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Abstract  10 

The effective radiative forcing due to aerosol-cloud interactions (ERFaci) is difficult to quantify, 11 

leading to large uncertainties in model projections of historical forcing and climate sensitivity. 12 

In this study, satellite observations and reanalysis data are used to examine the low-level cloud 13 

radiative responses to aerosols. While some studies it is assumed that the activation rate of 14 

cloud droplet number concentration (Nd) in response to variations in sulfate aerosols (SO4) or 15 

the aerosol index (AI) has a one-to-one relationship in the estimation of ERFaci, we find this 16 

assumption to be incorrect, and demonstrate that explicitly accounting for the activation rate is 17 

crucial for accurate ERFaci estimation. This is corroborated through a “perfect-model” cross 18 

validation using state-of-the-art climate models, which compares our estimates with the “true” 19 

ERFaci. Our results suggest a smaller and less uncertain value of the global ERFaci than 20 

previous studies (-0.39 ± 0.29 W m-2 for SO4 and -0.24 ± 0.18 W m-2 for AI, 90% confidence), 21 

indicating that ERFaci may be less impactful than previously thought. Our results are also 22 

consistent with observationally constrained estimates of total cloud feedback and “top-down” 23 

estimates that models with weaker ERFaci better match the observed hemispheric warming 24 

asymmetry over the historical period. 25 

 26 

1. Introduction 27 

Anthropogenic aerosols impact the Earth's radiation balance at the top of the atmosphere and 28 

alter cloud properties over the industrial era (Boucher et al., 2013; Raghuraman et al., 2021; 29 

Kramer et al., 2021). They directly alter the radiation budget by scattering and absorbing solar 30 

radiation and indirectly influence it by serving as cloud condensation nuclei (CCN), which 31 
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modifies cloud properties and can extend their duration. This increase in aerosol concentration 32 

leads to smaller cloud droplets and higher cloud albedos, known as the “Twomey effect” (e.g., 33 

Twomey, 1977), enhancing the radiative forcing due to aerosol-cloud interactions (RFaci). 34 

Additionally, aerosols affect cloud microphysical properties (e.g., Albrecht, 1989; Pincus and 35 

Baker, 1994), such as reducing precipitation, which increases cloud liquid water path (LWP), 36 

lifetime, and fraction, a process termed cloud adjustment (CA). Thus, together, RFaci and CA 37 

are intrinsically interconnected through the cloud droplets (Mülmenstädt and Feingold, 2018), 38 

and constitute the ERFaci, which is highly uncertain and often larger than the direct radiative 39 

impact of aerosols (Forster et al., 2007; Zelinka et al., 2014; Smith et al., 2020a). 40 

 41 

Estimating the ERFaci, especially in low-level clouds which are the dominant contributor of 42 

aerosol-cloud interactions to ERFaci (Christensen et al., 2016; Bellouin et al., 2020; Forster et 43 

al., 2021), is critical for accurately identifying cloud feedback mechanisms and determining 44 

climate sensitivity (Rosenfeld, 2006; Boucher et al., 2013; Sherwood et al., 2020). Our study 45 

provides quantitative insights into the ERFaci using both satellite observations and reanalysis 46 

data. A key component of our analysis is the activation rate, which serves as a metric for 47 

assessing the actual impact of aerosols on cloud droplet number concentrations. The 48 

conventional assumption is that the activation rate has a one-to-one relationship when aerosols 49 

convert into cloud droplets and is typically not explicitly incorporated into the estimation 50 

process of ERFaci. Our results suggest the importance of considering the activation rate when 51 

evaluating the interactions between aerosols and clouds. To evaluate the robustness of our 52 

results, we conduct a “perfect-model” cross validation using Coupled Model Intercomparison 53 

Project Phase 6 (CMIP6) simulations. This form of cross-validation is widely used in statistics 54 

and machine learning to assess the generalizability of predictive models and prevent overfitting 55 

(Wenzel et al., 2016; Knutti et al., 2017; Brunner et al., 2020). Through this approach we 56 

demonstrate that explicitly including the activation rate is essential to improving the accuracy 57 

of ERFaci estimates. Although open questions remain, the cross-validation clearly 58 

demonstrates the improved predictive skill of our model and thus increases the confidence of 59 

our estimates of ERFaci. 60 

 61 

In the main text, our analysis primarily focuses on SO4 as an aerosol proxy, recognized as a 62 

major contributor among other aerosol types such as black carbon, organic carbon, sea salt, and 63 

dust (Charlson et al., 1992; McCoy et al., 2018). However, results derived from the Aerosol 64 
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Index (AI), a more generalized aerosol metric (e.g. Douglas and L’Ecuyer 2019, 2020), also 65 

show a high degree of consistency. 66 

 67 

2. Results 68 

2.1 Activation Rate 69 

Some approaches to estimate the ERFaci with aerosol concentrations have operated under a 70 

key assumption: the natural logarithm of aerosol concentration correlates proportionally with 71 

the natural logarithm of cloud droplet number concentration (Boucher and Lohmann, 1995; 72 

Wall et al., 2022, 2023). This ratio, commonly referred to as the activation rate, quantifies the 73 

efficiency with which aerosol particles convert into cloud droplets. The hypothesized cause-74 

effect relationship between aerosols and clouds is important to understand and to be dealt in 75 

the process of aerosol-cloud interactions, as it involves an increase in CCN leading to an 76 

increase in Nd, which subsequently influences cloud properties. To verify the key assumption, 77 

we performed a linear regression. As illustrated in Fig. 1, the regression coefficients between 78 

ln(Nd) and ln(SO4) were calculated. Our results show that, in most regions, these coefficients 79 

are positive but less than 1. This indicates that while there is a proportional relationship, it is 80 

not a one-to-one increase; rather, the activation rate varies across different geographic locations. 81 

Regions with shallow cumulus clouds, such as the central Pacific, show a notably weaker 82 

∂ln(Nd)/∂ln(SO4) coefficient, while areas with stratocumulus clouds, like those off the coasts 83 

of continents, display a relatively stronger positive regression with significant correlation 84 

coefficient (Fig. 1). Repeating our analysis using ∂ln(Nd)/∂ln(AI) also yields results consistent 85 

with those for ln(SO4), emphasizing the necessity of addressing this assumption within the 86 

ERFaci estimation process (Fig. A1). The relatively low correlation coefficients observed for 87 

∂ln(Nd)/∂ln(AI) may be attributed to the use of column-integrated quantities, AI from MODIS, 88 

which do not account for the vertical structure of aerosols. Consequently, they may not 89 

accurately represent aerosol concentrations at cloud base height. In contrast, the use of SO4 90 

concentration at 925 hPa in the analysis provides a more precise representation of CCN 91 

concentrations near the cloud base (Painemal et al., 2017). This leads to a higher linearity 92 

between SO4 and Nd, establishing SO4 a more relevant indicator for evaluating the interactions 93 

between aerosols and low-level cloud formation (Fig. 1 vs Fig. A1). 94 

 95 
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2.2 Observationally Constrained ERFaci 96 

To isolate the contributions of different environmental factors to the low cloud radiative effect, 97 

we first have employed a cloud controlling factor (CCF) analysis (Scott et al., 2020; Wall et 98 

al., 2022) with a particular focus on elucidating the relationship between aerosol concentrations 99 

and the low cloud radiative effect. This relationship is known as a susceptibility and constitutes 100 

one of the key components in the estimation of ERFaci. Our implementation of the CCF 101 

analysis basically follows the method described by Wall et al. (2022) (See more details in 102 

Appendix A).   103 

 104 

We now proceed to estimate the observationally constrained ERFaci (ERFaci_obs), 105 

considering two scenarios: one with and the other without the inclusion of the activation rate. 106 

The basic form of ERFaci_obs following Wall et al. (2022), where the activation rate is not 107 

explicitly included, can be expressed as follows: 108 

 109 

ERFaci_obs ≈��
∂CRE_lcld
∂ ln(Y) �

k

10

k=1

Wk × ∆ ln(Y),        (1) 110 

 111 

where CRE_lcld represents the cloud radiative effect from low-level clouds, Y represents either 112 

SO4 or AI, and Wk represents the fraction of LWP in state k (Wk =  number in LWP state k
total number

). The 113 

right-hand-side of the equation consists of two main parts: one is the susceptibility of the low-114 

cloud radiative effect to variations in aerosol concentrations, which can be derived from CCF 115 

analysis using observations and the other one is the changes in aerosol concentrations from 116 

pre-industrial (PI) to present-day (PD). Due to the lack of observational data on PI aerosol 117 

concentrations, we employ the outputs of CMIP6 historical experiments. As expected, changes 118 

in SO4 concentrations exhibit distinctive spatial patterns characterized by interhemispheric 119 

asymmetry, with particularly large values in proximity to major industrial regions on the 120 

Eurasian and North American continents (Fig. 2a).  121 

 122 

In light of Fig. 1, the basic form of ERFaci_obs in equation (1) can be expanded to incorporate 123 

the influence of the activation rate by accounting for the interactions between aerosols and 124 

cloud droplet formation. This modified equation can be expressed as follows: 125 

 126 
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ERFaci_obs ≈��
∂CRE_lcld
∂ ln(Nd) ×

∂ ln(Nd)
∂ ln(Y) �

k

10

k=1

Wk × ∆ ln(Y),        (2) 127 

 128 

where the low cloud susceptibility is now the product of two terms: The susceptibility of low 129 

cloud CRE to Nd and the activation rate of Y to Nd. 130 

 131 

Our analysis reveals pronounced differences in susceptibility in how low cloud radiative effects 132 

respond to variations in aerosol concentrations across the globe depending on whether 133 

activation rate is considered or not. The inclusion of the activation rate in our analysis 134 

significantly diminishes the sensitivity of clouds to aerosols (Fig. 2b vs Fig. 2c). Noticeable 135 

decreases in susceptibility are captured in mid-latitudes and in subtropical regions where low 136 

clouds are dominant. This also indicates that the ∂ln(CRE_lcld)/∂ln(SO4) correlation without 137 

activation rate is partially attributable to factors other than the Nd-mediated mechanism (Wood 138 

et al., 2012; Gryspeerdt et al., 2016; Gryspeerdt et al., 2019).  139 

 140 

Both methods of estimating ERFaci_obs show that an increase in aerosol concentration 141 

correlates with a negative cloud radiative adjustment that is especially prevalent in areas 142 

dominated by low clouds (Fig. 2d,e). However, due to the reduced susceptibility, the estimated 143 

ERFaci_obs is significantly smaller when activation is explicitly accounted for (Fig. 2e) than 144 

when it is not (Fig. 2d). The global ERFaci_obs is ~50% smaller with activation (-0.39 W m-2) 145 

than without (-0.79 W m-2). Similar results are obtained if one uses AI instead of SO4 as the 146 

measure of aerosol concentration (Fig. A2d,e). These results highlight the sensitivity of this 147 

approach to explicit consideration of the activation rate.  148 

 149 

2.3 Perfect-Model Cross Validation 150 

In this section, we perform a “perfect-model” cross validation exclusively using CMIP6 151 

simulations to assess which of the two approaches—considering activation rate or not—is more 152 

accurate. Specifically, each model from single-forcing (aerosol-only) experiments is 153 

sequentially treated as the “truth” with its ERFaci considered the “true” value. Meanwhile, the 154 

same model from historical simulations, assumed to be a pseudo-observation, estimates ERFaci 155 

for comparison with the “true” ERFaci. The resulting root mean-square error (RMSE) provides 156 

a quantitative measure of the accuracy of the ERFaci estimates.  157 
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 158 

As an initial step in the “perfect-model” test, single-forcing (aerosol-only) CMIP6 simulations 159 

are used to establish the true ERFaci for each model, referred to as ERFaci_true, which 160 

provides a benchmark for assessing the accuracy of the ERFaci estimated from the monthly 161 

outputs of CMIP6 historical experiments using equations (1) and (2), where the model is treated 162 

as a pseudo-observation and the estimate is referred to as ERFaci_est. Because the number of 163 

CMIP6 models that provide single-forcing (aerosol-only) simulations for ERFaci_true is 164 

limited, we also explore another technique for estimating ERFaci introduced by Soden and 165 

Chung (2017; referred to as ERFaci_SC17) that has been previously shown to agree well with 166 

ERFaci_true (Chung and Soden, 2017). For more details on the estimation of these three 167 

different ERFaci using CMIP6 model outputs, please refer to Appendix A. A comparison, for 168 

the “perfect-model” test, of ERFaci_est with both ERFaci_true and ERFaci_SC17 is provided 169 

below.   170 

 171 

Fig. 3 illustrates the correlation between ERFaci_true and two alternative approaches derived 172 

from CMIP6 model output. The estimates of ERFaci_est that omit the activation rate fail to 173 

replicate the “true” ERFaci values accurately, with RMSE of 0.68 W m-2 and bias of 0.56 W m-174 

2. Conversely, incorporating an explicit activation rate into the ERFaci estimates provides 175 

significantly better agreement with ERFaci_true, reducing both the RMSE and bias by around 176 

40% (Fig. 3a).  177 

 178 

ERFaci_SC17 exhibits the best agreement with ERFaci_true, with significantly smaller RMSE 179 

(0.14 W m-2) and bias (0.1 W m-2) (Fig. 3b). This consistency allows us to expand the sample 180 

size of CMIP6 models, with which we can evaluate ERFaci_est by using ERFaci_SC17 as a 181 

surrogate for ERFaci_true (Fig. 3c). This expanded cross-validation once again highlights the 182 

importance of including the activation rate in ERFaci estimates, as it reduces both the RMSE 183 

and bias in ERFaci_est by around 45%. Substituting AI for SO4 in the calculation of ERFaci_est 184 

yields similar results, which reduces RMSE more than 40%, emphasizing the importance of 185 

explicitly including activation rate (Fig. A3). Our “perfect-model” cross validation analysis 186 

with idealized model experiments from CMIP6 leads us to conclude that the inclusion of the 187 

activation rate is essential for accurate estimates of ERFaci.  188 

 189 
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2.4 Comparison with previous ERFaci estimates 190 

Now, we compare our observationally constrained estimates of ERFaci_obs with those 191 

previously estimated. Our global estimates with inclusion of activation rate yield an ERFaci of 192 

-0.39 ± 0.29 W m-2 for SO4 and -0.24 ± 0.18 W m-2 for AI (Fig. 4). These values are at the 193 

lower bound when compared with ERFaci values reported in the Sixth Assessment Report of 194 

the Intergovernmental Panel on Climate Change (IPCC; Forster et al., 2021) as well as the 195 

values proposed by the World Climate Research Program (WCRP; Bellouin et al., 2020). 196 

However, it is worth noting that, as the ERFaci from WCRP has a highly skewed distribution 197 

with its highest probability occurring around -0.4 W m-2, which is entirely consistent with our 198 

observational estimates (Fig. 4). Given the multiple lines of evidence introduced by the WCRP, 199 

which employs a process-oriented approach to bound ERFaci, our estimates offer further 200 

evidence to support estimates on the lower end of their range. Furthermore, these constrained 201 

ERFaci_obs are also consistent with the “top-down” estimates provided by Wang et al. (2021), 202 

which demonstrate that models exhibiting weaker ERFaci are more in line with the observed 203 

variations in global mean surface temperature as well as hemispheric warming asymmetry 204 

during the historical period. 205 

 206 

As we emphasized the significant impact of including the activation rate in the ERFaci 207 

estimation process, with this inclusion, the ERFaci_obs values are approximately one-half for 208 

SO4 and one-fifth for AI of those estimated without considering the activation rate, respectively 209 

(-0.79 ± 0.28 W m-2 for SO4 and -1.14 ± 0.29 W m-2 for AI).   210 

 211 

2.5 Implications for Cloud Feedback 212 

Our observational estimate of ERFaci is on the lower end compared to previous estimates. This 213 

finding also has implications for our understanding of cloud feedback mechanisms. Following 214 

Wang et al. (2021), we compare the CMIP6 historical simulations of ERFaci across different 215 

climate models with their corresponding values of total cloud feedback, which are derived from 216 

the regression slope of total cloud radiative response to global-mean temperature anomalies 217 

from the abrupt-4xCO2 experiment (Fig. 5). For this analysis, we use the ERFaci_SC17 since 218 

it ensures the widest possible selection of climate models (Table A1). Among the models we 219 

assessed, we identified a subset of 15 that we termed 'GOOD HIST' models (Appendix A). 220 

These models are characterized by their small discrepancies in simulating global-mean 221 

historical surface warming when compared to the GISTEMP observational data, indicating a 222 
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higher reliability in their historical climate simulations. Within this subset, a strong negative 223 

correlation (r = -0.85) exists between ERFaci_SC17 and the total cloud feedback, which is 224 

much more pronounced than in the remaining models (r = -0.31). The strong correlation in the 225 

'GOOD HIST' models highlights the compensation that occurs between historical aerosol 226 

forcing and cloud feedback in order for models to reproduce the observed historical global-227 

mean temperature. 228 

 229 

Also shown are the probability density functions for the observation-based estimates of 230 

ERFaci_obs, taking into account the activation rate, and utilizing both SO4 and the AI. 231 

Alongside, we also consider the observationally constrained estimates of total cloud feedback, 232 

which a recent study (Ceppi and Nowack, 2021) has quantified at 0.43 ± 0.35 W m-2 K-1 (90% 233 

confidence). These distributions help illustrate that our constraints on ERFaci fall within the 234 

realistic bounds of total cloud feedback strength. The best estimates, which show the highest 235 

probability (indicated by stars), also align with those from the 'GOOD HIST' models and 236 

support the validity of our constraints. 237 

 238 

3. Conclusion 239 

Our study offers critical insights into the quantification of ERFaci, a topic that remains a 240 

significant source of uncertainty in understanding climate sensitivity. By integrating both 241 

satellite observations and reanalysis data with a focus on the activation rate of cloud droplet 242 

number concentration in response to aerosol variations, we provide a more sophisticated 243 

understanding of the impact of aerosols on low-level clouds. Our findings, validated through a 244 

“perfect-model” cross validation using CMIP6 model simulations, reveal a lower global 245 

ERFaci estimate, suggesting that the influence of aerosols, particularly with SO4, on climate 246 

forcing may be less substantial than previously assumed. 247 

 248 

Appendix A: Methods 249 

A1 Observation and Reanalysis Data  250 

A1.1 CERES 251 

In this study, we analyze observational datasets characterized by their monthly temporal 252 

resolution and their geographical coverage extending from 50°S to 50°N, with a particular 253 

focus on oceanic regions due to unreliable retrieval over land (Jia et al., 2019; Gryspeerdt et 254 
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al., 2022; Jia and Quaas, 2023). The dataset spans from January 2003 through December 2019 255 

and all data fields were interpolated onto a 2.5° × 2.5° grid. 256 

 257 

Our analysis employs monthly gridded satellite observations from the CERES FluxByCldTyp 258 

Edition 4.1 dataset, focusing on a combined analysis of cloud fraction and top-of-atmosphere 259 

radiative flux, segmented by cloud optical depth and cloud top pressure (CTP). We categorize 260 

clouds into low (CTP > 680 hPa) and non-low clouds (CTP ≤ 680 hPa) based on their CTP 261 

values. Due to the passive retrieval mechanisms of satellite instruments, the detection of low-262 

level clouds is notably challenged by the obscuration from upper-level clouds. This limitation 263 

highlights the importance of accurately estimating the fraction of non-obscured or non-264 

overlapped low-level clouds (Scott et al., 2020). To address this, we define the non-obscured 265 

low-cloud fraction as following equation: 266 

Ln =
L

1 − U
  ,                    (A1) 267 

where L and U represent the low and non-low cloud fraction retrieved by the satellite, and Ln 268 

denotes the total low-level cloud fraction relative to the area of each grid box that is not 269 

obscured by upper-level clouds. With this relationship, we can extend its application to the 270 

cloud radiative effect (CRE) attributable to non-obscured low-level clouds (CRE_lcld). Further 271 

details regarding this equation can be found in the work of Scott et al. (2020). 272 

 273 

A1.2 MERRA-2 reanalysis 274 

We also use monthly meteorological fields for cloud controlling factor analysis and sulfate 275 

aerosol mass concentrations at 925 hPa derived from the Modern-Era Retrospective analysis 276 

for Research and Applications, Version 2 (MERRA-2) reanalysis (Randles et al., 2017; Gelaro 277 

et al., 2017). MERRA-2 integrates observations with global model simulations to provide 278 

estimates of atmospheric conditions. Specifically for sulfate aerosols, it employs bias-corrected 279 

observations of total aerosol optical depth in conjunction with a comprehensive model 280 

addressing the emissions, removal processes, and chemistry of sulfate and its precursor gases. 281 

The assimilation process adjusts for aerosol hydration in humid conditions and excludes cloud-282 

adjacent pixels to mitigate retrieval bias. A notable constraint of these data is that, while the 283 

total aerosol optical depth is observationally constrained, the distribution and vertical profiles 284 

of aerosol species are model-derived. Nevertheless, the sulfate concentration estimates exhibit 285 

a strong correlation with independent satellite measurements of cloud droplet number 286 
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concentration (McCoy et al., 2018). 287 

 288 

A1.3 MODIS 289 

We employ the aerosol index (AI) as an alternative proxy for aerosol concentration from the 290 

Moderate Resolution Imaging Spectroradiometer (MODIS) on both the Aqua and Terra 291 

satellites (datasets MYD08_M and MOD08_M, respectively). These two are combined to 292 

enhance the robustness of our analysis. The AI is derived from the product of the Angstrom 293 

exponent and the aerosol optical depth (AOD) at 550 nm. The Angstrom exponent itself is 294 

derived from the wavelength dependency of the AOD, measured at 550 nm and 870 nm, 295 

providing insight into the size distribution of aerosols (i.e. smaller Angstrom exponent suggests 296 

larger particles). Notably, AI has demonstrated a more robust correlation with CCN compared 297 

to the use of AOD alone (Stier, 2016; Gryspeerdt et al., 2017; Hasekamp et al., 2019).  298 

 299 

To calculate Nd based on the adiabatic approximation, we use daily gridded Nd estimates from 300 

MODIS (Gryspeerdt et al., 2022) and combine the data from the Aqua and Terra satellites. The 301 

retrievals at 3.7 μm, known to yield more accurate cloud droplet effective radius (re) 302 

measurements under inhomogeneous conditions, are employed (Zhang and Platnick, 2011). Nd 303 

measurements may be subject to biases under specific conditions, such as when the cloud 304 

droplet effective radius is significantly small, when the cloud visible optical thickness is low, 305 

or when three-dimensional radiative transfer effects impact the observed radiances. To enhance 306 

the accuracy and reliability of our Nd retrievals, we implement a rigorous sampling strategy 307 

(“BR17 sampling method” in Gryspeerdt et al., 2022). This introduced by Bennartz and Rausch 308 

(2017) demonstrates the highest correlation with aircraft data. 309 

 310 

For LWP, MODIS MCD06COSP dataset version 6.2.0 (Pincus et al., 2023) is used. This dataset 311 

represents a combined product derived from both the Aqua and Terra satellites. To accurately 312 

estimate the aerosol indirect effect, it is essential to control variations in LWP, in line with the 313 

foundational assumption of the Twomey effect. In our analysis, we achieve this by categorizing 314 

LWP observations into ten equal bins, each covering a range of 30 g cm-2, up to a maximum of 315 

300 g cm-2. This categorization is based on the finding that over 99% of our observations do 316 

not exceed 300 g cm-2, thus allowing us to maintain LWP within a controlled and effectively 317 

constant range across our dataset. 318 

 319 

https://doi.org/10.5194/egusphere-2024-2547
Preprint. Discussion started: 3 September 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

A1.4 GISTEMP 320 

The global surface temperature observations used in our analysis are sourced from the GISS 321 

Surface Temperature Analysis (GISTEMP v4) (Lenssen et al., 2019). We evaluate how well the 322 

models simulate the global-mean historical surface warming by the GOOD HIST index: the 323 

absolute difference in global-mean historical warming between CMIP6 models and GISTEMP 324 

data (Table A1). The historical warming is defined as the averaged surface temperature in 325 

1990–2014 minus that in 1880–1909. So, the models that are good at simulating the historical 326 

warming have a small GOOD HIST index. 327 

 328 

A2 CMIP6 Data  329 

Due to the unavailability of direct observational records for pre-industrial aerosol emissions, 330 

we rely on the outputs from historical simulations with realistic emissions of greenhouse gases, 331 

aerosols, and aerosol precursor gases conducted by CMIP6 models to estimate changes in 332 

aerosol concentration (∆ ln(Y), where Y represents either SO4 or AI). The pre-industrial (PI) 333 

period was defined as the years 1850 to 1899, and the present-day (PD) period was set from 334 

1965 to 2014, each spanning 50 years to remove interannual variability. In the analysis, 13 335 

models are used for ∆ ln(SO4) and 9 models for ∆ ln(AI), all models of which are among the 336 

21 models that provide ERFaci_true. The specific models used in our analysis are listed in 337 

Table A1. It is important to note that, for the CMIP6 models, the emission concentrations of 338 

sulfur dioxide, a precursor to SO4, are specified from the Community Emission Data Set 339 

(CEDS; Hoesly et al., 2018), and thus the projected changes in ∆ln(SO4) are highly consistent 340 

across models. The specified decadal trends in regional sulfate in the models are also consistent 341 

with surface observations (Aas et al., 2019). 342 

 343 

To evaluate our observationally constrained estimate of the ERFaci (ERFaci_obs), we 344 

employed 21 distinct models conducting single-forcing (aerosol-only) experiments 345 

(ERFaci_true). These models are from the Radiative Forcing Model Intercomparison Project 346 

(RFMIP; Pincus et al., 2016), specifically Tier 1 piClim-control and piClim-aer experiments 347 

with prescribed sea surface temperatures (SST) and sea ice derived from a climatology of pre-348 

industrial conditions. These simulations are run for 30 years, incorporating realistic aerosol 349 

emissions in 1850 and 2014 to represent PI and PD conditions, respectively. This ensures an 350 

accurate estimation of the true baseline of ERFaci resulting solely from aerosol-cloud 351 

interactions. We use 30-year time periods for the PI and the PD scenario to evaluate ERFaci. 352 
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Consequently, the ERFaci derived from these experiments is referred to as ERFaci_true.  353 

 354 

A3 Cloud Controlling Factor Analysis 355 

To improve our understanding of the low cloud radiative effect, we have employed a cloud 356 

controlling factor (CCF) analysis (Scott et al., 2020; Wall et al., 2022). This approach allows 357 

us to constrain the physical factors influencing low cloud properties and their subsequent 358 

radiative impacts. The analysis considers a set of controlling factors that are known to be 359 

significant drivers of low cloud behavior, which can be expressed as follows:  360 

 361 

CRE_lcld′ ≈ �
∂CRE_lcld

∂Xi
× Xi′

7

i=1

,                    (A2)  362 

 363 

where CRE_lcld represents the cloud radiative effect from low-level clouds and the factors (Xi) 364 

included in our analysis are 1) sea surface temperatures, 2) estimated inversion strength, 3) 365 

horizontal surface temperature advection, 4) relative humidity at 700 hPa, 5) vertical velocity 366 

at 700 hPa, and 6) near-surface wind speed. These parameters represent a combination of 367 

thermodynamic and dynamic influences that are critical in dictating low cloud formation and 368 

persistence (Scott et al., 2020). In addition to these standard meteorological variables, we 369 

introduce 7) aerosol concentrations as additional controlling factors (Wall et al., 2022). 370 

Specifically, we consider the natural logarithm of sulfate aerosol mass concentrations at 925 371 

hPa, ln(SO4). In our analysis, we opt to use data from the 925 hPa atmospheric level instead of 372 

surface-level measurements. This decision is based on the understanding that conditions at 925 373 

hPa provide a more accurate reflection of CCN concentrations near the cloud base (Painemal 374 

et al., 2017). This altitude is often closer to the actual height at which low-level clouds form, 375 

making it a more relevant indicator for assessing aerosol-cloud interactions. We also consider 376 

the natural logarithm of the aerosol index, ln(AI) as a metric of the  aerosol concentration cloud 377 

controlling factor. Note that, as highlighted in the main text, since AI provides column-378 

integrated quantities and does not account for the vertical profile, it may not accurately capture 379 

aerosol concentrations in low-level clouds, which are the focus of our study. 380 

 381 

For each grid point, we employ ordinary least-squares multilinear regression to model 382 

CRE_lcld' against anomalies in the seven cloud controlling factors. The regression coefficients, 383 

∂CRE_lcld/∂ln(SO4) and ∂CRE_lcld/∂ln(AI), quantify the sensitivity of low-level cloud 384 
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radiative effect anomalies (CRE_lcld′) to local anomalies in ln(SO4) or ln(AI), respectively.  385 

 386 

A4 Estimating ERFaci using CMIP6 model outputs  387 

A4.1 Estimating ERFaci_true 388 

The ERFaci_true is calculated for PD minus PI conditions from aerosol-only, fixed-SST 389 

experiments as, 390 

 391 

ERFaci_true = ΔCRE_lcld,                    (A3)  392 

 393 

where the low-level cloud radiative effect (∆CRE_lcld) is determined by using cloud 394 

classification method introduced in Webb et al. (2006) and Soden and Vecchi (2011).  395 

 396 

A4.2 Estimating ERFaci_SC17 397 

This method partitions the low-level cloud radiative response observed in historical 398 

experiments into two components: one is a temperature-mediated component (i.e., cloud 399 

feedback) attributable to changes in the global-mean surface temperature and the other to 400 

aerosol-cloud interactions. The temperature-mediated component is estimated by multiplying 401 

the global-mean temperature anomaly by the low-level cloud feedback, derived from the 402 

1pctCO2 scenario (α1pctCO2 ), which is calculated as the low-level cloud radiative response 403 

normalized by the corresponding global-mean surface warming. This estimate of ERFaci is 404 

then obtained by subtracting this temperature-driven component from the low-level cloud 405 

radiative response, thus focusing solely on the impact of aerosol-cloud interactions. 406 

 407 

ERFaciSC17 = ΔCRE_lcld − α1pctCO2 ⋅ ΔTs� .                    (A4)  408 

 409 

Because this method uses outputs from historical and 1pctCO2 simulations, it allows a much 410 

larger sample size of models to evaluate the two different versions of ERFaci_est. 411 

 412 

A4.3 Estimating ERFaci_est 413 

To estimate ERFaci_est, derived exclusively from CMIP6 model outputs calculated using 414 

equations (1) and (2) from the main text, we use monthly anomalies spanning from 2000 to 415 

2014 in historical experiments for susceptibility calculation, after removing trends and 416 

climatological seasonality. We adhere to the same timeframe for aerosol concentration changes 417 
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as described in the main text. Additionally, given the challenges associated with deriving cloud-418 

top cloud droplet number concentrations (Nd) directly from CMIP6 model outputs, we adopt 419 

an alternative approach, which is the maximum Nd within a vertical atmospheric column 420 

(Saponaro et al., 2020; Jia and Quaas, 2023). Owing to the limited availability of models for 421 

CCF analysis and LWP binning, both are not explicitly employed in the estimation process of 422 

ERFaci_est. Instead, we assess the impact of including or excluding CCF analysis and LWP 423 

binning on ERFaci_obs to elucidate their influence on the estimation of ERFaci_est. The 424 

simplified version of equations (1) and (2), which do not account for CCF analysis and LWP 425 

binning, are presented below: 426 

 427 

ERFaci_obs ≈ ∂CRE_lcld
∂ ln(Y) × ∆ ln(Y),                             (A5)   428 

(without CCF analysis, LWP binning, and activation rate) 429 

 430 

ERFaci_obs ≈ �∂CRE_lcld
∂ ln(Nd) × ∂ ln(Nd)

∂ ln(Y) � × ∆ ln(Y),          (A6)    431 

(without CCF analysis and LWP binning but with activation rate) 432 

 433 

When applying these equations to estimate ERFaci_obs, we obtain best estimates of global-434 

mean ERFaci_obs (without activation rate) of -1.46 for SO4 and -1.74 for AI, and global-mean 435 

ERFaci_obs (with activation rate) of -0.61 for SO4 and -0.34 for AI. These values are 1.85, 436 

1.53, 1.56, and 1.42 times larger, respectively, than those obtained when considering CCF 437 

analysis and LWP binning. In other words, by dividing model-driven ERFaci estimates by these 438 

factors, we can approximate its value under scenarios that include CCF analysis and LWP 439 

binning (ERFaci_est). These outcomes are employed in Fig. 3 and Fig. A3.  440 

 441 

A5 Radiative Kernel Method 442 

Originally developed by Soden et al. (2008) to facilitate the analysis of radiative feedbacks, 443 

“radiative kernels” describe the differential response of radiative fluxes to incremental changes 444 

in the radiative state variables (e.g., clouds, temperature, water vapor, albedo). In this study, we 445 

employed radiative kernel techniques derived from the HadGEM3-GA7.1 model (Smith et al., 446 

2020b) for all CMIP6 model analysis to isolate the genuine cloud radiative effect without 447 

interference from cloud masking effects. 448 

 449 

A6 Estimating Global-Mean ERFaci_obs 450 
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Given that our observation data cover the domain extending from 50°S to 50°N over the ocean, 451 

it is imperative to extrapolate global ERFaci values for comparison with the observation-based 452 

estimates reported in the IPCC Sixth Assessment Report. Our estimate of the ERFaci_obs spans 453 

a near-global domain, encompassing almost 60% of the Earth's surface. This notably includes 454 

vast stretches of the remote oceans. Although our estimate does not account for polar oceans, 455 

their exclusion is unlikely to significantly skew our results. These regions contribute minimally 456 

to the global ERFaci because of their limited surface area. Given these considerations, we 457 

believe that our near-global estimate can serve as a reliable proxy for the true global average. 458 

This assumption is supported by the result from CMIP6 models (Fig. A4). To bridge the gap 459 

between global and domain-specific averages, using 21 CMIP6 climate models in single-460 

forcing experiments (ERFaci_true), we employ a scalar, γ, representing the ratio of the multi-461 

model mean of global-average ERFaci_true to the multi-model mean of domain-average 462 

ERFaci_true. We ascertain γ's value at 0.69 with 0.92 correlation coefficient, enabling the 463 

calibration of our domain-specific ERFaci estimates to more accurately reflect a global scale. 464 

This calibration is achieved through the following equation: 465 

 466 

ERFaci_obs, global =  γ × ERFaci_obs, domain ,                    (A7)  467 

 468 

In ensuring the consistency of our estimates, we adjust the IPCC Sixth Assessment Report's 469 

estimate of ERFaci, which uses 2014 as the present-day reference year and 1750 as the 470 

preindustrial reference year. The IPCC's initial global estimate for ERFaci between 2014 and 471 

1750 is -1.0 ± 0.7 W m-2. To make this preindustrial reference period consistent with our 472 

analysis, we subtract the estimated ERFaci of -0.07 W m-2 between 1850 and 1750 from the 473 

IPCC's value (Dentener et al., 2021). This adjustment yields an estimate based solely on 474 

observational evidence, with a 90% CI of -0.93 ± 0.7 W m-2 (Wall et al., 2022). 475 

 476 

A7 Uncertainty 477 

The uncertainty in ERFaci_obs, in the case where the activation rate is not considered, is 478 

attributed to uncertainties in the susceptibility, the regression coefficient for ∂CRE_lcld/479 

∂ln(Y), and in the model estimates of Δln(Y). Conversely, when considering the activation rate, 480 

the uncertainty in ERFaci_obs stems from uncertainties in the regression coefficients for 481 

∂CRE_lcld/ ∂ln(Nd)  and ∂ln(Nd)/ ∂ln(Y) , as well as from uncertainties in the model 482 

predictions of Δln(Y).  483 
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 484 

To quantify the uncertainty derived from regression coefficients, at each grid box a 90% 485 

confidence interval of the susceptibility is given by  486 

δ = t�𝐂𝐂ii�
Nnom

Neff
 (without activation rate),                    (A8)  487 

δ = t�∆xT𝐂𝐂∆x�
Nnom

Neff
 (with activation rate),                 (A9)  488 

where t is the critical value of the Student’s t-test at the 95% significance level with Neff  −  7 489 

degrees of freedom (Von Storch and Zwiers, 1999), 𝐂𝐂  is the variance–covariance matrix of 490 

regression coefficients hence 𝐂𝐂ii  represents the diagonal components of the 𝐂𝐂 , Nnom/Neff  is 491 

the ratio of the nominal to effective number of monthly values of CRE_lcld′,  and Δx  is the 492 

regression coefficient for ∂ln(Nd)/ ∂ln(Y) . 𝐂𝐂  is formulated as 𝐂𝐂 =  σ�2(XTX)−1 , where X  is 493 

the data matrix with columns composed of detrended monthly anomalies. Specifically, these 494 

anomalies are of ln(Y) in scenarios where the activation rate is not considered and of ln(Nd) 495 

in scenarios where the activation rate is included. The term σ�2 denotes the mean of squared 496 

residuals of the regression model and we estimate Nnom/Neff as (1 +  r)/(1 −  r), where r is 497 

the lag one autocorrelation of CRE_lcld′. 498 

 499 

Uncertainty for spatially averaged regression coefficients is calculated as 500 

∆obs= �
∑ (δkwk)2Nnom∗

k=1

�∑ wk
Nnom∗

k=1 �
2 �

Nnom
∗

Neff
∗   ,                    (A10)  501 

where δk denotes the uncertainty of the kth grid box, wk is the cosine of the latitude. Nnom
∗  502 

represents the nominal number of spatial degrees of freedom, while Neff
∗   represents the 503 

effective number of spatial degrees of freedom. The ratio Nnom
∗ /Neff

∗  is determined through 504 

empirical orthogonal function (EOF) analysis applied to CRE_lcld’ for all ocean grid boxes 505 

between 50°S and 50°N as outlined in equation 5 of Bretherton et al. (1999). Before conducting 506 

the EOF analysis, each grid of CRE_lcld’ value is multiplied by √wk to mitigate dependencies 507 

on grid geometry (North et al. 1982). The derived value of ∆obs quantifies the half-width of the 508 

90% CI for ERFaci_obs over our domain region specifically reflecting the uncertainty 509 

associated with regression coefficients. 510 

 511 
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To estimate uncertainty derived from model predictions, we examine the entire range of aerosol 512 

concentration changes across each CMIP6 model, instead of estimating uncertainty within the 513 

5th-95th percentile range, primarily due to the limited number of models available for our 514 

analysis: 13 models for ∆ ln(SO4)  and 9 models for ∆ ln(AI) . This decision reflects a 515 

methodological adaptation to the limited model dataset, ensuring a comprehensive evaluation 516 

of model-derived uncertainty (Myers et al., 2021). We first calculate ERFaci_obs by 517 

multiplying ∆ ln(Y) from each of the models by the observationally derived susceptibility. The 518 

half-width of the CI, denoted as ∆model , is derived by halving the difference between the 519 

maximum and minimum estimates of ERFaci_obs. The overall 90% CI is determined by 520 

ERFaci_obs, domain ± �∆obs2 + ∆model2 . 521 

 522 

In our methodology, the scalar γ is used to extrapolate the global ERFaci_obs from our domain-523 

specific ERFaci_obs estimates. This extrapolation introduces an additional component of 524 

uncertainty. Although both γ and the changes in aerosol concentration are obtained from 525 

CMIP6 model outputs, it's important to note that γ does not directly correlate with aerosol 526 

concentration changes across the models. Consequently, the uncertainty associated with γ is 527 

quantified using the root mean squared error (RMSE) between the domain-specific averaged 528 

ERFaci_true, multiplied by γ, and the global-mean ERFaci_true. The overall 90% CI is 529 

determined by ERFaci_obs, global ± �([γ]∆obs)2 + ([γ]∆model)2 + ∆γ2 , where square 530 

brackets indicate multi-model mean of a parameter.  531 

 532 
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Fig. 1. R
egression coefficient m

ap of the activation rate of cloud droplet num
ber concentration (N

d ) to sulfate aerosol 
793 

concentration (SO
4 ). The color scale indicates the m

agnitude of sensitivity, w
here an increase in SO

4  concentration 
794 

corresponds to an increase in N
d . A

reas w
ith diagonal indicate correlation coefficients exceeding 0.4, dem

onstrating a 
795 

significantly high linearity betw
een SO

4  and N
d . A

reas w
ith stippling indicate w

here the changes are not statistically 
796 

different from
 zero at the 95%

 confidence level using a Stduent’s t-test. 
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Fig. 2. Spatial distribution of ER
Faci_obs com

ponents and the estim
ated ER

Faci_obs differentiated by the consideration of 
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 the activation rate. (a) M
ulti-m

odel m
ean (M

M
M

) of changes in SO
4  concentration betw

een pre-industrial (PI) and present-
801 

day (PD
) periods. 13 m

odels are used for this analysis (Table A
1). (b,c) Susceptibility of low

 cloud radiative effect to SO
4  

802 

concentration
 derived from

 C
C

F analysis using observations (A
ppendix A

). (d,e) O
bservationally constrained ER

Faci for 
803 

SO
4  estim

ated by m
ultiplying the susceptibility w

ith the changes in SO
4  concentration. 
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812 

Fig. 3. “Perfect-m
odel” cross validation analysis of global-m

ean ER
Faci estim

ates. (a) ER
Faci_true versus ER

Faci_est 
813 

w
hich is estim

ated by sim
plified version of equations (1) and (2) (A

ppendix A
), (b) ER

Faci_true versus ER
Faci estim

ates 
814 

obtained using the m
ethod proposed by Soden and C

hung (2017; SC
17), and (c) ER

Faci_SC
17 versus ER

Faci_est. Filled 
815 

blue circles represent estim
ates w

here the activation rate is considered, and open grey circles represent estim
ates w

ithout 
816 

activation rate consideration. The correlation coefficient (r), R
oot M

ean Square Error (R
M

SE), and bias are displayed in 
817 

the upper left corner of each panel. B
ias is defined as the m

ean absolute difference from
 the 1:1 reference line, depicted by 

818 

a dashed line. A
ll panels have identical x and y axis ranges to highlight the variance am

ong the estim
ation m

ethods. H
igher 

819 

r values, low
er R

M
SE, and m

inim
al bias indicate consistency in ER

Faci estim
ates across different estim

ation m
ethods using 

820 

C
M

IP6 m
odels. 
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Fig. 4. Estim
ates of globally averaged ER

Faci values, including those from
 the IPC

C
 Sixth A

ssessm
ent R

eport, from
 W

C
R

P 
823 

assessm
ent, ER

Faci_obs for SO
4 , and ER

Faci_obs for A
I. The ER

Faci_obs estim
ates considering activation rate are show

n 
824 

in red, w
hile those not considering activation rate are displayed in dashed grey. Thin and thick bars represent the 90%

 and 
825 

66%
 confidence intervals (C

I), respectively, except for the W
C

R
P estim

ate of ER
Faci, w

hich show
s 68%

 C
I for the thick 

826 

bar. The black vertical lines indicate the best estim
ate of each ER

Faci. The ER
Faci values from

 the IPC
C

 represent the 
827 

assessm
ent based on observational evidence alone. 

828 
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831 

 
832 

Fig. 5. C
orrelation betw

een global-m
ean ER

Faci estim
ates obtained using the m

ethod proposed by Soden and C
hung (2017; 
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 SC
17), aim

ed at expanding the m
odel availability, and the globally averaged total cloud feedback as determ

ined by the 
834 

corresponding m
odels. Each dot represents a single m

odel. The colors from
 red to blue indicate w

eak ER
Faci m

odels to 
835 

strong negative ER
Faci m

odels. Filled circles represent the 15 ‘G
O

O
D

 H
IST’ m

odels that align m
ore closely w

ith historical 
836 

observations of global-m
ean surface w

arm
ing, w

hereas open circles denote the rem
aining m

odels (A
ppendix A

). 
837 

C
orrelation coefficients (r) for the entire m

odels, the ‘G
O

O
D

 H
IST’ m

odels, and rem
aining m

odels are show
n in the upper 

838 

right corner. The probability density functions (PD
Fs) show

ing the 90%
 confidence intervals for observationally constrained 

839 

ER
Faci from

 sulfate concentration (SO
4 ; solid line) and the aerosol index (A

I; dashed line) are plotted along the x-axis, 
840 

w
hile the PD

F for observationally constrained total cloud feedback (solid line), derived from
 C

eppi and N
ow

ack (2021), is 
841 

plotted on the y-axis (am
plitudes scaled arbitrarily). Stars denote the best estim

ates of the PD
Fs, signifying the m

ost 
842 

probable values w
ithin the distributions. 
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Fig. A
1. Sam

e as Fig. 1 but for A
I. 
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 Fig. A
2. Sam

e as Fig. 2 but for A
I. 9 m

odels are used for changes in A
I (Table A

1). 
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860 

Fig. A
3. Sam

e as the first and last scatter plots in Fig. 3 but for the ER
Faci_est estim

ated by A
I instead of SO

4 . 
861 
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865 

Fig. A
4. C

M
IP6 estim

ates of ER
Faci_true, averaged for the dom

ain region (50°S to 50°N
 over ocean), and globally 

866 

averaged ER
Faci_true values. Each black circle represents an individual m

odel's estim
ate, w

ith the correlation coefficient 
867 

(r) indicated in the upper left corner. 
868 
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Table A1. CMIP6 models used in the analysis. 869 

 870 

Model ∆ln(SO4) ∆ln(AI) ERFaci_true ERFaci_SC17 ERFaci_est (SO4) ERFaci_est (AI) GOOD HIST index
1  ACCESS-CM2 o o 0.323
2 ACCESS-ESM1-5 o o 0.184
3 AWI-CM-1-1-MR o 0.074
4 AWI-ESM-1-1-LR o 0.141
5 BCC-CSM2-MR o 0.319
6 BCC-ESM1 o o o o 0.448
7 CAMS-CSM1-0 o 0.268
8 CanESM5 o o 0.169
9 CanESM5-1 o 0.248

10 CanESM5-CanOE o 0.306
11 CAS-ESM2-0 o 0.366
12 CESM2 o o 0.147
13 CESM2-FV2 o 0.288
14 CESM2-WACCM o o 0.104
15 CESM2-WACCM-FV2 o 0.372
16 CIESM o 0.212
17 CMCC-CM2-SR5 o 0.173
18 CMCC-ESM2 o 0.165
19 CNRM-CM6-1 o o 0.029
20 CNRM-CM6-1-HR o 0.014
21 CNRM-ESM2-1 o o o o o 0.191
22 E3SM-1-0 o 0.289
23 E3SM-2-0 o 0.749
24 EC-Earth3 o o 0.136
25 EC-Earth3-AerChem o o o o o o 0.362
26 EC-Earth3-CC o 0.503
27 EC-Earth3-Veg o 0.153
28 EC-Earth3-Veg-LR o 0.127
29 FGOALS-f3-L o 0.115
30 FIO-ESM-2-0 o 0.256
31 GFDL-CM4 o o o o 0.242
32 GFDL-ESM4 o o o o o o 0.43
33 GISS-E2-1-G o o 0.347
34 GISS-E2-1-H o 0.115
35 GISS-E2-2-G o 0.272
36 GISS-E2-2-H o 0.115
37 HadGEM3-GC31-LL o o o o o o 0.191
38 HadGEM3-GC31-MM o 0.284
39 ICON-ESM-LR o 0.287
40 INM-CM4-8 o 0.134
41 INM-CM5-0 o 0.201
42 IPSL-CM5A2-INCA o 0.293
43 IPSL-CM6A-LR o o o 0.157
44 IPSL-CM6A-LR-INCA o o 0.081
45 KACE-1-0-G o 0.147
46 KIOST-ESM o 0.15
47 MIROC6 o o o o o o 0.327
48 MIROC-ES2L o o 0.296
49 MPI-ESM1-2-HR o 0.15
50 MPI-ESM1-2-LR o 0.072
51 MPI-ESM-1-2-HAM o o o o o o 0.507
52 MRI-ESM2-0 o o o o o o 0.329
53 NESM3 o 0.216
54 NorCPM1 o 0.17
55 NorESM2-LM o o o o o o 0.455
56 NorESM2-MM o o o o o o 0.366
57 SAM0-UNICON o 0.362
58 TaiESM1 o 0.417
59 UKESM1-0-LL o o o o o o 0.325
60 UKESM1-1-LL o 0.098

https://doi.org/10.5194/egusphere-2024-2547
Preprint. Discussion started: 3 September 2024
c© Author(s) 2024. CC BY 4.0 License.


