
A GPU-parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie1,2, Christian Lessig1,3, and Thomas Richter2

1Institute for Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
2Institute of Analysis und Numerics, Otto-von-Guericke University, Magdeburg, Germany
3European Centre for Medium-Range Weather Forecasts, Bonn, Germany

Correspondence: Robert Jendersie (robert.jendersie@ovgu.de)

Abstract. The cryosphere plays a crucial role in Earth’s climate system, making accurate sea ice simulation essential for

improving climate projections. To achieve higher resolution simulations, graphics processing units (GPUs) have become in-

creasingly appealing due to their higher floating point peak performance and superior energy efficiency compared to CPUs.

However, harnessing the full theoretical performance of GPUs often requires significant effort in redesigning algorithms and

careful implementation. Recently, several frameworks have emerged, aiming to simplify general-purpose GPU programming.5

In this study, we evaluate multiple such frameworks, including CUDA, SYCL, Kokkos, and PyTorch, for the parallelization of

neXtSIM-DG, a finite-element-based dynamical core for sea ice. Based on our assessment of usability and performance, CUDA

demonstrates the best performance, while Kokkos is a suitable option for its robust heterogeneous computing capabilities. Our

complete implementation of the momentum equation using Kokkos achieves a sixfold speedup on the GPU compared to our

OpenMP-based CPU code, while maintaining competitiveness when run on the CPU. Additionally, we explore the impact of10

different discretization orders and the use of lower precision floating-point types on the GPU, showing that switching to single

precision can further accelerate sea ice codes.

1 Introduction

Simulations are essential for understanding the effects of climate change and enabling stakeholders to mitigate its impact

on societies and individuals (Jakob et al., 2023). The cyrosphere is a key component of Earth’s climate system and it has a15

particular impact long-term processes. neXtSIM-DG is a novel sea ice code that is designed as part of The Scale-Aware Sea

Ice Project (SASIP)1 to improve both the representation of physical processes and the efficiency and accuracy of numerical

implementation.

A crucial factor for the fidelity and reliability of climate simulations is horizontal resolution, with kilometer-scale, convection-

resolving simulations being the target for the next generation of models (Stevens et al., 2019; Bauer et al., 2021b). These20

computations require exascale HPC systems with substantial GPU-based accelerators (Schär et al., 2020; Bauer et al., 2021a).

As a result, significant efforts have been dedicated to porting components of existing climate models to GPUs (Ikuyajolu et al.,

2023; Sauer and Muñoz-Esparza, 2020; Cao et al., 2023; Sun et al., 2023).

1https://sasip-climate.github.io

1

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

In line with these developments, SASIP aims to substantially increase the accuracy of the sea ice component of coupled

climate models by using modern higher order discretizations of the governing equations. Kilometer-scale sea ice simulations25

are also of substantial theoretical interest, as initial investigations show a marked change in the behavior of the commonly used

viscous plastic sea ice model when approaching km-scale resolutions (Bouchat et al., 2022; Hutter et al., 2022). Computation-

ally much more efficient models are needed for detailed investigations of this behavior, its relationship with known statistical

and physical principles (Marsan et al., 2004), and the role of possible alternative models (Dansereau et al., 2016; Ólason et al.,

2022). Kilometer-scale or even higher resolved sea ice forecasts are also in high demand among sea ice forecast users (e.g.30

Kauker et al. (2021)), even though it is unclear how current systems should be used at such resolutions (Hunke et al., 2020).

The role of small-scale sea ice features, such as ridges and leads, in atmosphere–ocean–ice interactions in weather and climate

models can also only be speculated on with current 10 km scale resolution models (Esau, 2007; Marcq and Weiss, 2012; Ólason

et al., 2021). Highly efficient kilometer-scale sea ice models, either as stand-alone sea ice models or as sea ice components in

fully coupled climate models, are needed to address these questions.35

The neXtSIM-DG dynamical core currently builds on the established viscous plastic sea ice model (Hibler, 1979) and

uses a discretization with a higher order discontinuous/continuous Galerkin method (Richter et al., 2023). At the heart of the

numerical implementation is a large number of identical operations to be carried out on each mesh element. GPUs, which are

based on a data parallel processing model are ideally suited for this kind of tasks. The GPU parallelization of a finite-difference

solver for sea ice is investigated by Rasmussen et al. (2024).40

Besides performance, other factors are also important for the implementation of the neXtSIM-DG dynamical core: the code

must be adaptable to future hardware, a long-term support of the software must be guaranteed and is should be easy to use.

Such considerations are vital for the model’s adoption and sustained use. With these aspects in mind, we examine the current

landscape of general-purpose GPU programming frameworks and compare prototype implementations for the parallelization

of finite-element/finite-volume codes like neXtSIM-DG.45

The de facto standard is CUDA (NVIDIA, 2023a), a highly popular framework for general-purpose GPU programming,

though it only supports NVIDIA hardware. Additionally, it often necessitates a dedicated GPU implementation, requiring

significant effort for development and performance tuning. As a result, various alternatives have emerged, offering greater

flexibility and usability. A focus on ease of use and minimal effort in port to GPUs is found in frameworks like OpenMP and

OpenACC. These, however, offer less control and fewer performance optimization options compared to CUDA.50

SYCL (The Khronos Group, 2023a) and Kokkos (Trott et al., 2022) are frameworks designed for heterogeneous computing,

enabling targeting of different compute hardware. A major challenge with these frameworks is achieving near-optimal perfor-

mance across diverse hardware platforms, particularly in efficiently leveraging GPU-specific features such as shared memory

or tensor cores.

Another recent alternative is the use of libraries such as jax (Bradbury et al., 2018) and PyTorch (Paszke et al., 2019), which55

were primarily developed for machine learning. Their backends are built upon high-performance linear algebra libraries that

support various hardware architectures and include compilers that efficiently map computations onto these platforms. Examples

of such backends include XLA (xla, 2023), Triton (Tillet et al., 2019), and TensorRT (NVIDIA, 2023b).

2

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

With machine learning being a driving force in the development of new accelerator hardware, significant resources are in-

vested in lower precision floating point support. Since these types offer orders of magnitude higher throughput than double60

precision, which is commonly used in scientific computing, mixed precision is a promising direction for further speedups.

Analysis of weather simulations with a reduced-precision emulator indicates that the precision can be reduced for most vari-

ables, in some cases down to half precision, without degrading results (Hatfield et al., 2019; Tintó Prims et al., 2019). For

example, the Integrated Forecasting System (IFS) has successfully switched to single precision without requiring major code

changes (Lang et al., 2021). Climate simulations with a reduced-precision emulator suggest that single precision can be equally65

accurate even for long term runs (Paxton et al., 2022; Kimpson et al., 2023; Banderier et al., 2024).

To compare the GPU programming frameworks and to investigate the potential speedup of an optimized GPU implemen-

tation, we use the different frameworks to port an important part of the neXtSIM-DG dynamical core to run on GPU. Our

results show that SYCL is still immature, suffering from an unreliable toolchain. Dedicated CUDA remains the best option for

speed, while Kokkos provides comparable performance and greater flexibility. PyTorch is currently not a viable alternative to70

handwritten C++ code, but the new compiler TorchInductor shows promise. We also find that single precision is a strong option

to further accelerate our sea-ice simulation. Based on our evaluation, we use Kokkos to implement the complete momentum

equation on GPU, for which we achieve a speedup by a factor of 6 compared to a multi-core CPU implementation.

The structure of the paper is as follows. We start in Section Sect. 2 with an overview of the neXtSIM-DG dynamical core.

The different GPU implementations of it are detailed in Sect. 3. In the subsequent Sect. 4, their performance is compared and75

the impact of mixed precision as well as higher order discretizations is analyzed. In Sect. 5, the Kokkos implementation is

extended and practical results are presented. Finally, directions for future work and a summary is provided in Sect. 6.

2 Model description

For simplicity of the presentation we restrict ourselves to the sea ice model introduced by Hibler (Hibler, 1979). For a discussion

on different material laws we refer to the literature (Feltham, 2008). This model consists of advection equations for the ice80

height H and ice concentration A

∂tH + div(vH) = SH , ∂tA + div(vA) = SA, (1)

where the right hand side terms SH and SA are describing thermodynamics. In addition, the 2d velocity field v is governed by

the momentum equation

ρiceH∂tv = div σ(v,A,H) +F, (2)85

where ρice is the ice density and σ the stress tensor. In F we collect all external forcings that come from wind and ocean current.

Implicit solvers for the Hibler model suffer from the strong nonlinearities, are costly and call for advanced numerical solution

strategies (Mehlmann and Richter, 2017). Hence, often often explicit iterations in the sense of a pseudo-time stepping is used,

3

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

namely the mEVP solver (Bouillon et al., 2013)

σ(p) =
α

1 +α
σ(p−1) +

1
1 +α

σvp(v(p−1),A,H), σvp(v,A,H) = η(∇v +∇vT) + ζ div(v)I − P

2
I. (3)90

Here, the viscosities η,ζ depend on velocity v, ice height H and ice concentration A, while the ice strength P depends only

on H and A. The parameter α > 0 controls the stability and the speed of convergence. This approach is also the basis of

the neXtSIM-DG implementation. While the advection problems Eq. (1) are solved using a large time step, the momentum

equation Eq. (2) and the mEVP iteration Eq. (3) are subcycled with a smaller step size. Often more than 100 substeps are

required in each advection step and the main effort lies in the repeated evaluation of the nonlinear material law, see σ(v,A,H)95

in Eq. (3). All details on the model and its discretization in neXtSIM-DG are given in Richter et al. (2023).

2.1 Discretization

We briefly sketch the discretization of the model in the neXtSIM-DG dynamical core and refer to (Richter et al., 2023) for

details. Equations (1) to (3) are discretized on quadrilateral meshes in spherical coordinates. This mesh is topologically fully

structured but each element is mapped from a uniform reference element onto the computational element to allow better100

alignment with coastlines and a more equal mesh spacing. For the advection equations higher order discontinuous Galerkin

upwind methods and high order explicit Runge-Kutta schemes are used. The velocity v is instead discretized using a continuous

Galerkin approach. As the velocity stress coupling has the form of a mixed formulation, a discontinuous Galerkin space is used

to represent the stresses. This space must include the gradient of the velocity space for stability.

3 Implementation105

Starting point for the GPU implementation of neXtSIM-DG dynamical core is the C++ CPU implementation that is described

in (Richter et al., 2023). This OpenMP parallelized CPU code also serves as the baseline for the performance evaluation. The

CPU implementation leverages the linear algebra library Eigen (Guennebaud et al., 2010), which is highly optimized and, e.g.,

exploits CPU vector units. Due to the explicit character of the discretization, and the parametric finite element setup, most

computations are matrix-vector or matrix-matrix products with small matrices and vectors, e.g. vectors of size 4. As several110

vectors and matrices are already available at compile time, e.g. all quantities that refer to the reference element, neXtSIM-DG

greatly benefits from Eigen’s template-based design. These fixed size matrices do not require dynamic memory allocation

and operations involving such matrices can be fully loop-unrolled. Also, the use of expression templates in Eigen eliminates

unnecessary temporary variables in expressions involving multiple operations.

Table 1 indicates computational times for the different parts of the dynamical core in a typical sea ice dynamics simulation.115

The mEVP iteration (middle lines of the table from “strain” to “velocity”) takes most of the time and the stress update is the

single most expensive part. These computations are local on each mesh element and hence scale well with more cores. They

are further well suited as computational unit for the evaluation of the different GPU programming frameworks. A pseudocode

overview of the stress update computations is shown in Listing 1. The original C++ code is documented in Appendix B. Unless

4

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

serial [s] OpenMP [s] speedup

advection 188.32 34.34 5.48

boundary 38.30 11.25 3.40

strain 918.84 185.28 4.96

stress 1741.43 206.36 8.44

divergence 1023.07 170.81 5.99

velocity 728.80 85.73 8.50

other 14.42 5.98 2.41

total 4653.2 699.75 6.65

Table 1. Runtime of 120 time-steps of the simulation with 2.6× 105 elements on a 10 core CPU. Except for the advection, all major

computations are part of the mEVP iteration which performs 100 sub-steps in each time-step. Remaining operations, e.g. i/o and external

forcing, are summarized by “other”.

otherwise stated all numerical testcases use double precision. The code ,however, is generic in this respect and Section 4.2 will120

study the effect of using lower or mixed precision arithmetics.

For readers unfamiliar with GPU architecture and the specifics of GPU programming, we provide a brief introduction in

Appendix A to complement the following text.

3.1 CUDA

The standard for general purpose GPU programming is CUDA (NVIDIA, 2023a), a C++ based language and API developed by125

NVIDIA. CUDA has a mature ecosystem and gives low level access to the GPU, which allows one to develop highly optimized

code. However, CUDA is limited to NVIDIA hardware and the development effort to obtain code with a high utilization of the

available compute resources can be considerable.

Since version 3.3, Eigen has limited support for CUDA and allows one to use fixed sized matrices in CUDA kernels. Through

this, we can use the code from Listing 1 largely unchanged. Eigen’s manually vectorized code paths need to be disabled to have130

the code run on the GPU, we still benefit from Eigen’s other features such as expression templates and optimizations when a

size is known at compile time. For the use of CUDA with Eigen, we have to ensure that the required data is in GPU memory.

For dynamic buffers like S11 in Listing 1, we allocate memory manually and copy it as needed before and after the kernel

invocation. Inside the CUDA kernel, an Eigen :: Map is constructed with

1 auto B = Map< Matr ix <T , Dynamic , n>>(bufDevice , N , n) .135

This provides the same interface as the original matrix. For compile time matrices such as PSI we use the GPU’s constant

memory. Advantages of constant memory are that no manual memory management is required, faster memory access through

a dedicated cache, and that further compiler optimizations are possible since the values are available at compile time. In the

5

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

1 void S t r e s s U p d a t e H i g h O r d e r (Matr ix <N, nS>& S11 , Mat r ix <N, nS>& S12 , Mat r ix <N, nS>& S22 ,

2 c o n s t Matr ix <N, nS>& E11 , c o n s t Matr ix <N, nS>& E12 , c o n s t Matr ix <N, nS>& E22 ,

3 c o n s t Matr ix <N, nA>& H , c o n s t Matr ix <N, nA>& A , double α) {

4 f o r (i = 0 ; i < N ; ++ i) { / / i n p a r a l l e l

5 Vector <nG> h = max{0,Hi,∗PSI⟨nA⟩}
6 Vector <nG> a = min{1,max{0,Ai,∗PSI⟨nA⟩}}
7 Vector <nG> e11 = E11

i,∗PSI⟨nS⟩
8 Vector <nG> e12 = E12

i,∗PSI⟨nS⟩
9 Vector <nG> e22 = E22

i,∗PSI⟨nS⟩
10

11 Vector <nG> P = P ⋆ ·h ∗ exp
(
− 20(1− a)

)
12 Vector <nG> D =

(
∆2

min + 5
4
(E11

i,∗ ∗E11
i,∗ + E22

i,∗ ∗E22
i,∗)+ 3

2
E11

i,∗ ∗E22
i,∗ + E12

i,∗ ∗E12
i,∗

) 1
2

13 Vector <nG> PD = P/D

14

15 S11
i,∗ = (1−α−1)S11

i,∗ + α−1M−1
i

(
PD ∗ (5

8
e11 + 3

8
e22)− 1

2
P
)

16 S12
i,∗ = (1−α−1)S12

i,∗ + α−1M−1
i

(
PD ∗ 1

4
e12

)
17 S22

i,∗ = (1−α−1)S22
i,∗ + α−1M−1

i

(
PD ∗ (5

8
e22 + 3

8
e11)− 1

2
P
)

18 }

19 }

Listing 1. Implementation of the mEVP iteration equation (3). Stress and strain tensor components S11,S12,S22,E11,E12,E22 ∈ RN×nS

are stored as matrices where N is the number of elements and nS the number of local DOFs in the stress space. Ice height and concentration

are denoted as H,A ∈ RN×nA , where nA is the number of local DOFs in the advection space. By Hi,∗ ∈ RnA (and similar for the stress and

the strain) we denote the local row vector of the DOFs belonging to element i. The matrices PSI⟨nA⟩ ∈ RnA×nG are given at compile time

and they evaluate the dG functions in the Gauss points with nG being the number of Gauss points. The scalars P ⋆,∆min ∈ R are physical

parameters and constant for the duration of the simulation. The matrices M−1
i ∈ RnS×nG are pre-assembled and stored for each element.

They represent the local inverse mass matrix scaled with the weights coming from the transformation of the mesh elements and multiplied

with the matrix PSI⟨nS⟩ ∈ RnS×nG . By “∗” we denote the element-wise Hadamard product of matrices.

6

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

optimization time [s] speedup

CUDA baseline 0.366 1.0

CUDA shared memory 0.371 0.99

CUDA column-major 0.419 0.87

CUDA on-the-fly map 0.323 1.13

AdaptiveCPP baseline 0.466 1.0

AdaptiveCPP shared memory 0.531 0.88

AdaptiveCPP on-the-fly map 0.375 1.24

Kokkos baseline 0.522 1.0

Kokkos shared memory 0.551 0.95

Kokkos on-the-fly map 0.386 1.35

Table 2. Total time spend on the stress computation over 30 time-steps for the different implementations on an A100. Each modification is

tested independently and speedup is relative to the respective baseline.

original C++ CPU code, the constant matrices are defined as static class members with explicit template specialization to enable

selection of the proper matrix for the specified dG-degree at compile time. Since static member variables are not supported in140

CUDA, we instead declare separate variables and utilize if constexpr to achieve the same flexibility:

1 _ _ c o n s t a n t _ _ c o n s t e x p r T PSI_1_1 [1] = { 1 . 0 } ;

2 template < i n t n , i n t nG> _ _ d e v i c e _ _ auto PSI () {

3 i f c o n s t e x p r (n == 1 && nG == 1) {

4 re turn Map< c o n s t Matr ix <T,1 ,1 > >(PSI_1_1) ;145

5 }

6 }

Another important modification for the use of Eigen on the GPU is the use of 32-bit integers as index type, since the default

64-bit integers are only emulated on the GPU.

We tried a number of optimizations to speed up the Eigen CUDA code, the results of which are shown in Table 2. The150

bottleneck on the GPU is often memory access. One remedy is the manual use of the L1-cache, called shared memory in

CUDA. Shared between all threads in a thread block, it can significantly speed up reads of data that is needed multiple times

and by multiple threads or when scattered memory reads/writes are necessary. In Listing 1, the only data that are used multiple

times and by multiple threads are the PSI matrices. Only minor changes to the code are needed to load the PSI matrices into

shared memory before use. However, we see no benefit from this change, cf. Table 2, since constant cache is just as fast for155

the compile time matrices. Shared memory would therefore only be worthwhile if we expect to run out of constant memory.

However, the size of the compile time matrices depends only on the local degrees of freedom of the discretization. If we

7

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

consider all of the implemented discretization orders together, roughly 26 KB of memory are needed. This is still less than half

of the 64 KB constant memory available (NVIDIA, 2023a).

Another potential avenue to accelerate memory accesses is to carefully prepare the layout of the data. For the C++ CPU160

code, variables such as S11 are stored in row-major order, meaning that coefficients belonging to the same cell are contiguous

in memory. This locality is beneficial both for effective cache usage and for vectorized memory accesses. On the GPU, the most

efficient way to access global memory is through coalesced reads whereby neighboring threads access neighboring addresses.

Since each thread processes one cell, this can be achieved by storing variables in column-major order. Nonetheless, as we can

see in Table 2, the switch to column-major storage order leads to a measurable slowdown. A profiler revealed that the use165

of a column-major layout does improve the memory access patterns and the number of excessive sectors loaded from global

memory decrease from 59 % for the row-major version to just 2 %. However, this difference is rendered ineffective by the

cache. In particular, data that is seemingly loaded without need in the row-major version due to the strided access is, in fact,

required by subsequent computations when it can be read from the cache. Furthermore, the column-major version performs

more instructions for index computations, leading to the overall slowdown.170

A third option to reduce global memory accesses is to trade off reads with more computations. This is beneficial when the

code is memory-bound, as is often the case on the GPU, especially with classical linear algebra (Dublish et al., 2017). In our

code, the I/O can be reduced by re-computing the inverse parametric map M−1, which depends only on the geometry of the

mesh and compile time constants. In particular, each matrix has a size of nS ×nG while each mesh cell’s geometry is fully

described by 4 vertices with 2 values each, which are furthermore shared with neighboring cells. So, disregarding constants,175

even for a small dG-degree such as nS = 3, fewer reads are required if we compute the matrices on-the-fly, see also Richter et al.

(2023, Sect. 5.3.3). Upon closer inspection, we also find that when stored in column-major order, vertex reads are coalesced

while reads to M−1 are not, due to the fact that M−1 is implemented as an array of matrices. Since the Eigen matrix type only

deals with two dimensions, adjusting the storage order of M−1 to allow for coalesced accesses would be difficult. We find that

the on-the-fly map computation indeed delivers a speedup of 13 % over the CUDA baseline on an NVIDIA A100 GPU.180

The above optimizations illustrate that GPU performance remains hard to predict and that for low level GPU programming,

proper profiling is essential to identify bottlenecks and to develop efficient code. This applies not only to optimizations that ad-

dress well-known bottlenecks, as above, but also to work on inconspicuous details in the code such as the order of expressions.

An illustrative example of this is, again, found in the treatment of precomputed M−1; this is relevant in particular for higher

order discretizations that will be examined in greater detail in Sect. 4.3. Accessing the matrix by reference or by making an185

explicit copy has no impact on the performance for smaller matrix sizes like 3×4. However, when M−1 has size 8×9, i.e. in a

second order discretization, the copy results in a kernel that is 43 % faster overall. Curiously, the slowdown with the access by

reference is largely not caused by a memory bandwidth bottleneck. Instead, the massive number of unique memory accesses

overwhelms the instruction queue that is responsible for executing cached memory accesses. The copy of M−1 alleviates this

by encouraging the use of more registers to store the coefficients, thereby avoiding memory accesses.190

8

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

3.2 OpenACC and OpenMP

A simple approach for moving computations to the GPU is to use a directive based programming model like OpenACC or

OpenMP. In this case only small or no changes to the code are required. Targeting C, C++ and Fortran, both OpenACC or

OpenMP define directives to annotate loops. These instruct the compiler to offload the computations onto the GPU.

OpenACC or OpenMP differ in how the parallel execution is described. OpenMP is prescriptive, meaning that the program-195

mer has to detail how a loop should be parallelized. On the other hand, OpenACC provides a simpler descriptive directive that

leaves more decisions to the compiler. See (Usha et al., 2020) for more details on the differences between both approaches. In

practice, OpenACC tends to give better performance (Usha et al., 2020; Ðukić and Mišić, 2023). However, it has more limited

compiler support. Except for basic support in GCC, OpenACC can only be used with experimental and commercial compilers

that primary target NVIDIA hardware. Therefore, efforts exist to automatically translate OpenACC to OpenMP to access the200

larger ecosystem of OpenMP (Denny et al., 2018; Servat et al., 2022).

To accelerate our code, we tried three different compilers: GCC-12.2 and NVIDIA HPC-23.5 with support for both OpenMP

and OpenACC, and Clang-16.0 which currently only supports OpenMP. However, we found that all three compilers fail for

our code. The NVIDIA compiler refused to compile Eigen code, while GCC and Clang either crashed during compilation or

produced a broken program that would crash once executed. Runtime crashes can be attributed to incorrect memory transfers,205

for which only Clang provided some diagnostics in the form of compile-time warnings. In particular, objects which are not

trivially copy-able, such as Eigen matrices with at least one dynamic dimension, are not captured properly. While directives

are provided to manually specify the needed buffers, this is cumbersome to do for the complicated template-based Eigen types

in our code. Furthermore, it voids the main advantage of the directive based approach, namely its simplicity. Use of OpenMP

and OpenACC was therefore not pursued further.210

3.3 SYCL

SYCL (The Khronos Group, 2023a) is an open standard for heterogeneous computing developed by the Khronos group. The

standard proposes a high-level API extending C++17 that allows the same code to run on various devices such as CPUs, GPUs

and FPGAs. There are currently two major implementations of the SYCL standard, both of which are open source and build on

LLVM. Development of AdaptiveCPP (Alpay and Heuveline, 2023), previously known as hipSYCL and OpenSYCL, is lead215

by Heidelberg University. While various backends are available, the focus is on NVIDIA and AMD GPUs. The other major

implementation of SYCL is Data Parallel C++ (DPC++), which developed by Intel. DPC++ primarily targets Intel CPUs, GPUs

and FPGAs.

SYCL builds on top of standard C++ to minimize the effort of adapting existing code. However, the SYCL standard forbids

recursion and function pointers in kernel code (The Khronos Group, 2023b), both of which are used in Eigen’s expression220

templates. DPC++ does not allow one to compile the neXtSIM-DG code because of these limitations, although the function

calls should be entirely inlined in the compiled code. AdaptiveCPP requires more effort for setup but the tool chain compiles

Eigen. We therefore limit our investigations to AdaptiveCPP in the following.

9

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

SYCL automates device memory management and movement of data between host and device, but memory requirements

of a kernel need to be declared explicitly. To this end, a buffer needs to be defined, pointing to already allocated memory225

on the host. Then, a command group is created which collects all information needed to run a task in parallel. Inside the

command group, accessors allow us to explicitly describe which buffers need to be accessed and how, i.e. read or write. Once

pushed into a queue, the SYCL runtime uses these memory requirements as well as optional dependencies on other command

groups to select the best suited memory region to perform needed memory transfers and to schedule the execution. Inside the

command group, we can declare a parallel for-loop and construct Eigen maps analogous to CUDA with pointers provided by230

the accessors.

We can investigate the same optimizations as with the CUDA code. While shared memory did not improve performance

for native CUDA, it is still of interest to see how it affects the SYCL implementation, since memory management works

differently there. To access local memory in SYCL, which is the name used for CUDA’s shared memory, we have to declare

a local_accessor in the command buffer. In addition, local memory only makes sense in the context of thread blocks, so we235

need to use a more complicated for-loop which makes thread blocks explicit. Unfortunately, such a construct is known to

perform far worse on the CPU than a simple loop and work on reducing this gap is an active area of research (Meyer et al.,

2023). Therefore, if the code is to be efficient both on CPU and GPU, local memory should be introduced only in code paths

specialized for the GPU. For the code snippet under study, this additional effort was not considered worthwhile. Returning to

Table 2 we see using shared memory makes the kernel moderately slower. On the other hand, computing M−1 on-the-fly leads240

to a more substantial relative speedup over the AdaptiveCPP baseline than the same optimization in native CUDA.

3.4 Kokkos

Kokkos (Trott et al., 2022) is another programming model to enable heterogeneous computing in modern C++, currently

with support for CPU as well as NVIDIA and AMD GPUs. Kokkos is developed as part of the Exascale Computing Project

by the US Department of Energy. The main difference to SYCL is that Kokkos is a library while SYCL requires compiler245

integration. The library-based approach greatly simplifies deployment of projects using Kokkos but potentially limits available

optimizations and features.

Kokkos consists of macros and wrappers that provide a unified API for the different backends with the final code being

processed by the chosen compiler. Therefore, we can once again start from the CPU code shown in Listing 1, knowing that it

works in native CUDA. The primary mechanism to manage memory in Kokkos are Views, which are basically a shared pointer250

to a multi-dimensional array. Typically, both a device view and a mirrored host view are created to facilitate data transfers. For

our use case, it is possible to create a view on already allocated memory with the unmanaged trait. However, unmanaged views

do not play well together with the mirrored views concept in backend agnostic code, leading to unnecessary copies during

the execution on the CPU. Since in general the device view needs its own buffer, copies between the mirrored views will be

performed regardless of whether they already reside in the same memory space. These extra copies can be avoided adding a255

special case for just the view creation on CPU and are therefore not a major problem for portability. Once properly setup, data

10

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

is accessible in the kernel through the device view and we can use the underlying pointer to create an Eigen map in the same

manner as in CUDA.

Possible code optimizations in Kokkos are similar to those available in SYCL. CUDA’s shared memory, called scratch

memory in Kokkos, can be accessed by specifying a TeamPolicy with a thread block size instead of using a simple parallel260

for-loop. Here a nuisance of the library becomes apparent as the total scratch memory needed for a particular kernel has to be

set manually. Furthermore, parallelism described with explicit thread blocks has the same downside as in SYCL, namely that

it leads to strongly degraded CPU performance. In our tests we find that usage of scratch memory introduces a small overhead

in Kokkos, see Table 2. On-the-fly map computation is again beneficial and it results in a large speedup of 35 %.

3.5 PyTorch265

PyTorch (Paszke et al., 2019) is one of the most popular libraries for machine learning (Aoun et al., 2022). It consists of a

simple-to-use Python frontend and a high-performance C++ backend that has a dedicated compiler to optimize code execution

and maps execution for different hardware such as CPUs, GPUs, and TPUs. Full support is available for CPUs, NVIDIA GPUs

and AMD GPUs.

To make effective use of PyTorch and the optimizations it implements, computations have to be reformulated in terms270

of large tensors. For this, we remove the main loop in Line 4 of Listing 1 and treat the element dimension N as the batch

dimension of variable size. The matrix-vector products then become matrix-matrix products and element-wise operations

remain unchanged. Some care is necessary to perform the products with the per-element inverse maps, e.g. Line 16. Since we

have a third dimension in M−1, this is not a standard matrix-matrix product. However, we can map this operation to a batched

matrix-matrix product (bmm) by appending a dimension of size 1 to the second argument and removing it again afterward275

(squeezing in PyTorch terminology). Alternatively we can formulate this computation as an element-wise product by adding a

dimension corresponding to nS to the second argument, followed by a sum over that dimension. The latter operation turns out

to be 4 to 5 times faster across different backends, indicating that PyTorch is not tuned for our use case where the matrices are

much smaller than those is common in machine learning workloads.

To integrate the PyTorch code into our C++ simulation, we have multiple options. With minor syntactic changes compared280

to the Python version, we can implement the computations directly with PyTorch’s C++ API. However, this is inefficient since

each operation is executed as a separate kernel with no kernel-fusion taking place, resulting in many reads and writes of the

same data. A second option is to define the computation as a PyTorch model in Python. This model can be exported as Torch-

Script and loaded in C++. Part of the C++ runtime is a just-in-time compiler which attempts to optimize the model execution on

repeated use. However, more recent efforts to accelerate PyTorch models have been focused on TorchDynamo, a compiler first285

released with PyTorch 2.0. While the front-end of TorchDynamo is written in Python, various backends are available, some

of which can be used without the Python runtime. Most promising among those we tested is the built-in TorchInductor which

leverages the compiler Triton (Tillet et al., 2019) to produce highly optimized fused-matrix multiplications (PyTorch-devs,

2023). In particular, PyTorch 2.2 introduces AOTInductor, a version of TorchInductor that exports the entire model as a shared

library with a single wrapper function to call directly from C++. Another way to deploy the PyTorch model in C++ is through290

11

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

Torch TorchScript TorchInductor TensorRT (F32)
0

2

4

6

8

10
7.58

5.48 5.79

10

33005.11
3.64

2.13 2.44

ru
nt

im
e

[s
]

bmm ∗, sum

Figure 1. Total time spend on the stress computation over 30 time-steps for the different PyTorch variants on an A100. The products with

M−1 are implemented either as batched matrix-matrix product (bmm) or element-wise product and sum (∗,sum). TensorRT uses single

precision (F32) since double is not supported.

the extension Torch-TensorRT (Torch-TensorRT-devs, 2024), which uses NVIDIA’s inference engine TensorRT (NVIDIA,

2023b) as backend. One limitation of TensorRT is that it does not support double precision.

We compare the four proposed variants to integrate the PyTorch model into C++ in Fig. 1. Although they use the same

tensor primitives, the native C++ interface is considerably slower than TorchScript. The new compiler, TorchInductor, with its

Triton-optimized kernels, is significantly faster than the alternatives when using the element-wise product. When implemented295

with bmm, the compiler fails to optimize the operation due to a lack of GPU memory. The fact that a batch size of 2.6× 105

is already too large, although the operands require less than 5 MB of memory, points to it being an edge case not properly

considered by the optimizer. TensorRT is slower than TorchInductor for our use case, even while running in lower precision

and has even more trouble with the bmm operation. Optimization of the model takes over a minute and the inference is orders

of magnitude slower than the sum-based version.300

3.6 Development and deployment effort

The development of dedicated CUDA code is time-consuming and error-prone. One purpose of the alternatives we considered

in this work is to reduce this high development effort. Furthermore, most of them support a unified code for a variety of

compute hardware. We therefore do a qualitative comparison of the different approaches, considering ease of development but

also deployment of the finished code on a target system.305

With their modern C++ interface, both Kokkos and SYCL make it easier to write correct code compared to CUDA. Simplified

resource management and stricter types reduce the risk of memory related bugs and make more errors visible at compile time.

The simple parallelism constructs also hide GPU specific scheduling based on blocks and grids from a developer. A further

advantage of SYCL is that explicit annotations of device functions are unnecessary. SYCL’s memory model fully automates

transfers between host and device, eliminating another source of errors. It should be noted, however, that the more advanced310

C++ features used by Kokkos and SYCL can make the frameworks less approachable for non-C++ experts than the C-like

interface of CUDA. PyTorch follows a completely different programming paradigm from the other options. While, when

coming form a system programming language background, PyTorch takes time to get used to, development in PyTorch is

12

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

overall much simpler. There is no memory management or explicit parallelism to take care of and rapid prototyping in Python

is possible. A potential downside can be that some computations are hard to express in terms of tensor operations, in which315

case a low-level, manual implementation is still needed. Another downside for our particular case was that code had to be

completely rewritten in PyTorch, while for the other options the C++ CPU code could be largely reused.

For running the code on a target system, pure CUDA is easiest. Usually pre-installed on clusters, no additional setup is

required. Furthermore, CUDA (or the AMD equivalent ROCm) is a prerequisite for the other frameworks to use the GPU, so

if a manual installation is needed, this effort is unavoidable for every framework. The Kokkos library can be easily integrated320

into a project’s CMake based build system and then works out-of-the-box. In combination with automatic fetching, e.g. via git

submodule, the library setup becomes transparent. SYCL requires a specialized toolchain. For AdaptiveCPP, this means that its

compiler wrapper has to be first build from source. The manual configuration that is needed for AdaptiveCPP to find the proper

compilers is cumbersome and, in some cases, necessitate building a suitable version of LLVM first. For PyTorch, prebuild C++

libraries are available for all supported platforms. To use TorchInductor, the Python package is needed to generate the code on325

the target system, but it is easily acquired through a package manager.

4 Numerical experiments

To analyze the performance of our implementations, we use the established VP benchmark of a moving cyclone over a sea ice

region (Mehlmann et al., 2021). We simulate a duration of 1 h, which requires 30 advection steps and 3,000 stress updates. For

the discretization we choose first order continuous Galerkin (cG) elements and discontinuous Galerkin (dG) elements with 3330

degrees of freedom for the advection. The original C++ CPU version of the code has already been validated on this benchmark,

see (Richter et al., 2023). We therefore compare to the CPU version to determine the accuracy of the computed results.

In the GPU implementations, significant time is required to transfer memory between host and device. Nonetheless, we

only consider the kernel execution times in the following since the final objective of our work is a full GPU implementation

of the dynamical core. While transfers are still necessary for coupling with other models, the major effort of simulating the335

sea-ice dynamics is in the mEVP iteration with the many sub-iterations considered in this work. This will amortize the costs

of the memory transfer. To ensure accurate timings, synchronization barriers are inserted as needed before and after the kernel

invocation. In SYCL, memory transfers are implicit, so we rely on the built-in profiling instead to obtain the timings. Details

on the software and hardware used in the experiments are listed in Table 3.

4.1 Performance scaling340

Of particular importance for coupled climate simulations is the scaling of the performance as a function of grid resolution.

With a fixed domain size of 512 km, we reduce the cell size from 4 km to 0.25 km. This corresponds to an increase in the

number of elements from 1.6× 104 to 1.7× 107 (i.e. one has a quadratic scaling of the element number in the resolution). In

Fig. 2 we compare the best implementation for each approach as a function of elements for two different data center GPUs.

13

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

System 1 System 2

CPU 2× AMD EPYC Rome 7402, 2× 24 cores @ 2.8 GHz AMD EPYC 7A53, 64 cores @ 2.75 GHz

GPU NVIDIA A100, 40 GB HBM2e AMD Instinct MI250X, 128GB HBM2e

OpenMP (CPU) compiler GCC-12.3 -

GPU software stack CUDA 12.2 ROCm 5.6.1

Kokkos 4.1.0 4.1.0

AdaptiveCPP 23.10.0 based on Clang-17.04 23.10.0 based on AMD Clang-16.0

PyTorch 2.3 Nightly (24-November-2023) 2.2

Table 3. The two systems on which performance measurements where conducted.

104 105 106 107

10−1

100

101

102

#elements

ru
nt

im
e

[s
]

CUDA OpenMP (CPU)
AdaptiveCPP AdaptiveCPP (CPU)

Kokkos Kokkos (CPU)
TorchInductor

(a) System 1: NVIDIA A100

104 105 106 107

10−1

100

101

102

#elements

ru
nt

im
e

[s
]

OpenMP (CPU) AdaptiveCPP
Kokkos TorchInductor*

(b) System 2: AMD Instinct MI250X

Figure 2. Timings of the stress update using the best performing version for each framework. The size of the mesh cells size is scaled from

4 km to 0.25 km while keeping the domain size constant to increase the number of elements. On the AMD Instinct MI250X, only one of the

two graphics compute dies (GCDs) is used. The values for OpenMP (CPU) are the same in both plots and where measured on System 1.

14

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

In the GPU versions of CUDA, Kokkos and AdaptiveCPP, we compute the inverse maps on-the-fly. In case of Kokkos and345

AdaptiveCPP, the simple for-loop is used to run the update in parallel, which also makes an execution on the CPU efficient,

albeit with precomputed maps. For PyTorch, we take the implementation generated by TorchInductor with the element-wise

product and sum.

Running on a NVIDIA A100 GPU (Fig. 2a), our CUDA implementation delivers a significant speedup over the OpenMP

CPU reference implementation. For the smallest problem with 1.6× 104 elements, CUDA is 3 times faster, scaling up to 6.4350

for 1.7× 107 elements. Kokkos achieves asymptotically the same performance as CUDA on the GPU and as OpenMP on the

CPU. This is to be expected since the very same compilers (NVCC and GCC) are used by Kokkos and only memory buffers

and kernel dispatch are abstracted. On small problems, Kokkos overhead makes it 50 % slower than CUDA but, surprisingly,

the CPU version is slightly faster than raw OpenMP for the same number of elements. AdaptiveCPP scales worse than the

other GPU accelerated codes, being 70 % slower than CUDA for the largest problem size we tested. However, it still provides355

a significant improvement over the CPU OpenMP version. The good performance of AdaptiveCPP for small problem sizes is

likely an artifact from the different time measuring method. On the CPU, we were not able to run a meaningful experiment

with AdaptiveCPP. Best performance was achieved with a restriction to just 24 threads, indicating that the available CPUs are

not utilized properly. The documentation states that performance of the CPU backend should be similar to raw OpenMP and

that a significant deviation is likely caused by an improperly configured toolchain. However, we were unable to obtain stable360

results on three different systems, illustrating the substantially greater difficulty in using the framework compared to Kokkos.

TorchInductor on GPU is slower than the OpenMP CPU code for every problem size tested and TorchInductor’s CPU code

(not shown) is an order of magnitude slower than the GPU version.

To test the portability of the heterogeneous compute frameworks we also ran the experiments on System 2, equipped with

an AMD MI250X GPU. The results are shown in Fig. 2b. Kokkos, AdaptiveCPP and PyTorch work without modifications365

but only utilize half of the MI250X, since it is a dual graphics compute die (GCD) design. AdaptiveCPP performs better

on the AMD GPU, while Kokkos is somewhat slower than on the NVIDIA A100. Both thereby achieve a similar runtime,

roughly 25 % higher than that of CUDA running on the A100. For PyTorch, the MI250X is 50 % slower than the A100 in

our experiments. On paper, a single graphics compute die of the MI250X has the same memory bandwidth as the A100 and a

F64 peak performance more than twice as high (A100 9.7 TFLOPS, MI250X 23.9 TFLOPS). These results indicate that the370

AMD ecosystem is still less mature. However, with the performance currently achieved it is still a worthwhile target platform.

4.2 Mixed Precision

One avenue to further speed up the simulation is to perform computations with lower precision float types. Switching from

double precision (F64) to single precision (F32) halves the memory required and doubles the theoretical peak performance

achievable on the A100 (F64 9.7 TFLOPS, F32 19.5 TFLOPS). Modern GPUs support even lower precision types that375

promise further speed-ups. Of particular interest is tensor float (TF32), a format used in tensor cores, which are specialized

matrix multiplication hardware found on NVIDIA GPUs and originally introduced for machine learning workloads. TF32 uses

the same exponent as F32, so that the range of representable numbers is the same as for F32, combined with a half precision

15

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

(a) Reference F64 (b) F32 (c) F32 / TF32

Figure 3. Shear deformation (log10) for the benchmark after 48 h where the stress update is computed with different floating point types.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10−3

101

105

Frequency [km−1]

Po
w

er
de

ns
ity

F64
F32

TF32

10−3 10−2

101

103

105

Figure 4. Radially averaged power spectral density (RAPSD) of the shear deformation (log10).

mantissa with just 10 bits that yields a significantly higher peak performance for matrix multiplications (156 TFLOPS)

compared to F32.380

First we evaluate the impact of lower precision floats on the quality of the results. To this end, we perform the stress update

in F32 while the rest of the simulation still runs in F64. To make use of the tensor cores, we run the PyTorch version, where

TF32 can be enabled with a simple switch. Results for the benchmark after 48 h simulation time are shown in Fig. 3. Visually,

F64 and F32 are indistinguishable, while some movement of larger cracks and additional fine features can be seen with TF32.

Nevertheless, the overall distribution of features in the shear deformation remains very similar and there is good agreement in385

the frequency spectrum of the features, as can be seen in Fig. 4.

16

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

10−17 10−14 10−11 10−8 10−5 10−2

200

220

240

260

280

300

Noise amplitude ϵ

#L
K

Fs

F64
F32

TF32

(a) Number of LKFs

10−17 10−14 10−11 10−8 10−5 10−2

0.9

0.95

1

1.05

1.1

·104

Noise amplitude ϵ

to
ta

ll
en

gt
h

[k
m

]

F64
F32

TF32

(b) Length of LKFs

Figure 5. Distribution of linear kinematic features (LKFs) after 48 h when the initial state of ice height H and ice concentration A are

perpetuated with uniform noise sampled from [−ϵ,ϵ). The noise magnitude is chosen as the interval machine precision for different floating

point types, i.e. 2−53 (F64), 2−23 (F32), 2−10 (F16/TF32), 2−7 (BF16). Points show the mean of 24 runs, while the whiskers indicate the

standard deviation.

To quantify the stability of the physical model itself and whether computations with lower accuracy amplify instabilities, we

look at the distribution of linear kinematic features (LKFs) (Kwok, 2001) using a script provided by Hutter (Hutter et al., 2019).

We investigate the influence of randomly perturbed initial conditions on the formation of LKFs in the benchmark simulation.

For F64 and F32, both mean and standard deviation are largely the same and perturbations up to F32 machine precision around390

10−7 appear to have no impact on the distribution. This indicates that, F32 can be used without impacting the results. For TF32,

there is a statistically significant deviation in the length of LKFs even for very small perturbations. However, the uncertainty in

the sea-ice tracers from data assimilation is at least of the order 10−2 (Liu et al., 2019; Xie et al., 2017). In our experiment, the

variation of the initial conditions has a larger effect on the LKFs than the floating point type used at this point, so TF32 could

still be useful in practice.395

The performance gains from switching the stress update to F32 or TF32 are plotted in Fig. 6. For CUDA, switching from

F64 to F32 gives a speedup of 80 %, which is in line with the expected speedup for the A100. We expect to see similar gains

from using F32 in Kokkos and AdaptiveCPP. For TorchInductor, the relative speedup with F32 over the F64 version is much

higher at 315 %. As machine learning tasks rarely use double precision, the optimizer is likely tuned much more for the single

precision case. The variant with tensor cores enabled, TorchInductor (TF32), has speedup of 412 % over F64 which is not400

quite as large as the theoretical peak performance would suggest. This is because not all operations can make use of the tensor

17

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

104 105 106 107

10−1

100

101

102

#elements

ru
nt

im
e

[s
]

CUDA
CUDA (F32)

Inductor
Inductor (F32)

Inductor (TF32)
OpenMP (CPU)

Figure 6. Timings of the stress update for lower precision floating point types on the NVIDIA A100. The dashed lines are references in F64,

taken from Fig. 2.

cG \ dG nA = 1 nA = 3 nA = 6

1 (nS = 3,nG = 4) 1.30 1.31 1.31

2 (nS = 8,nG = 9) 1.29 1.32 1.38

Table 4. Estimated arithmetic intensity [FLOP byte−1] of kernels with different discretization orders for F32. The roofline for the A100 is

9.73 FLOP byte−1 (or 12.5 FLOP byte−1 with boost clock).

cores and where it is possible, the matrices involved are too small to take full advantage of the tensor cores. In absolute terms,

TorchInductor (TF32) still takes almost twice as long as CUDA (F64), even with access to tensor cores.

4.3 Higher order scaling

Our finite-element code makes it easily possible to change the local number of degrees of freedom. So far we have focused405

on just one discretization, cG1-dG3, i.e. first order continuous Galerkin (cG) elements for velocity and 3 degrees of freedom

discontinuous Galerkin (dG) for the advection. A higher order discretization significantly increases the compute load which

could make it more efficient on the GPU when compared to the CPU, since the GPU is limited by memory bandwidth in our

code. On the A100, compute throughput reported by the profiler for cG1-dG3 varies from 28 % to 50 %, depending on whether

the precomputed maps are used, while the memory throughput is at 70 % to 80 %.410

A simple roofline model of the A100 GPU is shown in Fig. 7. For our code, the relevant bottleneck is clearly the arithmetic

intensity, i.e. the ratio of compute operations per byte accessed in global memory. The values reported by the profiler for our

18

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

0 2 4 6 8 10 12 14

0

0.5

1

1.5

·1013

memory bandwidth: 1.
54

TBs
−1

peak compute: 15 TFLOPs−1

Profiler

Theoretical Optimized cG1

Optimized cG2

arithmetic intensity [FLOP byte−1]

pe
rf

or
m

an
ce

[F
L

O
P

s−
1
]

roofline
cG1-dG1
cG1-dG3
cG1-dG6
cG2-dG1
cG2-dG3
cG2-dG6

Figure 7. Roofline model of the F32 performance of the A100 with different variants of our CUDA kernel. Theoretical values are computed

manually, while the other values are taken from Nsight Compute, the NVIDIA GPU profiler. The peak compute value given here assumes

base clock speed to be consistent with the profiler results. Optimized kernels perform the on-the-fly map computation which is not viable for

higher cG order.

baseline kernels with precomputed maps are all close to the bandwidth limit, which underscores our observations from Sect. 3,

i.e. that the only effective optimization is a reduction of the needed data.

In contrast, the optimized kernels with on-the-fly parametric map computation present a different picture where neither415

memory bandwidth nor compute are a bottleneck. Instead, other limitations become apparent which can be attributed to the

complexity of our kernel. One aspect that is exacerbated by the on-the-fly map computation, is the high number of registers that

are needed by each thread. More temporary variables are needed and though, for the tested cG1 kernels, these variables still fit

in the registers, the higher register usage leads to a lower occupancy, i.e. the ratio of active warps that fit on each execution unit

at the same time and the theoretical maximum supported by the hardware (for cG1-dG3: 57 % unoptimized, 40 % optimized).420

As a result, the scheduler is unable to keep the different pipelines busy and more cycles are wasted just waiting.

While the gains in arithmetic intensity from the optimization are clearly worth it for cG1, cf. Table 2, the same is not true for

cG2. With second order cG elements, the increased workload per thread, caused by the on-the-fly map computation, becomes

a major problem. The computation involves a matrix inverse that becomes both too expensive and memory intensive for higher

orders. For first order cG, this matrix has size 3×3 and we can use a closed-form formula to compute the inverse that results in425

efficient code. For second order cG elements, the matrix has size 8×8 and have to we rely on a generic inverse implementation

that becomes a major bottleneck. As we can see in Fig. 7, the arithmetic intensity of the “optimized” cG2 kernels is, in fact,

lower than that of the kernels with precomputed maps because of a large number of temporary variables that end up getting

stored in global memory, since the available per-thread register space is exhausted (in technical terms data is spilled to local

memory). Subsequently, the unoptimized kernel is roughly 8 times faster. In the following, we therefore limit our analysis to430

the version with precomputed maps.

19

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

10242 20482 40962

0

0.5

1

1.5

2

2.5

3

3.5

4

#elements

ru
nt

im
e

re
la

tiv
e

to
cG

1d
G

3

cG1-dG1 cG2-dG1
cG1-dG3 cG2-dG3
cG1-dG6 cG2-dG6

10242 20482 40962

0

1

2

3

4

5

6

#elements

sp
ee

du
p

ov
er

C
PU

cG1-dG1 cG2-dG1
cG1-dG3 cG2-dG3
cG1-dG6 cG2-dG6

Figure 8. Performance of the CUDA implementation with precomputed map M−1 for different discretization orders on the A100. The three

largest problem sizes from the scaling test are shown.

To analyze the possible throughput independent of (sub-optimal) code generation, we also compute a theoretical bound

based on the algorithmic description in Listing 1. For memory accesses we only count the data that is unique for each kernel

invocation, i.e. Si,∗,Ei,∗,Hi,∗,Ai,∗ and M−1
i , giving us a total of 9nS + 2nA + nSnG float read and writes. For compute

operations we only count float operations and assume F32, since in that case, all operations needed are native instructions with435

well documented throughput (NVIDIA, 2023a). Additions are not counted since they can all be executed as fused-multiply-

add, min and max have the same throughput as compute operations, and exp2 and sqrt−1 count as 4 operations each (compute

capability 8.0). Therefore, the total number of operations is

6nS + 3nA + 6nSnG + 2nAnG + 28nG,

giving us the theoretical arithmetic intensities recorded in Table 4. We can see that, in agreement with the profiler results,440

an increase in either order is insignificant for the arithmetic intensity. The largest difference of just 6 % is from cG2-dG1 to

cG2-dG6, which should not have much of an impact on the memory access bottleneck.

To verify this scaling model we measure the runtime for different discretization orders and compare with the OpenMP

CPU baseline in Fig. 8. We find that the speedup from using the GPU ranges from 4.4 to 6.0 with no clear trend for either

order parameter, inline with the theoretical prediction. The observed differences can mainly be attributed to the problem size445

impacting the behavior of the CPU version, since the relative runtime between the different GPU variants is very consistent

across problem sizes.

20

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

Figure 9. Parallel processing of biquadratic cG2-vectors. The mesh has 12 elements with Nx = 4,Ny = 3. Each block corresponds to one

thread and blocks of the same color can be processed in parallel. The maximum number of parallel tasks is, from left to right: Ny

2
(row-wise),

NxNy

4
(strided), NxNy (atomic).

5 NeXtSIM-DG implementation

Based on the results from Sect. 4 we decide on Kokkos for the full implementation of the neXtSIM-DG sea ice dynamical core.

In our evaluation Kokkos offers performance almost competitive to CUDA but with greater ease of development, multi-vendor450

GPU support and the potential to replace the dedicated CPU implementation as well.

The port of the complete mEVP iteration to Kokkos is, for the most part, straightforward with the experience gained from

the stress implementation. Of note is the need for a different parallelization strategy for operations that involve neighboring

cells of the mesh such as the divergence computation. In the OpenMP implementation, race-conditions are circumvented by

performing the update in two steps, whereby every other row is processed in parallel (Richter et al., 2023). However, as455

illustrated in Fig. 9, this parallelization strategy along just one dimension does not provide nearly enough work to saturate a

GPU. One way to further increase parallelism without introducing contention at the edges is to perform four separate steps in

a strided checkerboard pattern instead. Another way, that turns out to be faster for the divergence computation, is to process

every cell in parallel and to rely on atomic operations to ensure that the values are updated correctly. The use of atomics in

such a way could be suboptimal when running on CPU, but it does not appear to be a problem in our experiments.460

Another concern for portability, also related to cross-cell updates, is the choice of the parallel loop construct. To easily

address neighbors it can be tempting to use Kokkos’s 2D range policy. However, this policy splits work into tiles instead

of rows, which does not play well with our underlying data layout on the CPU. The whole mEVP update becomes 3 times

slower on CPU when using 2D-loops for strain and divergence computations, instead of 1D-loops with manual index. GPU

performance is, in our case, largely unaffected by this choice.465

While the new Kokkos code is not fully optimized yet and limited to F64, it already provides a sizable speedup over the

OpenMP code. Results for the benchmark setup described in Sect. 4 are presented in Fig. 10. In contrast to the previous

experiments, the timings for the full mEVP iteration include the necessary data transfers to and from the device. Running on

GPU, the mEVP iteration is faster by a factor of 6, even for small problem sizes. Running on CPU, the Kokkos code performs

just as well as the OpenMP code. The cost of data transfers for the GPU version is still non-negligible at a constant 10 % for470

21

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

104 105 106 107

100

101

102

#elements

ru
nt

im
e

[s
]

OpenMP
Kokkos

Kokkos (CPU)

1282 2562 5122 10242 20482 40962
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

#elements

ru
nt

im
e

re
la

tiv
e

to
C

PU

mEVP sub-steps
CPU-GPU data transfer

Figure 10. Timings of the full mEVP iteration on the NVIDIA A100. The values for Kokkos include the necessary data transfers between

CPU and GPU.

larger meshes, even though the 100 mEVP sub-steps are performed entirely on the device. This underlines the importance of

running larger parts of a simulation fully on the GPU to minimize necessary data transfers.

6 Conclusions

We implemented and evaluated different options for the GPU parallelization of the neXtSIM-DG dynamical core. According

to our results, CUDA remains the most reliable option both in terms of performance and with regard to the toolchain. Thanks475

to the CUDA support of Eigen, we were also able to use the CPU C++ code with minimal modifications in CUDA.

Kokkos benefits in the same way from Eigen’s CUDA library support, while SYCL does not need explicit support which

makes it well suited for an incremental port of existing C++ code in general. The streamlined memory model and simplified

parallel constructs of Kokkos and SYCL facilitate more effective development, but at some performance cost. Using dedicated

GPU features such as shared memory remains an issue because it leads to code that is very inefficient on the CPU, breaking480

the promise of the heterogeneous computing paradigm. However, our study demonstrates that this specialization is not always

needed to achieve good performance and we can therefore recommend Kokkos as an alternative to CUDA. While SYCL shares

the same benefits on paper, it suffers from immature implementations and is currently too unreliable.

PyTorch currently lacks far behind the more conventional options in terms of performance and is therefore mostly worth

considering for rapid prototyping. However, the optimizer heuristics are clearly far from optimal yet for our use case and the485

underlying compilers are developing quickly, so we expect performance improvements in the future. Furthermore, PyTorch

and similar machine learning frameworks are interesting alternatives because of their ease of development and the access

to automatic differentiation they provide. The latter is of great relevance for hybrid methods that combine a conventional

22

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

discretization with a machine learning component, e.g. Bedrunka et al. (2021); Kochkov et al. (2021); Demeure et al. (2023);

Kochkov et al. (2023).490

Our investigation of mixed precision underscores previous results from the literature, i.e. that lower precision float types

should be considered for GPU codes. Performing a major computation of our sea ice simulation in single precision shows no

degradation in the results while almost doubling the performance. Although the application of tensor cores with their even

lower precision does have a measurable impact on the results, further tests with more realistic scenarios will be needed to

determine whether there is a practical impact of going below single precision.495

Purely from a computational perspective, our finite element based GPU code does not favor higher order discretizations.

While the speedup over CPU is considerable for all combinations tested, there are additional optimization opportunities for the

first order continuous elements which makes them more efficient. A comprehensive evaluation of the trade-off between quality

and speed of different discretization orders are left for future work.

For the GPU-parallelization of the entire neXtSIM-DG dynamic core we chose Kokkos. For the full mEVP iteration running500

entirely on GPU we obtain a speedup by a factor of 6, switching from a dual CPU node to a single A100 GPU in double

precision. With some care in the implementation, the Kokkos implementation achieves the same performance on CPU as our

manual OpenMP based implementation, making the latter obsolete. The code is not fully optimized yet and more work is

needed to port advection and other rheologies. With components outside the dynamical core also still in active development,

performance comparisons with currently used models are difficult. However, based on the results shown in this work, a move505

from the current 10 km resolution sea ice models (Ólason et al., 2021; Hutter et al., 2022) to practical kilometer-scale models

seems tangible.

Code availability. The project neXtSIM-DG is under active development and hosted on GitHub (https://github.com/nextsimhub/nextsimdg).

The different GPU implementations for just the stress are available in a self contained repository at https://kosinus.math.uni-magdeburg.de/

Thanduriel/dynamical_core. A snapshot with all code needed to reproduce the experiments in this manuscript is available on Zenodo (Jen-510

dersie et al., 2024).

Author contributions. Robert Jendersie developed the GPU codes, conducted the experiments and wrote the bulk of the text. Christian Lessig

gave substantial input on the research direction and analysis methods and worked on the final text. Thomas Richter provided the original

CPU code as well as the model description and helped to improve the final text.

Competing interests. The authors declare that they have no conflict of interest.515

23

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

Acknowledgements. This project is supported by Schmidt Sciences. The authors gratefully acknowledge the Gauss Centre for Supercomput-

ing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUWELS (Jülich Super-

computing Centre, 2021) at Jülich Supercomputing Centre (JSC). We acknowledge the EuroHPC Joint Undertaking for awarding this project

access to the EuroHPC supercomputer LUMI, hosted by CSC (Finland) and the LUMI consortium through a EuroHPC Regular Access call.

Appendix A: Introduction to GPUs520

Graphics processing units are coprocessors originally designed to accelerate computer graphics. To generate images in quick

succession, a massive number of operations, e.g. computing the color of each pixel on the screen, has to be performed. The

computations are typically identical and it is thus a highly parallel problem. Initially, the specific algorithms used for this pur-

pose were implemented directly in the hardware and the resulting fixed function pipeline offered only very limited possibilities

for customization. However, to enable higher fidelity graphics, most parts of the pipeline where replaced with programmable525

stages over time. Attempts to use such programmable GPUs for scientific computing soon followed (Bolz et al., 2003; Krüger

and Westermann, 2005). To further facilitate the application of GPUs beyond computer graphics, new programming interfaces

where developed that represent GPUs as general purpose stream processors (Buck et al., 2004). In this paradigm, a program

takes a long sequence (a stream) of data and applies kernel functions to each element in the sequence. Among the general

purpose programming interfaces, CUDA (NVIDIA, 2023a) has been the most influential and the fundamental programming530

model defined by CUDA has since stayed the same.

In the following, we give an overview to GPUs as general purpose parallel processors, aimed at readers somewhat famil-

iar with the architecture of CPUs. In the interest of brevity, we only use the nomenclature of CUDA, but the concepts and

components described here also exist on GPUs of other vendors, sometimes under different names.

GPUs are designed for high throughput and can, given an embarrassingly parallel problem, deliver significant gains in535

performance and energy efficiency over CPUs. Naturally, this requires a trade-off, since chip resources need to be distributed

differently, as Fig. A1 shows. For CPUs, much of the die space is allocated to the multi-level cache hierarchy and control

circuits, e.g. speculative execution, with the goal to minimize latency as much as possible. In contrast, GPUs prioritize compute

throughput with many more arithmetical logical units (ALUs) and a much wider execution pipeline. If sufficient work is

available to saturate the compute pipeline, latency can, in principle, be hidden because computations in different stages of540

execution can keep every part of the hardware busy. For a program to take advantage of just a single GPU, it needs thousands

of similar computations that can be run in parallel, as opposed to just a few tasks needed for a multi-core CPU. In practical

terms, a good balance between operations is required to achieve high utilization, i.e. the compute units can only be kept busy

if the data can be loaded and stored with the same speed as it is processed. The dedicated main memory on GPUs (VRAM) is

therefore also optimized toward higher bandwidth whereas regular RAM for CPUs prioritizes lower latency.545

To access data on the GPU it needs to be first moved to global memory, a logical space residing in the VRAM. Since transfers

between the host memory (system RAM), and device memory (VRAM) are slow, the work offloaded to GPUs needs to be

24

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

CPU GPU

Streaming multiprocessor

ALU L1 Control

L2 cache

ALU L1 Control

L2 cache

ALU L1 Control

L2 cache

ALU L1 Control

L2 cache

L3 cache

RAM

L2 cache

Video RAM

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

SFU

SFU

Tensor

Tensor

Register file

Shared memory / L1 cache

Warp scheduler

Figure A1. A schematic overview of an example CPU versus a GPU.

sufficiently expensive. Therefore, when a complex computation is performed, it can be worthwhile to perform an individual

operation on the GPU even if it is not efficient when this minimizes the data transferred between GPUs and CPUs.

The main building block of a GPU is the streaming multiprocessor (SM). Equipped with its own cache, registers, ALUs550

and control logic, a streaming multiprocessor can operate largely autonomously and is similar to a core on the CPU. The

number of streaming multiprocessors varies widely between chips and performance considerations for a program with respect

to this number are similar to varying the number of CPU cores, i.e. weak and strong scaling. High end GPUs have up to 128

streaming multiprocessors.

Conceptually, each streaming multiprocessor is a single instruction, multiple data (SIMD) processor that achieves computa-555

tional efficiency by data parallel processing, i. e. through a number of threads that perform the same computation on different

data. Such a warp of threads is comparable to a CPU thread where every operation is performed as SIMD. However, warps

are much wider than the vector units commonly found on CPUs. Fig. A1 alludes to this with the ALUs (or CUDA cores) being

grouped in sets of 16, though in practice, a common warp size is 32. As a consequence of the SIMD paradigm, branches (“if”

statements) can be hugely detrimental to the performance if they cause frequent warp divergence, i.e. the selection of different560

code paths within a warp. In that case, the whole warp will execute each taken branch and undesired results are just masked

out at the end. A similar problem exists for CPU code, where branches can prevent effective vectorization.

Each GPU thread has its own set of registers and private local memory if additional space is needed. Since local memory

is just a special address space in the VRAM, it has very high latency, and it puts additional strain on the same memory bus

as global memory accesses. While automated caches alleviate the issue of slow device memory to some extent, much better565

performance can often be achieved by utilizing shared memory. This memory space is part of the L1 cache, allowing for fast

25

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

random access, but is manually programmed so that one can ensure that the right data is held in the cache. The same shared

memory space is shared between multiple threads.

Multiple warps together form a thread block and all threads in the same block are resident on a single streaming multipro-

cessor at the same time. Instead of having a fixed number of registers available to each thread, on GPUs, registers are allocated570

as needed for each kernel from the register file. Keeping the state of multiple warps in registers is necessary to make context

switches between them cheap which is key to achieve a high throughput. A high per-thread register requirement can therefore

be detrimental to performance, because it decreases the possible thread block size. A lower occupancy means that fewer warps

are available to the scheduler, which in turn increases the likelihood of wasted cycles. An important feature of thread blocks is

their ability to effectively coordinate work. Synchronization is possible via a lightweight barrier and all threads in a block have575

access to the same shared memory, thereby making it possible to share intermediate results.

All thread blocks are organized into a grid and independently executed on the available streaming multiprocessors. Syn-

chronization between blocks usually happens only once the whole grid is finished, although another intermediate level called

cooperative groups is available on the latest hardware.

In addition to the general purpose ALUs, streaming multiprocessors are equipped with a number of fixed function units580

to accelerate specific computations. These include tensor cores which compute matrix-matrix multiplications and special

function units (SFUs) that compute approximations for certain transcendental functions. Programming with tensor cores

requires special consideration because tensor cores are controlled at the warp level, whereas the program is written in terms of

threads.

26

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

Appendix B: Code585

1 template <DG> us ing DGVec = Eigen : : Matr ix <T , Eigen : : Dynamic , DG>;

2
3 t emplate < i n t CG, i n t DGst ress , i n t DGadvection >

4 void S t r e s s U p d a t e H i g h O r d e r (c o n s t VPParamete rs& v p p a r a m e t e r s ,

5 c o n s t ParametricMomentumMap <CG>& pmap , c o n s t Parame t r i cMesh& smesh ,

6 DGVec< DGst ress >& S11 , DGVec< DGst ress >& S12 , DGVec< DGst ress >& S22 ,

7 c o n s t DGVec< DGst ress >& E11 , c o n s t DGVec< DGst ress >& E12 , c o n s t DGVec< DGst ress >& E22 ,

8 c o n s t DGVec<DGadvect ion >& H, c o n s t DGVec<DGadvect ion >& A, double a lpha , double b e t a)

9 {

10 c o n s t e x p r i n t NGP = ((D G s t r e s s == 8) | | (D G s t r e s s == 6)) ? 3 : (D G s t r e s s == 3 ? 2 : −1) ;

11 us ing EdgeVec = Eigen : : Matr ix <T , 1 , NGP * NGP>;

12 #pragma omp p a r a l l e l f o r
13 f o r (s i z e _ t i = 0 ; i < smesh . n e l e m e n t s ; ++ i) {

14 auto hGauss = (H. row (i) * PSI <DGadvect ion , NGP>) . a r r a y () . max (0 . 0) . m a t r i x () ;

15 auto aGauss = (A. row (i) * PSI <DGadvect ion , NGP>) . a r r a y () . max (0 . 0) . min (1 . 0) . m a t r i x () ;

16 EdgeVec P = (_ v p p a r a m e t e r s . P s t a r * hGauss . a r r a y ()

17 * (−20 .0 * (1 . 0 − aGauss . a r r a y ())) . exp ()) . m a t r i x () ;

18
19 c o n s t EdgeVec e11Gauss = E11 . row (i) * PSI < DGst ress , NGP>;

20 c o n s t EdgeVec e12Gauss = E12 . row (i) * PSI < DGst ress , NGP>;

21 c o n s t EdgeVec e22Gauss = E22 . row (i) * PSI < DGst ress , NGP>;

22 c o n s t auto DELTA = (v p p a r a m e t e r s . Del taMin * v p p a r a m e t e r s . Del taMin

23 + 1 . 2 5 * (e11Gauss . a r r a y () . s q u a r e () + e22Gauss . a r r a y () . s q u a r e ())

24 + 1 . 5 0 * e11Gauss . a r r a y () * e22Gauss . a r r a y () + e12Gauss . a r r a y () . s q u a r e ())

25 . s q r t () . m a t r i x () ;

26
27 c o n s t T a l p h a I n v = 1 . 0 / a l p h a ;

28 c o n s t T f a c = 1 . 0 − a l p h a I n v ;

29 c o n s t EdgeVec PDe l t a = P . a r r a y () / DELTA . a r r a y () ;

30 S11 . row (i) = f a c * S11 . row (i) + (pmap . iMJwPSI [i]

31 * (a l p h a I n v * (PD e l t a . a r r a y ()

32 * ((5 . 0 / 8 . 0) * e11Gauss . a r r a y () + (3 . 0 / 8 . 0) * e22Gauss . a r r a y ())

33 − 0 . 5 * P . a r r a y ()) . m a t r i x () . t r a n s p o s e ())) . t r a n s p o s e () ;

34 S12 . row (i) = f a c * S12 . row (i) + (pmap . iMJwPSI [i]

35 * (a l p h a I n v * (PD e l t a . a r r a y () * (1 . 0 / 4 . 0) * e12Gauss . a r r a y ())

36 . m a t r i x () . t r a n s p o s e ())) . t r a n s p o s e () ;

37 S22 . row (i) = f a c * S22 . row (i) + (pmap . iMJwPSI [i]

38 * (a l p h a I n v * (PD e l t a . a r r a y ()

39 * ((5 . 0 / 8 . 0) * e22Gauss . a r r a y () + (3 . 0 / 8 . 0) * e11Gauss . a r r a y ())

40 − 0 . 5 * P . a r r a y ()) . m a t r i x () . t r a n s p o s e ())) . t r a n s p o s e () ;

41 }

42 }

43

Listing 2. Implementation of the stress update with Eigen. The method is generic in the degrees of freedom of the different cG and dG

elements. The matrix () and array () methods change the type of an expression to differentiate between matrix and component-wise operations

and are no-ops during runtime.

27

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

References

XLA: an open-source machine learning compiler, https://github.com/openxla/xla, [accessed 28-November-2023], 2023.

Alpay, A. and Heuveline, V.: One Pass to Bind Them: The First Single-Pass SYCL Compiler with Unified Code Representation Across

Backends, in: International Workshop on OpenCL, ACM, https://doi.org/10.1145/3585341.3585351, 2023.

Aoun, M. R. E., Tidjon, L. N., Rombaut, B., Khomh, F., and Hassan, A. E.: An Empirical Study of Library Usage and Dependency in Deep590

Learning Frameworks, https://doi.org/10.48550/ARXIV.2211.15733, 2022.

Banderier, H., Zeman, C., Leutwyler, D., Rüdisühli, S., and Schär, C.: Reduced floating-point precision in regional climate simulations:

an ensemble-based statistical verification, Geoscientific Model Development, 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024,

2024.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nature595

Computational Science, 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021a.

Bauer, P., Stevens, B., and Hazeleger, W.: A digital twin of Earth for the green transition, Nature Climate Change, 11, 80–83,

https://doi.org/10.1038/s41558-021-00986-y, 2021b.

Bedrunka, M. C., Wilde, D., Kliemank, M., Reith, D., Foysi, H., and Krämer, A.: Lettuce: PyTorch-Based Lattice Boltzmann Framework,

pp. 40–55, Springer International Publishing, ISBN 9783030905392, https://doi.org/10.1007/978-3-030-90539-2_3, 2021.600

Bolz, J., Farmer, I., Grinspun, E., and Schröder, P.: Sparse matrix solvers on the GPU: conjugate gradients and multigrid, ACM Trans. Graph.,

22, 917–924, https://doi.org/10.1145/882262.882364, 2003.

Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., Lee, Y. J., Lemieux, J., Lique, C., Losch, M., Maslowski,

W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experi-

ment (SIREx): 1. Scaling and Statistical Properties of Sea-Ice Deformation Fields, Journal of Geophysical Research: Oceans, 127,605

https://doi.org/10.1029/2021jc017667, 2022.

Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic–viscous–plastic method revisited, Ocean Modelling, 71, 2–12,

https://doi.org/10.1016/j.ocemod.2013.05.013, 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne,

S., and Zhang, Q.: JAX: composable transformations of Python+NumPy programs, http://github.com/google/jax, 2018.610

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan, P.: Brook for GPUs: stream computing on graphics

hardware, ACM Trans. Graph., 23, 777–786, https://doi.org/10.1145/1015706.1015800, 2004.

Cao, K., Wu, Q., Wang, L., Wang, N., Cheng, H., Tang, X., Li, D., and Wang, L.: GPU-HADVPPM V1.0: a high-efficiency parallel GPU

design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10), Geoscientific Model

Development, 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, 2023.615

Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–

1359, https://doi.org/10.5194/tc-10-1339-2016, 2016.

Demeure, N., Kisner, T., Keskitalo, R., Thomas, R., Borrill, J., and Bhimji, W.: High-level GPU code: a case study examining JAX and

OpenMP., in: Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage,

and Analysis, SC-W 2023, ACM, https://doi.org/10.1145/3624062.3624186, 2023.620

Denny, J. E., Lee, S., and Vetter, J. S.: CLACC: Translating OpenACC to OpenMP in Clang, in: 2018 IEEE/ACM 5th Workshop on the

LLVM Compiler Infrastructure in HPC (LLVM-HPC), IEEE, https://doi.org/10.1109/llvm-hpc.2018.8639349, 2018.

28

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

Dublish, S., Nagarajan, V., and Topham, N.: Evaluating and mitigating bandwidth bottlenecks across the memory hierarchy

in GPUs, in: 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), IEEE,

https://doi.org/10.1109/ispass.2017.7975295, 2017.625

Esau, I. N.: Amplification of turbulent exchange over wide Arctic leads: Large-eddy simulation study, Journal of Geophysical Research:

Atmospheres, 112, https://doi.org/10.1029/2006jd007225, 2007.

Feltham, D.: Sea Ice Rheology, Annual Review of Fluid Mechanics, 40, 91–112, https://doi.org/10.1146/annurev.fluid.40.111406.102151,

2008.

Guennebaud, G., Jacob, B., et al.: Eigen v3, http://eigen.tuxfamily.org, 2010.630

Hatfield, S., Chantry, M., Düben, P., and Palmer, T.: Accelerating High-Resolution Weather Models with Deep-Learning Hardware, in:

Proceedings of the Platform for Advanced Scientific Computing Conference, PASC ’19, ACM, https://doi.org/10.1145/3324989.3325711,

2019.

Hibler, W. D.: A Dynamic Thermodynamic Sea Ice Model, Journal of Physical Oceanography, 9, 815–846, https://doi.org/10.1175/1520-

0485(1979)009<0815:adtsim>2.0.co;2, 1979.635

Hunke, E., Allard, R., Blain, P., Blockley, E., Feltham, D., Fichefet, T., Garric, G., Grumbine, R., Lemieux, J.-F., Rasmussen, T., Ribergaard,

M., Roberts, A., Schweiger, A., Tietsche, S., Tremblay, B., Vancoppenolle, M., and Zhang, J.: Should Sea-Ice Modeling Tools Designed

for Climate Research Be Used for Short-Term Forecasting?, Current Climate Change Reports, 6, 121–136, https://doi.org/10.1007/s40641-

020-00162-y, 2020.

Hutter, N., Zampieri, L., and M. Losch, M.: Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm, The Cryosphere,640

13, 627–645, https://doi.org/10.5194/tc-13-627-2019, 2019.

Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y. J., Lemieux, J., Lique, C., Losch, M., Maslowski, W., My-

ers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx):

2. Evaluating Linear Kinematic Features in High-Resolution Sea Ice Simulations, Journal of Geophysical Research: Oceans, 127,

https://doi.org/10.1029/2021jc017666, 2022.645

Ikuyajolu, O. J., Roekel, L. V., Brus, S. R., Thomas, E. E., Deng, Y., and Sreepathi, S.: Porting the WAVEWATCH III (v6.07) wave action

source terms to GPU, Geoscientific Model Development, 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, 2023.

Jakob, C., Gettelman, A., and Pitman, A.: The need to operationalize climate modelling, Nature Climate Change, 13, 1158–1160,

https://doi.org/10.1038/s41558-023-01849-4, 2023.

Jendersie, R., Richter, T., and Lessig, C.: neXtSIM_DG dynamical core GPU experiments, https://doi.org/10.5281/ZENODO.13711171,650

2024.

Jülich Supercomputing Centre: JUWELS Cluster and Booster: Exascale Pathfinder with Modular Supercomputing Architecture at Juelich

Supercomputing Centre, Journal of large-scale research facilities, 7, https://doi.org/10.17815/jlsrf-7-183, 2021.

Kauker, F., Bertino, L., Bracher, A., Gabarró, C., Garric, G., Hughes, N., Kaminski, T., Lavergne, T., Malnes, E., Mustonen, T., Pedersen,

L. T., Schauer, U., Scholze, M., Schyberg, H., Tietsche, S., Wagner, P., and Wilkinson, J.: A roadmap towards a European end-to-end655

operational system for monitoring and forecasting of the Polar Regions, KEPLER Deliverable Report, https://kepler380449468.files.

wordpress.com/2021/08/kepler-deliverable-report-5.2-1.pdf, 2021.

Kimpson, T., Paxton, E. A., Chantry, M., and Palmer, T.: Climate-change modelling at reduced floating-point precision with stochastic

rounding, Quarterly Journal of the Royal Meteorological Society, 149, 843–855, https://doi.org/10.1002/qj.4435, 2023.

29

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S.: Machine learning–accelerated computational fluid dynamics,660

Proceedings of the National Academy of Sciences, 118, https://doi.org/10.1073/pnas.2101784118, 2021.

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Lottes, J., Rasp, S., Düben, P., Klöwer, M., Hatfield, S., Battaglia,

P., Sanchez-Gonzalez, A., Willson, M., Brenner, M. P., and Hoyer, S.: Neural General Circulation Models, 2023.

Krüger, J. and Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms, in: ACM SIGGRAPH

2005 Courses, SIGGRAPH ’05, p. 234–es, Association for Computing Machinery, New York, NY, USA, ISBN 9781450378338,665

https://doi.org/10.1145/1198555.1198795, 2005.

Kwok, R.: Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: a qualitative survey, Solid Mech. Appl.,

94, 315–322, https://doi.org/10.1007/978-94-015-9735-7_26, 2001.

Lang, S. T. K., Dawson, A., Diamantakis, M., Dueben, P., Hatfield, S., Leutbecher, M., Palmer, T., Prates, F., Roberts, C. D., Sandu,

I., and Wedi, N.: More accuracy with less precision, Quarterly Journal of the Royal Meteorological Society, 147, 4358–4370,670

https://doi.org/10.1002/qj.4181, 2021.

Liu, J., Chen, Z., Hu, Y., Zhang, Y., Ding, Y., Cheng, X., Yang, Q., Nerger, L., Spreen, G., Horton, R., Inoue, J., Yang, C., Li,

M., and Song, M.: Towards reliable Arctic sea ice prediction using multivariate data assimilation, Science Bulletin, 64, 63–72,

https://doi.org/10.1016/j.scib.2018.11.018, 2019.

Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The675

Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012, 2012.

Marsan, D., Stern, H., Lindsay, R., and Weiss, J.: Scale Dependence and Localization of the Deformation of Arctic Sea Ice, Physical Review

Letters, 93, 178 501, https://doi.org/10.1103/physrevlett.93.178501, 2004.

Mehlmann, C. and Richter, T.: A modified global Newton solver for viscous-plastic sea ice models, Ocean Modeling, 116, 96–107,

https://doi.org/10.1016/j.ocemod.2017.06.001, 2017.680

Mehlmann, C., Danilov, S., Losch, M., Lemieux, J. F., Hutter, N., Richter, T., Blain, P., Hunke, E. C., and Korn, P.: Simulating Linear

Kinematic Features in Viscous-Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering, Journal

of Advances in Modeling Earth Systems, 13, https://doi.org/10.1029/2021ms002523, 2021.

Meyer, J., Alpay, A., Hack, S., Fröning, H., and Heuveline, V.: Implementation Techniques for SPMD Kernels on CPUs, in: International

Workshop on OpenCL, IWOCL ’23, ACM, https://doi.org/10.1145/3585341.3585342, 2023.685

NVIDIA: CUDA C++ Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, [accessed 28-November-

2023], 2023a.

NVIDIA: TensorRT: an SDK for high-performance deep learning inference, https://developer.nvidia.com/tensorrt, [accessed 28-November-

2023], 2023b.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,690

A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative

Style, High-Performance Deep Learning Library, in: Advances in Neural Information Processing Systems 32, edited by Wallach, H.,

Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R., pp. 8024–8035, Curran Associates, Inc., http://papers.neurips.

cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf, 2019.

Paxton, E. A., Chantry, M., Klöwer, M., Saffin, L., and Palmer, T.: Climate Modeling in Low Precision: Effects of Both Deterministic and695

Stochastic Rounding, Journal of Climate, 35, 1215–1229, https://doi.org/10.1175/jcli-d-21-0343.1, 2022.

30

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

PyTorch-devs: TorchInductor: a PyTorch-native Compiler with Define-by-Run IR and Symbolic Shapes, https://dev-discuss.pytorch.org/t/

torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747, [accessed 13-May-2024], 2023.

Rasmussen, T. A. S., Poulsen, J., Ribergaard, M. H., Sasanka, R., Craig, A. P., Hunke, E. C., and Rethmeier, S.: Refactoring the EVP solver

for improved performance – a case study based on CICE v6.5, https://doi.org/10.5194/gmd-2024-40, 2024.700

Richter, T., Dansereau, V., Lessig, C., and Minakowski, P.: A dynamical core based on a discontinuous Galerkin method for higher-order

finite-element sea ice modeling, Geoscientific Model Development, 16, 3907–3926, https://doi.org/10.5194/gmd-16-3907-2023, 2023.

Sauer, J. A. and Muñoz-Esparza, D.: The FastEddy® Resident-GPU Accelerated Large-Eddy Simulation Framework: Model For-

mulation, Dynamical-Core Validation and Performance Benchmarks, Journal of Advances in Modeling Earth Systems, 12,

https://doi.org/10.1029/2020ms002100, 2020.705

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried,

K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.: Kilometer-Scale Climate

Models: Prospects and Challenges, Bulletin of the American Meteorological Society, 101, E567–E587, https://doi.org/10.1175/bams-d-

18-0167.1, 2020.

Servat, H., Rossi, G., Duran, A., and Narayanaswamy, R.: On the Migration of OpenACC-Based Applications into OpenMP 5+, in:710

OpenMP in a Modern World: From Multi-device Support to Meta Programming, pp. 127–141, Springer International Publishing,

https://doi.org/10.1007/978-3-031-15922-0_9, 2022.

Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama,

C., Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N., Shibuya, R., Vanniere, B., Vidale, P. L., Wedi, N., and Zhou,

L.: DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains, Progress in Earth and715

Planetary Science, 6, 61, https://doi.org/10.1186/s40645-019-0304-z, 2019.

Sun, J., Dennis, J. M., Mickelson, S. A., Vanderwende, B., Gettelman, A., and Thayer-Calder, K.: Acceleration of the Parameterization

of Unified Microphysics Across Scales (PUMAS) on the Graphics Processing Unit (GPU) With Directive-Based Methods, Journal of

Advances in Modeling Earth Systems, 15, https://doi.org/10.1029/2022ms003515, 2023.

The Khronos Group, I.: SYCL: a cross-platform abstraction layer for heterogeneous computing, https://www.khronos.org/sycl, [accessed720

30-November-2023], 2023a.

The Khronos Group, I.: SYCL 2020 standard - language restrictions, https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.

html#_language_restrictions_in_kernels, [accessed 21-November-2023], 2023b.

Tillet, P., Kung, H. T., and Cox, D.: Triton: an intermediate language and compiler for tiled neural network computations, in: Pro-

ceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, PLDI ’19, ACM,725

https://doi.org/10.1145/3315508.3329973, 2019.

Tintó Prims, O., Acosta, M. C., Moore, A. M., Castrillo, M., Serradell, K., Cortés, A., and Doblas-Reyes, F. J.: How to use mixed precision

in ocean models: exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6, Geoscientific Model Development,

12, 3135–3148, https://doi.org/10.5194/gmd-12-3135-2019, 2019.

Torch-TensorRT-devs: Torch-TensorRT: Ahead of Time (AOT) compiling for PyTorch JIT and FX, https://github.com/pytorch/TensorRT,730

2024.

Trott, C. R., Lebrun-Grandie, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S., Ibanez, D.,

Liber, N., Madsen, J., Miles, J., Poliakoff, D., Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., and Wilke, J.:

31

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE Transactions on Parallel and Distributed Systems, 33, 805–817,

https://doi.org/10.1109/tpds.2021.3097283, 2022.735

Ðukić, J. and Mišić, M.: An Evaluation of Directive-Based Parallelization on the GPU Using a Parboil Benchmark, Electronics, 12, 4555,

https://doi.org/10.3390/electronics12224555, 2023.

Usha, R., Pandey, P., and Mangala, N.: A Comprehensive Comparison and Analysis of OpenACC and OpenMP 4.5 for NVIDIA GPUs, in:

2020 IEEE High Performance Extreme Computing Conference (HPEC), IEEE, https://doi.org/10.1109/hpec43674.2020.9286203, 2020.

Xie, J., Bertino, L., Counillon, F., Lisæter, K. A., and Sakov, P.: Quality assessment of the TOPAZ4 reanalysis in the Arctic over the period740

1991–2013, Ocean Science, 13, 123–144, https://doi.org/10.5194/os-13-123-2017, 2017.

Ólason, E., Rampal, P., and Dansereau, V.: On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic, The Cryosphere,

15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, 2021.

Ólason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T., Kimmritz, M., Dansereau, V., and Samaké, A.: A New Brit-

tle Rheology and Numerical Framework for Large-Scale Sea-Ice Models, Journal of Advances in Modeling Earth Systems, 14,745

https://doi.org/10.1029/2021ms002685, 2022.

32

https://doi.org/10.5194/egusphere-2024-2539
Preprint. Discussion started: 25 September 2024
c© Author(s) 2024. CC BY 4.0 License.

