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Abstract. Hot temperature extremes have severe impacts on society and ecosystems. Their magnitude and frequency are 

increasing with climate change in most regions globally. These extremes are driven by both atmospheric and land surface 10 

processes such as advection or reduced evaporative cooling. The contributions of the individual drivers to the formation and 

evolution of hot extremes have been analyzed in case studies for major past events, but the global relevance of drivers still 

remains unclear. In this study, we determine the relevance of (i) atmospheric drivers such as wind, geopotential height, 

geopotential height differences and surface net radiation, as well as (ii) land surface drivers such as evaporative fraction and 

enhanced vegetation index for hot extremes across the globe using observation-based data. Hot extremes are identified at daily 15 

and weekly time scales through the highest absolute temperature and an analogue-based approach to determine the relevance 

of the considered drivers. The results show that geopotential height at 500 hPa is overall the most relevant driver of hot 

extremes across the globe. Surface net radiation and enhanced vegetation index are the second most relevant drivers in many 

regions, particularly in tropical and semi-arid areas. We find that the relevance of land surface drivers is increasing within the 

studied period, and from daily to weekly durations. Revealing key regions and influential time scales of land surface drivers 20 

on hot extremes can inform more efficient prediction and management of the increasing threat these extremes pose. 

1 Introduction 

Hot extremes are events of severe weather characterized by prolonged periods of excessively high temperatures. These events 

pose significant risks to human health, agriculture, ecosystems, and infrastructure, making the understanding of their drivers a 

critical area of research (Anderegg et al., 2012, Goulart et al., 2021, Anderson & Bell, 2011, McEvoy et al., 2012). Moreover, 25 

because of the increasing trend of global temperatures, hot extremes have become longer, more frequent, and intense in recent 

years  (Seneviratne et al., 2023).  

Previous research on hot extremes has primarily focused on regional case studies to identify the drivers of specific events 

(Wehrli et al., 2019, Fischer et al., 2007). Studies such as Woollings et al. (2018) and  Brunner et al. (2017) highlight the 

importance of atmospheric circulation patterns, such as blocking systems and jet stream anomalies, for the onset and 30 
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development of such events. On the other hand, land surface feedback mechanisms, including evaporative cooling deficits and 

vegetation water stress due to low soil moisture can exacerbate the hot extremes and lead to multi-hazard events (Wulff & 

Domeisen, 2019,  Teuling et al., 2010,  Miralles et al., 2014, Hauser et al., 2016). However, a joint and comparative assessment 

of these drivers is lacking such that also the relative importance of the land surface compared to that of atmospheric drivers is 

unclear (Perkins, 2015). Moreover, a global analysis to complement and reconcile the existing regional studies is missing 35 

(Sillmann et al., 2017).  This limits our understanding regarding the physical mechanisms leading to hot extremes across the 

globe and our skill to forecast these events. We aim to address these knowledge gaps by conducting a global analysis where 

we determine and compare the relevance of atmospheric and land surface drivers of hot extremes. This includes the 

identification of relevant spatial patterns and regions of particular interest for each considered driver variable.  

There is no one commonly accepted definition of hot extremes such that previous research has employed different temperature 40 

metrics or related indices and at different time scales (Perkins & Alexander, 2013, Brunner et al., 2017, Raha & Ghosh, 2020). 

In this context we define hot extremes through the highest absolute temperatures and consider daily and weekly time scales. 

Focusing on different time scales allows us to reveal to which extent the drivers of hot extremes, as well as the spatial patterns 

of their relevance, change with different durations of the events. Consequently, this can yield insights into potential differences 

of the mechanisms underlying the formation of hot extremes across time scales and regions. 45 

2 Data and Methods 

2.1 Data 

For our definition of hot extremes, we use the 2 m daily mean temperature as this accounts for both day-time and night-time 

conditions. We make this choice because night-time temperatures play a role in the physiological response of plants to hot 

extremes (Wahid et al., 2007). Moreover, the increasing trend of night-time extreme temperatures also shows the relevance of 50 

using daily mean temperatures (Wu et al., 2023). As there is no common time scale for the definition of hot extremes, or more 

specifically heatwaves, we consider two different time scales, 1 day and 7 days. This will also allow testing to which extent 

the underlying drivers depend on the considered time scale. Further, we use the variables summarized in Table 1 to analyze 

different potential drivers of hot extremes globally. We classify the potential driver variables into two categories: atmospheric 

variables and land surface variables. These drivers are selected based on the existence of plausible physical pathways through 55 

which they can affect surface temperature.  

Atmospheric variables include wind speed and geopotential height at three different atmospheric pressure levels which 

influence the distribution and movement of heat within the atmosphere (Xoplaki et al., 2003). Specifically, we analyze 

geopotential height and wind at three atmospheric levels: surface, 850 hPa, and 500 hPa. The selection of these three levels is 

based on their relevance to hot extremes formation and evolution, as well as findings from existing literature. The surface level 60 

can provide information about the advection of warm air (Jiménez‐Esteve & Domeisen, 2022). The 850 hPa level, situated 

approximately 1.5 km above sea level, is used to assess lower-tropospheric processes. The 500 hPa level, roughly 5.5 km 
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above sea level, is often related to hot extremes formation due to blocking mechanisms at this level (Zschenderlein et al., 

2019). This level is important for capturing mid-tropospheric patterns and the influence of large-scale atmospheric circulation 

on weather systems (Ventura et al., 2023). In addition, we compute the geopotential height differences at 500 hPa pressure 65 

level for each grid cell with respect to the values in adjacent grid cells in the northern, eastern, southern and western directions. 

Land surface variables, such as evaporative fraction (EF), enhanced vegetation index (EVI), and surface net radiation, impact 

surface temperatures through the provision of energy, evaporative cooling as well as albedo which determines the amount of 

reflected solar energy (Seneviratne et al. 2010). EF is computed by normalizing evapotranspiration by surface net radiation. 

It’s important to mention that we compute EF using variables from two different datasets, which is justified as X-BASE uses 70 

ERA5 data in its formulation. We analyze the land surface variables across the same time scales considered for the hot 

extremes, but also at longer time scales in order to capture potential lagged effects arising from an accumulation of the influence 

of land surface variables over time. For example, for 1-day hot extreme events (Table 1; third column) we use values on the 

day of the event, an average of the variables on the event day and the 2 preceding days, as well as an average of the variables 

on the event day and the 14 preceding days. Similarly for hot extremes of 7 days we consider time scales of 7, 14 and 28 days 75 

for the land surface variables. These time scales are important for understanding plant responses to hot extremes: water loss 

and stomatal closure are more pronounced on the daily time scale, while on the daily to weekly time scale vegetation is affected 

by leaf wilting and senescence (Zhang et al., 2016).  

The spatial and temporal resolutions considered are 0.25 degrees and daily intervals, respectively for the study period of 2001 

to 2020. In cases where the native resolutions of the datasets differed from these, the datasets were aggregated to a spatial 80 

resolution of 0.25 degrees and a daily temporal resolution using linear interpolation. Regarding the limited global coverage of 

the EF dataset, we mask grid cells without data, including deserts in Africa and Central Asia, in all considered datasets to 

ensure consistency in spatial coverage. 
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 85 
Table 1 Summary of considered driver variables 

Variables Source 1-day hot extremes 7-day hot extremes 

Geopotential Height 
ERA5 

(Hersbach et al., 2020) 

Pressure at the Surface Pressure at the Surface 

Geopotential height at 850 hPa Geopotential height at 850 hPa 

Geopotential height at 500 hPa Geopotential height at 500 hPa 

Wind Speed 
ERA5 

(Hersbach et al., 2020) 

Wind at the Surface Wind at the Surface 

Wind at 850 hPa Wind at 850 hPa 

Wind at 500 hPa Wind at 500 hPa 

Geopotential Height 

Difference 

ERA5 

(Hersbach et al., 2020) 

Geopotential height difference at 

500 hPa 

Geopotential height difference at 

500 hPa 

Enhanced Vegetation 

Index (EVI) 

MODIS 

(Didan, 2015) 

EVI 1-day EVI 7-day 

EVI 3-day EVI 14-day 

EVI 15-day EVI 28-day 

Evaporative Fraction 

(EF) 

X-Base 

(Nelson et al., 2024) 

ERA5 

(Hersbach et al., 2020) 

EF 1-day EF 7-day 

EF 3-day EF 14-day 

EF 15-day EF 28-day 

Surface Net Radiation 
ERA5 

(Hersbach et al., 2020) 

Radiation 1-day Radiation 7-day 

Radiation 3-day Radiation 14-day 

Radiation 15-day Radiation 28-day 

 

2.2 Identification of hot extremes events 

We identify the hot extreme events in each grid cell based on the highest absolute temperature values within our study period 

of 2001 to 2020. For the 7-day time scale we apply a moving average in order to remove variability from shorter time scales. 90 

For each type we select the three hottest events, ensuring that these are at least 15 days apart from each other and therefore 

independent, as shown in Fig. 1(a). The selected events occur during the warm seasons, as we pick the events with the highest 

temperatures. 
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Figure 1 Workflow for determining main drivers of hot temperature extremes. (This figure is created by using miro.com) 95 

2.3 Selection of analogues 

After identifying hot extremes, we can determine the values of the considered driver variables for each event, and based on 

them we identify analogues as illustrated in Fig. 1(b). This means that for each driver and at each considered atmospheric level 

(i.e., geopotential height and wind) and temporal scale (i.e., EVI, EF, and surface net radiation) we select the five periods from 

the study period where values are the most similar to the originally investigated (Yiou et al. 2007). These analogues are only 100 

selected within a similar time of the year as the original hot extremes event to ensure comparable conditions; this is needed as 

e.g. circulation patterns with westerly winds from the North Atlantic tend to cool Europe in summer while warming it in winter. 

For this purpose, a 60-day window centered on the relevant hot extreme event is considered across all years to select the 

analogue periods. These periods are also at least 15 days apart from each other to ensure independence. 

2.4 Determination of relevance of driver variables 105 

Within the following step, shown in Fig. 1(c), we compute the temperature anomalies of the analogue periods identified for 

each driver. For each grid cell, we subtract the climatological mean temperature, from the temperature values recorded during 
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the analogue periods. This process is repeated for the second and third hottest periods in each grid cell, resulting in a total of 

15 analogue periods for each driver variable. We then compute the mean across their temperature anomalies. This value is then 

an indicator of typical temperature anomalies associated with the specific conditions of each driver variable, and at the same 110 

time a measure of the relevance as a driver of the identified hot extremes. The main driver in a grid cell is then selected as the 

variable with the hottest mean temperature anomaly.  

We then compare the mean temperature anomaly of the analogues with the mean temperature anomaly across the three 

considered hot extremes in each grid cell by calculating their ratio. This indicates the fraction of the actual temperature anomaly 

that can be explained with one driver, i.e. the degree of relevance of the dominant driver in the considered hot extreme events. 115 

2.5 Effect of the increasing trend in hot temperatures extremes on the relevance of driver variables 

In the light of the increasing trends in global temperature extremes (Seneviratne et al., 2023), we analyze potential changes in 

the relevance of the considered drivers of hot extremes over time. For this purpose, we divide the study period into two periods, 

2001-2010 and 2011-2020, and employ the same methodology as described in Sections 2.1 to 2.4 to calculate the relevance of 

all driver variables for both time periods. 120 
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3 Results & Discussion 

3.1 Global distribution of most relevant driver variables 

 
Figure 2 Dominant driver variables identified for 1-day and 7-day hot extremes. Fraction of study area where each driver is most influential 
is given in parentheses. The percentages indicated on the color bar reflect the proportion of the study area where hot extremes are most 125 
influenced by each variable. 

The global distribution of the dominant variables for both 1-day and 7-day time scale extreme temperatures are illustrated 

within Fig. 2. The results are aggregated across geopotential height levels in the case of the atmospheric variables, and across 

time scales in the case of the land surface variables. The map corresponding to the 1-day time scale reveals that geopotential 

height is the predominant driver, accounting for approximately 60 % of the analyzed area. More specifically, the 500 hPa level 130 

geopotential height is most influential in mid-latitude regions. This finding supports existing literature that highlights the 

significant role of atmospheric blocking mechanisms in the formation of hot extremes in these latitudes and at 500 hPa pressure 

level (Pfahl & Wernli, 2012; Brunner et al., 2017; Jiménez‐Esteve & Domeisen, 2022). Conversely, in primarily tropical 
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regions, surface net radiation substantially influences the occurrence of 1-day extreme temperature events. This can be 

understood as lateral temperature and pressure gradients are weaker in the tropics such that atmospheric circulation is less 135 

relevant while instead solar radiation is intense because of a larger and near-direct solar incident angle. Next to this, EF is 

found to be the most relevant hot extremes driver across 10 % of the study area. This is particularly the case in  Central North 

America and Central Asia which are known as transition regions between wet and dry climate. In these regions 

evapotranspiration and consequently evaporative cooling is relatively high but also limited by soil water availability which is 

typically low during hot extremes (Koster, 2004; Wang et al., 2007). This way, reduced soil moisture and, as a result, lower 140 

than usual EF leads to higher sensible heat flux, resulting in increased surface temperatures during hot extremes 

(Schwingshackl et al., 2017; Teng et al., 2016). A more detailed depiction of drivers’ relevances across height levels and time 

scales is presented in Fig. A1. 

For drivers of hot extremes at a time scale of 7 days we find that the relevance of land surface variables increases. Particularly 

for EVI which is the most relevant driver in tropical or semi-arid warm regions, accounting for 22 % of the study area EVI 145 

affects hot temperatures through the act of shading. In the identified regions where EVI is most relevant, temperatures can 

reach levels at which leaves start to wilt which then reduces shading-related cooling and further amplifies the temperatures 

(Brun et al., 2020). The role of EF is similar as observed for the 1-day time scale while net radiation is the dominant driver in 

a slightly larger area which is also more shifted to high latitudes. This indicates that heat can accumulate through higher than 

usual radiation persisting over some time (Miralles et al. 2014). Furthermore, land surface variables affect hot extremes mostly 150 

at the same time scale of the hot extremes while lagged effects occur in few regions (Fig. A1). At the same time, geopotential 

height remains the most dominant variable globally for 7-day hot extremes, while its relative influence is almost half of 1-day 

hot extremes in mid-latitudes. 

In order to analyze the spatial distribution of the dominant driver variables identified for 1-day and 7-day hot extremes with 

respect to different land surface characteristics and climatic regimes, we employ a random forest approach where geopotential 155 

height and EF serves as target variables while a range of hydro-climatological, vegetation and landscape variables is used as 

predictors (Fig. A2). We find that long-term mean temperature and radiation are the most relevant predictor variables for both 

1-day and 7-day hot extremes. Additionally, aridity (calculated as the ratio of long-term mean net radiation and unit-adjusted 

long-term mean precipitation) and topography play a role while the other considered variables are less important. While 

temperature has the highest relevance and is therefore selected as the primary variable, radiation, which ranks second in 160 

relevance, is closely related to temperature as an atmospheric variable. To ensure the inclusion of a land-surface related factor, 

we choose aridity, which captures the interaction between radiation and precipitation, thus providing a metric for assessing 

land-surface influences on hot extremes. 

The main driving variables of hot extremes, classified by temperature and aridity across different climatic regions, are shown 

in Fig. 3. Geopotential height is most relevant across both cold and warm regions as well as dry and wet climate regimes. In 165 

wet regions, radiation tends to be the second most relevant driver which is related to more intense solar radiation in the 

respective tropical regions. Land surface variables EF and EVI are the second most important drivers in dry climate regimes, 
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and even the most relevant in semi-arid and warm climates. This is related to the fact that water availability is mostly just 

sufficient for vegetation in these regions which means that (i) it can supply significant evaporative cooling while (ii) during 

warm and dry conditions water availability will not be sufficient such that evaporative cooling decreases which in turn 170 

contributes to enhanced temperatures. 

 
Figure 3 Main driving variables of hot extremes summarized across climate classes. Color of the boxes indicates which driver is most 
influential in the largest number of grid cells within the climate class. Color of the inner square indicates the second most relevant driver. 
The size of the square denotes the relative relevance of the second most important driver where large squares are used if the number of grid 175 
cells where the second most relevant driver is most influential exceeds 65 % of the number of grid cells where the most relevant driver is 
most influential. Likewise, medium-sized squares are used for fractions of 25 % - 65 % and small squares in the case of <25 %. Note that if 
there are fewer than 20 grid cells to represent the corresponding variables, the boxes will appear in gray or any other single color. Gray 
indicates that neither the first nor the second most dominant variables have enough grid cells, while any other single color indicates that only 
the first dominant variable has enough grid cells. The number of grid cells in each category is shown in Fig. A3. 180 

These results have to be seen in the light of some limitations. The analogue methodology employed here does not account for 

interactions between the considered driver variables. This means that temperature anomalies associated with the analogues of 

a given variable could also partly result from anomalies in another variable that is closely connected to the first one and will 

hence add to its effect. We expect that the consideration of several hot extremes and of multiple analogues for each extreme 

for computation of the analogues can mitigate this problem as different weather and vegetation conditions characterize each 185 

of them. Furthermore, our main goal is to disentangle land surface and atmospheric drivers of hot extremes which are not 

expected to be strongly related to each other. Another limitation is the data quality of each driver variable. If there are lower 

signal-to-noise ratios for some considered variables than for others, this may affect the identification of analogues and related 
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temperature anomalies, and consequently the estimated relevance of the variable. Related to the consideration of several 

geospheres within the set of our driver variables we have to rely on different data sources. At the same time we use established 190 

products in this study which are all comprehensively validated and hence we expect that differences in data quality between 

individual data streams is small. 

3.2 Relative roles of the most important atmospheric and land surface drivers 

 
Figure 4 Degree of relevance of EVI (a, b) and geopotential height (c, d) at daily and weekly time scales. The degree of relevance is 195 
computed as the ratio between the respective analogue temperature anomalies and the observed temperature anomalies during hot extremes. 

In this section we analyze the main land surface and atmospheric drivers in more detail in terms of their degree of relevance 

(i.e. the fraction of temperature anomalies of hot extremes explained by them according to the temperature anomalies of their 

analogues). Fig. 4 presents the results for the Enhanced Vegetation Index (EVI) and geopotential height for 1-day and 7-day 

hot extremes. Notably, the relevance of EVI increases with the time scale, in contrast to that of geopotential height, probably 200 

due to the longer memory of land surface variables compared to the atmospheric variables (Mariotti et al., 2018). This also 

relates with the substantial decrease in relevance of geopotential height towards hot extremes of from daily to week long time 

scales. While EVI is the most relevant driver of hot extremes in more areas at longer time scales (Fig. 2), we find in the main 

driving variables of hot extremes summarized across climate classes that it also exhibits a higher relevance in these areas but 

also in other areas where other variables are even more important. This finding highlight that the land surface generally affects 205 

hot extremes at longer time scales, as opposed to the more immediate influence of atmospheric drivers. This is related to the 

fact that land surface effects such as evaporative cooling or shading are comparatively smaller but more persistent. Therefore 
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they are more influential at longer time scales and for hot extremes that build up during a time period without major changes 

in weather and air masses at a given location (Feldman et al., 2019; Dirmeyer et al., 2018; Sillmann et al., 2017). 

Next, we summarize the results from the global degree of relevance of EVI  and geopotential height in different climatic 210 

regions (Fig. A4). The results show that EVI is not only the dominant variable in semi-arid and arid regions, as shown in Fig. 

3, but also it shows a relatively higher degree of relevance in those regions. On the other hand, geopotential height is more 

relevant in colder climates. These findings highlight that climate is the main modulator of the relevance of drivers of hot 

extremes across short to medium time scales. 

Moreover we calculate the sum of the degree of relevance of the three most influential variables at each grid cell (Fig. A5). 215 

This shows which part of the observed hot temperature anomalies can be explained with our approach. The maps show that a 

large part of the observed hot temperature anomalies can be explained within the analogue approach. This suggests that we 

have included relevant and meaningful driver variables. At the same time the degree of relevance of the three most influential 

predictors is decreasing with increasing time scale. This is probably related to the increasing number of extreme heat drivers 

and their corresponding interactions that are relevant for longer-duration extreme heat events, such as synoptic-scale weather 220 

patterns and land surface conditions, as opposed to only micro- to mesoscale features like surface sensible heat fluxes 

(Domeisen et al., 2022). As the consideration of  processes important for long-term prediction of extreme temperature, such 

as remote forcings, are outside the scope of this study, we do not consider time scales longer than 7 days. Note that in this 

calculation we do not jointly consider variables which are related to each other, i.e. geopotential height and geopotential height 

difference, or EVI and EF, such that we mitigate the effect of collinearities among the considered drivers. If such related 225 

variables are among the three most influential variables, we consider instead the next most relevant variable which is less 

related to the already considered variables. 

3.3 Trends in the relevance of drivers of hot extremes 

The potential changes in the relevance of the considered drivers of hot extremes due to the positive trend in time of global 

temperatures in two periods: 2001-2010 and 2011-2020 are shown in Fig. 5. The main change we find is an increasing 230 

importance of EF. This is likely related to global increases of evapotranspiration in response to increased temperatures and 

precipitation in many regions (Douville et al. 2021). Higher evapotranspiration plays a more prominent role in the surface 

energy balance and hence also in modulating temperatures during hot extremes. At the same time, the relevance of geopotential 

height, radiation and wind slightly decrease. While the land surface becomes more relevant in driving hot extremes, the overall 

order of the relevance of drivers as shown in the primary analysis (Fig. 2) is not affected.  235 

In addition to the global mean degree of relevance shown in Fig. 5, we calculate the area fraction where each driver is most 

relevant for inducing hot extremes (Fig. A6, Fig. A7). This confirms the results from Fig. 5 and shows that the area where EF 

is most relevant increases between both considered decades (Fig. A8). In turn, the area where geopotential height is most 

relevant is shrinking but remains larger than for any other considered driver. 
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 240 
Figure 5 Changes in the relevance of the considered hot extreme drivers between the first and second half of the study period. Bars without 
hatching denote results for the first half, and bars with hatching show results for the second half. Relevance is expressed as the mean degree 
of relevance across the study area. 

4 Conclusions 

This study provides a comprehensive analysis of the potential drivers of hot extremes, considering a wide selection of 245 

atmospheric and land surface variables. The results highlight that geopotential height, particularly at the 500 hPa level, is 

globally the dominant driver for hot extremes at the daily time scale, and especially influential in mid-latitude regions. This 

finding underscores the significant role of atmospheric blocking mechanisms in the formation of hot extremes. In contrast, 

surface net radiation is more influential in tropical regions, where it is more intense and can therefore exacerbate hot conditions. 

Land surface variables, like evaporative fraction and enhanced vegetation index, influence hot extremes in transitional regions 250 

which are neither wet nor dry such that they can sustain significant evapotranspiration. Moreover, evapotranspiration depends 

on water availability such that soil moisture (i.e. land surface) variability influences evapotranspiration and consequently the 

surface energy balance and temperature (Denissen et al., 2024; Seneviratne et al., 2010). 

These results complement the existing literature on drivers of hot extremes by jointly considering and comparing the relevance 

of atmospheric versus land surface drivers which were so far largely studied in isolation. Another novel aspect in our study is 255 

the consideration of hot extremes at different time scales. As this is not clearly defined in the literature, we decided to focus 

on daily and weekly time scales in order to analyze potential differences of drivers’ relevances across time scales. We find that 

land surface variables such as the EVI and EF become more significant towards longer time scales. This highlights the 

importance of land-atmosphere interactions for the dynamics of hot extremes at increasing durations. It has been shown in a 

case study, that hot extremes cause most impacts in terms of societal attention and public health at time scales between 2 weeks 260 
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and 2 months (De Polt et al., 2023). This suggests that land surface drivers of hot extremes should regularly be included in 

related investigations as they are even more relevant towards these time scales. Also, this calls for even more comprehensive 

and multidisciplinary studies building upon our study to investigate and compare the relevance of drivers of hot extremes at 

weekly-monthly time scales and also to consider the role of the ocean and a larger scale spatial influence . This way, underlying 

mechanisms of hot extremes that cause most impacts could be better understood in order to inform forecasts and early warning 265 

systems. 

Another interesting result of our study is the increasing relevance of the land surface in general and evaporative fraction in 

particular in driving hot extremes during the study period. This is likely related to higher temperatures and precipitation 

variability, which enhance the role of evaporation in the surface water and energy balances. Given the expected strong increases 

in the duration, magnitude, and frequency of hot extremes (Seneviratne et al., 2023), an accurate projection of the most affected 270 

regions and timing of these increases is essential. Our results highlight the importance of properly considering the land surface 

role in the onset and development of hot extremes, including vegetation dynamics to enable most accurate projections of these 

events. This way, our study motivates (i) further efforts to model the vegetation response to hydro-meteorological conditions 

at high spatial resolution where the coupling between vegetation and weather can be most accurately represented, as well as 

(ii) interest to monitor the root-zone soil moisture dynamics to better constrain vertical and lateral soil water movement in land 275 

surface models such that they can yield more accurate estimates of plant-available water. 
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Appendix A: Supplementary methods and results 

 

 
 280 

Figure A1 Detailed dominant driver variables identified for 1-day and 7-day hot extremes. Percentage of the study 

area where each driver is most influential is given in parentheses. 
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Figure A2 Relative importance (SHAP values) of multiple factors to explain the spatial patterns of geopotential 

height and EF as main drivers for 1-day and 7-day hot extremes. 285 
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Figure A3 Total number of grid cells in each temperature-aridity category 
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 290 
 

Figure A4 Geopotential height and EVI median degree of relevance summarized across climate classes (given by 

aridity and temperature ranges) for 1 and 7-day hot extremes. Gray indicates regions that are masked out due to 

insufficient number of grid cells (less than 20 grid cells) 

 295 
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Figure A5 The sum of the degree of relevance of the three most influential variables for 1-day and 7-day hot extremes. 

Gray color indicates ocean/inland water or grid cells with insufficient data. 
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Figure A6 Similar to figure 5 but relevance is expressed as the percentage of the study area where each driver is 

found to be the most relevant. 

 

 305 
 

Figure A7 Dominant driver variables identified for 1-day and 7-day hot extremes over the time periods 2001-2010 

(first row) and 2011-2020 (second row). Percentage of the study area where each driver is most influential is given in 

parentheses. 
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Figure A8 The median EF degree of relevance, categorized by aridity index and 2 m temperature ranges, across two 

time periods (2001-2010 and 2011-2020) and two temporal resolutions (1-day and 7-day). Gray indicates regions that 

are masked out due to insufficient number of grid cells (less than 20 grid cells) 315 
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Code and data availability 

The variables from ERA5 are available at https://cds-beta.climate.copernicus.eu/datasets/reanalysis-era5-

complete?tab=overview  (Hersbach et al., 2020). The EVI data from MODIS is available through NASA's data catalogue at 320 

https://lpdaac.usgs.gov/products/mod13c1v006/ (Didan, 2015). FLUXCOM-X-BASE evapotranspiration data is available at 

https://meta.icos-cp.eu/collections/_l85vWiIV81AifoxCkty50YI (Nelson et al., 2024).  
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