

Surface CO₂ Gradients Challenge Conventional CO₂ Emission Quantification in Lentic Water Bodies under Calm Conditions.

Patrick Aurich¹, Uwe Spank², Matthias Koschorreck¹

¹Department Lake Research, Helmholtz-Centre for Environmental Research – UFZ, Brückstraße 3a, 39114 Magdeburg, 5 Germany

²Chair of Meteorology, Institute of Hydrology and Meteorology, Faculty of Environmental Sciences, Technische Universität Dresden, Piener Straße 23, 01737 Tharandt, Germany

Correspondence to: Patrick Aurich (patrick.aurich@ufz.de)

10 **Abstract.** Lakes are hotspots of inland carbon cycling and are important sources of greenhouse gases (GHGs), such as carbon dioxide (CO₂). The significant role of CO₂ in the global carbon cycle makes quantifying its emission from various ecosystems, including lakes and reservoirs, important for developing strategies to mitigate climate change. The thin boundary layer (TBL) method is a common approach to calculate CO₂ fluxes from CO₂ measurements in both water and air, and wind speed. However, one assumption for the TBL method is a homogeneous CO₂ concentration between the measurement depth and the water surface, where gas exchange takes place. This assumption might not be true under calm conditions, when microstratification below the surface slows vertical exchange of gases. We used a floating outdoor laboratory to monitor CO₂ concentrations in 5 cm and 25 cm depth, CO₂ concentration in the air, wind speed, and water temperature profiles for one week in Bautzen Reservoir, Germany. While we found homogeneous CO₂ concentrations in the two depths during wind speeds above 3 m s⁻¹, there was a vertical gradient observed during wind still nights. The concentrations observed temporally ranged from 15 undersaturation to supersaturation in 25 cm and 5 cm, respectively. Fluxes calculated from the measured concentrations therefore would change from negative to positive, depending on the measurement depth. Simultaneous Eddy Covariance measurements showed that even the measurements close to the surface underestimated the actual CO₂ concentration. Oxygen measurements support our hypothesis that plankton respiration~~al~~ at the water surface causes a periodic CO₂ concentration gradient from the surface to the underlying water. Until now, the depth of CO₂ measurements has not been questioned, as long 20 as measurements were done in the upper mixed layer and close to the surface. Our results provide evidence that representative 25 measurements of CO₂ in the water strongly depend on depth and time of measurements.

1 Introduction

Lakes are hotspots of inland carbon cycling and are important sources of greenhouse gases (GHGs), such as carbon dioxide (CO₂). The significant role of CO₂ in global warming and climate dynamics makes quantifying its emission from various 30 ecosystems, including lakes and reservoirs, important for developing strategies to combat climate change. Proper measurement of CO₂ emissions from lakes is the basis for robust global CO₂ emission quantification (Raymond et al., 2013; Lauerwald et al., 2023).

~~Eddy Covariance (EC) is one of the most advanced methods to quantify GHG fluxes between water and atmosphere, as it provides direct measurements covering large footprint areas at high temporal resolution (Aubinet et al., 2012) The state-of-the-art method to quantify GHG fluxes between water and atmosphere is Eddy Covariance (EC) (Aubinet et al., 2012). Measurements by EC represent direct measurements covering large footprint areas at high temporal resolution.~~ However, EC systems require a large homogeneous ~~lake surface~~ area to ensure accurate flux measurements. The limitation is increased by its costs and requirements for maintenance. Thus, there is a restricted number of EC sites on lakes worldwide (Golub et al., 2023). EC measures to total gas flux between water and atmosphere, including diffusion as well as ebullition. However, in 40 contrast to methane, which is often emitted by gas bubbles, CO₂ fluxes at the water surface are nearly exclusively driven by diffusion. The by far most used approach to quantify diffusive aquatic GHG fluxes is the Thin Boundary Layer approach (TBL,

Lauerwald et al., 2023), also referred to as flux gradient method. The TBL approach, in contrast to EC, is an indirect measurement to quantify diffusive gas exchange across the water-atmosphere interface. The TBL flux is derived from the concentration gradient between the water ($c_{CO_2 \text{ water}}$) and the theoretical concentration at equilibrium with the air

45 ($c_{CO_2 \text{ equilibrium}}$) multiplied by the gas exchange velocity (k , equation 1).

$$F_{CO_2} = k * (c_{CO_2 \text{ water}} - c_{CO_2 \text{ equilibrium}}), \quad (1)$$

This method is much simpler than EC, because it only requires concentration measurements in both the water and the atmosphere. The gas exchange velocity can be estimated from meteorological data, typically wind speed and eventually temperature or fetch, using empirical models (Cole and Caraco, 1998; McGillis et al., 2004; MacIntyre et al., 2010; Vachon 50 and Prairie, 2013; MacIntyre et al., 2021). The temporal resolution can be comparable to the EC method when using submerged CO₂ probes. However, for both methods, uncertainties arise from situations involving very low wind speeds.

When there is no wind, EC systems cannot measure at all, because the method relies on air movements (Aubinet et al., 2012; Podgrajsek et al., 2014). But also, the TBL approach encounters difficulties under wind still conditions. While wind is the primary driver of gas transfer velocity and surface turbulence in large water bodies, its influence decreases under calm 55 conditions, where factors such as the mixed layer depth (Rutgersson et al., 2008), surface cooling-induced convection (MacIntyre et al., 2010; Heiskanen et al., 2014; Andersson et al., 2017; MacIntyre et al., 2010) and the lake's morphometry (Schilder et al., 2013) gain prominence in controlling gas exchange velocities. For example, Podgrajsek et al. (2015) showed that high CO₂ fluxes in calm conditions can be explained by convective cooling. Further, most parametrizations of k rely heavily on wind speed and assume a zero intercept, leading to significant uncertainties under calm conditions. While factors 60 like turbulence and convection are often considered in the context of their influence on k only, they also play a critical role on near-surface CO₂ gradients. This may lead to systematic underestimation of k under wind still conditions. Although studies to improve k models exist (Cole et al., 2010; Crusius and Wanninkhof, 2003; MacIntyre et al., 2010; Vachon and Prairie, 2013), to our knowledge, the effect of uncertainty in $c_{CO_2 \text{ water}}$ measurements on the TBL approach received little attention.

In calm conditions, the absence of wind significantly reduces turbulence, leading to surface microstratification. This 65 microstratification creates distinct layers within the mixed layer, each with varying temperatures and solute concentrations, including CO₂ (Åberg et al., 2010). Specifically, microstratification may result in dissolved gas gradients near the water's surface, suggesting that the actual layer engaging in atmospheric exchange becomes very thin. This challenges the assumption of the TBL approach that water just below the surface accurately represents the layer of gas exchange.

The critical layer of diffusive gas exchange is the surface microlayer (SML). The SML is the interface between the water and 70 the atmosphere and is characterized by high biological activity and physical processes that affect the interaction with the atmosphere (Gladyshev, 2002; Wurl et al., 2011). The SML is known for its enriched concentrations of phytoplankton, organic and inorganic solutes, and particles (Hardy, 1982). These components define the SML as a distinct layer situated between the atmosphere and the underlying water. In the ocean, surfactants in the SML were found to reduce the diffusive gas exchange with the atmosphere by 32 % (Pereira et al., 2018). Mustaffa et al. (2020) found a reduction of fluxes of 62 % in the presence

75 of natural slicks. Under calm conditions, the SML thickens, becoming even more crucial for the diffusive exchange of gases (Rahliff et al., 2017). However, despite its importance, there remains a gap in our understanding of the interactions between the atmosphere, the SML, and the water beneath, particularly in freshwater environments.

Dynamics in gas exchange between the epilimnion, the surface layer and the atmosphere could lead to systematic uncertainty in the quantification of the surface gas concentration, as samples might be collected from depths that do not accurately reflect 80 the conditions of the water-atmosphere interface. In a recent study, Rudberg et al. (2024) explored how spatial and temporal differences affect the influence of k and c_{CO_2} on the variability of F_{CO_2} . By deploying a floating chamber over several hours, the gas concentration in the chamber equilibrated with the gas concentration in the surface water and enabled the quantification 85 of the surface CO_2 concentration. With this approach they demonstrated that over periods of 1-9 days, c_{CO_2} contributed more to F_{CO_2} variability than k . This finding emphasizes the need for precise c_{CO_2} measurements when estimating fluxes using models. Similar research has been conducted in the ocean. Although CO_2 samples for gradient-based flux models are usually 90 collected a few meters below the water surface, Calleja et al. (2013) found significant gradients between depths of 5-8 meters. Hari et al. (2008) found different CO_2 concentrations in 0.1 m and 0.5 m depth while investigating a new method for CO_2 measurements. However, while these differences are attributed to varied biological activities in the different depths, there is a lack of knowledge about the formation and characteristics of such gradients, especially with regard to the SML and diffusive gas exchange with the atmosphere.

To better understand the importance of vertical CO_2 gradients at the water-atmosphere interface, we conducted an extensive field experiment in a eutrophic reservoir. Our study is based on two key hypotheses:

1. Temporal gradients of CO_2 concentrations are present close to the water surface, and
2. These gradients are influenced by meteorological factors, such as wind.

95 To assess the effect of an eventual surface CO_2 gradient on CO_2 fluxes we compared fluxes calculated by the TBL approach with fluxes measured by EC during the same period.

2 Materials and methods

2.1 Study site

Our study site Bautzen reservoir in Germany (51.218 °N, 14.466 °E) is a dimictic reservoir. High wind exposure, a relatively 100 large surface area (533 ha) as well as a circular shape, and the shallow depth (mean 7.4 m, maximum 13.5 m) result in a weak stratification during summer in some years (Benndorf, 1995; Spank et al., 2023). The eutrophic to hypereutrophic reservoir (Kerimoglu and Rinke, 2013) serves for flow regulation of river Spree – the main river of Berlin. A preceding study showed CO_2 uptake of -9.8 g C m^{-2} and -71.0 g C m^{-2} during the ice-free seasons of 2018 and 2019, and CH_4 fluxes of 24.0 g C m^{-2} and 23.2 g C m^{-2} , respectively (Spank et al., 2023).

105 2.2 Meteorological field observatory

A floating outdoor laboratory was operated to continuously observe the mass- and energy exchange between the water surface and the atmosphere. A detailed description of the floating outdoor laboratory and its instrumentation can be found in Spank et al. (2020, 2023, 2024). The floating outdoor laboratory provided reference data of the carbon dioxide flux (F_{CO_2}) between the water surface and the atmosphere as well as data of wind speed (U), air temperature (T_a), relative air humidity (RH), air 110 pressure (p_a), solar radiation (R_g) and water temperature (T_w) in a temporal resolution of 30 minutes. In addition, the floating outdoor laboratory served as a carrier for the devices used during the measurement campaigns. The measurement height of meteorological sensors was 2 m above the water surface in accordance with international standards. W~~The water temperature thermistor chain measured (T_w) was measured~~ at depths of 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.5, and 15.0 m. The eddy covariance measuring system, which provides F_{CO_2} , was instrumented according to standards and 115 guidelines given by Lee et al. (2004), Foken and Mauder (2024), Aubinet et al. (2012) and Burba (2013). The EC post processing was based on the methodologies of Carbo Europe (Aubinet et al., 1999) and ICOS (Sabbatini et al., 2018) and had been performed utilizing the software EddyPro 7.0.8 (LI-COR Biosciences 2023). T~~However, the special site conditions and the platform movement were taken into account and addressed by a special correction of the sensor misalignment beforehand (Spank et al., 2020, 2023)~~. The EC data are representative for the pelagic zone of Bautzen reservoir. In particular, carefully a 120 ~~performed~~ footprint analyses proved that effects and disturbances from surrounding terrestrial sites can ~~be~~ almost completely be ruled out (Spank et al., 2023) ~~(Spank et al. 2023)~~. The EC post processing was based on the methodologies of Carbo Europe (Aubinet et al., 1999) and ICOS (Sabbatini et al., 2018) and had been performed utilizing the software EddyPro 7.0.8 (LI-COR Biosciences 2023). T~~he special measurement condition on a floating platform required an upstream correction of the sensor misalignment (Spank et al., 2020, 2023)~~. The correctness and quality of data were carefully checked using the methodology of (Foken and Wichura; (1996)Foken and Wichura (1996). Quality features, i.e., stationarity and turbulence characteristics, 125 ~~were computed for the individual 30-minute data records and classified according to the nine-step classification scheme of (Mauder et al., (2006)Mauder et al. (2006)~~, where 1 is best and 9 is worst. Only 30-minute data records were considered that fulfilled criteria for quality levels 1-6. In addition, the random sampling error was calculated according to ~~(Finkelstein and Sims, (2001)Finkelstein and Sims (2001)~~ and used to capture the non-systematic uncertainty of F_{CO_2} and F_{CH_4} . Further 130 ~~information on the uncertainty analysis and the analysis of systematic measurement uncertainties in the EC data can be found in (Spank et al., (2024)Spank et al. (2024)~~. Although the~~While this study here addresses~~ focusses on low wind situations ~~inwhere which EC measurements could~~~~can be~~ potentially be biased due to a lack of turbulence and gustiness. ~~no~~ such issues were ~~not~~ observed ~~in~~ during the investigated period ~~investigated here~~. On the contrary, all flux data exhibited sufficient turbulence and stationarity. This observation was also confirmed by spectral analyses ~~performed in parallel~~, which showed 135 clearly developed power and cospectra.

2.3 Dissolved Gases

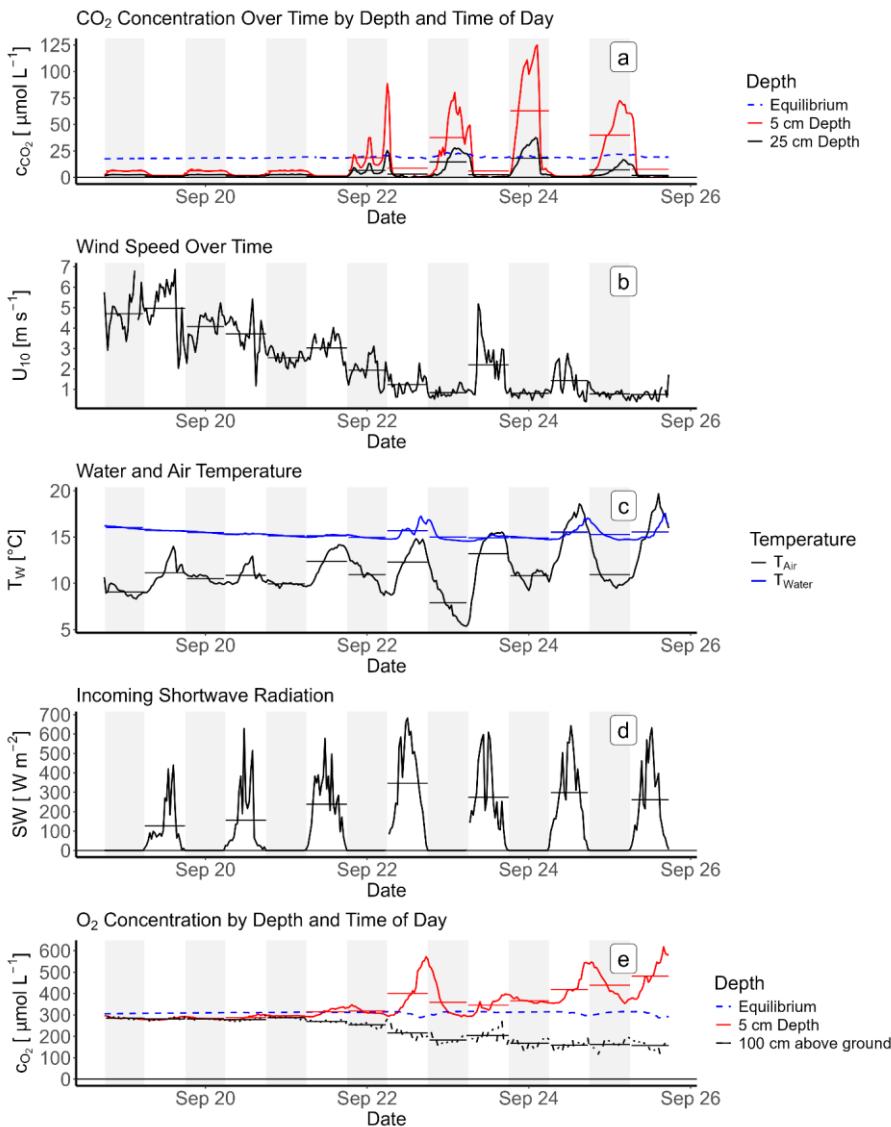
To detect eventually occurring dissolved CO₂ concentration gradients at the water surface, we deployed two CO₂ probes (Contros HydroC, -4H- JENA engineering, Germany) at different depth from September 18 to September 25 in 2022 (hereinafter referred to as *study period*). These probes, featuring diffusive membranes with a diameter of 8 cm, were positioned

140 so that the central points of their membranes were situated at depths of 0.05 m and 0.25 m, respectively. We used a frame that consisted of two aluminium bars, which were connected by two cross bars in the middle. Aluminium extensions on the cross bars were used to mount the CO₂ probes horizontally and allow adjustments of the measurement depths. Buoyancy floats in the four corners were used to make the frame float below the surface (Figure S 1). The CO₂ probes were powered by 24 VDC provided by the floating platform. To maintain the integrity of surface water stratification, we left the membranes of the CO₂
145 probes uncovered. CO₂ was measured every minute and data was logged internally by the probes. The probes performed internal zero baseline corrections once a day.

CO₂ probe performance was validated before deployment. After deployment, internal data required post processing (as described in Fietzek et al., 2014) because the measurements were out of the factory calibration range. In brief, the internal zero measurements using CO₂ absorbents generate frequent calibration points for pCO₂ = 0. Daily zero measurements were used to
150 calibrate signal outputs between the last and the next zero measurement. Finally, a modified polynomial function was used to determine corrected CO₂ concentrations (Supplement, S1).

The equilibrium concentration for CO₂ was derived from the EC CO₂ analyser (LI-7200, LI-COR Environmental, Inc., Lincoln, NE, USA).

Oxygen concentrations were measured every 15 minutes by optical O₂ loggers. Surface O₂ concentration at 0.05 m depth was
155 measured with a miniDOT logger equipped with a miniWIPER (Precision Measurement Engineering, USA, wiping frequency 12 hours) mounted at the same depth as the surface CO₂ probe. A D-Opto oxygen logger (ZebraTech, Nelson, NZ) was installed in the bottom water at 1 m above the sediment using a separate mooring. Both oxygen sensors were calibrated using a two-point calibration at 0 % and 100 % oxygen saturation and corrected for potential drift.


2.4 Data and Statistics analysis

160 The platform data was prepared and exported in Python. For this study, the platform data, CO₂ probe data and oxygen data were compiled in R (R version 4.4.1, R Core Team, 2024). All subsequent analyses, statistical computations, and visualizations were performed in R (Supplement, S2). CO₂ and oxygen measurements were averaged over 30-minute periods. Gas fluxes were calculated from in situ water and air pCO₂ and *k* (calculated from U_{40} after Cole and Caraco, 1998) (Cole and Caraco, 1998b) using equation 1.

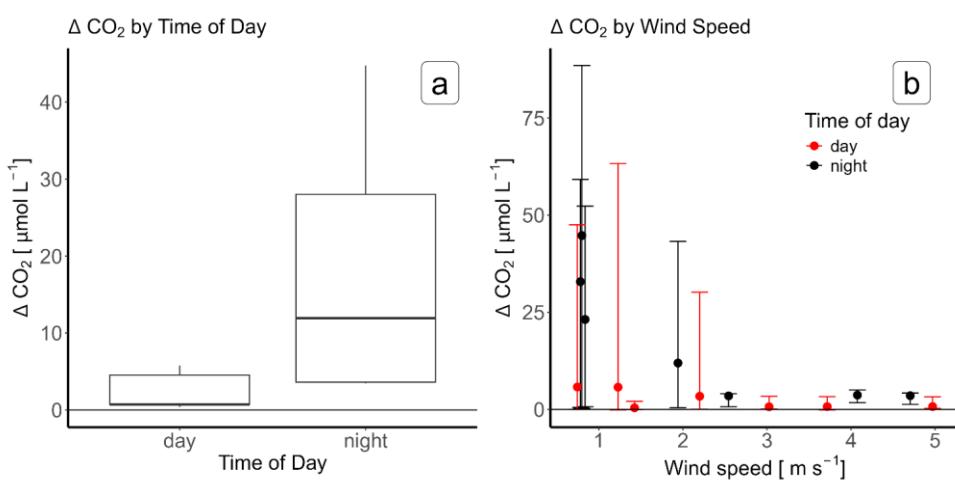
Formatted: Subscript

165 **3 Results**

In 2022, Bautzen reservoir was thermally stratified from the beginning of May. During the stratified period (mean mixed layer depth = 4.4 m), the maximum T_w at the surface was 30 °C, while T_w above the ground reached a maximum of 13 °C (Figure A 1). On September 9th 2022, a thunderstorm with strong winds hit the Bautzen region, leading to a shutdown and subsequent 5-day outage of the measurement platform. This storm also marked the end of the stratified season and started mixing of the 170 reservoir. On September 18th, which marks the beginning of our extensive GHG measurements, T_w was 16 °C at both the surface and bottom. The oxygen C_{O_2} was 9.1 mg L⁻¹ at both the surface and the bottom.

175 **Figure 14:** CO₂ concentrations (a) measured at 0.05 m and 0.25 m depth (red and black line, respectively), and equilibrium concentration with the atmosphere (blue dashed line). Wind speed at 10 m height (U₁₀, b), Water temperature at 0.25 m depth + air temperature (c), and incoming short-wave radiation (SW, d). Oxygen concentrations (e) at 0.05 m depth and at 1 m above ground (red and black line, respectively), as well as equilibrium concentration with the atmosphere (blue dashed line). In all plots, horizontal bars show mean values of days and nights and grey shading indicates night-time.

Our measurement period can be divided into two parts with differing weather conditions. The first period from September 19th to 21st was windy with U₁₀ mostly above 3 m s⁻¹. In contrast, during the second half of our sampling period, wind speeds were mostly below 3 m s⁻¹, with 63 % of those times even falling below 1 m s⁻¹ (Figure 1Figure 4 b).


The CO₂ concentrations near the water surface showed a fundamentally different behaviour during those two periods (Figure 1Figure 4 a). During the windy period, CO₂ was permanently undersaturated and just above zero. In contrast, high CO₂ concentrations up to 125 μmol L⁻¹ were observed during the calm period. Notably, nightly CO₂ concentrations in both depths were ten to twenty times higher during the calm period compared to the windy period. Starting on September 22nd, nightly CO₂ concentrations exceeded the equilibration concentration, leading to temporary supersaturation in calm nights. While the nightly mean CO₂ concentration at 5 cm depth exceeded the equilibration concentration in the nights of September 23rd to 26th, the mean concentration at 25 cm depth never surpassed equilibrium. The CO₂ concentration at the water surface showed a consistent diurnal pattern during the entire study period. At night, the CO₂ concentration at 5 cm depth was generally higher than at 25 cm depth. Thus, a gradient of CO₂ concentration near the water surface developed every night of our study period.

190 In contrast, no such gradient was observed during the day. At both depths, CO₂ concentrations increased with the disappearance of short-wave radiation at sunset and decreased after sunrise again (Figure 2d).

The oxygen concentration patterns also differed between the two periods. During the windy period, O₂ concentrations at both 5 cm depth and at the bottom were slightly undersaturated. When the water column started stratifying again (Figure 1Figure 4 e), O₂ concentrations at the two depths started to diverge. The O₂ concentration at the bottom continuously decreased over the rest of the sampling period. The concentration at 5 cm increased to supersaturation, showing clear diurnal patterns of oxygen production and consumption (Figure 1Figure 4 e).

195 Mean air temperatures (T_a) ranged between 9 °C and 15 °C, with distinct diurnal patterns. The water temperature at 25 cm depth (T_{w25}) decreased slightly from 16 °C to 15 °C during the measurement period, except on September 23rd, 24th, and 25th, when T_{w25} increased by 1 °C during the day (Figure 1Figure 4 C). During the days of September 23rd, 24th, and 25th, T_a was higher than the water temperature. On all other days and nights, T_{w25} consistently remained higher than the air temperature.

Formatted: English (United States)

Figure 2: Dependence of the absolute difference in CO₂ concentration between 5 cm and 25 cm depth on the diurnal period (a), expressed as ΔCO_2 in $\mu\text{mol L}^{-1}$. Panel (b) shows the relationship between ΔCO_2 and wind speed (U_{10}), with daytime observations highlighted in red and night time observations in black. Whiskers show minima and maxima of the respective period.

205 To gain a more detailed understanding of the CO₂ gradients at the surface, we calculated the difference in CO₂ concentrations between 5 cm and 25 cm depths (ΔCO_2). The mean concentration gradient was significantly steeper during the night compared to during the day (t-test, $p < 0.05$, Figure 2 a). The magnitude of ΔCO_2 depended on wind speed (Figure 2 a). Generally, the mean CO₂ gradient was lower at high wind speeds for both day and night. However, while low wind speeds did not lead to higher CO₂ gradients during the day, the gradients in calm nights were 5 to almost 10-fold steeper (Figure 2 b). This diurnal 210 development of a CO₂ gradient at the surface should have affected CO₂ emissions.

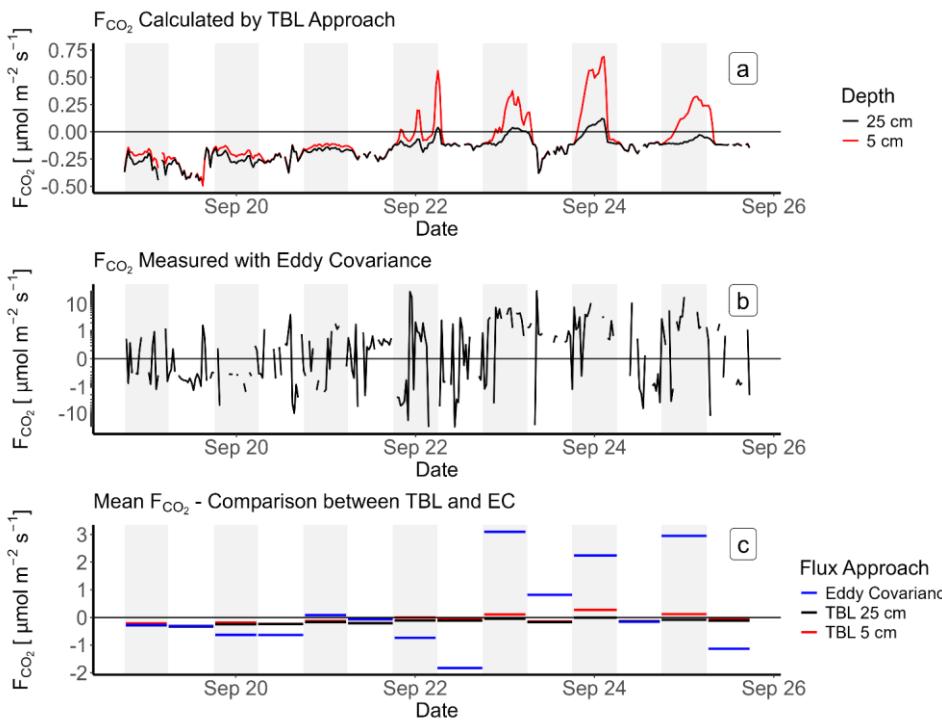


Figure 3: Comparison of fluxes (F_{CO_2}) derived from Eddy Covariance (EC) measurements and the Thin Boundary Layer (TBL) approach. TBL fluxes (a) derived from $cco_2_{0.05}$ and $cco_2_{0.25}$ are shown as red and black lines, respectively. F_{CO_2} measured by EC (b) is shown as black lines. F_{CO_2} averaged over every day and night period is shown in (c), where red bars are fluxes derived from $cco_2_{0.05}$, black bars derived from $cco_2_{0.25}$, and blue bars derived from EC measurements. All fluxes shown have the unit of $\mu\text{mol m}^{-2} \text{s}^{-1}$. Grey highlights show night-time in all subplots.

We used our CO_2 concentration data to calculate F_{CO_2} by the TBL approach and compared those fluxes with measurements done with Eddy Covariance (Figure 3). During the windy period, TBL fluxes were negative regardless of which CO_2 probe data we used and comparable to the fluxes measured by EC (Figure 3 a, b, and c). In calm nights, supersaturation of CO_2 led to positive TBL fluxes with data from both depths. Because at 25 cm depth oversaturation was only reached at the end of the night, mean night fluxes derived from 25 cm depth remained negative (Figure 3 c). EC fluxes during those nights were positive too, but significantly higher than TBL fluxes (Figure 3 b, c). In 5 out of 14 cases, the flux direction differed between the TBL approach and EC measurements, when using the measurements of the 25 cm probe for the TBL approach. In contrast, when using CO_2 measurements from the 5 cm probe, only 2 out of 14 instances show different flux directions. During our study period of 7

225 days, the total CO₂ emissions were -2.2 g m⁻² when calculated using the 5 cm data, -4.2 g m⁻² based on 25 cm data, and 4.6 g m⁻² as recorded by the eddy covariance system.

4 Discussion

Our data revealed how changes from windy to calm weather and from a mixed water column to stratification within a week influenced microstratification and its effect on greenhouse gas exchange between lakes and the atmosphere. Our detailed CO₂ concentration measurements clearly showed the temporal development of CO₂ gradients at the water surface. This observation is consistent with previous studies like Hari et al. (2008), whose results indicate CO₂ gradients within the upper 50 cm of the water layer.

During the windy period, CO₂ concentrations were almost zero at daytime, probably caused by photosynthetic CO₂ consumption by abundant phytoplankton. CO₂ undersaturation in high productive lakes is a common observation (Balmer and Downing, 2011; Zagarese et al., 2021). In that period, CO₂ concentrations were consistently lower than the atmospheric equilibrium concentration, turning the reservoir to a CO₂ sink during that time. The oxygen concentrations measured at the surface and above the bottom as well as the temperature profiles suggest that the entire water column was mixed in that period. This likely lead to a homogeneous vertical distribution of CO₂ too. The fact that there was no thermal stratification in that time means that the phytoplankton's CO₂ uptake stripped CO₂ from the entire water columns volume, rather than the smaller volume of the upper mixed layer only. Consequently, more CO₂ would be required to increase the concentration at the surface, compared to a stratification scenario. This observation is supported by the fact that no CO₂ gradient was measured during the day, while a slight gradient was detected at night. This occurs because CO₂ is consumed quickly during daylight hours, whereas at night, the uptake of CO₂ from the atmosphere leads to slightly higher concentrations at the water surface. This was reflected by our 5 cm probe measuring concentrations closer to atmospheric equilibrium than the 25 cm probe.

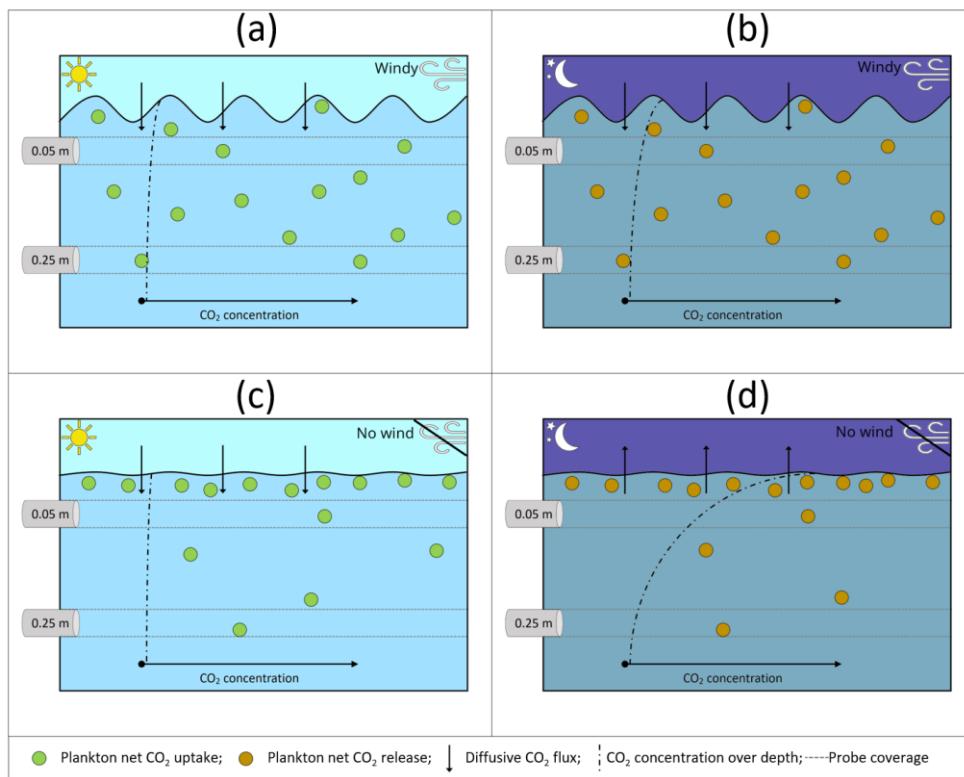
When the wind ceased at September 21st, the vertical distribution of gas concentrations changed. Starting on that day, oxygen concentrations at the surface and at the bottom began to increase and decrease, respectively. This observation indicates that the reservoir slowly underwent stratification again. Because the mixing depth was much greater during the windy period compared to the calm period, the water volume available to dissolve CO₂ was much greater also. Consequently, the lower windspeed in the second half of the week decreased both the mixing depth and the available volume. During these calmer nights, respiration in the shallow mixed layer led to significant CO₂ accumulation at the surface. Additionally, microstratification within the top 25 cm of the water column could further restrict the volume available for CO₂ accumulation, potentially leading to even higher concentrations (Figure 4). While there was no difference in CO₂ gradients during calm daylight hours compared to windy days, we observed notably high CO₂ concentrations within the top 25 centimetres during calm nights. Our findings are consistent with a study of Åberg et al. (2010), who found that short term CO₂ variations at the surface were best related to thermal dynamics within the upper mixed layer, whereas parameters like wind and radiation did not influence CO₂ concentrations. In our study we found negative effect of incoming solar radiation on CO₂ concentrations

260 during the day, but a positive feedback during the night. Further, varying CO₂ concentrations have been related to changes in lake metabolism after storms before (Vachon and del Giorgio, 2014).

Interestingly, the 5 cm probe, despite being closer to the surface, recorded higher CO₂ concentrations than the underlying water. This requires a CO₂ producing process in the surface layer, likely biological respiration. There are various groups of organisms that could increase CO₂ in the 5 cm layer, such as neuston, which comprises organisms living at or even within the surface micro layer. Phytoplankton was found to float at the water surface at wind speeds lower than 3 m s⁻¹ (Zhang et al., 2021). Further, some species migrate from the lower boundary of the epilimnion to the surface during night. This behaviour is called diel vertical migration and is used to access food while avoiding predators that need light for hunting (Ringelberg, 1999).

265 Both neuston and migrating species are respirating during the night, thereby producing CO₂. Furthermore, the vertical mixing during windy periods likely increased nutrient availability for phytoplankton, potentially triggering growth and accumulation of phytoplankton at the water surface (Nürnberg et al., 2003). That phytoplankton switches from net photosynthesis during the day to net respiration at night, thereby increasing CO₂ concentration at night. In the calm period, mean gross primary production and respiration as calculated from oxygen data were 10.4 mg O₂ L⁻¹ d⁻¹ and -9.0 mg O₂ L⁻¹ d⁻¹, respectively, which 270 is comparable to other hyper-eutrophic lakes, especially after storm events (Williamson et al., 2021). During algal blooms, the water surface is often covered by a mat of floating phytoplankton. Although we lack chlorophyll data, satellite images taken before and after our measurement period suggest rapid algal growth following the storm events that occurred just before our study (Figure B 1). Such mats can become very dense, possibly increasing CO₂ production and accumulation even more.

275 Besides biologic activity, convectiveactivity, convective mixing within the top water layer can play an important role in the distribution of CO₂ concentrations. Convective mixing, driven by water density differences due to cooling at the water surface, can enhance the vertical movement of water, thereby influencing the distribution of CO₂ in the water column. While we did not find signs of thermal microstratification at the surface during nights with strong CO₂ gradients, we contrastingly observed conditions favoring convection (Figure 1Figure 4 c). Further, meteorological parameters such as atmospheric stability, emitted long wave radiation, or sensible heat flux, indicate unstable conditions in the air above the water. From this, we infer that the 280 biomass accumulated at the water surface could either produce CO₂ at rates that exceed its transport in the upper water layer, or the algal mats acted as a physical barrier between the water and air, leading to increased stability of the water beneath the mats which reduces the influence of atmospheric instability on the water below. In our case the high CO₂ concentrations at the surface were not driven by convective upward mixing of CO₂ rich water but by biological activity at the surface.


The CO₂ gradient measured during calm nights was fundamentally influencing the fluxes calculated with the TBL method. 285 Fluxes derived from concentrations in 0.05 m depth were closer to the fluxes measured by EC than fluxes derived from 0.25 m depth. However, TBL fluxes derived from 0.05 m were a magnitude lower than those of EC. This can be due to either an unprecise parametrization of k , or by an inaccurate CO₂ measurement. Many previous studies showed that water-side convection has a significant contribution to the gas transfer coefficient under calm conditions (Eugster et al., 2003; Rutgersson and Smedman, 2010; Heiskanen et al., 2014; Podgrajsek et al., 2015). However, these studies reported increased fluxes up to 290 200 %, which would still underestimate TBL fluxes in our experiment, compared to EC fluxes.

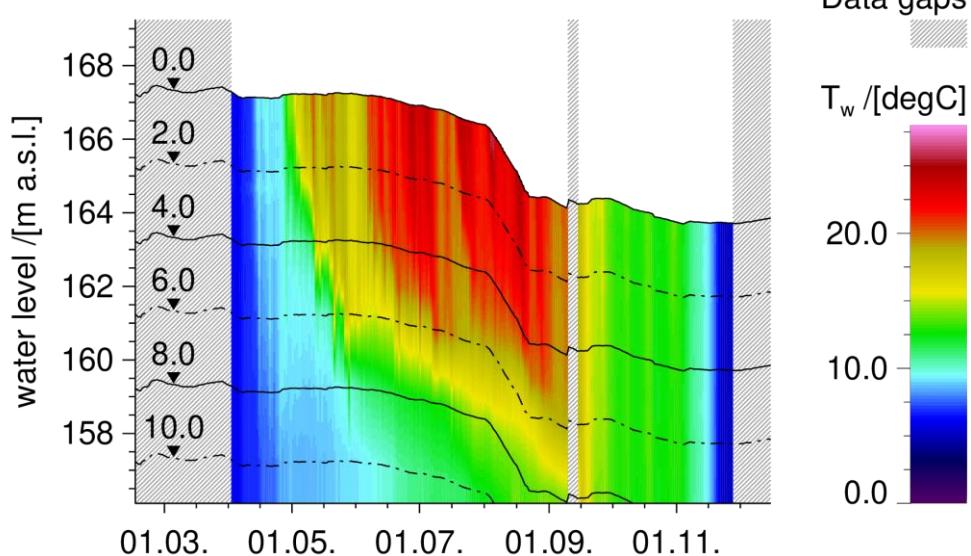
While it is generally acknowledged that daytime measurements do not reflect the concentrations at night (Erkkilä et al., 2018), the depth of CO₂ measurements has not been questioned so far, as long as measurements were done in the upper mixed layer and close to the surface. Our measurements provide evidence that representative measurements of the CO₂ concentration in the water strongly depend on depth and time of measurements. In our results, the depth of measurement even determined

295 whether the TBL method would result in efflux or influx (Figure 3b). This was especially visible at night when the flux calculated from the CO₂ concentration measured at 25 cm depth was negative, while both EC measurements and TBL based on the measurements in 5 cm showed significant positive fluxes. The fact that the EC fluxes were higher than the TBL fluxes based on the 5 cm probe could be explained by the CO₂ gradient which probably continued towards the water-atmosphere interface.

300 Our uppermost probe measured the mean CO₂ concentration between 1 and 10 cm depth and it is plausible that the concentration at the water surface was even higher than measured by that probe. Based on our results, the highest CO₂ concentration is expected to occur at the very surface of the water, driven by night-time respiration and restricted mixing. However, current measurement methods are not able to resolve such small-scale vertical gradients within the SML. While floating chambers have been used to measure CO₂ in the surface by deploying them as closed systems, therefore equilibrating

305 the chamber volume with the surface water, this method is limited by slow equilibration times and insufficient temporal resolution (Rudberg et al., 2021). Therefore, advanced measurement techniques with higher vertical and temporal resolution are necessary to accurately capture steep CO₂ gradients and to understand the dynamics of CO₂ exchange at the water-atmosphere interface.

310 **Figure 4: Schematic of CO₂ accumulation in the surface water, with CO₂ probes located in 5 cm and 25 cm depth.** (a): wind-induced
 311 turbulence causes homogeneous distribution of plankton, resulting in CO₂ decrease in both measuring depths during the day. (b):
 312 wind induced turbulence causes homogeneous distribution of plankton. CO₂ is produced by respiration, but the CO₂ concentration
 313 across the whole water column is low, thus respiration is compensating strong undersaturation. CO₂ uptake from the atmosphere
 314 causes slightly increased concentration in 5 cm. (c): CO₂ concentration is low in the whole mixed layer, but calm conditions cause
 315 plankton to accumulate at the surface. (d): Calm conditions cause plankton to accumulate at the water surface. Respiration causes
 CO₂ increase in this layer, which is causing CO₂ emissions during calm nights.


Conclusions

We could show that, under the right conditions, a significant gradient of CO₂ concentrations at the lake's surface can develop. This gradient was largest in wind still nights. The gradient occurred at the same time as a phytoplankton bloom, from which we conclude that phytoplankton is the controlling source of CO₂. Only when limited mixing of the surface layer comes together

with high accumulation of biomass in the surface water, a thin surface layer with high CO₂ concentrations can develop. This effect can be large enough to turn a CO₂ under-saturated lake to a temporary CO₂ source. This result partly explains discrepancies of previous studies, where high CO₂ fluxes measured by Eddy Covariance could not be found with the Thin Boundary Layer method (Spank et al., 2020). We also show that uncertainty of the TBL method under calm conditions not only results from an incorrect parameterisation of the gas transfer velocity, but also by error-prone measurements of CO₂ in the water. Our findings imply that CO₂ emissions from eutrophic waters might be higher than previously thought – especially under calm conditions.

Appendix A: Detailed water temperature graphs

2022

330 Figure A 1: Water level (meters above sea level) and water temperature profile from April 1st to November 28th in 2022 at Bautzen reservoir. Solid and dot-dashed black lines indicate water depths of 2 m, 4 m, 6 m, 8 m, and 10 m. Grey bars highlight missing data.

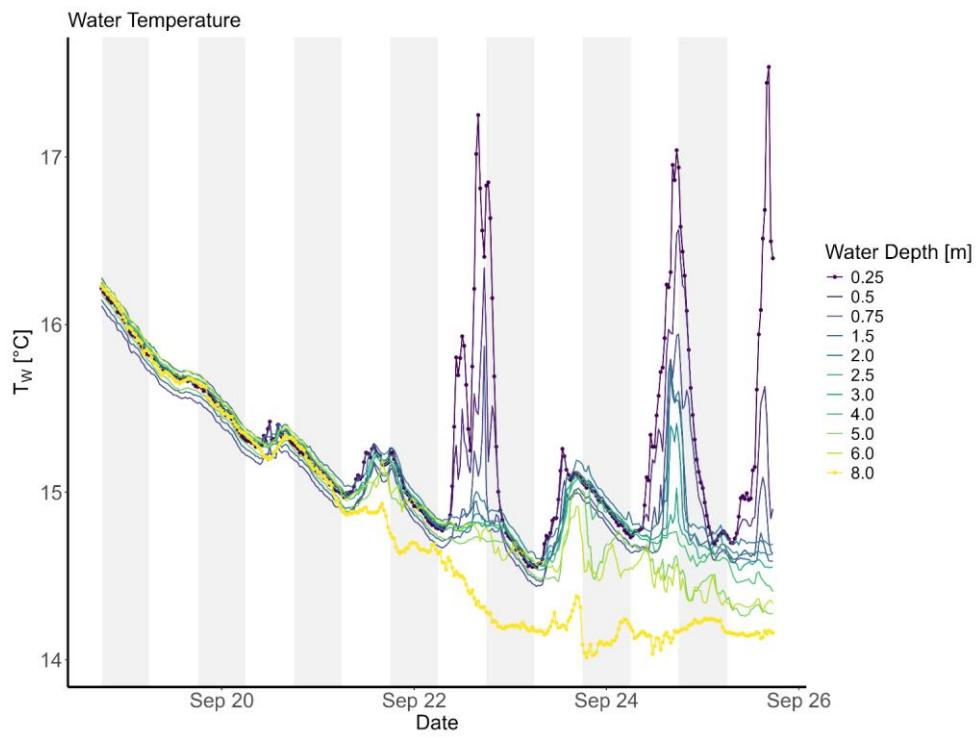


Figure A 2: Detailed water temperatures across the water column during the extensive sampling period. Dark purple and yellow dotted lines highlight surface and bottom temperatures, respectively. Grey highlights show night-time.

Appendix B: Satellite images of the reservoir

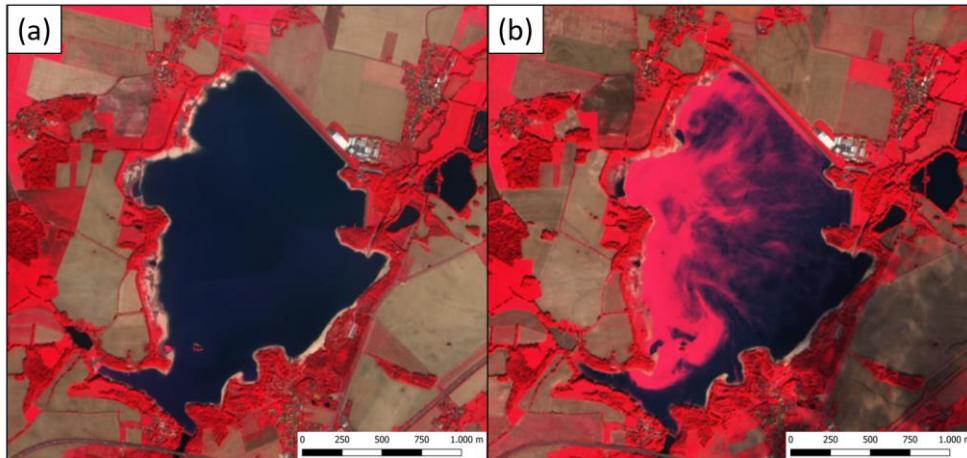


Figure B 1: False colour images from Sentinel-2 L2A taken on September 5th (a) and 25th (b), 2022, provided by the European Space Agency (ESA) and accessed via the EO Browser (<https://apps.sentinel-hub.com/ eo-browser/>, Sinergise Solutions d.o.o., a Planet Labs company). September 5th was selected because it was the last day without cloud coverage before the sampling period. The images show the state of the reservoir during the algal bloom described in this manuscript. The false colour images, which are typically used to highlight specific features like vegetation or water, do not show the water surface properly on September 25th, due to algal coverage. This clearly highlights the intensity of the algal bloom, which was likely covering the water surface.

Code availability

345 Code is available upon request to the corresponding author.

Data availability

Data are available upon request to the corresponding author.

Author contribution

All authors contributed to the study's conception and design. Field measurements were carried out by PA and US.

350 Meteorological data were processed by US, while limnological data were processed by PA. PA performed the data analysis. PA wrote the first draft of the manuscript, and all authors contributed to the final version. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no conflict of interest.

355 Acknowledgements

We thank Martin Wiprecht for his help during the field campaign. We further thank Muhammed Shikhani for valuable advice on data analysis and Peifang Leng for her insightful comments on the manuscript. This study was funded by the German Science Foundation (Deutsche Forschungsgesellschaft, DFG) in the frame of the project “Meteorological Drivers of Mass and Energy Exchange between Inland Waters and the Atmosphere – MEDIWA” (project number: 445326344).

360 References

Åberg, J., Jansson, M., and Jonsson, A.: Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO₂ in a boreal lake, *J. Geophys. Res.*, 115, 2009JG001085, <https://doi.org/10.1029/2009JG001085>, 2010.

365 Andersson, A., Falck, E., Sjöblom, A., Kljun, N., Sahlée, E., Omar, A. M., and Rutgersson, A.: Air-sea gas transfer in high Arctic fjords, *Geophysical Research Letters*, 44, 2519–2526, <https://doi.org/10.1002/2016GL072373>, 2017.

Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, in: *Advances in Ecological Research*, vol. 30, edited by: Fitter, A. H. and Raffaelli, D. G., Academic Press, 370 113–175, [https://doi.org/10.1016/S0065-2504\(08\)60018-5](https://doi.org/10.1016/S0065-2504(08)60018-5), 1999.

Aubinet, M., Vesala, T., and Papale, D.: *Eddy covariance: a practical guide to measurement and data analysis*, Springer Science & Business Media, 2012.

Balmer, M. and Downing, J.: Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake, *IW*, 1, 125–132, <https://doi.org/10.5268/IW-1.2.366>, 2011.

375 Benndorf, J.: Possibilities and Limits for Controlling Eutrophication by Biomanipulation, *Intl Review of Hydrobiology*, 80, 519–534, <https://doi.org/10.1002/iroh.19950800404>, 1995.

Burba, G.: *Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates*, LI-COR Biosciences, 345 pp., 2013.

380 Calleja, M. Ll., Duarte, C. M., Álvarez, M., Vaquer-Sunyer, R., Agustí, S., and Herndl, G. J.: Prevalence of strong vertical CO₂ and O₂ variability in the top meters of the ocean, *Global Biogeochemical Cycles*, 27, 941–949, <https://doi.org/10.1002/gbc.20081>, 2013.

Cole, J. I. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF₆, *P Limnol. Oceanogr.*, 1998.

385 Cole, J. J., Bade, D. L., Bastviken, D., Pace, M. L., and Van de Bogert, M.: Multiple approaches to estimating air-water gas exchange in small lakes, *Limnology & Ocean Methods*, 8, 285–293, <https://doi.org/10.4319/lom.2010.8.285>, 2010.

Crusius, J. and Wanninkhof, R.: Gas transfer velocities measured at low wind speed over a lake, *Limnology & Oceanography*, 48, 1010–1017, <https://doi.org/10.4319/lo.2003.48.3.1010>, 2003.

390 Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J. J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I.: Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, *Biogeosciences*, 15, 429–445, <https://doi.org/10.5194/bg-15-429-2018>, 2018.

Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre, S., and Chapin, F. S.: CO₂ exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing, *J. Geophys. Res.*, 108, 2002JD002653, <https://doi.org/10.1029/2002JD002653>, 2003.

395 Fietzek, P., Fiedler, B., Steinhoff, T., and Körtzinger, A.: In situ Quality Assessment of a Novel Underwater pCO₂ Sensor Based on Membrane Equilibration and NDIR Spectrometry, *Journal of Atmospheric and Oceanic Technology*, 31, 181–196, <https://doi.org/10.1175/JTECH-D-13-00083.1>, 2014.

Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux measurements, *Journal of Geophysical Research: Atmospheres*, 106, 3503–3509, <https://doi.org/10.1029/2000JD900731>, 2001.

400 Foken, T. and Mauder, M.: *Micrometeorology*, Springer International Publishing, Cham, 410 pp., <https://doi.org/10.1007/978-3-031-47526-9>, 2024.

Foken, Th. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, *Agricultural and Forest Meteorology*, 78, 83–105, [https://doi.org/10.1016/0168-1923\(95\)02248-1](https://doi.org/10.1016/0168-1923(95)02248-1), 1996.

Gladyshev, M. I.: *Biophysics of the Surface Microlayer of Aquatic Ecosystems*, IWA Publishing, London, 2002.

405 Golub, M., Koupaei-Abyazani, N., Vesala, T., Mammarella, I., Ojala, A., Bohrer, G., Weyhenmeyer, G. A., Blanken, P. D., Eugster, W., Koebisch, F., Chen, J., Czajkowski, K., Deshmukh, C., Guérin, F., Heiskanen, J., Humphreys, E., Jonsson, A., Karlsson, J., Kling, G., Lee, X., Liu, H., Lohila, A., Lundin, E., Morin, T., Podgrajsek, E., Provenzale, M., Rutgersson, A., Sachs, T., Sahlée, E., Serça, D., Shao, C., Spence, C., Strachan, I. B., Xiao, W., and Desai, A. R.: Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs, *Environ. Res. Lett.*, 18, 034046, <https://doi.org/10.1088/1748-9326/acb834>, 2023.

410 Hardy, J. T.: The sea surface microlayer: Biology, chemistry and anthropogenic enrichment, *Progress in Oceanography*, 11, 307–328, [https://doi.org/10.1016/0079-6611\(82\)90001-5](https://doi.org/10.1016/0079-6611(82)90001-5), 1982.

Hari, P., Pumpanen, J., Huotari, J., Kolari, P., Grace, J., Vesala, T., and Ojala, A.: High-frequency measurements of productivity of planktonic algae using rugged nondispersive infrared carbon dioxide probes: Productivity measurement and CO₂ probe, *Limnol. Oceanogr. Methods*, 6, 347–354, <https://doi.org/10.4319/lom.2008.6.347>, 2008.

415 Heiskanen, J. J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T., Macintyre, S., and Ojala, A.: Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake, *Tellus B: Chemical and Physical Meteorology*, 66, 22827, <https://doi.org/10.3402/tellusb.v66.22827>, 2014.

Kerimoglu, O. and Rinke, K.: Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies, *Water Resources Research*, 49, 7518–7527, <https://doi.org/10.1002/2013WR013520>, 2013.

420 Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L., Bastviken, D., Hastie, A., Holgerson, M. A., Johnson, M. S., Lehner, B., Lin, P., Marzadri, A., Ran, L., Tian, H., Yang, X., Yao, Y., and Regnier, P.: Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State-Of-The-Art of Global Scale Assessments, *Global Biogeochemical Cycles*, 37, e2022GB007657, <https://doi.org/10.1029/2022GB007657>, 2023.

425 Lee, X., Massman, W., and Law, B.: *Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis*, Springer Science & Business Media, 270 pp., 2004.

MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., and Miller, S. D.: Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake, *Geophysical Research Letters*, 37, 2010GL044164, <https://doi.org/10.1029/2010GL044164>, 2010.

430 MacIntyre, S., Amaral, J. H. F., and Melack, J. M.: Enhanced Turbulence in the Upper Mixed Layer Under Light Winds and Heating: Implications for Gas Fluxes, *JGR Oceans*, 126, e2020JC017026, <https://doi.org/10.1029/2020JC017026>, 2021.

Mauder, M., Liebethal, C., Göckede, M., Leps, J.-P., Beyrich, F., and Foken, T.: Processing and quality control of flux data during LITFASS-2003, *Boundary-Layer Meteorol*, 121, 67–88, <https://doi.org/10.1007/s10546-006-9094-0>, 2006.

435 McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P., Terray, E. A., Hare, J. E., Fairall, C. W., Drennan, W., Donelan, M., DeGrandpre, M. D., Wanninkhof, R., and Feely, R. A.: Air-sea CO₂ exchange in the equatorial Pacific, *J. Geophys. Res.*, 109, 2003JC002256, <https://doi.org/10.1029/2003JC002256>, 2004.

Mustaffa, N. I. H., Ribas-Ribas, M., Banko-Kubis, H. M., and Wurl, O.: Global reduction of in situ CO₂ transfer velocity by natural surfactants in the sea-surface microlayer, *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 476, 20190763, <https://doi.org/10.1098/rspa.2019.0763>, 2020.

440 Nürnberg, G. K., LaZerte, B. D., and Olding, D. D.: An Artificially Induced *Planktothrix rubescens* Surface Bloom in a Small Kettle Lake in Southern Ontario Compared to Blooms World-wide, *Lake and Reservoir Management*, 19, 307–322, <https://doi.org/10.1080/07438140309353941>, 2003.

Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J. D., and Upstill-Goddard, R. C.: Reduced air-sea CO₂ exchange in the Atlantic Ocean due to biological surfactants, *Nature Geosci*, 11, 492–496, <https://doi.org/10.1038/s41561-018-0136-2>, 2018.

445 Podgrajsek, E., Sahlée, E., Bastviken, D., Holst, J., Lindroth, A., Tranvik, L., and Rutgersson, A.: Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes, *Biogeosciences*, 11, 4225–4233, <https://doi.org/10.5194/bg-11-4225-2014>, 2014.

Podgrajsek, E., Sahlée, E., and Rutgersson, A.: Diel cycle of lake-air CO₂ flux from a shallow lake and the impact of waterside convection on the transfer velocity, *JGR Biogeosciences*, 120, 29–38, <https://doi.org/10.1002/2014JG002781>, 2015.

450 R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2023.

Rahlf, J., Stolle, C., Giebel, H.-A., Brinkhoff, T., Ribas-Ribas, M., Hodapp, D., and Wurl, O.: High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer, *FEMS Microbiology Ecology*, 93, <https://doi.org/10.1093/femsec/fix041>, 2017.

455 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Cais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, *Nature*, 503, 355–359, <https://doi.org/10.1038/nature12760>, 2013.

Ringelberg, J.: The photobehaviour of *Daphnia* spp. as a model to explain diel vertical migration in zooplankton, *Biol. Rev.*, 74, 397–423, <https://doi.org/10.1017/S0006323199005381>, 1999.

460 Rudberg, D., Duc, N. T., Schenk, J., Sieczko, A. K., Pajala, G., Sawakuchi, H. O., Verheijen, H. A., Melack, J. M., MacIntyre, S., Karlsson, J., and Bastviken, D.: Diel Variability of CO₂ Emissions From Northern Lakes, *JGR Biogeosciences*, 126, e2021JG006246, <https://doi.org/10.1029/2021JG006246>, 2021.

Rudberg, D., Schenk, J., Pajala, G., Sawakuchi, H., Sieczko, A., Sundgren, I., Duc, N. T., Karlsson, J., MacIntyre, S., Melack, J., and Bastviken, D.: Contribution of gas concentration and transfer velocity to CO₂ flux variability in northern lakes, *Limnology & Oceanography*, Ino.12528, <https://doi.org/10.1002/Ino.12528>, 2024.

465 Rutgersson, A. and Smedman, A.: Enhanced air–sea CO₂ transfer due to water-side convection, *Journal of Marine Systems*, 80, 125–134, <https://doi.org/10.1016/j.jmarsys.2009.11.004>, 2010.

Rutgersson, A., Norman, M., Schneider, B., Pettersson, H., and Sahlée, E.: The annual cycle of carbon dioxide and parameters influencing the air–sea carbon exchange in the Baltic Proper, *Journal of Marine Systems*, 74, 381–394, <https://doi.org/10.1016/j.jmarsys.2008.02.005>, 2008.

470 Sabbatini, S., Mammarella, I., Arriga, N., Fratini, G., Graf, A., Hörtnagl, L., Ibrom, A., Longdoz, B., Mauder, M., Merbold, L., Metzger, S., Montagnani, L., Pitacco, A., Rebmann, C., Sedlák, P., Šigut, L., Vitale, D., and Papale, D.: Eddy covariance raw data processing for CO₂ and energy fluxes calculation at ICOS ecosystem stations, *International Agrophysics*, 32, 495–515, <https://doi.org/10.1515/intag-2017-0043>, 2018.

475 Schilder, J., Bastviken, D., van Hardenbroek, M., Kankaala, P., Rinta, P., Stötter, T., and Heiri, O.: Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes, *Geophysical Research Letters*, 40, 5752–5756, <https://doi.org/10.1002/2013GL057669>, 2013.

Spank, U., Hehn, M., Keller, P., Koschorreck, M., and Bernhofer, C.: A Season of Eddy-Covariance Fluxes Above an Extensive Water Body Based on Observations from a Floating Platform, *Boundary-Layer Meteorol*, 174, 433–464, <https://doi.org/10.1007/s10546-019-00490-z>, 2020.

480 Spank, U., Bernhofer, C., Mauder, M., Keller, P. S., and Koschorreck, M.: Contrasting temporal dynamics of methane and carbon dioxide emissions from a eutrophic reservoir detected by eddy covariance measurements, *metz*, 32, 317–342, <https://doi.org/10.1127/metz/2023/1162>, 2023.

485 Spank, U., Koschorreck, M., Aurich, P., Sanchez Higuera, A. M., Raabe, A., Holstein, P., Bernhofer, C., and Mauder, M.: Rethinking Evaporation Measurement and Modelling from Inland Waters - a Discussion of the Challenges to Determine the Actual Values on the Example of a Shallow Lowland Reservoir, <https://doi.org/10.2139/ssrn.4820007>, 7 May 2024.

Vachon, D. and del Giorgio, P. A.: Whole-Lake CO₂ Dynamics in Response to Storm Events in Two Morphologically Different Lakes, *Ecosystems*, 17, 1338–1353, <https://doi.org/10.1007/s10021-014-9799-8>, 2014.

Vachon, D. and Prairie, Y. T.: The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes, *Can. J. Fish. Aquat. Sci.*, 70, 1757–1764, <https://doi.org/10.1139/cjfas-2013-0241>, 2013.

490 Williamson, T. J., Vanni, M. J., and Renwick, W. H.: Spatial and Temporal Variability of Nutrient Dynamics and Ecosystem Metabolism in a Hyper-eutrophic Reservoir Differ Between a Wet and Dry Year, *Ecosystems*, 24, 68–88, <https://doi.org/10.1007/s10021-020-00505-8>, 2021.

Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S.: Formation and global distribution of sea-surface microlayers, *Biogeosciences*, 8, 121–135, <https://doi.org/10.5194/bg-8-121-2011>, 2011.

495 Zagarese, H. E., Sagrario, M. de los Á. G., Wolf-Gladrow, D., Nöges, P., Nöges, T., Kangur, K., Matsuzaki, S.-I. S., Kohzu, A., Vanni, M. J., Özkonakci, D., Echaniz, S. A., Vignatti, A., Grosman, F., Sanzano, P., Van Dam, B., and Knoll, L. B.: Patterns of CO₂ concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes, *Water Research*, 190, 116715, <https://doi.org/10.1016/j.watres.2020.116715>, 2021.

500 Zhang, Y., Loiselle, S., Shi, K., Han, T., Zhang, M., Hu, M., Jing, Y., Lai, L., and Zhan, P.: Wind Effects for Floating Algae Dynamics in Eutrophic Lakes, *Remote Sensing*, 13, 800, <https://doi.org/10.3390/rs13040800>, 2021.