
Reply to review 2 of ”A GPU-parallelization of the neXtSIM-DG dynamical core”

We thank the reviewer for their comments and suggestions. Below we respond to each point.

In the present manuscript ‘A GPU-parallelization of the neXtSIM-DG dynamical core (v0.3.1)’
the authors test and evaluate different GPU programming frameworks based on their sea ice model
dynamical core neXtSIM-DG.

Many modeling groups in the weather and climate community and beyond are facing similar
problems as the neXtSIM-DG developers. Developing portable code that achieves good performance
on various hardware architectures without limiting the productivity of the (scientific) developers
too much is a major challenge. Therefore, the thorough analysis of the different available GPU
programming frameworks presented here is of great value to the community. The study is well
written and I would recommend publication in GMD after a few issues have been addressed as
listed below.

1. In line 370 in section 4.1 it is stated ‘These results indicate that the AMD ecosystem is
still less mature’. However, to validate this statement and to have a complete picture also
for AMD GPUs it would have been nice to also have a HIP implementation as a baseline
to compare the other implementations against similar to the CUDA implementation for
NVIDIA GPUs.
Reply: A raw HIP implementation would certainly further substantiate this point. How-
ever, it is reasonable to expect that in our case a raw HIP implementation would perform
similar to the Kokkos implementation. We ended up using only basic features of Kokkos
in the main comparison, which are provided through light wrappers around the vendor
specific APIs. Considering how our CUDA and Kokkos implementations perform the same
asymptotically and how closely the basic HIP API resembles that of CUDA, a raw HIP
implementation would likely display similar characteristics.

2. Table 1: What hardware was used for these measurements and how many OpenMP threads
were used?
Reply: These measurements where taken on an Intel i9-10900X (10 cores @ 3.7GHz). For
OpenMP we determined that simultaneous multithreading is beneficial and used 20 threads.
We will add these details to the table.

3. Figures 2 and 10 and lines 354 and 470: Again, how many OpenMP threads were used
for the OpenMP reference simulation? And what backend was used for Kokkos on CPUs?
OpenMP as well? And if yes, with the same number of threads as the reference OpenMP
simulation?
Reply: We got the best performance through full utilization with simultaneous multi-
threading, i.e. 96 threads, with OMP_PROC_BIND=spread and OMP_PLACES=threads. For
Kokkos (CPU) we use the OpenMP backend with the same settings. We will add this
information to the manuscript.

4. Line 206: LLVM/Clang provides a set of debugging flags (e.g. https://openmp.llvm.org/de-
sign/Runtimes.html#libomptarget-info) which can provide precise information about each
block of memory and potential problems. Also, for the types that are not trivially copyable,
OpenMP 5.0 offers the option of using declare mapper to define this. Wouldn’t that have
been an option here?
Reply: These are good suggestions. With the diagnostics provided by Clang, a working
OpenMP offload implementation would likely be doable. Unfortunately, declare mapper

1



would not help much with memory transfers, since it is only suited for C-style code. Al-
most all data in our code is held in Eigen::Matrix objects. This type is generic (template
parameters include size, data type and storage order) and has a variable memory layout.
Depending on whether the size is fully known at compile time or not, the data can be part
of the struct or a pointer to the heap. Both data pointers and dynamic size are private
members and need to be accessed through method calls, which, as far as I can tell, are not
allowed in declare mapper directives. So one would still end up manually converting the
buffers to a simpler structure for transfers.

Technical corrections:

• Table 2: ‘AdaptiveCPP’ is used here to indicate the SYCL implementation but the name is
too generic. AdaptiveCPP is also the name of the compiler and it can also compile native
OpenMP or other parallel APIs. I would suggest replacing ‘AdaptiveCPP’ with ‘SYCL-
AdaptiveCPP’.
Reply: Makes sense. We will rename ’AdaptiveCPP’ to ’SYCL-AdaptiveCPP’ in the other
sections as well to be consistent.

• Figure 2: Why is in the legend of the right panel TorchInductor marked with an ‘*’?
Reply: These measurements had a small inaccuracy and that would have warranted a
comment. In the revision we will update the data. The changes are minor.

• Line 16: impact on long-term processes

• Line 42: is -> it

• Line 88: often often -> Remove one

Best regards,

Robert Jendersie, on behalf of the authors

2


