can lead to the drying up of wetlands and lesser water flows in streams and rivers (Farley et al., 2005; Lalonde et al., 2024),

impacting species that are adapted to specific water regimes. Moreover, the planting of non-native tree species can alter soil275

properties and inhibit the growth of native vegetation, which relies on fire and open sunlight conditions to thrive (see section

3.3). These ecological shifts can diminish the natural resilience of these ecosystems, making them less adaptable to climatic

changes and more susceptible to invasive species. Therefore, while afforestation in certain contexts can be beneficial for carbon

sequestration and local societies, it requires careful planning and management to avoid unintended ecological consequences

(Farley et al., 2005).280

More and more accurate data on vegetation and water could be collected through more standardised and harmonized way,

as often water-related perspective Furthermore, there is a need for more regionally distributed ground-based measurements

and monitoring, covering underrepresented biomes and vegetation types, e.g. the tropics and semi-arid regions, and providing

morecountry or regional detail, which is crucial to understand region-specific feasibility. Further, future satellite missions using

longer wavelengths such as SAR L-band (Lal et al., 2023) or P-band missions (Garrison et al., 2024), although the use of the285

latter is restricted by the military in many areas. This can provide a basis for more accurate observation-based analysis and

better constrain state-of-the-art models to quantify better the large-scale pan-tropical effect of afforestation or deforestation

on the hydrological cycle (see also Doelman et al., 2020; Koch and Kaplan, 2022; Yu et al., 2022). Consequently, this can

also contribute to a more accurate understanding and estimation of increasing, and often unexpected, trends in tree mortality

globally (Hartmann et al., 2022).290

3.3 Delayed climate change mitigation likely to increase fire risks in many regions

3.3.1 Background

Fire is a natural phenomenon that has shaped many ecosystem types worldwide and contributed to their biodiversity (Bond and

Keeley, 2005; Pausas and Keeley, 2009; Bowman et al., 2011; He et al., 2019). Humans have altered fire regimes by utilizing

fire and changing the landscape, and also by suppressing fires to avoid its destructive consequences (Bowman et al., 2011).295

However, unprecedented record wildfires have recently affected different parts of the world. In 2023, 7.8 million ha burned in

Canada (MacCarthy et al., 2024), and Greece experienced the largest fire ever recorded in Europe, burning more than 93,000

ha (Jones et al., 2024), raising concerns about future fire dynamics.

Many factors affect fire regimes, but recent research suggests that two major factors - human activities (including land-use

change) and meteorological fire danger - are pulling in opposite directions. On the one hand, human factors, in particular300
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agricultural expansion and intensification in African savannas, grasslands and shrublands biomes, have caused a decrease in

burned area of these biomes by 13% over the last two decades (Jones et al., 2024; Andela et al., 2017; Jones et al., 2022; Chen

et al., 2023). On the other hand, increasing fire weather severity and decreased snow cover have increased burned area and fire

intensity in high-latitude regions, e.g. burned area has increased by 58 % since 2002 in the North American boreal forest biome

(Jones et al., 2024), albeit with large regional variability (Bedia et al., 2015; Jones et al., 2022; Chen et al., 2023; Cunningham305

et al., 2024; Hessilt et al., 2024). Across the globe, the two factors may change individually or in conjunction. So against a

backdrop of globally decreasing burned area, some areas are experiencing increasing extreme fire seasons (Brown et al., 2023;

Cunningham et al., 2024) and so-called ’extreme fires’ or ‘megafires’ (San-Miguel-Ayanz et al., 2013; Collins et al., 2021)

which are large, intense and difficult to control, become more frequent (2.2-fold global increase since 2003 (Cunningham

et al., 2024)).310

These megafires exceed natural fire regimes and are extremely detrimental to biodiversity (Leeuwen et al., 2023), human

infrastructure, air quality (Xu et al., 2023) and carbon stocks (Clarke et al., 2022; Copernicus, 2023; Zheng et al., 2023).

In 2023–2024, carbon emissions from wildfires increased globally by 16% above the long-term average (Jones et al., 2024).

While emissions from African savannas slightly declined, this reduction was insufficient to counterbalance the substantial rise

stemming from extreme fires in Canada’s boreal forests (MacCarthy et al., 2024), where carbon emission anomalies reached315

nine times above average (Jones et al., 2024).

3.3.2 Challenges

Analyses of fire trends and future projections show strong climate-change-induced increases in fire weather severity across

most of the world (Abatzoglou et al., 2019; Jones et al., 2022; Jain et al., 2022). This poses a significant challenge for society,

particularly forestry and civil protection. 2023 was a year of extensive civil protection efforts. In Canada alone, over 230,000320

people were evacuated due to wildfires. However, the scale of these efforts often exceeded capacity with negative consequences

for fire suppression, as seen in civil protection efforts in Greece (Jones et al., 2024). Furthermore, millions of civilians were

exposed to smoke; during the Canadian fires, around 50 million people suffered from health-threatening air quality (Wang et al.,

2024; Yu et al., 2024). However, the problem is highly heterogeneous, with already fire prone areas experiencing increased

risk of extreme weather conditions (Scholten et al., 2021; Brown et al., 2023; Cunningham et al., 2024), but also fire-prone325

conditions emerging in relatively cooler and wetter areas that have been little affected by fire so far, e.g. boreal and temperate

zones and mountains (Cunningham et al., 2024; Jones et al., 2022; Hetzer et al., 2024).

These challenges are heightened by local factors relating to ignition, vegetation, and land cover, which can play a major role

in increasing fire danger. In some regions, land cover is characterised by highly flammable species such as pine, spruce, and

eucalyptus, and planted in large and homogeneous stands, which can promote fire spread. For one of the largest wildfires in330

central Europe, where Norway spruce monocultures suffer heavily from bark beetle attacks since the exceptional drought of

2018, it has been shown that burn severity was highest in dead spruce stands (Beetz et al., 2024). For fire risk assessments,

both climatic and non-climatic factors need, thus, to be considered (European Environment Agency, 2024).
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Changing fire regimes also threaten large carbon reservoirs but with regionally unique consequences. In the humid tropics,

intact forest and peatlands are threatened by deforestation fires (Andela et al., 2022; Chen et al., 2023) and wildfires exacerbated335

by climate and land-use change (Turetsky et al., 2015; Harrison et al., 2020). High-latitude peatlands in remote areas are

vulnerable to large, long-lasting fires burning through deep peat layers (Scholten et al., 2021; Nelson et al., 2021), which

are not actively controlled and lead to large carbon losses (Turetsky et al., 2015). Future stocks from potential ‘nature-based

solutions’ may also be vulnerable to wildfires, undermining climate mitigation efforts. However, long-term predictions of fire

risk that could be incorporated into planning still include large uncertainties at the local scale (Hantson et al., 2020). See also340

section 3.2 and 3.4.

3.3.3 Offering solutions

Decreasing trends in burned area in regions where the fire weather has become more severe, such as non-Mediterranean Europe

(Jones et al., 2022), clearly show that fire risks can be mitigated, although at increasing cost (Bayham et al., 2022). However,

the costs of fire mitigation are surpassed by losses, especially for extreme fire seasons (Bayham et al., 2022) and comparable345

to other climate change mitigation costs (Phillips et al., 2022). Several studies emphasize that the burned area is negatively

related to the Human Development Index at both global (Chuvieco et al., 2021; Teixeira et al., 2023) and continental scale

(Forrest et al., 2024). This demonstrates that more economically developed societies tend to reduce their burnt area, either due

to effective fire prevention measures or because of rapid and successful firefighting (see also section 3.6). Whilst this broad

picture is encouraging, it is important that this view is tempered with the knowledge that relying on fire suppression as a sole350

strategy is risky and potentially counterproductive, as it can increase fuel accumulation and, therefore, fire severity (Kreider

et al., 2024). A clear example of this is the forests of the United States where, despite a high level of economic development,

burnt area is increasing (Iglesias et al., 2022; Chen et al., 2023). Whilst climate change plays a important role in this trend

(Iglesias et al., 2022; Burton et al., 2024), a very effective strategy of fire suppression over the 20th century (Magerl et al.,

2023) without a sufficient fuel reduction strategy has led to current levels of very high fuel accumulation. These high fuel loads355

contribute to the current crisis, a phenomenon anticipated over 50 years ago (Dodge, 1972).

Strategies should be developed targeting risks at local, national, and regional levels (Chuvieco et al., 2023). Locally, fire

suppression can be aided by introducing fire breaks and access points, particularly roads (Haas et al., 2022). However, this

solution should be cautiously applied as land fragmentation also negatively affects species richness (Willmer et al., 2022). Fuel

reduction techniques might also be considered, including mechanical or grazing, but prescribed burning might also provide a360

more natural solution also useful for maintaining fire-dependent vegetation types and biodiversity (Neidermeier et al., 2023).

Moreover, fire suppression should be limited in areas where regular low-intensity fires play a vital role in naturally clearing

fuels. There, maintaining fires as a part of the ecosystem can reduce the risk of more severe fires from excessive fuel accu-

mulation. National strategies should promote biodiversity because this also promotes fire resilience by avoiding monocultures

of highly flammable species. Furthermore, studies have shown that cross-border collaborations are necessary and effective for365

allocating resources efficiently and minimizing risk (Bloem et al., 2022). International cooperation can benefit from compre-

hensive ’fire-smart’ solutions, such as those recently targeted in the EU Green Deal (Ascoli et al., 2023; Regos et al., 2023). A
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number of cases document the value of incorporating Indigenous knowledge and governance into fire management strategies in

Latin America (Oliveira et al., 2022), Africa (Croker et al., 2023), North America (Connor et al., 2022), and Australia (Legge

et al., 2023). See also sections 3.6, 3.8.370

3.4 Nature-based Carbon Dioxide Removals (CDR) implementation risks

3.4.1 Background

A key intersection point between ecology and climate change research is the role of terrestrial ecosystems in exchanging

carbon between terrestrial and atmospheric carbon pools. Human activities are affecting these carbon exchanges directly via

deforestation and other land-use activities, as well as indirectly via the response of terrestrial ecosystems to elevated CO2 and375

resulting changing climate conditions (Friedlingstein et al., 2023; IPCC, 2021). Direct effects ,including deforestation, forest

regrowth and other land-use activities, currently produce net emissions to the atmosphere of about 4 billion tonnes of CO2 per

year (about 10% of global fossil fuel emissions), which includes an estimated removal flux from reforestation activities of 2

billion tonnes of CO2 per year. Indirect carbon fluxes, resulting from processes like CO2 fertilization and changing growing

season length, currently absorb about 12 billion tonnes of CO2 per year; this indirect carbon sink shows interannual variability,380

though has consistently represented an absorption of close one-third of annual fossil fuel CO2 emissions over the past several

decades (Friedlingstein et al., 2023; IPCC, 2022a).

3.4.2 Challenges

Given the current role of the terrestrial biosphere as a net carbon sink (the net of direct emissions and indirect uptake), there

is considerable interest in pursuing strategies to enhance nature-based carbon dioxide removal (CDR) to contribute to climate385

mitigation efforts. Many studies have highlighted the potential of nature-based CDR (Griscom et al., 2017; Fuhrman et al.,

2023) as a key component of a range of potential CDR options.

Reforestation and afforestation are typically seen as the largest potential contributors. However, nature-based CDR also

includes strategies such as biochar and other agricultural management practices to increase soil carbon sequestration. Many

concerns about nature-based carbon removal have also been raised in recent literature however, including whether a focus on390

CDR in research and policy discussion could lead to delays in fossil fuel emissions reductions (Carton et al., 2023), as well

as whether nature-based CDR has a large enough potential to be a meaningful contribution to climate change mitigation goals

(Roebroek et al., 2023). Parr et al. (2024) also highlight an important concern that reforestation with non-native tree plantation

species could lead to theloss of native ecosystems that may negate any carbon-related gains, supporting previous findings that

more biodiverse forests are better at capturing and storing carbon (Liu et al., 2018b; Wessely et al., 2024). These and other395

concerns highlight a growing understanding that nature-based CDR must be undertaken with attention to local ecosystems

and community needs (Seddon, 2022), and that nature-based CDR should in all cases be treated as a complement (and not an

alternative) to fossil fuel CO2 emission reductions Matthews et al. (2022).
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Nature-based CDR, particularly in the case of its use as an offset for fossil fuel CO2 emissions faces a number of known

and well-understood challenges. These challenges include: (i) accounting: accurate measurement of forest carbon accounting,400

including removal and storage; (ii) additionality: an assessment of whether the removal would have occurred in the absence

of offset financing; (iii) leakage: an analysis, which examines whether the intervention displaces land-use activities, resulting

in emissions elsewhere; (iv) durability: the risk of reversal analysis, which considers the longevity of carbon storage; (v)

environmental justice: which examine whether the carbon removal efforts amplify existing inequalities and injustices; (vi) and

finally non-climate effects: for instance, changes in albedo or other biophysical effects. (Carton et al., 2021; Haya et al., 2023;405

Groom and Venmans, 2023; Hasler et al., 2024).

The durability challenge associated with nature-based carbon storage has been of particular concern in recent years owing to

increases in natural disturbances (as discussed in section 3.3). Climate-driven changes in wildfire and other natural disturbance

regimes have considerable potential to lead to increased the future vulnerability of land-based carbon stocks with continuing

climate change (Anderegg et al., 2020). Furthermore, the permanence of land carbon storage can also be compromised by410

changing human disturbance pressures, including those emerging from potential uses of biomass as an energy sources in

climate mitigation strategies is that land carbon pools are vulnerable to disturbances, either from natural processes (such as

fire) or human pressures (such as deforestation). Furthermore, climate-driven changes in wildfire and other natural disturbance

regimes have the potential to lead to increased vulnerability of land-based carbon stocks with continuing climate change

(Anderegg et al., 2020).415

The potential for land-based carbon storage to be temporary evokes a particular accounting challenge when used as an

offset for fossil fuel CO2 emissions, which represent a permanent transfer of new carbon from a geologic reservoir into the

atmosphere-land-ocean carbon system. Concerns of impermanence (or risks of reversal) are a key concern associated with the

application of nature-based carbon storage as a contributor to climate mitigation efforts (Zickfeld et al., 2023). However, even

temporary carbon storage does have climate value, and in particular, has been shown to decrease peak warming if coupled with420

ambitious fossil fuel emission reductions (Matthews et al., 2022).

3.4.3 Offering Solutions

One solution to the challenge of the durability of land carbon storage may be to treat all nature-based carbon removal and

storage as a temporary quantity and to explicitly account for the amount of time the carbon remains in storage as part of its

climate value. Matthews et al. (2023) proposed a new application of tonne-year accounting to measure the time-integral of land425

carbon removal and storage as a way of tracking the climate benefit of temporary storage. Previous applications of tonne-year

accounting have focused on trying to equate temporary and permanent storage, leading to strategies such as vertical stacking of

offset credits to claim that a given amount of temporary storage is equivalent to a unit of permanent storage (Haya et al., 2023).

This previous use of tonne-year accounting has been criticized in the literature given that it is not grounded in any physical

climate science relationship, and leads to a false equivalency of temporary and permanent storage that could further disconnect430

carbon offset calculations from the scientific understanding of carbon stocks and flows in natural systems (Levasseur et al.,

2012; Brander and Broekhoff, 2023).
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However, Matthews et al. (2023) showed that a reimagined approach to tonne-years could effectively track nature-based

carbon storage over time. Furthermore, they showed that tonne-years of temporary carbon storage are proportional to degree-

years of avoided warming (i.e., the time integral of the temperature change caused by temporary storage), providing an approach435

to measure the climate effect of temporary carbon storage in a way that is coherent with scientific understanding (Matthews

et al., 2023). Measuring and quantifying the time dimension of nature-based carbon storage and treating carbon offset as a time-

share rather than a single purchase (e.g., by using horizontal stacking to guard against loss over time) could be an important

improvement to current carbon offset protocols (Haya et al., 2023).

3.5 Sustaining Nature’s Contributions to People in human-modified landscapes requires at least 20%–25%440

(semi-)natural habitat per square kilometer

3.5.1 Background

Biodiversity is declining faster than ever with global wildlife populations declining by an average of 73% over the last 50 years

(WWF, 2024). Around 1 million animal and plant species are now threatened with extinction despite decades of increased

conservation investment to bend the curve of biodiversity decline (Leclère et al., 2020). This decline is mainly driven by445

changes in land and sea use, overexploitation of resources, pollution, invasion of exotic species, and climate change (IPBES,

2019). Such decline is also associated with the expansion of global systems of extractivism in recent centuries, which contrasts

sharply with earlier patterns of stewardship (Ojeda et al., 2022; Molnár et al., 2024, see also section 3.8).

The conversion of natural habitats has provided benefits by creating more space for agriculture, housing and industry, but at a

significant cost to biodiversity, reducing the area of natural ecosystems by about half, with agriculture alone occupying 38% of450

the Earth’s land surface (FAO, 2023). Currently, only 16.64% of terrestrial areas and 8% of marine areas are protected, many of

which are not fully ecologically representative or effectively managed, while about 75% of the terrestrial environment and about

66% of the marine environment have been significantly altered by human activities (IPBES, 2019) . This habitat conversion

jeopardises valuable ecosystem functions and beneficial contributions, such as healthy and sustainable food production, clean

air and water, and recreational spaces, among others. For example, over 75% of global food crops rely on animal pollination,455

but pollinator populations are declining due to habitat loss, pesticides, and climate change (IPBES, 2019).These contributions,

known as ecosystem services or Nature’s Contributions to People (NCP), directly or indirectly contribute to human well-being,

economic stability, and overall quality of life (Díaz et al., 2018, see also section 3.1 and 3.2 ).

3.5.2 Challenges

Biodiversity has multiple dimensions, making it challenging to define synthetic policy objectives and metrics or to track460

progress (Díaz et al., 2020). Most conservation efforts focus on halting the conversion of remaining intact natural ecosys-

tems, and safeguarding their unique species as articulated in Goal A of the Kunming-Montreal Global Biodiversity Framework

(Watson et al., 2018; Allan et al., 2022). However, human-modified lands and waters, which cover approximately half of the

global Earth surface (IPBES, 2019), including highly managed agricultural fields and urban green spaces in mixed mosaic
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landscapes where natural functions are limited to small habitat patches, are often overlooked in conservation policies and465

global targets setting (Pollock et al., 2020), despite their critical roles in maintaining and supporting human well being and sus-

tainable food production (Goodness et al., 2016; Díaz et al., 2018). The close proximity and relationship between people and

biodiversity in these areas makes their contributions to human well-being even more important. Identifying metrics to ensure

continuous contributions of such nature to human well-being is challenging due to the highly context-specific conditions under

which biodiversity supports ecosystem functions (e.g., section 3.2). Yet, few proposals for the post-2020 Global Biodiversity470

Framework (GBF) explicitly address human-modified lands or the role of functional biodiversity in maintaining a good quality

of life for all people (Rounsevell et al., 2020; Maron et al., 2021; Hammoud et al., 2024).

NCP provisioning in human-modified landscapes relies on the amount, quality, and spatial arrangement of habitat fragments

and their accessibility to beneficiaries (Garibaldi et al., 2021; Priyadarshana et al., 2024). These landscape components serve as

proxy measures for the functional integrity of ecosystems (Rockström et al., 2023; Mohamed et al., 2024). Evidence suggests475

that many NCP can be maintained by habitat within highly human-modified landscapes as long as a minimum level, quality,

and distance to biodiversity is present, and/or the functional integrity is retained or rebuilt (Martin et al., 2019; Eeraerts, 2023;

Mohamed et al., 2024). The required habitat levels for NCP provisioning vary depending on the context, the NCP, thedemand

for it, the landscape type and the taxa involved making it difficult to assess direct relationships (Garibaldi et al., 2011; Cariveau

et al., 2020). Nonetheless, below a certain threshold nature can no longer provide a majority of benefits (Rockström et al.,480

2023).

A recent systematic review of 154 studies found that the capacity of human-modified lands to pollinate crops, regulate pests

and diseases, maintain clear water, limit soil erosion, and maintain recreation spaces for people declined significantly and often

disappears when habitat area falls below 20%–25% per km2, and nearly disappeared below 10% habitat per km2 (Mohamed

et al., 2024). Alarmingly, only one third of global human-modified lands are above the 20%-25% per km2 level to sustain NCP485

provisioning, emphasizing the urgent need for policy interventions to restore and regenerate ecosystem functions and their

benefits in the remaining two thirds of global human-modified lands (Mohamed et al., 2024).

The proposed minimum habitat levels can serve as a general guide to identify priority locations for conservation and restora-

tion in support of sustainable NCP provisions. However, uncertainties remain about the successful implementation of these

minimum habitat levels in practice due to factors such as climate change, habitat loss, unsustainable agriculture, and human490

settlement expansion, which complicate the implementation and may create trade-offs. General estimates and targets for land

management are important, but often oversimplify the complexity of local conditions and can misrepresent the needs of local

communities due to the inherent biases in ecological research that may not account for all biomes or ecosystem functions

(Martin et al., 2012; Manning, 2024). Additionally, these metrics often overlook finer-scale NCP,such as those provided by

soil biodiversity, and ignore the important role of complementary agricultural practices such as no-tillage farming, cover crop-495

ping, and leguminous rotations which can reduce erosion, nutrient loss and maintain biodiversity (Blanco-Canqui et al., 2015;

Skaalsveen et al., 2019; Guinet et al., 2020; Rakotomalala et al., 2023). Current remote-sensing technologies also struggle to

detect small and linear habitat elements or to differentiate complex landscape types, likely leading to underestimations of the

current state of (semi-)natural habitats globally (Lechner et al., 2009; Jurkus et al., 2022). Therefore, allocating 20-25% of
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each square kilometre to (semi-)natural habitat within human-modified lands using general estimates, without proper manage-500

ment and consideration of local socio-economic priorities and ecological needs can lead to significant social and economic

challenges. These include high restoration costs, land tenure issues, policy constraints, lack of expertise and knowledge, and

potential conflict with the provision of material NCP, which might compete with food production ambitions and local com-

munity needs (e.g., housing), is negatively affecting the well-being of local people relying on those NCP (Mohamed et al.,

2024).505

3.5.3 Offering solutions

The implementation of such strategies effectively necessitates adapting and adopting practices best suited to local context and

conditions, rather than prescribing a single practice to be applied globally. Restoration could, for instance, prioritize areas

where habitat additions align with community needs and minimize trade-offs with food production. Countless context-specific

strategies exist to enhance NCP provisioning and can be implemented in ways that create more synergies than trade-offs and510

support food security, livelihood and overall human well-being without compromising local resources (Jones et al., 2023;

Rakotomalala et al., 2023). For example, Torchio et al. (2024) show that wild pollination is sustained when semi-natural cover

is 20% per km2. Further, modern agroecological practices and nature-based solutions, including diverse crop rotations and

mixed cropping systems maintain habitat heterogeneity and promote ecosystem resilience (Lichtenberg et al., 2017; Shah

et al., 2021; Ewert et al., 2023; Tscharntke et al., 2024). Agroforestry systems enhance soil health, water retention, and global515

carbon sequestration (Zomer et al., 2022; Fahad et al., 2022). Strategically incorporating habitats such as hedgerows, no-mow

zones around field margins or other practices (M’Gonigle et al., 2015; Marja et al., 2022; Maskell et al., 2023) combined with

innovations such as precision agriculture practices can maintain biodiversity (Arroyo-Rodríguez et al., 2020; Knapp et al.,

2023) while optimizing agricultural productivity (Balafoutis et al., 2017). Protecting green spaces and parks in cities can

enhance physical and mental well-being (Konijnendijk, 2023), and planting vegetation buffers along waterways can capture520

sediment and pollutants, among many other tools (Luke et al., 2019).

To implement this approach, it is essential to enhance tools and methodologies for identifying and quantifying key NCPs at

the landscape scale. This includes determining the locally specific quantity (20–25% per km2), composition, and spatial config-

uration of habitat elements required for effective NCP provisioning. To avoid conflicts, partnerships with diverse stakeholders -

such as indigenous peoples, local communities, scientists and NGOs - should be prioritised in decision-making. These groups525

offer valuable, practical solutions for halting and reversing the loss of NCPs and promoting sustainable conservation efforts.

In addition, resources must be reallocated to promote innovations in agriculture, production systems and urban planning that

prioritise biodiversity.

The 25% of high-functioning nature per square kilometer offers a key policy tool, as it is the first widely applicable measure-

ment of the minimum level of human-modified land that needs to be in a (semi-)natural state across several NCP and a wide530

range of landscapes. This proposed habitat level is the minimum level, not the optimal level required to meet adequate NCP

demand (Mohamed et al., 2024). This habitat threshold reflects an approach that harmonizes human activities with ecosystem

integrity, focusing on integration rather than strict separation between human and nature. It serves as a general guideline syn-
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ergizing with existing policy targets (e.g., UN Decade on Restoration) for prioritising conservation initiatives and formulating

adaptive, scalable policies beyond natural areas. See also Section 3.6, 3.8.535

3.6 Interconnect and deliver comprehensive policy packages to address the root causes of degradation and

revitalized, just human-nature relationships

3.6.1 Background

Today’s dominant production and consumption patterns are far from achieving the Convention on Biological Diversity (CBD)

2050 vision of "living in harmony with nature,". Even under the "most sustainable" climate scenarios (SSP1, RCP 2.6), biodi-540

versity loss continues at an alarming rate, with over 75% of terrestrial ecosystems significantly altered by human activity and

more than 85% of wetlands lost since the pre-industrial era (Pereira et al., 2020b, 2024). While global efforts focus heavily on

achieving climate targets, this emphasis undermines our shared life-support systems and overlooks opportunities to synergize

human-nature relationships and reverse alarming biodiversity trends while addressing climate impacts (Obura et al., 2023; Kim

et al., 2023).545

Addressing these challenges requires a paradigm shift toward sustainable practices. Restoration efforts have demonstrated

substantial ecological and economic benefits, with reforestation initiatives capable of sequestering up to 200 Gt of CO2 over the

next century (Chazdon et al., 2020) , while wetland rehabilitation can reduce flood risks by 35% in vulnerable coastal regions

(Meli et al., 2017). The increasing adoption of "nature-positive" business strategies reflects a shift towards circular economy

models, emphasizing waste minimization, resource efficiency, and closed-loop systems. For example, circular economy initia-550

tives have the potential to reduce global resource extraction by up to 28% by 2050, aligning economic activities with planetary

boundaries and fostering resilience against environmental degradation and climate change (Bocken et al., 2019; Korhonen

et al., 2018; Lüdeke-Freund et al., 2019). Effective policy integration and international cooperation are critical to mitigating

environmental degradation and incentivizing sustainable economic growth. Despite ambitious global agreements, biodiversity

financing remains insufficient, with a current annual funding gap of approximately USD 700 billion needed to meet global555

conservation targets (Leal Filho et al., 2019; IPCC, 2023; Rockström et al., 2017; Steffen et al., 2018). Strengthening gover-

nance frameworks that simultaneously address climate, biodiversity, and resource management goals is essential to reversing

ecosystem decline while maintaining economic stability (Rockström et al., 2017; Steffen et al., 2018).

3.6.2 Challenge

Current global trade structures often exacerbate environmental and social inequalities, disproportionately affecting developing560

countries with weaker regulations (Newell and Taylor, 2022). Industrial agricultural practices and resource extraction have a

devastating impact on the biosphere that exceeds even the direct effects of climate change. For example, agricultural expansion

accounts for approximately 80% of global deforestation, with the Amazon rainforest alone losing over 17% of its total forest

cover since 1970, primarily due to cattle ranching and soybean cultivation (Barlow et al., 2018; Köhler et al., 2019). This

environmental degradation is accompanied by social displacement, as an estimated 250 million people, primarily Indigenous565
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and rural communities, are at risk of being forced from their lands due to large-scale land acquisitions and resource extraction

projects (Hickel, 2020; Sánchez-Bayo and Wyckhuys, 2019; Jaureguiberry et al., 2022, see also section 3.4, 3.5). This phe-

nomenon, known as ’telecoupling’, highlights the interconnectedness of distant economic activities and their environmental

impacts (Liu et al., 2018a). Several studies demonstrate this telecoupling: for instance, the global demand for palm oil has

driven the loss of 56% of Borneo’s lowland forests since 1985, leading to a 50% decline in orangutan populations Meijaard570

et al. (2020). Similarly, mining in Africa has led to the contamination of over 20% of freshwater resources in affected regions,

impacting both human health and biodiversity Northey et al. (2017); Mancini et al. (2021) . In this context, while lithium extrac-

tion raises environmental concerns such as water depletion —wherein lithium brine mining in the Atacama Desert consumes

up to 65% of the region’s freshwater—it is generally less harmful than large-scale fossil fuel extraction, which contributes

to 73% of global greenhouse gas emissions (Vikström et al., 2013; Krishnan and Gopan, 2024). Moreover, lithium mining’s575

impact on local water sources is significantly lower than that of coal mining, which is responsible for approximately 10% of

global freshwater pollution. Enhancing lithium recycling from spent batteries, which currently has an efficiency of only 5%,

could significantly reduce the need for new mining operations and mitigate environmental damage (Geissdoerfer et al., 2017).

Effective biodiversity governance faces significant challenges, including the lack of platforms to set norms, address injus-

tices and enforce accountability (Raja et al., 2022). These problems are often rooted in exploitative practices and colonial580

legacies as seen in cases where biodiversity-rich regions are overexploited for global markets without fair compensation for

local communities. For example, only 1% of the profits from global biodiversity-derived pharmaceutical products return to

the countries of origin, despite the fact that 70% of these compounds originate in the Global South (Atanasov et al., 2021).

Revitalising the relationship between people and nature and fostering collective action are essential to halting biodiversity loss

and restoring ecosystems.585

Therefore, understanding global trade networks and their impacts is crucial to develop fair and sustainable integrated policies

and international cooperation. Current projections suggest that adopting circular economy principles — such as reducing

raw material extraction and increasing material reuse — could decrease global resource extraction by 28% and reduce waste

generation by up to 39% by 2050 (Wiedmann and Lenzen, 2018; Wiedmann et al., 2020; Leal Filho et al., 2019; IPCC, 2023;

Meli et al., 2017; Chazdon et al., 2020; Geissdoerfer et al., 2017).590

3.6.3 Offering solutions:

Integrated policy packages should integrate environmental, economic and social policies to address the root causes of bio-

sphere degradation and pollution and to mitigate climate change, while promoting sustainable practices such as the promotion

of renewable energy and the enhancement of carbon sinks and conservation of ecosystems (Litvinenko et al., 2022; Ikram

et al., 2022; Tedesco et al., 2022; UNEP, 2022; Ostrom, 2009, e.g., see also section 3.5). Measures include stricter regulations595

on resource extraction, the adoption of cleaner technologies and incentives to restore ecosystems. Policies such as the Euro-

pean Green Deal are examples of comprehensive frameworks that align climate action with economic and social objectives

(Commission, 2019). International cooperation is also crucial to harmonise efforts across borders and prevent environmental

20



damage from being displaced. For example, the Paris Agreement demonstrates the potential of global commitments to reduce

carbon emissions and promote sustainability (UNFCCC, 2018; Steffen et al., 2018).600

International environmental agreements with improved compliance mechanisms and accountability are crucial for strength-

ening global environmental agreements. Lessons learnt from international human rights agreements, such as the integration

of accountability measures, can improve compliance with biodiversity commitments such as the Convention on Biological

Diversity (CBD) (Koh et al., 2022).

Sustainable trade policies should be enforced through certification schemes such as the Forest Stewardship Council (FSC),605

the Marine Stewardship Council (MSC) or Fair Trade International for goods. Control mechanisms such as the EU Defor-

estation Regulation (EUDR), which aims to reduce illegal deforestation, are another lever. Incentives such as tax breaks or

subsidies should also encourage companies to adopt sustainable practices, minimise waste, conserve resources and reduce

emissions (OECD, 2020).

Transnational conservation collaborations such as the Amazon Cooperation Treaty Organisation (ACTO) and Africa’s Great610

Green Wall project demonstrate the value of multinational approaches to conservation. These initiatives focus on combating

deforestation and wildlife trafficking, restoring degraded lands and supporting local communities. Such projects show how

regional cooperation can protect critical ecosystems and promote sustainable livelihoods (UNCCD, 2016; Fernandes et al.,

2024).

Although there are several promising policies packages, like those presented above, they have to be developed further and615

applied from international to local scale: Such future policies should adopt frameworks that integrate multiple values of biodi-

versity, promote cross-sectoral actions, and ensure stakeholder participation. Locally tailored solutions and scalable approaches

are necessary to restore ecosystems and foster positive outcomes for nature and people. Progress should be tracked through

innovative biodiversity monitoring and adaptive management that incorporates Indigenous and local knowledge systems.

The following framework by Perino et al. (2022) promises to improve future action reversing current trends of degeneration620

of the biosphere: (i) The identification process for locally suitable actions and the promotion of stakeholder ownership must

recognise the multiple values of biodiversity (Pascual et al., 2023; Martin et al., 2024) and account for remote responsibility. (ii)

Cross-sectoral implementation and mainstreaming of biodiversity considerations need scalable and multifunctional approaches

to restoring ecosystems and aim for positive futures for nature and people. (iii) Assessment of progress and adaptive manage-

ment needs to be informed by novel biodiversity monitoring and modeling approaches that address the multidimensionality of625

biodiversity change, including the incorporation of Indigenous and local knowledge (e.g. in Gielen et al., 2024).

The Nature Futures Framework (NFF) supports collaborative decision-making by recognizing diverse values of nature and

exploring shared pathways toward sustainable futures (Pereira et al., 2020a; Kim et al., 2023; IPBES, 2023). It emphasizes

adaptive management and scenario analysis to plan for positive synergies between biodiversity conservation and climate action.

Immediate actions include: (i) Integrating plural values and engaging diverse stakeholders in decision-making processes. (ii)630

Mainstreaming biodiversity conservation into all sectors. (iii) Using nexus approaches to address interlinkages, co-benefits,

and trade-offs. (iv) Improving policy coherence and integration. (v) Applying best practices in ecosystem restoration and

management (see also Pörtner et al., 2021a).
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The implementation of global environmental policy packages requires an equity lens and a rights-based approach, as projects

that are aligned with local people’s preferences and through inclusive governance are likely to have more effective social and635

environmental outcomes (Obura et al., 2023; Löfqvist et al., 2023; McDermott et al., 2023). In addition, unpacking elements

of social and environmental justice, including procedural, recognitional and distributive dimensions, is needed to support long-

term transformation towards sustainability (Leach et al., 2018; Pereira et al., 2023). Indigenous peoples and local communities

are leading by example by managing the biosphere in ways that support ecological integrity and thus biodiversity conservation

(Garnett et al., 2018; Dawson et al., 2024; Seebens et al., 2024; Massarella et al., 2021), see also section 3.6 and 3.8).640

Integrating biodiversity into global trade policy ensures that efforts to protect the environment are coordinated and effective

across borders. These interlinked actions provide a way to address the twin crises of climate change and biodiversity loss, and

promote a healthier planet for people and nature.

3.7 The social-economic value of ecosystems will increase in proportion to rising real market incomes and the

changing scarcities of ecosystems645

3.7.1 Background

Humans derive various benefits from nature, such as through biodiversity, ecosystems or ecosystem functioning. These benefits

can manifest as tangible outputs, such as water and food, but also include cultural, recreational, and spiritual interactions that

directly or indirectly influence human well-being (e.g., Pascual et al., 2023).

Although assigning monetary values to the benefits humans derived from ecosystem services involves numerous philosophi-650

cal and practical challenges, as emphasized in the next section, the alternative is often to consider no value at all in governmental

planning processes such as benefit-cost analyses, leading to an underinvestment in ecosystems (Dasgupta and Treasury, 2022).

Thus, already in 2010, at the 10th Conference of the Parties to the Convention on Biological Diversity in Japan, the interna-

tional community agreed that the values of biodiversity needed to be integrated into planning processes (Aichi Target 2). In the

Kunming-Montreal Global Biodiversity Framework, thisis reflected in Target 14: Integrate Biodiversity in Decision-Making at655

Every Level.

One quickly realizable way to conceptualize these ecosystem service benefits is through the notion of ecosystem services that

include both use and non-use values of nature. The values in this category are anthropocentric, encompassing both instrumental

and relational values (IPBES, 2019). The continuous loss of animal and plant species and their respective habitats leads to the

loss of the services they provide. To be better able to reflect these ecosystem services in benefit-cost analyses, environmental-660

economic national accounting or damage litigation processes, governments convert ecosystem services into monetary values

(Bishop et al., 2017).

3.7.2 Challenges

Governments around the world are currently looking for new approaches to appropriately assess the benefits from scarce

ecosystems and their economic value. This is intended to assist in making the consequences of the destruction or the benefits665
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of the conservation of nature more visible in analyses that underpin political decision-making processes and help with an

economically efficient and environmentally effective allocation of tight governmental budgets.

For now, calculation methods of nature’s values incorporate—if at all—solely the monetary value of ecosystem services as

determined under current conditions (Drupp et al., 2024), which means that nature becomes relatively less valuable over time

compared to other goods and services whose value increases with the expected rise in global economic prosperity. In fact also670

our appreciation of nature increases over time as we get wealthier and ecosystems scarcer. Two factors play a key role in this

changing value of scarce ecosystems over time. The prosperity of the world’s population is expected to rise—by an estimated

inflation-adjusted two percent per year (Müller et al., 2022)—and as household incomes increase, people will be willing to

pay more to conserve nature and enjoy its services in the future. In addition, as the services provided by ecosystems become

scarcer, this will further increase their value to society. The fact that scarce goods become more expensive is a fundamental675

principle in economics, and it also applies to nature’s values.

3.7.3 Offering solutions

Drupp et al. (2024) provide governments with a ready-to-use formula to estimate the future economic values of scarce ecosys-

tem services that can be used in decision-making processes. The formula scrutinizes up-to-date evidence on the so-called

relative price change of non-market environmental goods (e.g., Hoel and Sterner, 2007; Sterner and Persson, 2008; Drupp and680

Hänsel, 2021) and recommends considering nature’s values to increase proportionally with real market income. This is in line

with what governmental bodies use to value reductions in mortality risk or travel time. As a result, if only the expected increases

in income over the next 100 years were taken into account, the value of global ecosystems would have to increase by more than

130%. This holds for stagnating ecosystems. If ecosystems are projected to decline or degrade further, the value adjustment

needs to be higher still. In the case of endangered species, as captured in the prominent Red List Index, for instance, the value685

adjustment would amount to more than 180%. Accounting for these effects would thus increase the likelihood of projects that

conserve ecosystem services to pass a benefit-cost test.

Drupp and Hänsel (2021) apply the formula to the evaluation of global climate policy. Economists typically use integrated

climate-economy assessment models, such as the DICE model developed by Nobel Laureate William Nordhaus, to evaluate

the trade-offs between mitigation costs and avoided damages from climate change and to estimate the required CO2-prices690

(Nordhaus, 2019). A key criticism leveled at these models is that they do not appropriately capture the loss of nature’s services

and thus underestimate climate damages. Drupp and Hänsel (2021) disentangle how non-market goods and services, such as

environmental amenities, are captured within these models and explicitly account for this based on an empirical analysis of

fundamental drivers of the relative price effect of non-market goods. They find that the social costs of climate change increase

by more than 50%, suggesting substantially higher economically optimal CO2-prices (see also section 3.6). The increase in the695

economically optimal global mean temperature change is accordingly reduced by half a degree Celsius, which highlights the

importance of accounting for the scarcity of nature when evaluating climate policy.
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3.8 Convivial conservation’s principles

3.8.1 Background

Convivial conservation is a new “vision, a politics and a set of governance principles for the future of conservation” (Büscher700

and Fletcher, 2019, p.284). Through its focus on ‘living with’ biodiversity within planetary boundaries, it aligns with transfor-

mative action for climate change (Pörtner et al., 2021b). Grounded in political ecology, it foregrounds the political economy as

a significant constraint to transformative conservation. Political ecology is inherently cross-scalar, charting connections from

global to local, while emphasising the importance of history and power relations (Watts, 2017). Furthermore, convivial con-

servation allies itself with social and environmental movements (e.g., Indigenous and decolonial). It proposes a long-term,705

holistic, “post-capitalist approach to conservation that promotes radical equity, structural transformation, and environmental

justice and thus contributes to an overarching movement to create a more equal and sustainable world” (Büscher and Fletcher,

2019, p.283).

3.8.2 Challenges

Convivial conservation responds to two dominant conservation agendas. The first is , ‘new conservation’, which breaks with710

a long-standing fixation on ‘pristine wilderness’ seen as separate from humans, and instead promotes integration into human

development (Sullivan, 2006; Buscher and Fletcher, 2020; Kareiva et al., 2011; Marris, 2013), but do not address the harmful

capitalist model of economic development that underpins biodiversity loss (e.g., tourism or payments for ecosystem services).

The second approach, neo-protectionism, tries to completely separate nature from human development, calling for an expansion

of conventional ’fortress’-style protected areas and therefore reinforces the dichotomies between nature and culture (Hutton715

et al., 2005; Wuerthner et al., 2015; Buscher and Fletcher, 2020). Although new conservation moves beyond these dualisms,

it looks to market mechanisms to fund and save nature (e.g., payments for ecosystem services, ecotourism), creating other

social and environmental problems. Convivial conservation proposes that both approaches have limitations, as inherited from

thephilosophies and global development models that drive the intertwined biodiversity and climate crises.

3.8.3 Offering solutions720

The specific contribution of long-term convivial conservation is that it aims to produce integrated nature-culture spaces within

post-capitalist conservation strategies. At its core, it investigates and challenges dominant global political-economic structures,

assumptions, beliefs, and knowledge production systems, “including those that are the foundation of paradigms of economic

growth and adaptation without limits” (O’Brien and Barnett, 2013, p.385).

Convivial conservation is gaining traction in research, policy and practice (Massarella et al., 2023; Ochieng et al., 2023):725

“There is widespread agreement that our current reality of global, human-induced ecosystemic and climatic change presents

stark challenges for conservation” (Büscher and Fletcher, 2019, p.285). At the same time, breaking through the hegemony

of protectionist neoliberal conservation (Fletcher, 2023) is also the greatest challenge for convivial conservation. To further
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address this challenge, a manifesto was developed that outlines 10 core principles of convivial conservation. We summarise

key elements of these principles here; for a complete overview of all 10 principles, we refer to the manifesto website (Centre,730

2024).

Humans have always shaped the ecosystems in which they live, co-producing diverse landscapes that in turn shaped and

supported people. However, mainstream conservation interventions often separate people from their surrounding ecosystems

based on the unfounded assumption that local communities threaten biodiversity (Brockington et al., 2012). The question is

not whether people should live with the rest of nature, but how (see section 3.5).735

International and regional inequality contributes to the destruction of global commons necessitating equitable stewardship

of ecosystems, centred on those who live within them. Nurturing extra-local commons institutions and economies based on

values of care would help cross-generational and cross-scale conviviality. Convivial conservation challenges dominant top-

down forms of political power and advocates for inclusive decision-making processes, in particular for those dependent on

the ecosystems in question (Lanjouw, 2021). All decisions that can be reached effectively at the local level should be, with740

higher-level processes that support local autonomy and intervene only when necessary (e.g., Gokkon, 2018, see also section

3.6).

Emphasising only the monetary valuation of biodiversity can be counterproductive. Instruments such as ‘payments for en-

vironmental services’, REDD+, and carbon credits use the logic of the problem (capitalist accumulation through the use of

natural resources as the logic of the solution (Fletcher, 2023)). This conflicts with convivial co-existence between humans745

and non-humans, and can undermine other non-monetary ways of valuing nature. It is crucial to support existing livelihoods

rather than (further) forcing locals into exploitative external markets. Moreover, mechanisms to redistribute existing wealth

and resources would preclude the need to finance conservation through environmentally harmful economic growth (Moranta

et al., 2022).

Protected areas have usually relied on paradigms based on positivist scientific knowledge at the expense of rich local and750

Indigenous philosophies, histories, and practices. However, many different other ways of knowing and practical ways of being

in relation to the world such as Ubuntu (Mabele et al., 2022), Buen Vivir, and Eco-Swaraj promote life through mutual care

and sharing between humans and non-humans, discouraging individualism and unsustainable extraction (Dickson-Hoyle et al.,

2022). This diversity of knowledge must be valued (Orlove et al., 2023).

Too often, those who live in or close to conservation areas are expected to change their behaviour the most (Brockington755

et al., 2012; Merino and Gustafsson, 2021). However, large industrial extractive practices and high consumption lifestyles drive

disproportionate loss of biodiversity. However, these people and organisations are not perceived as causative agents because

they are far from conservation spaces or too powerful to influence (Wiedmann et al., 2020). Conservationists should challenge

both the regimes that indulge in human rights violations and displacement in the name of biodiversity, and the rights of global

or national elites to control or hinder conservation efforts (see also section 3.6).760

Some examples where (core elements of) convivial conservation are already visible are the broader investigation of a Con-

servation Basic Income (CBI) (Fletcher and Büscher 2020; De Lange et al. 2023), early results of which show a promising

reduction of logging in the Amazon (Hyolmo, 2025), or human-wildlife cohabitation that is grounded in a strong bottom up
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approach. A clear example of the latter, focused on human-bear cohabitation in Bulgaria, was investigated by Toncheva et al.

(2021).765

4 Synthesis

The eight themes introduced above highlight complex interrelationships within the biosphere and their connections to social

and economic systems, and as well as to the Earth system. It is evident that various vicious cycles exist. For example, changes

in temperature and precipitation patterns as a result of climate change and deforestation can lead to lower agricultural yields

and increased fires. This increases pressure on ecosystems and local people, who depend on nature, and face challenges in770

maintaining their livelihoods and meeting the demand for resources and products in the global market. The provision of various

commodities under current trading paradigms and subsidy schemes further fuels climate change, ecosystem degradation and

deforestation. In addition to identifying interdependence between these challenges, our eight themes offer four key insights

into escape hatches from such cycles.

4.1 1. Improve mechanisms of inclusive decision making775

The involvement of diverse stakeholders, including civil society, Indigenous people and local communities and private sector

actors, enriches decision-making by incorporating a variety of perspectives and fostering support for innovative solutions (sec-

tion 3.6). For example, the concept of ’blue justice’ advocates for the rights and recognition of small-scale fishers, challenging

their marginalisation and empowering them within the regions they inhabit, fostering ecosystem stewardship (section 3.1).

Similarly, the integration of indigenous knowledge and governance has proven valuable in improving fire management strate-780

gies and promoting biodiversity and fire resilient ecosystems (section 3.3). Such approaches promote equitable and resilient

outcomes that align conservation efforts with sustainable development goals (section 3.6). In addition, decision-makers from

adjacent ecosystems should sometimes be involved, as, for example, upstream land-based activities have significant impacts

on coastal ecosystems (section 3.1).

Raising public awareness through education campaigns and fostering collaboration enables a holistic approach to envi-785

ronmental challenges (sections 3.1, 3.3. 3.8). Various knowledge systems, such as Ubuntu, Buen Vivir and Eco-Swaraj, empha-

sise mutual care and sustainable relationships between humans and non-humans. These frameworks discourage individualism

and over-exploitation while promoting sustainable living. Incorporating such worldviews into decision-making processes is

essential for sustainable and effective governance (section 3.8).

Comprehensive policy packages need to integrate environmental, economic, and social dimensions to address the root790

causes of environmental degradation and to promote sustainability (sections3.6). These packages should encourage the adop-

tion of cleaner technologies and provide incentives for the conservation and restoration of ecosystems. Initiatives such as

the European Green Deal underline the importance of integrating climate and biosphere protection with economic and social

objectives. International cooperation is essential to ensure coherent policies across borders and to drive meaningful progress

(sections3.6).795
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4.2 2. Establish and strengthen incentives for sustainable practices

Institutional mechanisms need to be adapted to support innovative and unconventional practices, enabling transformative

approaches to environmental challenges (section 3.1). Recognising the structural co-benefits of nature-based solutions, such as

reducing flood risk and providing additional ecosystem services that come from protectingthe reduction of flood risk and the

provision of additional ecosystem services that come from the protection of coastal wetlands, is crucial for integrated policy800

and planning (section 3.1).

Strengthening financial support, such as tax breaks, subsidies or grants, for actions that adopt sustainable practices can

reduce emissions, water use and waste production (section 3.6). For example, strengthening firefighting resources - through

increased funding for equipment, personnel and surveillance - improves fire prevention and response capacity. This investment

is critical as fire suppression costs are consistently outweighed by the losses from unmanaged fires (section 3.3). Further,805

future benefits derived from ecosystems should be uplifted proportionally with increasing real market incomes and changing

real scarcities of ecosystems (section 3.7).

An exclusive focus on monetary incentives for biodiversity protection undermines its intrinsic, relational and cultural

values, which are equally important for promoting respect for nature and long-term sustainability (section 3.8). Addressing

these dimensions holistically is essential for effective and equitable environmental governance.810

4.3 3. Measure and share regional features

Strengthening monitoring capacity is essential for effective environmental management and conservation (section 3.5). For

example, increased field measurements in tropical regions are critical to fill gaps in water-related perspectives and to enable

country or region-specific analyses to assess the feasibility and cost-benefit trade-offs of different reforestation strategies (sec-

tion 3.2).815

Similarly, fire risk assessments and forecasts need to consider regional factors beyond fire weather, including landscape and

vegetation characteristics, management practices, ignition sources and socio-economic drivers of vulnerability and exposure

(section 3.3).

Environmental certification of imports and exports is essential to maintain high environmental standards. The expansion

of existing schemes and the creation of new sector-specific certifications, coupled with regular reviews, transparent reporting820

and mandatory disclosure of progress, can hold stakeholders accountable to clear benchmarks and timelines (section 3.6). For

example, tonne-year accounting provides a scientifically robust method for measuring the climate impact of temporary carbon

storage, bringing carbon accounting practices into line with current scientific understanding (section 3.4).

4.4 4. Adopt long lasting holistic landscape management strategies

Humans have always shaped the ecosystems in which they live, co-producing diverse landscapes that in turn shaped and825

supported people (section 3.8). Restoring degraded landscapes worldwide can boost precipitation and mitigate losses from for-

est degradation (section 3.2). For instance, coastal habitat restoration in Belgium and Hong Kong highlights the co-benefits of
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nature-based solutions (section 3.1) while national strategies that prioritize biodiversity help to promote fire resilience by avoid-

ing mono-cultures of highly flammable species (section 3.3). Maintaining or restoring 20-25% of (semi-)natural habitat per

square kilometre in human-modified landscapes is crucial for maintaining several of nature’s contributions to people (NCPs),830

particularly in agricultural and urban areas. Incorporating habitats such as hedgerows and no-mow zones alongside precision

agriculture can balance biodiversity with optimised productivity, making the 25% target a valuable policy tool (section 3.5).

Consider trade-offs carefully: Land fragmentation for fire suppression can reduce species richness, whereas controlled

burning may offer a more natural solution, supporting fire-dependent vegetation and biodiversity (section 3.3). Similarly, while

afforestation can enhance carbon sequestration and benefit local communities, it requires meticulous planning to avoid un-835

intended ecological consequences (section 3.2). To optimize outcomes, trade-offs and synergies between biodiversity con-

servation and services like carbon sequestration, coastal protection, water purification, aquaculture, and eco-tourism must be

holistically evaluated (section 3.1).

Ecosystem governance should prioritize the people who live within them, empowering Indigenous people and local commu-

nities to restore and conserve both livelihoods and biodiversity (section 3.1). Supporting extra-local commons and economies840

based on values of care contributes to intergenerational and inter-scale sustainability (section 3.8). At the same time, increased

transnational cooperation, as exemplified by the Amazon Cooperation Treaty Organization, is essential to combat illegal de-

forestation and wildlife trafficking and promote more effective conservation strategies (section 3.6).

We note that these four insights align closely. More effective mechanisms of inclusive decision-making are fundamental to

promoting the collective effort and will needed to bring transformations of existing structures. Such mechanisms will enable845

decision-makers to respond to incentives for sustainability and to draw on improved metrics. These, in turn, will support the

adoption of long-lasting landscape management strategies.

5 Conclusions

Taken together, these eight themes, described in section 3, illustrate the importance of considering the impact of human ac-

tivities on surrounding areas when analysing, evaluating or developing policies or economic measures. Focusing exclusively850

on a single problem, question or objective is not enough. Overly siloed approaches can overlook or even exacerbate, existing

problems in other areas (Fanning et al., 2022). As different aspects of the Earth system crisis are typically addressed by differ-

ent research disciplines, closer collaboration between scientists of diverse fields is essential to develop a holistic understanding

and effectively tackle complex and critical issues even in smaller research projects. This interdisciplinary approach is already

practiced in the major reports such as those by IPBES and IPCC.855

Our interdisciplinary study is another example of an effective, collaborative methodology that brings together experts from

different disciplines and regions, and illustrates the great value of interdisciplinary collaboration in advancing science and

supporting decision-makers. Nevertheless, this collection of pressing ecological issues does not claim to be exhaustive, and

the compilation may be superficial on some topics that require more in-depth discussion. However, it could serve as the first

in a series of annual synthesis reports that provide actionable insights and bridge the information gap between the major860
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IPCC and IPBES assessments, while complementing studies such as the "10 New Insights in Climate Science" or "Scientists’

Warning" series. In these future reports, we need to encourage greater contributions from scientists in other regions of the

world, particularly the Global South, to incorporate their knowledge and perspectives. Their insights can help identify new

targets and research questions that may have been overlooked so far.

Despite receiving less public attention than other currently dominant issues, the Earth System crisis - including climate865

change, biodiversity loss, pollution and land-use change - remains the major challenge of this century. While many ecosystems

around the world are suffering from these threats, healthy ecosystems also offer significant potential to mitigate or adapt to

many aspects of Earth system crises. Addressing these interlinked challenges for ecosystems, including the socio-economic

dimensions, requires interdisciplinary and integrative approaches to develop effective and sustainable solutions.

In conclusion, we curated this list of pressing environmental issues and recommendations to underscore that we are not870

limited by how much we know about the problem or how much we know about how to act. The obstacles are structural, cultural

and political in nature. They prevent the necessary pace and scale of implementation needed to achieve various international

commitments and the goals of the Paris Agreement and the Kunming-Montreal Global Biodiversity Framework in a fair and

equitable manner. Effective implementation of these eight themes helpt to can promote a flourishing biosphere that facilitates

economic, cultural, and spiritual interactions essential to human well-being875
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Appendix A: Questionnaire

A1 Disclaimer:

We welcome contributions from all active researchers in all disciplines working on issues related to ecosystems and human

interactions with these systems worldwide. Please tell us what you think are the 1-3 most important discoveries or advances

in your field of research since 1 January 2022, and the key articles and reports that highlight these findings. In order to cover1800

a specific topic, the editorial team requests at least two articles published after 1 January 2022. Each response must meet the

following criteria:

– sufficient evidence from peer-reviewed publications in the last two years;

– no ongoing critical debate on the issue;

– relevance to international negotiations.1805
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A2 Questions

– What is an important recent advance in biosphere research related to climate change and other anthropogenic stres-

sors? Please add up to 5 publications published since 1-1-2022 that support your claim. (if possible weblinks or library

references)

– What is an important recent advance in biosphere research related to adaptation and mitigation potentials? Please add up1810

to 5 publications published since 1-1-2022 that support your claim. (if possible weblinks or library references)

– What is an important recent advance in biosphere research related to the identification of efficient policy making and

economics concepts? Please add up to 5 publications published since 1-1-2022 that support your claim. (if possible

weblinks or library references)
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