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Abstract. The effective radiative forcing due to aerosol-cloud interactions (ERFaci) is difficult to quantify, leading to large 10 

uncertainties in model projections of historical forcing and climate sensitivity. In this study, satellite observations and 

reanalysis data are used to examine the low-level cloud radiative responses to aerosols. While some studies assume that the 

activation rate of cloud droplet number concentration (Nd) in response to variations in sulfate mass concentration (SO4
2−) has 

a one-to-one relationship, we find this assumption to be incorrect. Our analysis estimates a global mean activation rate of 0.35 

± 0.17 (90% confidence) and demonstrates that explicitly accounting for the activation rate is crucial for accurate ERFaci 15 

estimation. This is corroborated through a “perfect-model” cross validation using state-of-the-art climate models. Our results 

suggest a smaller and less uncertain value of the global ERFaci (-0.32 ± 0.21 W m-2 for SO4
2−, 90% confidence) than recent 

climate assessments (e.g., -0.93 ± 0.7 W m-2, 90% confidence), indicating that ERFaci may be less impactful than previously 

thought. Our results are also consistent with observationally constrained estimates of total cloud feedback and recent estimates 

that models with weaker ERFaci better match the observed hemispheric warming asymmetry over the historical period. 20 

1 Introduction 

Anthropogenic aerosols impact the Earth’s radiation balance at the top of the atmosphere, with this perturbation quantified as 

radiative forcing (e.g., Boucher et al., 2013; Raghuraman et al., 2021; Kramer et al., 2021). They directly alter the radiation 

budget by scattering and absorbing solar radiation and indirectly influence it by serving as cloud condensation nuclei (CCN), 

which modifies cloud properties and can extend their duration. The increase in aerosol concentration leads to smaller cloud 25 

droplets and higher cloud albedos, known as the “Twomey effect” (e.g., Twomey, 1977), enhancing the negative radiative 

forcing due to aerosol-cloud interactions (RFaci). Additionally, aerosols affect cloud microphysical properties (e.g., Albrecht, 

1989; Pincus and Baker, 1994), such as reducing precipitation, which increases cloud liquid water path (LWP), lifetime, and 

fraction, a process termed cloud adjustment (CA). Thus, together, RFaci and CA are intrinsically interconnected through the 

cloud droplets (Mülmenstädt and Feingold, 2018), and constitute the effective radiative forcing from aerosol-cloud interactions 30 
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(ERFaci). ERFaci is highly uncertain and often larger than the direct radiative impact of aerosols (Forster et al., 2007; Zelinka 

et al., 2014; Smith et al., 2020a). 

 

Estimating the ERFaci, especially in low-level clouds which are the dominant contributor of aerosol-cloud interactions to 

ERFaci (Christensen et al., 2016; Bellouin et al., 2020; Forster et al., 2021), is critical for accurately identifying cloud feedback 35 

mechanisms and determining climate sensitivity (Rosenfeld, 2006; Boucher et al., 2013; Sherwood et al., 2020). Our study 

provides quantitative insights into the ERFaci using both satellite observations and reanalysis data. A key component of our 

analysis is the activation rate, which serves as a metric for assessing the actual impact of aerosols on cloud droplet number 

concentrations (Nd). In some studies, the activation rate is not explicitly incorporated into the estimation process of ERFaci, as 

it is implicitly assumed to have a one-to-one relationship (e.g., Chen et al., 2014; Christensen et al., 2016; Douglas and 40 

L’Ecuyer 2020; Wall et al., 2022, 2023). Our results suggest the importance of considering the activation rate when evaluating 

the interactions between aerosols and clouds. To evaluate the robustness of our results, we conduct a “perfect-model” cross 

validation using Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations. This form of cross-validation is widely 

used in statistics and machine learning to assess the generalizability of predictive models and prevent overfitting (Wenzel et 

al., 2016; Knutti et al., 2017; Brunner et al., 2020). Through this approach we demonstrate that explicitly including the 45 

activation rate is essential to improving the accuracy of ERFaci estimates.  

 

In the main text, our analysis primarily focuses on sulfate mass concentration (SO4
2−) at 925 hPa as an aerosol proxy, derived 

from the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2; Randles et al., 2017; Gelaro 

et al., 2017). Sulfate aerosol is recognized as a dominant contributor to ERFaci as well as cloud droplet formation, alongside 50 

other aerosol types such as black carbon, organic carbon, sea salt, and dust (Charlson et al., 1992; Stevens, 2015; McCoy et 

al., 2018). Additionally, results derived from satellite measurements of the aerosol index (AI) from Moderate Resolution 

Imaging Spectroradiometer (MODIS; Platnick et al., 2015) also show a high degree of consistency. 

2 Results 

2.1 Activation Rate 55 

Some approaches to estimate the ERFaci with aerosol concentrations have operated under a key assumption: the natural 

logarithm of aerosol concentration correlates proportionally with the natural logarithm of cloud droplet number concentration 

(e.g., Chen et al., 2014; Christensen et al., 2016; Douglas and L’Ecuyer 2020; Wall et al., 2022, 2023). This relationship, 

commonly referred to as the activation rate, quantifies the efficiency with which aerosol particles convert into cloud droplets. 

The hypothesized cause-effect relationship between aerosols and clouds is important to understand and to be dealt in the 60 

process of aerosol-cloud interactions, as it involves an increase in CCN leading to an increase in Nd, which subsequently 

influences cloud properties. To verify the key assumption while accounting for environmental influences, we performed cloud 
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controlling factor (CCF) analysis (Appendix A3). Figure 1 illustrates the regression coefficients between ln(Nd) and ln(SO4
2−), 

with all other environmental predictors held constant. Our results show that, in most regions, these coefficients are positive 

but less than 1, underscoring that not all sulfate in the atmosphere are converted into cloud droplets. On a global scale, the 65 

mean activation rate is 0.35, indicating that sulfate aerosol activation is less efficient than a one-to-one conversion. Regions 

with shallow cumulus clouds, such as the central Pacific, show notably weaker ∂ln(Nd)/∂ln(SO4
2−) coefficients, while areas 

with stratocumulus clouds, like those off the coasts of continents, display relatively stronger positive regression coefficients 

(Fig. 1). This variation may be attributed to differences in local environmental conditions and the role of aerosols in which 

these clouds occur (e.g., Douglas and L’Ecuyer, 2019, 2020). Repeating our analysis using AI yields somewhat different results 70 

with those for SO4
2− though still showing strong positive regression coefficients near continental coasts, with a global mean 

of 0.21 (Fig. S1). The differences in regression coefficients observed for ∂ln(Nd)/∂ln(AI) may be attributed to the use of 

column-integrated quantities, AI from MODIS, which do not account for the vertical structure of aerosols. Consequently, they 

may not accurately represent aerosol concentrations at cloud base height.  

2.2 Observationally Constrained ERFaci 75 

We now proceed to estimate the observationally constrained ERFaci (ERFaci_obs), considering two scenarios: one with and 

the other without the inclusion of the activation rate. The basic form of ERFaci_obs following Wall et al. (2022), where the 

activation rate is not explicitly included, can be expressed as follows: 

 

ERFaci_obs ≈
∂CRE_lcld
∂ ln(𝑋𝑋) × ∆ ln(𝑋𝑋),                                                                                                                                                        (1) 80 

 

where CRE_lcld represents the cloud radiative effect from non-obscured (non-overlapped) low-level clouds, obtained from 

the Clouds and the Earth’s Radiant Energy System (CERES) FluxByCldTyp Ed. 4.1 dataset (Sun et al., 2022), and X represents 

either SO4
2−

 or AI. The right-hand side of the equation consists of two main parts: one is the susceptibility of the low-cloud 

radiative effect to variations in aerosol concentrations, derived from CCF analysis while holding other environmental 85 

conditions constant (Appendix A3), and the other is the changes in aerosol concentrations from pre-industrial (PI) to present-

day (PD). Due to the lack of observational data on PI aerosol concentrations, we employ the outputs of CMIP6 historical 

experiments. As expected, changes in sulfate mass concentration exhibit distinctive spatial patterns characterized by 

interhemispheric asymmetry, with particularly large values in proximity to major industrial regions on the Eurasian and North 

American continents (Fig. 2a).  90 

 

In light of Fig. 1, the basic form of ERFaci_obs in Eq. (1) can be expanded to incorporate the influence of the activation rate 

by accounting for the interactions between aerosols and cloud droplet formation. This modified equation can be expressed as 

follows: 
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 95 

ERFaci_obs ≈ �
∂CRE_lcld
∂ ln(𝑁𝑁d) ×

∂ ln(𝑁𝑁d)
∂ ln(𝑋𝑋) � × ∆ ln(𝑋𝑋),                                                                                                                              (2) 

 

where the low cloud susceptibility is now the product of two terms: The susceptibility of low cloud CRE to Nd and the activation 

rate of X to Nd. 

 100 

Our analysis reveals pronounced differences in susceptibility in how low cloud radiative effects respond to variations in aerosol 

concentrations across the globe depending on whether activation rate is considered or not. The inclusion of the activation rate 

in our analysis considerably diminishes the sensitivity of clouds to aerosols (Fig. 2b vs Fig. 2c). Noticeable decreases in 

susceptibility are captured in mid-latitudes and in subtropical regions where low clouds are dominant. This also indicates that 

the coefficient of ∂ln(CRE_lcld)/∂ln(SO4
2−) without activation rate is partially attributable to factors other than the Nd-105 

mediated mechanism (Gryspeerdt et al., 2016).  

 

Both methods of estimating ERFaci_obs show that an increase in aerosol concentration correlates with a negative cloud 

radiative adjustment that is especially prevalent in areas dominated by low clouds (Fig. 2d,e). However, due to the reduced 

susceptibility, the estimated ERFaci_obs is markedly smaller when activation is explicitly accounted for (Fig. 2e) than when 110 

it is not (Fig. 2d). Specifically, the global ERFaci_obs is ~64% smaller with activation (-0.32 W m-2) than without (-0.88 W 

m-2). Similar results are obtained if one uses AI instead of SO4
2− as the measure of aerosol concentration (Fig. S2d,e). 

2.3 Perfect-Model Cross Validation 

In this section, we perform a “perfect-model” cross validation exclusively using CMIP6 simulations to assess which of the two 

approaches—considering activation rate or not—is more accurate. Specifically, in single-forcing (aerosol-only) experiments 115 

from the Radiative Forcing Model Intercomparison Project (RFMIP; Pincus et al., 2016), each model is sequentially treated as 

the “truth” with its ERFaci considered the “true” value. Meanwhile, the same model from historical simulations, assumed to 

be a pseudo-observation, estimates ERFaci for comparison with the “true” ERFaci. The resulting root mean-square error 

(RMSE) provides a quantitative measure of the accuracy of the ERFaci estimates.  

 120 

As an initial step in the “perfect-model” test, single-forcing (aerosol-only) CMIP6 simulations are used to establish the true 

ERFaci for each model, referred to as ERFaci_true, which provides a benchmark for assessing the accuracy of the ERFaci 

estimated from the monthly outputs of CMIP6 historical experiments using Eq. (1) and Eq. (2), where the model is treated as 

a pseudo-observation and the estimate is referred to as ERFaci_est. Because the number of CMIP6 models that provide single-

forcing (aerosol-only) simulations for ERFaci_true is limited, we also explore another technique for estimating ERFaci 125 

introduced by Soden and Chung (2017; referred to as ERFaci_SC17) that has been previously shown to agree well with 
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ERFaci_true (Chung and Soden, 2017). For more details on the estimation of these three different ERFaci using CMIP6 model 

outputs, please refer to Appendix A4. A comparison, for the “perfect-model” test, of ERFaci_est with both ERFaci_true and 

ERFaci_SC17 is provided below.   

 130 

Figure 3 illustrates the correlation between ERFaci_true and two alternative approaches derived from CMIP6 model output. 

The estimates of ERFaci_est that omit the activation rate fail to replicate the “true” ERFaci values accurately, with RMSE of 

0.7 W m-2 and bias of 0.58 W m-2. Conversely, incorporating an explicit activation rate into the ERFaci estimates provides 

better agreement with ERFaci_true, reducing both the RMSE and bias by around 43% (Fig. 3a).  

 135 

ERFaci_SC17 exhibits the best agreement with ERFaci_true, with markedly smaller RMSE (0.14 W m-2) and bias (0.1 W m-

2) (Fig. 3b). This consistency allows us to expand the sample size of CMIP6 models, with which we can evaluate ERFaci_est 

by using ERFaci_SC17 as a surrogate for ERFaci_true (Fig. 3c). This expanded cross-validation once again highlights the 

importance of including the activation rate in ERFaci estimates, as it reduces both the RMSE and bias in ERFaci_est by over 

45%. Substituting AI for SO4
2− in the calculation of ERFaci_est yields similar results, which reduces RMSE up to 36% (Fig. 140 

S3). Our “perfect-model” cross validation analysis with idealized model experiments from CMIP6 leads us to conclude that 

the inclusion of the activation rate is essential for accurate estimates of ERFaci.  

2.4 Comparison with previous ERFaci estimates 

Now, we compare our observationally constrained estimates of ERFaci_obs with those previously estimated. To estimate 

global-average ERFaci_obs from our domain-average ERFaci_obs, we multiply our domain estimate by a scalar multiplier, 𝛾𝛾, 145 

which represents the ratio of multi-model mean of global-average ERFaci_true to domain-average ERFaci_true (Appendix 

A6). Our global estimates with inclusion of activation rate yield an ERFaci of -0.32 ± 0.21 W m-2 for SO4
2− and -0.19 ± 0.17 

W m-2 for AI (Fig. 4). These values are at the higher bound (less negative) when compared with the ERFaci estimate reported 

in the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; Forster et al., 2021) and the estimate 

proposed by the World Climate Research Program (WCRP; Bellouin et al., 2020). However, it is worth noting that the ERFaci 150 

from WCRP has a highly skewed distribution, with its highest probability occurring around -0.4 W m-2, which is consistent 

with our observational estimates (Fig. 4). Given the multiple lines of evidence introduced by the WCRP, which employs a 

process-oriented approach to bound ERFaci, our estimates offer further evidence to support estimates on the higher end (less 

negative) of their range. Furthermore, these constrained ERFaci_obs are also consistent with the recent estimates provided by 

Wang et al. (2021), which demonstrate that models exhibiting weaker ERFaci are more in line with the observed variations in 155 

global mean surface temperature as well as hemispheric warming asymmetry during the historical period. 
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As we emphasized the pronounced impact of including the activation rate in the ERFaci estimation process, with this inclusion, 

the ERFaci_obs values are approximately one-third for SO4
2− and one-fifth for AI of those estimated without considering the 

activation rate, respectively (-0.88 ± 0.31 W m-2 for SO4
2− and -0.92 ± 0.65 W m-2 for AI).   160 

2.5 Implications for Cloud Feedback 

Our observational estimate of ERFaci is on the higher end (less negative) compared to previous estimates. This finding also 

has implications for our understanding of cloud feedback mechanisms. Following Wang et al. (2021), we compare the CMIP6 

historical simulations of ERFaci across different climate models with their corresponding values of total cloud feedback, which 

are derived from the regression slope of total cloud radiative response to global-mean temperature anomalies from the abrupt-165 

4xCO2 experiment (Fig. 5). For this analysis, we use the ERFaci_SC17 since it ensures the widest possible selection of climate 

models (Table S1). Among the models we assessed, we identified a subset of 15 that we termed “GOOD HIST” models 

(Appendix A1.4). These models are characterized by their small discrepancies in simulating global-mean historical surface 

warming when compared to the GISS Surface Temperature Analysis (GISTEMP v4; Lenssen et al., 2019) observational data, 

indicating a higher reliability in their historical climate simulations. Within this subset, a strong negative correlation (r = -0.85, 170 

p < 0.001) exists between ERFaci_SC17 and the total cloud feedback, which is much more pronounced than in the remaining 

models (r = -0.31, p = 0.042). The strong correlation in the “GOOD HIST” models highlights the compensation that occurs 

between historical aerosol forcing and cloud feedback in order for models to reproduce the observed historical global-mean 

temperature. 

 175 

Also shown are the probability density functions for the observation-based estimates of ERFaci_obs, taking into account the 

activation rate, and utilizing both SO4
2− and the AI. Alongside, we also consider the observationally constrained estimates of 

total cloud feedback, which a recent study (Ceppi and Nowack, 2021) has quantified at 0.43 ± 0.35 W m-2 K-1 (90% 

confidence). These distributions help illustrate that our constraints on ERFaci fall within the realistic bounds of total cloud 

feedback strength. The best estimates, which show the highest probability (indicated by stars), also align with those from the 180 

“GOOD HIST” models and support the validity of our constraints. Notably, our analysis reveals that models with weaker (less 

negative) ERFaci and moderately low total cloud feedback agree best with observationally constrained values.  

3 Conclusion 

Our study offers critical insights into the quantification of the effective radiative forcing from aerosol-cloud interactions 

(ERFaci), a key source of uncertainty in understanding climate sensitivity. By integrating both satellite observations and 185 

reanalysis data, we focus on the activation rate of cloud droplet number concentration in response to aerosol concentration 

variations, estimated globally at 0.35 ± 0.17 for SO4
2−

 and 0.21 ± 0.23 for AI (90% confidence), providing a more sophisticated 

understanding of the impact of aerosols on low-level clouds. Our findings, validated through the “perfect-model” cross 
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validation using CMIP6 model simulations, reveal a less negative global ERFaci estimate (-0.32 ± 0.21 W m-2 for SO4
2−

 and 

-0.19 ± 0.17 W m-2 for AI, 90% confidence) than previously reported (e.g., -0.93 ± 0.7 W m-2 in IPCC AR6, 90% confidence). 190 

 

However, we recognize that the error bars on our constraints may not fully capture the broader uncertainties present in climate 

assessments. Different methodologies employing multiple observational constraints (Regayre et al., 2023) and energy balance 

constraints (Albright et al., 2021) suggest a wider ERFaci uncertainty range, from -0.9 to -0.1 W m-2 and -0.9 to -0.2 W m-2, 

respectively (90% confidence). Our reliance on selective satellite observations, reanalysis data, and model outputs may 195 

inherently limit our uncertainty range. Despite employing the optimal Nd filtering method in our analysis, which aligns well 

with aircraft in-situ observations (Appendix A1.3), there remain uncertainties in Nd derived from cloud optical depth and 

effective radius retrievals from MODIS satellite observations. Thus, we estimate ERFaci using two additional cloud droplet 

filtering methods introduced in Gryspeerdt et al. (2022), and the estimates remain qualitatively consistent (Fig. S4). Even 

considering the most negative ERFaci estimate among the three filtering methods, its value (-0.46 ± 0.28 W m-2 for SO4
2−

 and 200 

-0.30 ± 0.19 W m-2 for AI, 90% confidence) still lies at the higher bound (less negative) of both IPCC and WCRP estimates. 

Overall, our range of ERFaci estimates, from -0.74 to -0.02 W m-2, aligns with those obtained using alternative methodologies, 

while also highlighting the robustness of our findings across different data selections—a potentially smaller influence of 

aerosol-cloud interactions on climate forcing than previously assessed. 

 205 
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Figure 1. Regression coefficient map of the activation rate of cloud droplet number concentration (Nd) in response to variations 

in sulfate aerosol mass concentration (SO4
2−) for the period January 2003 to December 2019, derived from cloud controlling 210 

factor (CCF) analysis (Appendix A3). The color scale indicates the magnitude of sensitivity, where an increase in SO4
2− 

corresponds to an increase in Nd. Areas with stippling indicate where the changes are not statistically different from zero at the 

95% confidence level using a Student’s t-test.  
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 215 
Figure 2. Spatial distribution of ERFaci_obs components and the estimated ERFaci_obs differentiated by the consideration of 

the activation rate. (a) Multi-model mean (MMM) of changes in SO4
2− between pre-industrial (PI) and present-day (PD) 

periods. 13 models are used for this analysis (Table S1). (b,c) Susceptibility of low cloud radiative effect to SO4
2− derived 

from CCF analysis using observational and reanalysis data (Appendix A3). (d,e) Observationally constrained ERFaci for 

SO4
2− estimated by multiplying the susceptibility with the changes in SO4

2−. 220 
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Figure 3. “Perfect-model” cross validation analysis of global-mean ERFaci estimates. (a) ERFaci_true versus ERFaci_est 

which is estimated by simplified version of Eq. (1) and Eq. (2) with SO4
2−  as the aerosol proxy (Appendix A4), (b) 

ERFaci_true versus ERFaci estimates obtained using the method proposed by Soden and Chung (2017; SC17), and (c) 

ERFaci_SC17 versus ERFaci_est. Filled blue circles represent estimates where the activation rate is considered, and open grey 230 

circles represent estimates without activation rate consideration. The correlation coefficient (r), associated p-value (p), Root 

Mean Square Error (RMSE), and bias are displayed in the upper left corner for the filled blue circles and in the lower right for 

the open grey circles in each panel. Bias is defined as the mean absolute difference from the 1:1 reference line, depicted by a 

dashed line. All panels have identical x and y axis ranges to highlight the variance among the estimation methods. Higher r 

values, lower RMSE, and minimal bias indicate consistency in ERFaci estimates across different estimation methods using 235 

CMIP6 models. 
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Figure 4. Estimates of globally averaged ERFaci values, including those from the IPCC Sixth Assessment Report, from the 245 

WCRP assessment, ERFaci_obs for SO4
2−, and ERFaci_obs for AI. The ERFaci_obs estimates considering activation rate are 

shown in red, while those not considering activation rate are displayed in dashed grey. Thin and thick bars represent the 90% 

and 66% confidence intervals (CI), respectively, except for the WCRP estimate of ERFaci, which shows 68% CI for the thick 

bar. The black vertical lines indicate the best estimate of each ERFaci. The ERFaci estimate from the IPCC represents the 

assessment based on observational evidence alone. 250 
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 260 
 

Figure 5. Correlation between global-mean ERFaci estimates obtained using the method proposed by Soden and Chung (2017; 

SC17), aimed at expanding the model availability, and the globally averaged total cloud feedback as determined by the 

corresponding models. Each dot represents a single model. The colors from red to blue indicate weak ERFaci models to strong 

negative ERFaci models. Filled circles represent the 15 “GOOD HIST” models that align more closely with historical 265 

observations of global-mean surface warming, whereas open circles denote the remaining models (Appendix A1.4). 

Correlation coefficients (r) and their associated p-values (p) for the entire models, the “GOOD HIST” models, and remaining 

models are shown in the upper right corner. The probability density functions (PDFs), showing the 90% confidence intervals 

for observationally constrained ERFaci from sulfate mass concentration (SO4
2−; solid line) and the aerosol index (AI; dashed 

line) when the activation rate is accounted for, are plotted along the x-axis, while the PDF for observationally constrained total 270 

cloud feedback (solid line), derived from Ceppi and Nowack (2021), is plotted on the y-axis (amplitudes scaled arbitrarily). 

Stars denote the best estimates of the PDFs, signifying the most probable values within the distributions. 
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Appendix A: Methods 

A1 Observation and Reanalysis Data 275 

In this study, we analyze observational and reanalysis datasets characterized by their monthly temporal resolution and their 

geographical coverage extending from 60°S to 60°N, with a particular focus on oceanic regions due to unreliable retrieval over 

land and polar regions (Jia et al., 2019; Gryspeerdt et al., 2022; Jia and Quaas, 2023). The dataset spans from January 2003 

through December 2019 and all data fields were interpolated onto a 2.5° × 2.5° grid. 

A1.1 CERES 280 

Our analysis employs monthly gridded satellite observations from the Clouds and the Earth’s Radiant Energy System (CERES) 

FluxByCldTyp Edition 4.1 dataset (Sun et al., 2022), focusing on a combined analysis of cloud fraction and top-of-atmosphere 

radiative flux, segmented by cloud optical depth and cloud top pressure (CTP). We categorize clouds into low (CTP > 680 

hPa) and non-low clouds (CTP ≤ 680 hPa) based on their CTP values. Due to the passive retrieval mechanisms of satellite 

instruments, the detection of low-level clouds is notably challenged by the obscuration from upper-level clouds. This limitation 285 

highlights the importance of accurately estimating the fraction of non-obscured or non-overlapped low-level clouds (Scott et 

al., 2020). To address this, the non-obscured low-cloud fraction is defined as following equation: 

 

𝐿𝐿n =
𝐿𝐿

1 − 𝑈𝑈
 ,                                                                                                                                                                                                 (A1) 

 290 

where L and U represent the low and non-low cloud fraction retrieved by the satellite, and Ln denotes the total low-level cloud 

fraction that is not obscured by upper-level clouds. With this relationship, we can extend its application to the cloud radiative 

effect (CRE) attributable to non-obscured low-level clouds (CRE_lcld). Further details regarding this equation can be found 

in the work of Scott et al. (2020). 

A1.2 MERRA-2 reanalysis 295 

We also use meteorological fields for cloud controlling factor analysis and sulfate aerosol mass concentrations (SO4
2−) derived 

from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis (Randles et al., 

2017; Gelaro et al., 2017). MERRA-2 integrates observations with global model simulations to provide estimates of 

atmospheric conditions. Specifically for SO4
2−, it employs bias-corrected observations of total aerosol optical depth from the 

Moderate Resolution Imaging Spectroradiometer (MODIS; Platnick et al., 2015) satellite data in conjunction with a 300 

comprehensive model addressing the emissions, removal processes, and chemistry of sulfate and its precursor gases. A notable 

feature of these data is that, while the total aerosol optical depth is observationally constrained, the distribution and vertical 

profiles of aerosol species are model-derived. In our analysis, we use SO4
2− from 925 hPa instead of the surface level. This 
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decision is based on the understanding that conditions near this altitude provide a more accurate reflection of CCN 

concentrations near the cloud base (Painemal et al., 2017). This pressure level is often closer to the actual height at which low-305 

level clouds form, making it a more relevant indicator for assessing aerosol-cloud interactions. 

A1.3 MODIS 

We employ the aerosol index (AI) as an alternative proxy for aerosol concentration from MODIS on both the Aqua and Terra 

satellites (datasets MYD08_M and MOD08_M, respectively). These two are combined to enhance the robustness of our 

analysis. The AI is derived from the product of the Ångström exponent and the aerosol optical depth (AOD) at 550 nm. The 310 

Ångström exponent itself is derived from the wavelength dependency of the AOD, providing insight into the size distribution 

of aerosols (i.e. smaller Ångström exponent suggests larger particles). Notably, AI has demonstrated a more robust correlation 

with CCN compared to the use of AOD alone (Stier, 2016; Gryspeerdt et al., 2017; Hasekamp et al., 2019). However, it is 

important to note that since AI provides column-integrated quantities and does not account for the vertical profile, it may not 

accurately capture aerosol concentrations in low-level clouds, which are the focus of our study. 315 

 

We use cloud droplet number concentration (Nd) estimates from MODIS (Gryspeerdt et al., 2022) and combine the data from 

the Aqua and Terra satellites. The retrievals at 3.7 μm, known to yield more accurate cloud droplet effective radius (re) 

measurements under inhomogeneous conditions, are employed (Zhang and Platnick, 2011). Nd measurements may be subject 

to biases under specific conditions, such as when the cloud droplet effective radius is sufficiently small, when the cloud visible 320 

optical thickness is low, or when three-dimensional radiative transfer effects impact the observed radiances. To enhance the 

accuracy and reliability of our Nd retrievals, we implement a rigorous sampling strategy (“BR17 sampling method” in 

Gryspeerdt et al., 2022). This introduced by Bennartz and Rausch (2017) demonstrates the highest correlation with aircraft 

data.  

A1.4 GISTEMP 325 

The global surface temperature observations used in our analysis are sourced from the GISS Surface Temperature Analysis 

(GISTEMP v4; Lenssen et al., 2019). We evaluate how well the models simulate the global-mean historical surface warming 

by the GOOD HIST index: the absolute difference in global-mean historical warming between CMIP6 models and GISTEMP 

data (Wang et al., 2021). The historical warming is defined as the averaged surface temperature in 1990–2014 minus that in 

1880–1909. This suggests the models that are good at simulating historical warming have small GOOD HIST indices. For 330 

analysis, we select the 15 models with the lowest GOOD HIST indices (Table S1). 
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A2 CMIP6 Data 

Due to the unavailability of direct observational records for pre-industrial aerosol emissions, we rely on the outputs from 

historical simulations with realistic emissions of greenhouse gases, aerosols, and aerosol precursor gases conducted by CMIP6 335 

models to estimate changes in aerosol concentration (∆ ln(𝑋𝑋), where 𝑋𝑋 represents either SO4
2−

 or AI). The pre-industrial (PI) 

period was defined as the years 1850 to 1899, and the present-day (PD) period was set from 1965 to 2014, each spanning 50 

years to minimize the influence of interannual variability. Due to the limited availability of models for aerosol proxies, 13 

models are used for ∆ ln�SO4
2−� and 9 models for ∆ ln(AI), all models of which are among the 21 models that provide 

ERFaci_true (Table S1). It is important to note that, for the CMIP6 models, the emission concentrations of sulfur dioxide, a 340 

precursor to SO4
2−, are specified from the Community Emission Data Set (CEDS; Hoesly et al., 2018), and thus the projected 

changes in ∆ln(SO4
2−) are highly consistent across models. The specified decadal trends in regional sulfate mass concentration 

in the models are also consistent with surface observations (Aas et al., 2019). 

 

To evaluate our observationally constrained estimate of the ERFaci (ERFaci_obs), we employed 21 distinct models conducting 345 

single-forcing (aerosol-only) experiments (ERFaci_true). These models are from the Radiative Forcing Model Intercomparison 

Project (RFMIP; Pincus et al., 2016), specifically Tier 1 piClim-control and piClim-aer experiments with prescribed sea surface 

temperatures (SST) and sea ice derived from a climatology of pre-industrial conditions. These simulations are run for 30 years, 

incorporating realistic aerosol emissions in 1850 and 2014 to represent PI and PD conditions, respectively. This ensures an 

accurate estimation of the true baseline of ERFaci resulting solely from aerosol-cloud interactions. We use 30-year time periods 350 

for the PI and the PD scenario to evaluate ERFaci. Consequently, the ERFaci derived from these experiments is referred to as 

ERFaci_true.  

 

A3 Cloud Controlling Factor Analysis 

To improve our understanding of the cloud droplet number concentration and low cloud radiative effect in response to 355 

variations in aerosol concentration, we employed cloud controlling factor (CCF) analysis (Scott et al., 2020; Wall et al., 2022). 

This approach allows us to constrain the environmental factors influencing cloud droplets, low cloud properties and their 

subsequent radiative impacts. The analysis considers a set of controlling factors that are known to be drivers of cloud droplets 

and low cloud behavior, which can be expressed as follows, respectively:  

 360 

𝑁𝑁d′ ≈�
∂𝑁𝑁d
∂𝑌𝑌𝑖𝑖

× 𝑌𝑌𝑖𝑖′
7

𝑖𝑖=1

,                                                                                                                                                                                    (A2) 
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CRE_lcld′ ≈ �
∂CRE_lcld

∂𝑌𝑌𝑖𝑖
× 𝑌𝑌𝑖𝑖′

7

𝑖𝑖=1

,                                                                                                                                                            (A3) 

 

where Nd represents cloud droplet number concentration from MODIS, and CRE_lcld represents the non-obscured low-level 

cloud radiative effect from CERES. The factors (𝑌𝑌𝑖𝑖) from MERRA-2 reanalysis data included in our analysis are 1) sea surface 365 

temperature, 2) estimated inversion strength, 3) horizontal surface temperature advection, 4) relative humidity at 700 hPa, 5) 

vertical velocity at 700 hPa, and 6) near-surface wind speed. These parameters represent a combination of thermodynamic and 

dynamic influences that are critical in dictating low cloud formation and persistence (Scott et al., 2020). In addition to these 

standard meteorological variables, we introduce 7) aerosol concentration, as an additional controlling factor (Wall et al., 2022). 

Specifically, we consider either the natural logarithm of SO4
2−  at 925 hPa from the MERRA-2 reanalysis or the natural 370 

logarithm of the AI from MODIS.  

 

For each grid point, we employ ordinary least-squares multilinear regression to model Nd' or CRE_lcld' against anomalies in 

the seven cloud controlling factors. In this study, we focus specifically on the contribution of aerosol concentration variations 

to Nd' or CRE_lcld', representing either activation rate (∂Nd/∂ln(X)) or susceptibility (∂CRE_lcld/∂ln(X)), while holding all 375 

other environmental conditions constant. 

 

To assess potential multicollinearity among predictors, we calculated variance inflation factors (VIF), as covariability among 

predictors can increase the uncertainty in regression coefficients (Figs. A1, A2). VIF values for each predictor remain below 

5, except for SST and EIS over the equatorial Pacific, consistent with the VIF analysis by Scott et al. (2020). For aerosol 380 

proxies, such as SO4
2− and AI, covariability with environmental factors is minimal and difficult to detect. This emphasizes the 

independence of aerosol concentrations from other environmental factors and supports that our ERFaci estimation genuinely 

driven by aerosols. 

 

A4 Estimating ERFaci using CMIP6 model outputs 385 

A4.1 Estimating ERFaci_true 

The ERFaci_true is calculated for PD minus PI conditions from aerosol-only, fixed-SST experiments as, 

 

ERFaci_true = ΔCRE_lcld,                                                                                                                                                                        (A4) 

 390 

where the low-level cloud radiative response (ΔCRE_lcld) is determined by using cloud classification method introduced in 

Webb et al. (2006) and Soden and Vecchi (2011).  
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A4.2 Estimating ERFaci_SC17 

This method partitions the low-level cloud radiative response observed in historical experiments into two components: one is 

a temperature-mediated component (i.e., cloud feedback) attributable to changes in the global-mean surface temperature and 395 

the other to aerosol-cloud interactions. The estimate of ERFaci is then obtained by subtracting the temperature-driven 

component from the low-level cloud radiative response, thus focusing solely on the impact of aerosol-cloud interactions. 

 

ERFaci_SC17 = ΔCRE_lcld − 𝛼𝛼1pctCO2 ⋅ Δ𝑇𝑇s� ,                                                                                                                                       (A5) 

 400 

where 𝛼𝛼1pctCO2 represents the low-level cloud feedback, derived from the 1% CO2 increase per year (1pctCO2) scenario, which 

is calculated as the low-level cloud radiative response normalized by the corresponding global-mean surface warming. Δ𝑇𝑇s�  

denotes global mean temperature response to PD minus PI conditions. Because this method uses outputs from historical and 

1pctCO2 simulations, it allows a much larger sample size of models to evaluate the two different versions of ERFaci_est. 

A4.3 Estimating ERFaci_est 405 

To estimate ERFaci_est, derived exclusively from CMIP6 model outputs calculated using Eq. (1) and Eq. (2) from the main 

text, we use monthly anomalies spanning from 2000 to 2014 in historical experiments for susceptibility calculation, after 

removing trends and climatological seasonality. We adhere to the same timeframe for aerosol concentration changes as 

described in the main text. Additionally, given the challenges associated with deriving cloud-top Nd directly from CMIP6 

model outputs, we adopt an alternative approach, which is the maximum Nd within a vertical atmospheric column (Saponaro 410 

et al., 2020; Jia and Quaas, 2023). Owing to the limited availability of models for CCF analysis, it is not explicitly employed 

in the estimation process of ERFaci_est. Instead, we assess the impact of including or excluding CCF analysis on ERFaci_obs 

to elucidate their influence on the estimation of ERFaci_est. The simplified version of Eq. (1) and Eq. (2), which do not account 

for CCF analysis, are presented below: 

 415 

ERFaci_obs ≈
∂CRE_lcld
∂ ln(𝑋𝑋) × ∆ ln(𝑋𝑋),                                                                                                                                                     (A6) 

(without CCF analysis and activation rate) 

 

ERFaci_obs ≈ �
∂CRE_lcld
∂ ln(𝑁𝑁d) ×

∂ ln(𝑁𝑁d)
∂ ln(𝑋𝑋) � × ∆ ln(𝑋𝑋).                                                                                                                           (A7) 

(without CCF analysis but with activation rate) 420 
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When applying these equations to estimate ERFaci_obs, we obtain best estimates of global-mean ERFaci_obs (without 

activation rate) of -1.64 for SO4
2− and -1.85 for AI, and global-mean ERFaci_obs (with activation rate) of -0.56 for SO4

2− and 

-0.27 for AI. These values are 1.87, 2.01, 1.75, and 1.44 times larger, respectively, than those obtained when considering CCF 

analysis. In other words, by dividing model-driven ERFaci estimates by these factors, we can approximate its value under 425 

scenarios that include CCF analysis (ERFaci_est). These outcomes are employed in Fig. 3 and Fig. S3. 

 

A5 Radiative Kernel Method 

Originally developed by Soden et al. (2008) to facilitate the analysis of radiative feedbacks, “radiative kernels” describe the 

differential response of radiative fluxes to incremental changes in the radiative state variables (e.g., clouds, temperature, water 430 

vapor, albedo). In this study, we employed radiative kernel techniques derived from the HadGEM3-GA7.1 model (Smith et 

al., 2020b) for all CMIP6 model analysis, except for estimating ERFaci_est, as CCF analysis may serve a similar role to the 

radiative kernel method in isolating the genuine cloud radiative response while minimizing interference from cloud masking 

effects. 

 435 

A6 Extrapolating Global-Mean Estimates from Domain-Mean Estimates 

Given that our observation data cover the domain extending from 60°S to 60°N over the ocean, it is necessary to extrapolate 

global-mean ERFaci values for comparison with the global-mean estimates reported in the IPCC Sixth Assessment Report and 

the WCRP. To bridge the gap between global and domain-specific averages we use 21 CMIP6 climate models in single-forcing 

experiments (ERFaci_true) to estimate a scalar, 𝛾𝛾 , representing the ratio of the multi-model mean of global-average 440 

ERFaci_true to domain-average ERFaci_true (Fig. A3). We ascertain 𝛾𝛾’s value at 0.86 with 0.92 correlation coefficient 

between models and a p-value less than 0.001, enabling us to adjust our domain-specific ERFaci estimates to better 

approximate the global mean. This extrapolation is performed using the following equation: 

 

ERFaci_obs, global =  𝛾𝛾 × ERFaci_obs, domain.                                                                                                                               (A8) 445 

 

Additionally, following the approach of Wall et al. (2022), we conduct a sensitivity test for 𝛾𝛾 without relying on climate model 

results. In this alternative method, we assume that the albedo change associated with ERFaci is approximately uniform across 

the study domain and the entire globe. Under this assumption, 𝛾𝛾 is approximated as the ratio of global-mean insolation to 

domain-mean insolation, yielding a central estimate of 0.92. Notably, this value is highly consistent with our model-derived 450 

estimate of 0.86, supporting the robustness of our extrapolation approach. Given this consistency, we adopt 𝛾𝛾 = 0.86 in this 

study. 
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We also apply this scalar multiplier to extrapolate the global mean activation rate, as variations in Nd in single-forcing (aerosol-

only) experiments primarily result from changes in aerosol concentrations. This extrapolation remains consistent with the ratio 455 

of global mean ERFaci_obs calculated with and without accounting for activation rate, suggesting a global mean activation 

rate of 0.37 for SO4
2− and 0.21 for AI. 

 

Even though our study domain captures the primary anthropogenic aerosol sources, particularly near major industrial regions 

in Eurasia and North America, and our multi-model mean extrapolation inherently accounts for aerosol-cloud interactions 460 

outside our domain, recent studies have highlighted their significant influence in polar regions (e.g., Coopman et al., 2018). 

Aerosol-induced cloud property changes in the Arctic may be more efficient per unit aerosol mass than at mid-latitudes due to 

the greater susceptibility of Arctic clouds to aerosols. Incorporating these effects could lead to a more negative global-mean 

ERFaci estimate. The role of Arctic aerosol-cloud interactions warrants further investigation, and future research incorporating 

more comprehensive observational constraints would be valuable. 465 

 

A7 Adjusting the IPCC’s ERFaci Estimate 

We adjust the IPCC Sixth Assessment Report’s estimate of ERFaci, which uses 2014 as the present-day reference year and 

1750 as the preindustrial reference year. The IPCC’s initial global estimate for ERFaci between 2014 and 1750 is -1.0 ± 0.7 

W m-2. To make this preindustrial reference period consistent with our analysis, we subtract the estimated ERFaci of -0.07 W 470 

m-2 between 1850 and 1750 from the IPCC’s value (Dentener et al., 2021). This adjustment yields an estimate based solely on 

observational evidence, with a 90% CI of -0.93 ± 0.7 W m-2 (Wall et al., 2022). 

 

A8 Uncertainty 

The uncertainty in ERFaci_obs, in the case where the activation rate is not considered, is attributed to uncertainties in the 475 

susceptibility, the regression coefficient for ∂CRE_lcld/ ∂ln(𝑋𝑋), and in the model estimates of Δln(𝑋𝑋). Conversely, when 

considering the activation rate, the uncertainty in ERFaci_obs stems from uncertainties in the regression coefficients for 

∂CRE_lcld/ ∂ln(𝑁𝑁d) and ∂ln(𝑁𝑁d)/ ∂ln(𝑋𝑋), as well as from uncertainties in the model predictions of Δln(𝑋𝑋).  

 

To quantify the uncertainty derived from regression coefficients, at each grid box a 90% confidence interval of the 480 

susceptibility is given by  
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𝛿𝛿 = 𝑡𝑡�𝑪𝑪𝑖𝑖𝑖𝑖�
𝑁𝑁nom
𝑁𝑁eff

[Δln(𝑋𝑋)]    (without activation rate),                                                                                                                   (A9) 

𝛿𝛿 = 𝑡𝑡�∆𝑥𝑥T𝑪𝑪∆𝑥𝑥�
𝑁𝑁nom
𝑁𝑁eff

[Δln(𝑋𝑋)]    (with activation rate),                                                                                                             (A10) 

 485 

where 𝑡𝑡 is the critical value of the Student’s t-test at the 95% significance level with 𝑁𝑁eff  −  7 degrees of freedom (Von Storch 

and Zwiers, 1999), 𝑪𝑪  is the variance–covariance matrix of regression coefficients hence 𝑪𝑪𝑖𝑖𝑖𝑖  represents the diagonal 

components of 𝑪𝑪, 𝑁𝑁nom/𝑁𝑁eff is the ratio of the nominal to effective number of monthly values of CRE_lcld′, and Δ𝑥𝑥 is the 

regression coefficient for ∂ln(𝑁𝑁d)/ ∂ln(𝑋𝑋). 𝑪𝑪 is formulated as 𝑪𝑪 =  𝜎𝜎�2(𝑍𝑍T𝑍𝑍)−1, where 𝑍𝑍 is the data matrix with columns 

composed of detrended monthly anomalies. Specifically, these anomalies are of ln(𝑋𝑋) in scenarios where the activation rate 490 

is not considered and of ln(𝑁𝑁d) in scenarios where the activation rate is included. The term 𝜎𝜎�2 denotes the mean of squared 

residuals of the regression model and we estimate 𝑁𝑁nom/𝑁𝑁eff as (1 +  𝑟𝑟)/(1 −  𝑟𝑟), where 𝑟𝑟 is the lag one autocorrelation of 

CRE_lcld′. Square brackets indicate multi-model mean of a parameter. 

 

Uncertainty for spatially averaged regression coefficients is calculated as 495 

 

∆obs= �
∑ (𝛿𝛿𝑘𝑘𝑤𝑤𝑘𝑘)2𝑁𝑁nom∗

𝑘𝑘=1

�∑ 𝑤𝑤𝑘𝑘
𝑁𝑁nom∗

𝑘𝑘=1 �
2 �

𝑁𝑁nom∗

𝑁𝑁eff∗
 ,                                                                                                                                                           (A11) 

 

where 𝛿𝛿𝑘𝑘 denotes the uncertainty of the kth grid box, and 𝑤𝑤𝑘𝑘 is the cosine of the latitude. 𝑁𝑁nom∗  represents the nominal number 

of spatial degrees of freedom, while 𝑁𝑁eff∗  represents the effective number of spatial degrees of freedom. The ratio 𝑁𝑁nom∗ /𝑁𝑁eff∗  500 

is determined through empirical orthogonal function (EOF) analysis applied to CRE_lcld' for all ocean grid boxes between 

60°S and 60°N as outlined in Eq. 5 of Bretherton et al. (1999). Before conducting the EOF analysis, each grid of CRE_lcld' 

value is multiplied by �𝑤𝑤𝑘𝑘 to mitigate dependencies on grid geometry (North et al. 1982). The derived value of ∆obs quantifies 

the half-width of the 90% CI for ERFaci_obs over our domain region specifically reflecting the uncertainty associated with 

regression coefficients. 505 

 

To estimate uncertainty derived from model predictions, we examine the entire range of aerosol concentration changes across 

each CMIP6 model, instead of estimating uncertainty within the 5th-95th percentile range, primarily due to the limited number 

of models available for our analysis: 13 models for ∆ ln(SO4)  and 9 models for ∆ ln(AI) . This decision reflects a 

methodological adaptation to the limited model dataset, ensuring a comprehensive evaluation of model-derived uncertainty 510 
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(Myers et al., 2023). We first calculate ERFaci_obs by multiplying ∆ ln(𝑋𝑋) from each of the models by the observationally 

derived susceptibility. The half-width of the CI, denoted as ∆model, is derived by halving the difference between the maximum 

and minimum estimates of ERFaci_obs. The overall 90% CI is determined by  

 

ERFaci_obs, domain ± �∆obs2 + ∆model2 .                                                                                                                                             (A12) 515 

 

In our methodology, the scalar 𝛾𝛾 is used to extrapolate the global ERFaci_obs from our domain-specific ERFaci_obs estimates. 

This extrapolation introduces an additional component of uncertainty. Although both 𝛾𝛾  and the changes in aerosol 

concentration are obtained from CMIP6 model outputs, it is important to note that 𝛾𝛾 does not directly correlate with aerosol 

concentration changes across the models. Consequently, the uncertainty associated with 𝛾𝛾 is quantified using the root mean 520 

squared error (RMSE) between the domain-specific averaged ERFaci_true, multiplied by 𝛾𝛾, and the global-mean ERFaci_true. 

The overall 90% CI is determined by  

 

ERFaci_obs, global ± �([𝛾𝛾]∆obs)2 + ([𝛾𝛾]∆model)2 + ∆𝛾𝛾2 .                                                                                                               (A13) 

 525 

The uncertainty in the activation rate is calculated in a similar manner, but it arises from the regression coefficient of 

∂ln(𝑁𝑁d)/ ∂ln(𝑋𝑋) and the extrapolation of the global activation rate. The term 𝛿𝛿 is computed following Eq. (A9) but excluding 

[Δln(𝑋𝑋)] and using ln(𝑁𝑁d)′ in place of CRE_lcld′. To estimate the uncertainty in spatially averaged regression coefficients for 

the activation rate, we employ Eq. (A11). Consequently, the overall 90% CI for the global activation rate is given by 

 530 

Activation rate, global ± �([𝛾𝛾]∆obs)2 + ∆𝛾𝛾2 .                                                                                                                                      (A14) 
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 535 
Figure A1. Variance inflation factors (VIF) for each environmental factor 𝑌𝑌𝑖𝑖 in CCF analysis, calculated as VIF𝑖𝑖  =  1/(1 −

𝑅𝑅𝑖𝑖2), where 𝑅𝑅𝑖𝑖2 represents the total variance in 𝑌𝑌𝑖𝑖 explained by the remaining environmental predictors. The environmental 

predictors include natural logarithmic sulfate mass concentration (ln(SO4
2− )), sea surface temperature (SST), estimated 

inversion strength (EIS), horizontal surface temperature advection (Tadv), relative humidity at 700 hPa (RH700), vertical 

velocity at 700 hPa (𝜔𝜔700), and near-surface wind speed (WS). 540 

 

 

 

 

 545 
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Figure A2. Same as Figure A1, but for AI instead of SO4

2−. 

 

 

 550 

 

 

 

 

 555 
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Figure A3. CMIP6 estimates of ERFaci_true, averaged for the domain region (60°S to 60°N over ocean), and globally 

averaged ERFaci_true values. Each black circle represents an individual model’s estimate, with the correlation coefficient (r) 

and its associated p-value (p) indicated in the upper left corner. 

 560 
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