Applicability and effectiveness of structural measures for subsidence (risk) reduction in urban areas

Nicoletta Nappo^{1,2}, Mandy Korff^{1,2}

¹Department of Civil Engineering and Geosciences, Technical University of Delft (TU Delft), Mekelweg 5, 2628 CD Delft, Netherlands

²Deltares, Boussinesqueg 1, 2629 HV Delft, Netherlands

Correspondence to: Nicoletta Nappo (n.nappo@tudelft.nl; nicoletta.nappo@deltares.nl)

Abstract. Managing subsidence and its impacts on cities in coastal and delta areas is a global challenge that requires comprehensive risk reduction policies, including both mitigation and prevention strategies. Urban areas often lack systematic methodologies for determining appropriate countermeasures. This paper proposes a twofold strategy for selecting subsidence reduction measures in urban areas – which refer to structural (i.e., technical) measures to prevent and mitigate subsidence and its physical consequences - based on their applicability and performance. The Question-and-Response (Q&R) system serves as a decision tree to identify suitable subsidence countermeasures based on their applicability to specific cases. Four indicators of effectiveness – i.e., reduction potential, operational reliability, negative impact and service life – are then used to assess the performance of subsidence reduction measures. The proposed procedure was applied to 49 cases derived from a review of 52 scientific publications and additional expert sessions and surveys involving five academic scholars and 13 experts. Also, the method was applied to examples from Shanghai (China), Jakarta (Indonesia) and San Joaquin Valley (USA, California). The strategies proposed in this paper proved suitable for an initial screening of subsidence reduction measures applicable in different urban areas, after which a site-specific assessment can follow. Furthermore, this study shows the need to collect and share experiences in evaluating the performance of subsidence reduction measures more systematically, and gives a first framework to do so.

1 Introduction

15

Mexico City (Mexico), Jakarta (Indonesia), Bangkok (Thailand), Venice (Italy), New Orleans (Louisiana, USA), Lagos (Nigeria), Hokkaido (Japan), Shanghai (China) and Gouda (Netherlands) are examples of cities affected by subsidence (Bagheri-Gavkosh et al., 2021; Bucx et al., 2015; Davydzenka et al., 2023; Dinar et al., 2021; Erkens et al., 2015; Herrera-García et al., 2021; Hutabarat & Ilyas, 2017; Pedretti et al., 2024; Poland, 1984). The sinking rates in these cities span from few millimetres (for example in Gouda) to tens of centimetres (for example in Jakarta) causing socio-economic distresses and environmental and structural damages (Erkens et al., 2015). The drivers of subsidence are generally distinguished in natural and anthropogenic, although their combination is often the cause of negative impacts in cities (Galloway & Burbey, 2011). Natural causes typically include consolidation of compressible soils, shrinking and swelling of cohesive soils, decomposition

of organic soils, groundwater discharge, karst and tectonic processes (Gambolati and Teatini, 2021; Poland, 1984). Groundwater withdrawal, gas or oil extraction, mining, underground excavations, urban sprawl and construction loading are anthropogenic factors causing or exacerbating subsidence processes (Gambolati and Teatini, 2021; Poland, 1984). Moreover, the combination of subsidence with sea-level rise and climate changes increases the exposure of cities to additional risks, such as flooding (Herrera-García et al., 2021).

Unlikely other geological or geophysical hazards with immediate disastrous impacts (e.g., earthquakes, landslides), subsidence is a relatively slow process with moderate intensity that can take decades to turn into a disaster (UNDRR, 2024). For this reason, subsidence is often unnoticed and not acknowledged as a disaster, and its physical, socio-economic and environmental impacts in urban areas are not perceived as a potential catastrophe (Bucx et al., 2015; Erkens et al., 2015; Kok and Costa, 2021). Nevertheless, small-to-large scale subsidence can cause costly short-to-long term negative effects to cities that deserve proper (risk) management and reduction policies (Herrera-García et al., 2021). Several authors (Bucx et al., 2015; Department of Regional NSW, 2023; Erkens and Stouthamer, 2020; Jin et al., 2024; Kok and Costa, 2021; Peduto et al., 2015; Piper, 2021; Sendai Framework for DRR, 2015) proposed frameworks for subsidence (risk) management, outlining four primary steps:

- 1) Problem analysis. This involves data collection and analysis, determination of subsidence causes, damage assessment, and (inverse) predictive modelling.
- 2) Planning. This step encompasses scenario construction, vulnerability and risk assessment, cost-benefit analysis, forecasting, decision support systems, proposing innovative (alternative) solutions, exchanging of knowledge and best practices, and selection of mitigation and prevention measures.
- 3) Implementation. This involves installing monitoring systems, starting pilot projects, and implementing mitigation and prevention measures.
 - 4) Evaluation. The final step is dedicated to the assessment of the management cycle and outlook.

40

- Most of the research activities reported in literature (63%) focus on measuring and monitoring subsidence in urban areas using ground-based (e.g., levelling, GPS, extensometers) and remote sensing techniques (as InSAR and LiDAR e.g., Ezquerro et al., 2020; Herrera et al., 2010; Ikuemonisan et al., 2021; López-Quiroz et al., 2009; Nappo et al., 2021; Peduto et al., 2019); 30% reports on modelling and forecasting; while only 7% provides examples of cities where mitigation and prevention measures are applied (Scopus, 2024).
- Technical interventions are commonly employed to protect major cities from subsidence; however, a systematic and objective method for selecting suitable solutions has not yet been established. Additionally, because of the diversity of mitigation and prevention methods, subsidence characteristics, impacted (infra)structures and societies, evaluating the short- and long-term performance of subsidence countermeasures remains challenging. In this perspective, this paper aims at bridging this gap by proposing a twofold strategy to select mitigation and prevention measures based on their applicability and performance. First, a system of Question-and-Response (Q&R) is proposed to identify suitable subsidence mitigation and prevention measures tailored to the specific requirements of each case. Then, by leveraging methods used to assess the effectiveness of mitigation measures against earthquakes, snow avalanches, landslides and floods (Bründl et al., 2016; Hudson et al., 2014; Januriyadi et

- al., 2020; Margreth and Romang, 2010), this paper introduces four indicators to evaluate the effectiveness of selected subsidence countermeasures. This paper focusses on structural (i.e., technical) measures to counteract subsidence risk in urban areas, addressing both ground settlements and the resulting physical consequences (i.e., damage) to structures. With few adjustments, the proposed methodology could be adapted for non-structural (i.e., non-technical) measures, socio-economic and environmental effects or subsidence countermeasures in rural areas; this however is not the aim of this paper.
- After this introduction, the paper is structured as follows: Section 2 recalls the definitions of reduction, mitigation, prevention and adaptation used in this study; Section 3 presents the collected data; Section 4 introduces the Q&R system and the indicators of effectiveness; Section 5 applies the methodology to selected cases and analyses the obtained results; Section 6 and Section 7 respectively discuss and conclude this paper. A brief description of measures to counteract subsidence and its physical consequences in urban areas is provided in Appendix A.

2 Definitions

80

85

90

95

100

The definitions of terms given hereafter are based on the United Nations Multilingual Terminology Database (UNTERM, 2024) and the Sendai Framework Terminology on Disaster Risk Reduction (UNDRR, 2024). These definitions strictly refer to subsidence risk management; therefore, some of them may differ in other contexts, such as in climate change policies and civil structural engineering.

- *Reduction*. Strategies to decrease or remove the risk of subsidence by acting on the predisposing factors, magnitude, intensity or frequency of subsidence, or on the vulnerability and exposure of urban areas affected by it. Subsidence reduction measures encompass both mitigation and prevention measures.
 - *Mitigation*. Structural and non-structural measures taken to minimise subsidence and its adverse impacts (e.g., damages) that cannot be entirely prevented. In urban areas, mitigation examples include repairing cracks in buildings following ground settlements or re-injecting fluids into aquifers after extraction.
 - Prevention. Structural and non-structural measures taken to entirely avoid subsidence and its adverse impacts (e.g., damages) and to avert cascading effects such as sinkholes or increased flood risk. In urban areas, prevention examples include employing deep foundations for buildings in soft soils or enhancing soil strength before construction.
 - Adaptation. Adjusting to the adverse impacts of subsidence or its evolving conditions that cannot be avoided or modified. This term is mainly used in the field of climate change. For subsidence in urban areas, it refers to nonstructural measures.
 - Structural and non-structural measures. Set of technical interventions and non-technical strategies employed to cope
 with new or existing subsidence and its (potential) disastrous consequences. Structural interventions involve hazardresistant physical structures and engineering techniques to withstand the physical impacts of subsidence. Nonstructural measures include laws, regulations, alternative urban planning, public awareness initiatives, and
 environmental and social policies. The terms "structural and non-structural measures" in subsidence risk management
 differ from their usage in civil and structural engineering.

Other terms such as "remedial", "reparative", "precautionary", "protective" or "compensatory" measures to "control or arrest" subsidence and its physical consequences can be found in literature (Nutalaya et al., 1996; Poland, 1984; Singh and Dhar, 1997; Stouthamer et al., 2020; Zektser et al., 2005), referring to what here is defined as "mitigation" and "prevention" measures.

It should be noted that, in this paper, the terms "subsidence countermeasures" and "subsidence reduction measures" are used interchangeably. Both terms refer to mitigation and prevention measures employed in urban areas to contrast subsidence and its physical consequences on (infra)structures.

3 Data collection

105

- Scientific papers and technical articles were retrieved from publication databases and search engines (e.g., Google Scholar, Scopus). A set of 52 publications was selected for the purpose of this study because they describe cases where structural measures are used for contrasting subsidence and damage to structures in urban areas (Table 1). Additionally, two expert sessions and surveys were organized by the authors to gather experiences from five academic scholars and 13 experts on subsidence mitigation and prevention.
- Table 1 lists the selected publications and the cases discussed during the expert sessions and surveys, detailing the location, cause of subsidence, average settlement rate, geology and subsidence countermeasures for each case study.

Table 1. List of publications and cases discussed during expert sessions and surveys that, to the authors' knowledge, document instances where structural (i.e., technical) measures have been employed to contrast subsidence and damage to structures in urban areas.

Reference	Location	Cause of	Average rate	Geology	Subsidence reduction
Reference	(Country, city)	subsidence	of subsidence	Geology	measures
Abidin et al., 2015	Indonesia, Jakarta	Groundwater extraction, construction loading	3-10 cm/year	Alluvial deposits	Aquifer recharge
Akbar et al., 2019	Indonesia, Semarang	Groundwater extraction, construction loading	6-7 cm/year; 14-19 cm/year in some areas	Alluvial deposits	Retention pond, elevation of linear infrastructures
Alferink and Cordóva, 2017	Netherlands, Groningen Province	Gas extraction, seismic activity	0.3-0.5 cm/year	Sand, clay	Flexible connections to underground infrastructures

Al-Zabedy and Al-Kifae, 2020	Iraq	Karst erosion	-	Gypsum	Improved foundations, soil injections, dynamic compaction of soil
Andreas et al.,	Indonesia, Jakarta	Groundwater extraction, construction loading	1-10 cm/year; 20-26 cm/year in some areas	Sand, silts and clay	Building jacking, elevation of linear infrastructures, structure relocation
2018 Indonesia, Semarang		Groundwater extraction, construction loading	6-7 cm/year; 14-19 cm/year in some areas	Alluvial deposits	Building jacking, elevation of linear infrastructures
Andriani et al., 2021	Indonesia, Tanjung Api- Api	Soil compaction and oxidation, groundwater extraction	5 cm/year	Peat, clay	Infiltration well, retention pond, accelerate soil consolidation, elevation of linear infrastructures, lightweight construction materials
Basak and Chowdhury, 2021	Netherlands, Maasbommel	Shrink and swell, groundwater extraction, construction loading	< 0.1 cm/year	Clay	Floating and amphibious housing
	Bangladesh, Dhaka	Groundwater extraction	0.3-2 cm/year	Gravel, sand, silt, clay	Floating and amphibious housing
Bell et al., 2002	USA, Las Vegas, Nevada	Groundwater extraction	5-6 cm/year	Silt, clay	Aquifer recharge, retention pond
Bergado et al., 1993	Thailand, Bangkok	Groundwater extraction, soil compaction	10 cm/year	Clay	Accelerate soil consolidation, mechanical soil mixing
Brighenti, 1991	Italy, Abano Terme	Groundwater extraction	6 cm/year	Marly limestone	Injection well

Carreón- Freyre et al., 2010	Mexico, Itzapalapa, Mexico City	Groundwater extraction, construction loading	12 cm/year	Clay	Repairing cracks, elevation of linear infrastructures
Deakin, 2005	UK, Wiltshire	Shrink and swell	-	Clay	Improved foundations, repairing cracks
English et al., 2016; 2021	USA, New Orleans, Louisiana	Soil compaction	1 cm/year	Peat	Floating and amphibious housing
English et al., 2021	Netherlands, Maasbommel	Shrink and swell, groundwater extraction, construction loading	< 0.1 cm/year	Clay	Floating and amphibious housing
Galloway and Riley, 1999	USA, San Joaquin Valley, California	Groundwater extraction, soil compaction	2.7-22 cm/year	Clay	Retention pond, injection well
	USA, Wilmington, California	Oil extraction	2.25 cm/year	Sand, silt	Injection well
Gambolati et al., 2005 Italy, Venice		Groundwater extraction, soil oxidation, construction loading	0.2 cm/year	Alluvial deposits	Injection well
Gutiérrez and Cooper, 2002	Spain, Calatayud	Karst erosion	2 cm/year	Gypsum	Flexible connections to underground infrastructures, improved foundations
Hamidi et al., 2011	UAE, Abu Dhabi	Groundwater extraction	-	Silty sand	Dynamic compaction of soil

	China, Beijing		5 cm/year	Silty clay	Aquifer recharge, retention pond
Han, 2003	China, Luo River	Groundwater	-	Alluvial deposits	Aquifer recharge
	China, Qingdao	- extraction	3 cm/year	Alluvial deposits	Aquifer recharge
	China, Shanghai	_	6 cm/year	Sand, clay	Injection well
	China, Tianjin	_	3 cm/year	Alluvial deposits	Injection well
Huang et al., 2015	China, Shanghai	Groundwater extraction, construction loading	6 cm/year	Sand, clay	Injection well
Jha et al., 2009	Japan, Kochi Prefecture	Groundwater extraction	-	Silty sand and gravel	Aquifer recharge, retention pond, exfiltration sewer
Kohlnhofer,	Norway	Soil compaction	-	Peat	Lightweight construction material
1992	USA, Pickford, Michigan	Soil compaction	- Silty o		Lightweight construction material
Kok and Hommes-Slag, 2020	Netherlands, Gouda	Organic soil oxidation, groundwater extraction, construction loading	0.3 cm/year	Peat	Compartmentalization, elevation of linear infrastructures, improved foundations, lightweight construction materials
Li et al., 2021	China, Shanghai, Nanpu bridge	Groundwater extraction	5 cm/year	Silt, sand	Injection well
Liang et al.,	China, Ningbo	Soft soil	5 on- /	Clay, fly ash and	Dynamic compaction of
2015	Port	compaction	5 cm/year	silty sand	soil
Lixin et al., 2022	China, Tianjin	Groundwater extraction	7 cm/year	Alluvial deposits	Retention pond
Luo et al., 2019	USA	Coal mining	-	-	Repairing cracks

McBean et al., 2019	China, Beijing	Groundwater extraction	5 cm/year	Silty clay	Exfiltration sewer
Nutalaya et al., 1996	Thailand, Bangkok	Construction loading, groundwater extraction	10 cm/year	Clay, sand	Aquifer recharge
Ovando- Shelley et al., 2013	Mexico, Mexico City	Groundwater extraction	7-10 cm/year	Clay	Improved foundations
Pacheco- Martínez et al., 2013	Mexico, Aguascalientes	Groundwater extraction, construction loading	7.2 cm/year	Sand and gravel with silt and clay	Aquifer recharge, demolition of unsafe buildings
Paukstys et	Lithuania, Birai	Karst erosion	-	Gypsum	Flexible connections to underground infrastructures
al., 1999	UK, Ripon	Karst erosion	-	Gypsum	Flexible connections to underground infrastructures
Phien-Wej et al., 1998	Thailand, Bangkok	Groundwater extraction	10 cm/year	Sand, gravel and clay	Injection well
	China, Shanghai	Groundwater extraction	6 cm/year	Sand and clay	Injection well
	UK, Cheshire	Salt mining	3.38 cm/year	Marl, sandstone	Elevation of linear infrastructures, improved foundations
Poland, 1984	Japan, Tokyo	Groundwater extraction	7.6 cm/year; 24 cm/year in some areas	Alluvial deposits	Retention pond, aquifer recharge
	South Africa, Far West Rand, Johannesburg	Gold mining	56 cm/year	Dolomite and unconsolidated deposits	Injection well

	USA, Alabama	Mining, karst erosion	49 cm/year	Carbonate rocks	Elevation of linear infrastructures, accelerate soil consolidation
	USA, Santa Clara Valley	Groundwater extraction	7.8 cm/year	Alluvial deposits	Retention pond, aquifer recharge, permeable pavement
Pötz and Bleuzé, 2009	Netherlands, Maasbommel	Shrink and swell, groundwater extraction, construction loading	< 0.1 cm/year	Clay	Floating and amphibious hosing
Pramono, 2021	Indonesia, Semarang	Groundwater extraction, construction loading	6-13 cm/year	Alluvial deposits	Retention pond
Ind	Indonesia, Jakarta	Groundwater extraction, construction loading	11-13 cm/year	Sand, silts and clay	Retention pond, exfiltration sewer
Ritzema, 2015	Netherlands, Maasbommel	Shrink and swell, groundwater extraction, construction loading	< 0.1 cm/year	Clay	Accelerate soil consolidation, flexible connections to underground infrastructures, floating and amphibious housing, improved foundations, lightweight construction materials
Saputra et al., 2017, 2019	Indonesia, Jakarta	Groundwater extraction, construction loading	25-28 cm/ year construction in some areas		Building jacking, infiltration well

		Groundwater			Duilding incline
	Indonesia,	extraction,	0.12.5	A11 1.1 1	Building jacking,
	Semarang	construction	8-13.5 cm/year	Alluvial deposits	lightweight construction
		loading			materials
Shen et al., 2019	Taiwan, Lukang district	Liquefaction	iquefaction - Sand		Dynamic compaction of soil
Shi et al., 2016	China, Shanghai	Groundwater extraction	6 cm/year	Sand and clay	Injection well
Sneed and Brandt, 2020	USA, Coachella Valley, California	Groundwater extraction	10 cm/year	Gravel, sand, silt and clay	Aquifer recharge, retention pond
Szucs et al.,	Hungary	Groundwater			Aquifer recharge,
	Hungary,		0.8 cm/year	Sand	retention pond,
2009	Debrecen	extraction			infiltration well
Tang et al.,	China, Taiyuan	Groundwater	Soft soil and		Injection well
2022	8 cm/year basin extraction sand		Injection well		
	USA,				
	Wilmington	Oil and		Sand and gravel	
Testa, 1991	Area, Los	groundwater	36-45 cm/year	alternated with	Injection well
	Angeles,	extraction		silt and clay	
	California			•	
Ting et al.,	Taiwan,	Groundwater			Aquifer recharge,
2020	Pingtung Plain	extraction	1.6 cm/year	Alluvial deposits	retention pond
Wu et al., 2020	China, Shanghai	Groundwater extraction	6 cm/year	Sand and clay	Injections well
Xuan et al., 2015	China, Anhui Province	Coal mining	10 cm/year	Silt	Soil injections
Yang et al., 2020		Groundwater		Sand and clay	Injection well
	China, Shanghai	extraction, construction	6 cm/year		
		loading			
Ye et al., 2016	China, Shanghai	Groundwater extraction	6 cm/year	Sand and clay	Injection well

Zektser et al.,	USA, San Francisco, California	Groundwater extraction	0.2 cm/year	Alluvial deposits	Retention pond
2005	USA, Redwook Creek, California	Groundwater extraction	-	Alluvial deposits	Retention pond
	Netherlands, Amsterdam	Soil compaction, shrink and swell, building loading	0.1-0.3 cm/year	Clay, sand	Accelerate soil consolidation, injection well
	Netherlands, Rotterdam	Soil compaction, groundwater extraction, construction loading	0.2-0.3 cm/year	Clay, sand	Infiltration well, exfiltration sewer
Expert sessions and survey	Netherlands, Woerden	Soil compaction and oxidation, shrink and swell, construction loading, groundwater extraction	0.1-0.4 cm/year	Clay, peat, sand	Floating and amphibious housing, improved foundations, lightweight construction materials
	USA, Houston, Texas	Groundwater extraction	0.5-2 cm/year	Clay and sand	Aquifer recharge, retention pond
	USA, New Orleans, Louisiana	Groundwater extraction	0.6-0.8 cm/year	Peat and clay	Retention pond, exfiltration sewer, building jacking, improved foundations

A more detailed description of the subsidence countermeasures mentioned in Table 1 is provided in Appendix A.

4 Method to select subsidence reduction measures

125

140

This section describes the two-step approach proposed in this paper to select subsidence reduction measures in urban areas based on their applicability and estimated effectiveness. The applicability of subsidence countermeasures is determined via the Question-and-Response (Q&R) system. Then, four indicators are used to evaluate the performance of subsidence reduction measures in terms of effectiveness.

4.1 Applicability: the Question-and-Response (Q&R) system

Besides a first distinction between structural and non-structural, subsidence reduction measures can be categorized as outlined in Table 2. These categories derive from a set of questions and responses selected by the authors together with the academic scholars and experts consulted for this study, and they reflect the key requirements influencing the selection of subsidence countermeasures in urban areas. By answering these questions, the applicability of each subsidence countermeasure to specific cases can be assessed. The Q&R system provides stakeholders and decision makers with a tool to rapidly identify (a set of) suitable subsidence reduction measures that meet the specific requirements of each case.

Depending on the application, location and available information, additional sub-categories (e.g., type of soil/rock, direct and indirect impacts, involved costs, etc.) can be added to the system, thus reaching a further level of detail. However, to facilitate a broader comparison among different applications, this paper does not include any sub-category. This decision is based on the review of worldwide case studies, where the inclusion of sub-categories would hinder the comparability of diverse applications.

Table 2. Question-and-Response (Q&R) system serving as a decision tree to identify suitable subsidence reduction measures based on their applicability.

Question	Response	Category
What is the primary cause of subsidence in the area?	Consolidation of compressible soil, shrinking and swelling of cohesive soils, decomposition of organic soils, groundwater discharge, karst and tectonic processes	Natural subsidence
	Fluid extraction, mining, underground excavations, urban sprawl and construction loading	Anthropogenic subsidence
What is the predominant	Peat, silt, clay, sand, gravel	Soils
geology of the area?	Limestone, gypsum, etc.	Rocks
What is the primary objective of the intervention?	Avoid (new or additional) subsidence and its adverse impacts	Prevention
of the intervention.	Reduce subsidence and its adverse impacts	Mitigation

What needs to be prevented or	Subsidence	Hazard
mitigated?	Damage to structures	Vulnerability & Exposure
	$< 0.1 \text{ km}^2$	Micro scale
What is the (potential) scale	0.1 – 1 km²	Small scale
of application of the	1 - 10 km²	Medium scale
subsidence countermeasure?	10 – 1,000 km²	Large scale
	> 1,000 km²	Regional scale
What type of urban area is	Existing area	Rehabilitation
involved?	Expansion area	New development
Where is the subsidence	Roads, streets, squares, parks, schools, parking, etc.	Public space
countermeasure to be applied?	Houses, monuments, back gardens, shops, etc.	Private space
What type of intervention is	Physical structures	Structural measure
being considered?	Laws, regulations, spatial planning	Non-structural measure

4.2 Indicators of effectiveness

150

155

160

Once (a set of) suitable subsidence countermeasures is identified for a specific case, their effectiveness can be evaluated using four indicators: reduction potential, operational reliability, negative impact and service life. A subsidence reduction measure is effective when it performs well across all the indicators and it contributes to reducing the (risk of) subsidence and its physical consequences in urban areas.

• Reduction potential (RP). How much subsidence and its physical consequences can be reduced? This indicator estimates the percentage of subsidence and damage reduction by comparing observations made before and after the implementation of a subsidence countermeasure. , and iIt is ranked as:

 \circ *High*: RP >= 50%

 \circ *Medium*: 10% < = RP < 50%

o Low: RP < 10%

- Operational reliability (OR). Does the subsidence countermeasure perform as intended over timeduring its service life without failure? This indicator reflects the functionality of subsidence reduction measure. If the system reaches or exceeds its limit state (i.e., the system fails), the subsidence countermeasure loses its effectiveness and may require (major) restoration or replacement to re-establish its functionality. This indicator can be classified as:
 - Good: No interventions are needed

o Fair: Minor interventions are needed

- Bad: Major interventions are needed
- Negative impact (NI). Does the subsidence countermeasure have negative side effects? This indicator evaluates whether a subsidence reduction measure cause any detrimental effect (e.g., water pollution, pore clogging, increase

<u>of subsidence, (increased) damage to adjacent structures)</u> to the surrounding natural and built environment. It can be classified as:

- o *Minimal*: No or minimal negative impacts are observed
- Significant: Notable negative impacts are observed

170

175

180

- Service life (SFSL). What is the (expected) service life of the subsidence countermeasure? This indicator reflects the expected duration for which a subsidence reduction measure is able to contrast subsidence and its physical consequences. It can be classified as:
 - o Long: SLF > = 5010 years
 - \circ *Medium*: 20 < SL < 50 years
 - o Short: SLF < 2010 years

The effectiveness of subsidence countermeasures is evaluated by assigning equal weight to all indicators of effectiveness, treating them as equally important. The qualitative values of each indicator are scored on a scale from 1 to 3, where the lowest category (i.e., Low RP, Bad OR, Significant NI, and Short SL) receives a score of 1, and the highest category (i.e., High RP, Good OR, Minimum NI, and Long SL) receives a score of 3. The overall effectiveness of subsidence reduction measures is determined by averaging the scores across all indicators. This approach ensures a balanced evaluation of all criteria and facilitates the prioritization of subsidence countermeasures.

5 Application of the proposed approach

This paper analysed 49 cases distributed in 18 Countries, as shown in Fig. 1. The United States of America (USA), China and The Netherlands are the countries with the highest number of locations where applications of subsidence countermeasures have been reported. It is worth underlining that the number of cities known to be affected by subsidence differs from the cases investigated here (see for example Davydzenka et al., 2023; Pedretti et al., 2023).

Figure 1. World map showing the number of cases investigated per country. The size of the bubbles is proportional to the number of scientific papers considered in this study.

195

Figure 2 shows that 35 (71%) of the 49 investigated cases identify anthropogenic activities as the primary cause of subsidence, while the remaining 14 (29%) are attributed to natural causes. Additionally, 16 (32%) of the 49 cases haves also a secondary cause of subsidence, with 9 (18%) of them being anthropogenic and 7 (14%) being natural. In 9 (18%) of the 49 cases, subsidence is attributed to more than two causes. Groundwater extraction is the most common primary and secondary cause of subsidence, whereas construction loading and soil compaction are mostly identified as secondary or tertiary cause.

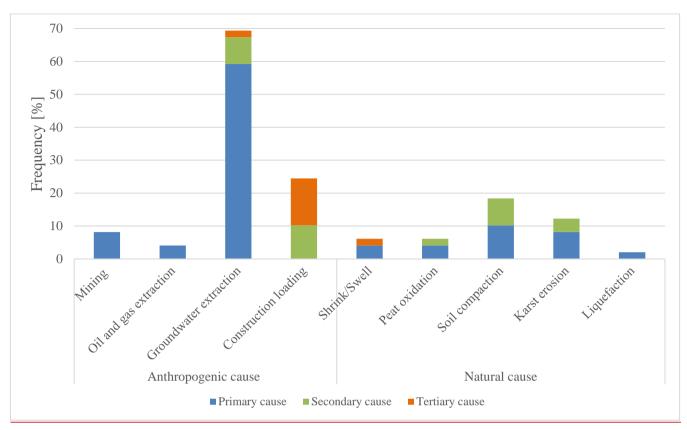


Figure 2. Frequency of the (anthropogenic and natural) causes of subsidence in the investigated case studies.

205

The analysis of the scientific literature, expert sessions and surveys reveals that 41 (84%) of the investigated cases are characterized by a geology predominantly composed of soils, while the remaining 8 (16%) are primarily composed of rocks (Fig. 3). Among the soil types, clay and sand are the most frequent, representing 13 (26%) and 12 (23%) of the cases, respectively. A single dominant lithology is observed in 30 (61%) of the 49 cases, whereas the remaining 19 (39%) exhibit a more complex geological structure with multiple lithologies.

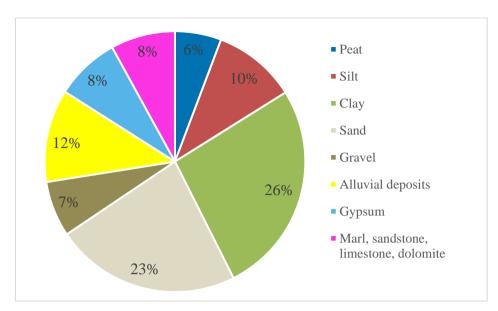


Figure 3. Distribution of geological types of the investigated case studies.

As for the subsidence reduction measures adopted in the investigated cases, Fig. 4 shows that in 25 cases (51%) the majority of the interventions (51%) are related to (ground)water management, followed by construction improvements in 19 cases (39%) and soil improvements in 5 cases (10%). The most frequently employed measures are 'Retention pond' (17%8 cases) and 'Aquifer recharge' (14%7 cases).

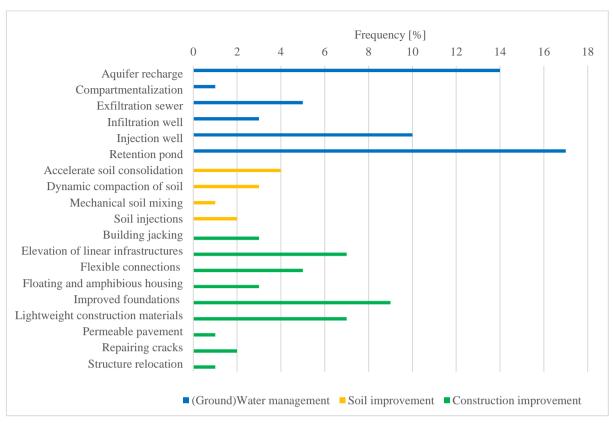


Figure 4. Frequency distribution of the subsidence reduction measures in the investigated cases.

220

Moreover, only 23 (47%) of the cases employ a single subsidence countermeasure; instead, 26 (53%) use a combination of measures (see also Table 1). Figure 5 shows a network graph where each node represents a subsidence countermeasure, and each link between two nodes indicates at least one case in which the two measures were used together. The subsidence countermeasure with the highest number of connections (11 links) is 'Improved foundations'. Notably, 'Mechanical soil mixing' was used exclusively in combination with 'Accelerate soil consolidation'.

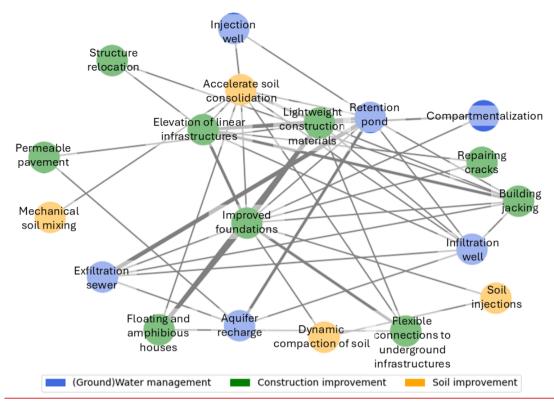


Figure 5. Network graph illustrating the connections among subsidence reduction measures used in the investigated cases. Each node represents a distinct countermeasure, while the connections between nodes indicate that two corresponding measures were implemented together in at least one of the investigated cases. The connection weight represents the number of times a connection is present in the case studies.

230 5.1 Applicability of subsidence reduction measures

235

The Question and Response (Q&R) system introduced in Section 4.1 was applied to evaluate the applicability of the subsidence reduction measures employed in the 49 investigated case studies (see Table B1 in Appendix B). Figure 6 illustrates the average results per subsidence countermeasure derived from the literature review, expert sessions and surveys. This figure can be used to identify suitable subsidence reduction measures for a specific case by disregarding those that do not meet the requirements, which can be done by checking the categories in the columns. Alternatively, the graph can be used to evaluate the applicability of existing subsidence countermeasures by reading it horizontally along the rows. A square marker indicates that a subsidence reduction measure belongs to a specific category or that a category includes a particular measure. When a subsidence reduction measure does not belong to a category, no markers are shown.

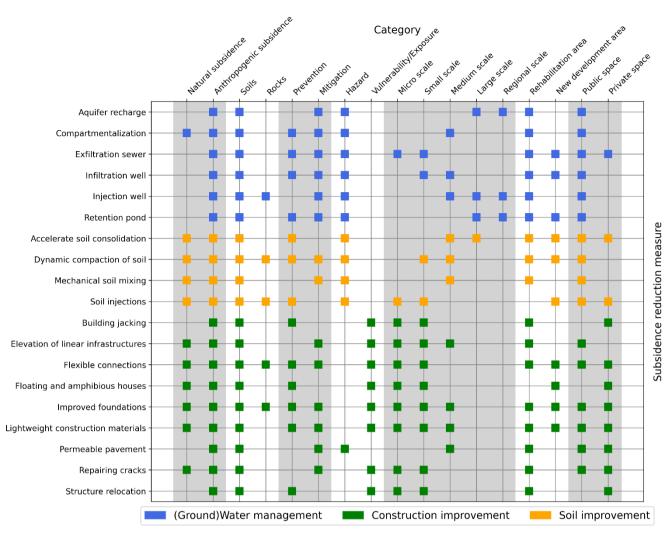


Figure 6. Subsidence reduction measures categorised according to the Question-and-Response (Q&R) system. The squares indicate the association between a measure and a category. The vertical grey shades highlight different groups of categories. Refer to Table B1 in Appendix B for a detailed version.

5.2 Effectiveness of subsidence reduction measures

The four indicators presented in Section 4.2 – reduction potential (RP), operational reliability (OR), negative impact (NI) and service life (SL) – were applied to evaluate the effectiveness of the subsidence reduction measures adopted in the 49 investigated case studies (see Table B1 in Appendix B). Table 4 summarizes the <u>average</u> results per subsidence countermeasure based on the outcomes of the literature review, <u>two</u> expert sessions and surveys <u>involving a total of 18 participants</u>. The mode is used as metric to assign a single value to each indicator of effectiveness for the subsidence countermeasures. In cases of

equally frequent results, expert judgment is preferred if available; otherwise, the highest value is assigned. It is important to note that fFor some subsidence reduction measures, some indicators are missing due to insufficient information in the consulted sources (see Table B1 in Appendix B). When no data is available, no value is assigned to the corresponding indicator of effectiveness. This limitation should be taken into account when using Table 4, as it may influence the prioritization and selection of subsidence countermeasures.

Table 4. Performance of subsidence reduction measures assessed using four indicators of effectiveness: reduction potential, operational reliability, negative impact and service life. This is a concise version of Table B1 in Appendix B.

	Indicator of effectiveness					
Subsidence reduction measure	Reduction	Operational	Negative	Service		
	potential	Reliability	impact	life		
	(Ground)Water mo	inagement				
Aquifer recharge	High	Fair	Significant	Long		
Compartmentalization	-	Good	Minimal	Long		
Exfiltration sewer	High	Good	Significant	Medium		
Infiltration well	High	Good	Significant	Medium		
Injection well	Medium	Fair	Significant	Long		
Retention pond	Medium	Fair	Significant	Medium		
	Soil improve	ment	'			
Accelerate soil consolidation	High	Good	Significant	Medium		
Dynamic compaction of soil	High	-	Significant	Medium		
Mechanical soil mixing	-	Good	Minimal	Long		
Soil injections	Medium	Fair	-	Medium		
	Construction imp	rovement		I		
Building jacking	High	Fair	Significant	Short		
Elevation of linear infrastructures	High	Good	Minimal	Medium		
Flexible connections	-	Fair	Minimal	Medium		
Floating and amphibious houses	High	Fair	Minimal	Long		
Improved foundations	High	Good	Minimal	Long		
Lightweight construction materials	High	Fair	Minimal	Medium		
Permeable pavement	-	Fair	Minimal	Long		
Repairing cracks	High	Good	Minimal	Short		
Structure relocation	High	Good	Significant	Long		

260 5.3 Selection of subsidence countermeasures based on applicability and effectiveness

This section demonstrates the application of the proposed procedure to three well-documented case studies to simulate its use in real-life scenarios.

• Shanghai (China)

275

285

First reports of subsidence in Shanghai (China) due to groundwater extraction date back to 1921, with an average rate of 2.6 cm/year (Erkens and Stouthamer, 2020; Yang et al., 2020; Ye et al., 2016). The extraction of groundwater for both domestic and industrial use peaked in the 1950s, accelerating subsidence up to 17 cm/year (Gambolati and Teatini, 2021). To contrast the spread of subsidence, restrictions on groundwater extraction were established in the 1960s (Han, 2003; Huang et al., 2015; Shi et al., 2016; Wu et al., 2020). During the same period, a network of extensometers, benchmarks and groundwater observation wells was installed to monitor subsidence (Erkens and Stouthamer, 2020; Ye et al., 2016).

In this context, subsidence countermeasures are necessary to mitigate subsidence in the predominantly <u>clayey soil based urban</u> and <u>peri-urban</u> areas of Shanghai, <u>which extends for more than 90,000 km² (Ye et al., 2016) at large/regional scale</u>. Based on their applicability (see Section 5.1), <u>four three</u> options are suitable: aquifer recharge (surface and trenches), <u>compartmentalization</u>, injection well, and retention pond. Considering their effectiveness (see Section 5.2), <u>the two subsidence countermeasures to be preferred are this selection can be narrowed down to three options: aquifer recharge (surface and trenches) <u>and</u>, injection well, <u>and retention pond</u>.</u>

The literature indicates that, aquifer recharge from surface was considered unfeasible due to higher costs (Shi et al., 2016). Instead, injection wells were preferred for recharging deep aquifers due to given the topography and land use of the city; injection wells were employed to recharge deep aquifers (Han, 2003; Huang et al., 2015; Shi et al., 2016; Wu et al., 2020). Other measures, such as aquifer recharge from surface, were considered unfeasible due to higher costs (Shi et al., 2016). Nowadays, the monitoring network closely controls the rate of subsidence in Shanghai, maintaining it below 0.6 cm/year (Yang et al., 2020). If subsidence exceeds 0.6 cm/yearthis threshold, the amount of injected water is adjusted, and additional countermeasures are implemented as necessary (Erkens and Stouthamer, 2020). The quality of the injected water is also closely monitored to minimize pollution and prevent clogging of pores (Shi et al., 2016).

It can be concluded that the subsidence countermeasure employed in Shanghai in real life aligns with the results of the proposed approach. The final selection among equally viable measures of injection wells over aquifer recharge from surface primarily depends on cost considerations and more detailed site-specific evaluations that are not part of the current approach.

• Jakarta (Indonesia)

Subsidence was first observed in Jakarta (Indonesia) during Dutch colonization in 1925-1926, although little is known about the sinking rates measured at the time (Abidin et al., 2005). In Jakarta, subsidence was slow to be acknowledged as a potential disaster. Investigations were discontinued until 1978, when the impacts of subsidence became evident as cracking of (infra)structures, malfunctioning drainage systems, lowering of the groundwater level, increased sea water intrusion and expansion of the flood-prone area (Abidin et al., 2011; Andreas et al., 2018; Erkens and Stouthamer, 2020). Additionally, the excessive extraction of groundwater caused the water table to drop significantly, limiting the access to clean potable water (Abidin et al., 2011; Andreas et al., 2018). The first levelling measurements indicated an average subsidence rate of 6 cm/year between 1991 and 1997, with peaks of 25 cm/year in some locations (Abidin et al., 2005, 2011). Over this six-years period, the cumulative subsidence reached up to 160 cm, particularly in the costal areas between 1991 and 1997 (Abidin et al., 2005, 2011). Continuous groundwater extraction, extensive urbanization and the presence of relatively young alluvial soils have since increased subsidence rates, with current velocity of 11-12 cm/year in the most affected areas of Jakarta (Abidin et al., 2015). Only after a severe flood in 2007 that submerged 40% of the city, local authorities and governments recognized the severity of the problem and began seeking solutions to mitigate and prevent subsidence and damage to structures (Bucx et al., 2015; Erkens et al., 2015).

In this context, a wider range of subsidence countermeasures is applicable to reducemitigate and prevent i) subsidence in the inhabited area of Jakarta, which spans approximately 660 km², at large/regional scale and ii) damage to (infra)structures at small/medium scaleneighbourhood level (Abidin et al., 2011). (see Section 5.1). Measures to reduce subsidence at large/regional scale include At large scale, measures to mitigate subsidence include aquifer recharge (surface and trenches), compartmentalization, injection well, and retention pond; while retention pond and accelerate soil consolidation are suitable to prevent subsidence (see Section 5.1). At small scale, measures to mitigate damage to (infra)structures include elevation of linear infrastructures, flexible connections, improved foundations, lightweight construction materials, and repairing of cracks; while building jacking, flexible connections, improved foundations, lightweight construction materials, and structure relocation are suitable to prevent damage (see Section 5.1). Measures to reduce damage to structures at small/medium scale include building jacking, elevation of linear infrastructures, lightweight construction materials, and structure relocation. Based on their effectiveness (see Section 5.2), aquifer recharge (surface and trenches), accelerate soil consolidation and injection well should be prioritised compartmentalization and building jacking should be discarded to contrast subsidence at large scale. At small scale, improved foundations, structure relocation and elevation of linear infrastructures should be prioritized to reduce damage to (infra)structures.

According to the literature, <u>regulations on groundwater extraction have been introduced</u> to contrast subsidence in Jakarta; <u>instead</u>, <u>and damage to structures</u>, <u>regulations on groundwater extraction</u>, building jacking and elevation of linear infrastructures with sand fill have been extensively adopted <u>to prevent and mitigate damage to (infra)structures</u> (Akbar et al., 2019; Andreas et al., 2018; Saputra et al., 2017, 2019). Additional countermeasures, such as <u>retention ponds</u>, aquifer recharge, <u>injection wells</u> and exfiltration sewers have been proposed in recent years <u>to tackle the water crisis and mitigate subsidence</u>, <u>but have not yet implemented</u> (Abidin et al., 2015; Akbar et al., 2019; Pramono, 2021). <u>In parallel, retention ponds have been</u>

constructed to manage rainwater runoff and reduce flooding in the Kebon Jeruk sub-district, and deep foundations are

increasingly in use in new development areas to prevent damage. However, the subsidence in Jakarta is so severe that local governments decided to relocate a consistent portion of the city (Herrera-García et al., 2021).

Compared to Shanghai, the case of Jakarta is more complex. Groundwater serves as the primary source of potable water, but its excessive extraction accelerates the natural subsidence of alluvial soils, rendering the city more vulnerable to flooding and sea water intrusion. These factors, in turn, compromise the availability and quality of freshwater. As a result, local governments are seeking solutions to address multiple interconnected issues: subsidence, flood risk, freshwater scarcity, and deteriorating water quality. This complexity requires a broader set of options, which extends beyond the scope of this study. Instead, the proposed approach focuses strictly on subsidence reduction and does not account for other related issues. Therefore, while retention ponds are not considered suitable for reducing subsidence in Jakarta within this framework, they may still be viable for addressing other challenges. Similarly, building jacking may be more effective in managing flood risk than contrasting damage to (infra)structures caused by subsidence in Jakarta. Nevertheless.

Similarly to Shanghai, the subsidence countermeasures employed in Jakarta <u>overall</u> align with the results of the proposed approach. It is interesting to notice how building jacking, which was implemented in real life in Jakarta but discarded by the proposed procedure, proved ineffective in contrasting damage to structures.

• San Joaquin Valley (USA, California)

330

335

340

345

350

Subsidence in San Joaquin Valley (USA, California) due to groundwater extraction for agriculture was observed since the 1920s (Galloway and Riley, 1999). Continuous exploitation of deep confined aquifer and the consequent soil compaction of soil ledcaused an area larger than 10.000 km² to sink by an average of 31 cm subsidence between 1925 and 1970 (Galloway and Riley, 1999). In some localised areas, subsidence reached of up to 8.53 m during the same period. In the 1960s, an extensive monitoring network composed of 31 extensometers was implemented to measure soil compaction rates and determine the extent of subsidence (Poland, 1984; USGS, 2024). Since the 1970s, alternative surface water, such as the California Aqueduct and other canals, have been supplied allowing a gradual reduction of groundwater extraction. However, recurring droughts in 1976-77, 1986-92, 2007-09, and 2012-2015 drastically reduced surface water availability, leading to a renewed increase in groundwater extraction and aquifer compaction (Galloway and Riley, 1999, USGS, 2024). Between 2006 and 2022, subsidence was estimated to have reached 13 km³, with rates as high as 0.84 km³/year during droughts and periods of intense groundwater extraction (USGS, 2024).

Based on their applicability (see Section 5.1), suitable measures to mitigate subsidence <u>at regional scale</u> in this soil-dominant area, <u>primarily composed of alluvial deposits</u>, on a <u>large/regional scale</u> include aquifer recharge (surface and trenches), <u>compartmentalization</u>, injection well, and retention pond. Considering their effectiveness (see Section 5.2), this selection can be narrowed down to aquifer recharge (surface and trenches), <u>and injection well</u>, and retention pond.

The Sustainable Groundwater Management Act (SGMA) - a legislation passed in 2014 – represents a significant step towards sustainable water management in San Joaquin Valley, aiming to contrast groundwater depletion, aquifer compaction and the

impacts of droughts (Lees et al., 2021). Recently, initiatives have been launched to replenish groundwater by recharging shallow aquifers through surface water percolation, thus helping balance extraction with natural recharge rates (Lees et al., 2021). Among these initiatives, one key strategy is the flood-managed aquifer recharge (Flood-MAR) that combines shallow and deep aquifer management with management of extreme weather events like floods and droughts to preserve agricultural land and minimise damage to infrastructures (Flood-MAR, 2024). Additionally, promoting sustainable water use practices in agriculture and urban areas has become a priority to minimize wastage (USGS, 2024).

Similarly to the previous cases, the subsidence countermeasure employed in San Joaquin Valley aligns with the results of this study. In this case, aquifer recharge (surface and trenches) was preferred over injection wells because it can handle larger volumes of water (approximately 220 billion gallons of water are needed annually), it integrates with natural systems (e.g., river and trenches), it does not need large infrastructural works, and it is more environmentally sustainable. This case further underlines the importance of conducting detailed assessments of the suitability of subsidence reduction measures to also address changing climates and promote sustainable solutions.

6 Discussion

360

365

370

375

380

385

In the previous section, a review of 49 cases distributed in 18 countries gathered from scientific papers, technical articles, expert sessions and surveys was conducted to formulate a twofold strategy to select subsidence reduction measures in urban areas based on their applicability and performance. The proposed method consists of two steps: the Question-and-Response (Q&R) system for identifying measures tailored to the specific requirements of each case, and the indicators of effectiveness for evaluating the performance of subsidence countermeasures.

The Q&R system proved useful for an initial screening of subsidence reduction measures. Seven questions were determined to categorize the subsidence countermeasures based on the area's geology, cause of subsidence, scale of application, objective of the intervention and type of urban area. With this system, stakeholders and decision makers can determine the applicability of measures to specific cases and focus on a more limited number of choices. Each subsidence reduction measure can satisfy the requirements of multiple categories, which can be combined to create tailored decision trees. The proposed Q&R system could be further refined by adding sub-categories accounting for construction and maintenance costs, hydro-geological, geotechnical and structural engineering settings. Also, the current Q&R system disregards the indirect effects of subsidence (e.g., the increased risk of flooding or seawater intrusion). In a more comprehensive risk management framework, where subsidence is not the only treat, the Q&R system should be improved to account for multiple hazards and effects.

The indicators of effectiveness proposed in this paper (i.e., reduction potential, operational reliability, negative impact and service life) allowed an initial assessment of the performance of subsidence reduction measures. Using these indicators, stakeholders and decision makers can rapidly assess the effectiveness of suitable subsidence reduction measures selected via the Q&R system. Further improvements of the proposed method may involve novel indicators, such as inclusiveness (what societal groups are targeted) and responsibility (allocation of risks in public-private partnerships). At this stage, the proposed

procedure allows a qualitative assessment of effectiveness based on the joint evaluation of each indicator's performance. The evaluation of performance in Table 4 needs further refinement by considering a broader and well-documented range of cases. Currently, the information available to structure the scoring is limited, as demonstrated in Table B1 in Appendix B. This affects the criteria used to assign scores, possibly leading to over- or underestimations of the effectiveness of certain subsidence countermeasures. and this limitation should be taken into account when applying the indicators from Table 4, as it may influence the selection of subsidence reduction measures. This The lack of comprehensive and consistent data further underlines the need to collect and share experiences in evaluating the performance of subsidence reduction measures to create a more systematic framework. Once a sufficient number of applications is available for each subsidence reduction measure, quantitative estimations and ranking will also be possible. Additionally, more research is needed to determine the acceptable or unacceptable thresholds for the indicators of effectiveness, also considering the positive or negative interaction of subsidence countermeasures with adjacent assets.

390

395

400

405

410

415

420

The cases of Shanghai (China), Jakarta (Indonesia) and San Joaquin Valley (USA, California) demonstrate that the proposed two-step procedure to select subsidence countermeasures based on their applicability and effectiveness is promising. In both Shanghai and San Joaquin Valley, where the primary goal was subsidence mitigation at regional scale (i.e., > 1000 km²)the problem was well formulated and the key requirements were specific, the Q&R system identified four three suitable options, then narrowed down to three two based ony the indicators of effectiveness. In both cases, the two most effective countermeasures (i.e., aquifer recharge and injection well) matched the options considered or implemented in practiceall the subsidence countermeasures employed in reality were among the proposed options resulting from this procedure. The case of Shanghai underlines that, when subsidence countermeasures have similar levels of effectiveness, cost considerations often play a decisive role, especially at larger scales where costs can escalate significantly. In San Joaquin Valley, the discriminating factors were primarily the volume of recharged water (estimated at approximately 220 billion gallons annually) and the sustainability of subsidence countermeasures. Both examples emphasise the importance of site-specific considerations and multi-criteria assessments that weigh effectiveness alongside costs and sustainability. In Jakarta, eight-eleven different options were identified by the system based on their applicability to mitigate or prevent subsidence at large scale (i.e., 10-1,000 km²) and damage to (infra)structures at small scale (i.e., 0.1-1 km²). This broader set of options was -then narrowed down to six based on their effectiveness. In this case, five subsidence countermeasures identified by the procedure matched those employed or proposed in reality practice were correctly identified by the system, whereas one was discarded. Two additional countermeasures (i.e., retention pond and building jacking) that were deemed ineffective by the proposed procedure to contrast subsidence or damage to (infra)structures were implemented in Jakarta. However, these countermeasures were used to manage increased flood risk rather than subsidence.

These findingsis demonstrates that, besides the necessary refinements to enhance the accuracy of the proposed method in selecting subsidence reduction measures, careful interpretation of the results is essential. This involves considering the wide variety of subsidence reduction measures, the <u>underlying</u> causes of subsidence, the site-specific settings, and any potential negative or secondary effects, and the long-term sustainability of countermeasures. Environmental considerations encompass

potential alterations of local ecosystems, changes to water quality, depletion of natural resources, and increased energy consumption with associated carbon emissions. For instance, creating artificial retention ponds may disrupt natural habitats. while recharging aquifers – whether through surface or deep injections – may affect water quality. Similarly, infrastructureheavy solutions, such as injection wells, can contribute to greenhouse gas emissions, especially if they rely on non-renewable energy sources. Social impacts involve the displacement of communities due to relocation, leading to social stress and loss of community identity. Equity issues can also arise, as the increased costs or reduced availability of potable water disproportionately affect low-income populations. Other economic implications include rising property values, which can lead to gentrification and displacement of lower-income residents. Given these challenges, stakeholder and decision makers should adopt a multidimensional approach to subsidence (risk) management that integrates technical considerations with environmental stewardship, social equity, and economic feasibility. Proactively addressing the indirect consequences of subsidence reduction measures can contribute to sustainable and resilient urban development. Additionally, in settings with compound hazards, such as Jakarta, broader contextual analyses are necessary to fully understand the applicability and effectiveness of specific countermeasures. For a thorough validation of the proposed method, a detailed evaluation of effectiveness via measurable parameters – such as water table levels, water infiltration rates, volume of extracted or recharged water, soil compaction, surface rebound, settlement rates, crack widths – is crucial. It is rather surprising how few cases are reported in literature, and even fewer with sufficient evaluation of effectiveness. The consistent use of the four indicators of effectiveness specifically derived for evaluating the subsidence countermeasures presented in this paper can serve as the basis and catalyst for this.

7 Conclusions

425

430

435

440

445

450

455

Subsidence is a relatively slow process with moderate intensity that is rarely perceived as an imminent disaster. However, its physical, socioeconomic and environmental impacts in urban areas require tailored reduction policies encompassing both mitigation and prevention strategies.

After defining key terminology (i.e., reduction, mitigation, prevention, adaptation, structural and non-structural measures), this paper proposed a twofold strategy to select structural (i.e., technical) measures to contrast subsidence and its physical consequences in urban areas based on their applicability and effectiveness. The objective is to assist stakeholders and decision makers in managing subsidence (risk) in urban areas, with particular attention to the planning and implementation phases of the subsidence risk frameworks.

Despite the preliminary nature of this work, the proposed methods for selecting subsidence reduction measures and evaluating their effectiveness constitute a novelty in the scientific literature on subsidence studies and mitigation/prevention strategies as no framework currently exists to assess applicable and effective measures. Refinements and further validations are needed to integrate the procedure into current subsidence management practices in urban areas, with specific attention to the local hydrogeological, geotechnical, structural, environmental and social settings where countermeasures are needed. Therefore, at

its current stage, the methodology proposed in this paper should be considered as a preliminary tool for stakeholders and decision makers to identify a set of suitable solutions, which should be further discussed with local experts. Moreover, with appropriate adjustments, the presented methodologies could be applied also for selecting and evaluating the performance of non-structural (i.e., non-technical) measures, subsidence reduction measures in rural areas and secondary subsidence effects.

460 Appendix A: Description of subsidence reduction measures

Table A1 provides a brief description and alternative names of structural (i.e., technical) measures considered in this paper to prevent and mitigate (i.e., reduce) subsidence and its physical consequences in urban areas. The countermeasures in Table A1 are organized in (Ground)Water management, Soil interventions and Construction interventions.

465 Table A1. Structural (i.e., technical) measures to reduce subsidence and its physical consequences in urban areas.

Subsidence reduction measure	Alternative names	Description
	(Gre	ound)Water management
Aquifer recharge (surface spreading and trenches)	Planned recharge Induced recharge Artificial recharge	Water is spread or impounded on the ground surface, so that it infiltrates through permeable soils (sand or gravel) into an unconfined aquifer. Trenches can also be used to collect runoff water and infiltrate it into the soil.
Compartmentalization		Large polder areas are divided into smaller portions by vertical waterproof barriers, typically made of retaining walls or clay walls. This creates a hydraulic barrier in the subsurface between compartments to maintain a stable groundwater level in each compartment.
Exfiltration sewer	Exfiltration trench Perforated pipe Clean water collector Exfiltration pipe	Perforated pipes (usually in PVC or vinyl) redistribute excessive surface or runoff water into the soil while being conveyed. If the groundwater level around the perforated pipe is higher than the water table inside the pipe, then the water conveys as in a conventional sewer. Downpipes from rooftops can be directed the exfiltration sewer instead of wastewater sewers. The exfiltration sewers can be connected to retention ponds and infiltration wells and, if the water needs to be moved from lower to higher altitude, a mechanical water pump can facilitate the circulation of water.
Injection well	Recharge well Artificial fluid injection Deep wells	Deep confined aquifers are repressurized by injecting fluids through wells into porous geologic formations (sand, gravel or clay). The injection pipe is usually placed in a fiberglass-reinforced plastic casing. The well is finished with cement grouting, sand, well screen and gravel pack.

		Excessive surface water is collected into a perforated plastic pipe of
		typically 10 cm in diameter during rainfall events and it is redistributed into
Infiltration well	Biopore hole	compacted soils with poor infiltration rate. The infiltration wells can be also
		connected to sewer exfiltration systems, and they can be filled with organic
		waste to improve soil fertilization.
	Retention basin	This is a permanent catchment area suitable for urban areas to provide
	Catchment area/basin	additional water storage capacity and attenuate surface runoff during rainfal
Retention pond	Wet/Storm pond	events. By placing coarse draining material at the bottom (bed) of the pond
	Rainwater harvesting	water can filtrate in the surrounding soil keeping the desired groundwater
	Water banking	level.
		Soil improvement
		Vertical drains, sand pipes and trenches are placed up to a depth of 35 m to
		quickly dissipate excessive pore water from soft or organic soils, thus
		accelerating their consolidation. Additional loads can be applied to the soil
Accelerate soil consolidation		by lowering the atmospheric pressure inside the drains, and therefore apply
		vacuum pressure. This method is usually used to prepare the soil before the
		construction of (infra)structures.
		A heavy steel weight is repeatedly dropped on the ground surface to generat
		vibrations that, once transmitted to the subsurface, improve and densify soil
Dynamic compaction of soil		and filling materials. It is mainly used to treat soils beneath foundations
		before the construction of (infra)structures. Therefore, the steel weight is
		dropped in selected locations forming a regular grid pattern.
		Natural soil is mixed with cement or compound binders to improve its
Mechanical soil mixing	Deep soil mixing	mechanical and physical properties. The mechanical binders can be operated
Weenamear son mixing	Deep son mixing	in either wet or dry conditions, depending on the typology of soil and the
		improved characteristics to be achieved.
		Additives are injected into the subsurface through one or more pipes
		installed vertically into the ground, thus improving the strength, load-bearing
	77 · 1 6:11·	capacity and stability of soft soils. Natural materials as sand, fly ashes or
Soil injections	Void filling	rock powder are mostly used for soft soils. Crushed waste concrete, tire
	Subgrade stabilization	crumb rubber, hydrated lime, resins and polymers have been tested
		successfully in clay soils. Jet grouting of Portland cement or chemical grout
		and foams are mostly used when cavities form into the ground.
		onstruction improvement

Building jacking	Construction lift House raising or lifting	A construction is lifted above its existing foundation to (re-)build a new one at a higher or similar level.
Elevation of linear infrastructures	Sand fill	The surface area of infrastructures as roads and railways are lifted by placing an additional layer of material (typically sand and/or road material) on top of existing subsiding layers. In case of bridges, also new (deep) foundations are usually built to elevate the bridge shoulders.
Flexible connections to underground infrastructures	Flexible joints	Thermoplastic composite materials or flexible connections are used to join two components of (underground) infrastructures, as pipelines, thus permitting relative movements and providing them with major flexibility.
Floating and amphibious houses		Houses can be built on a water body and be designed with a floating system at their base to allow them floating on water.
Improved foundations	Foundation strengthening, replacement, repair, restoration or improvement of foundations	 Several methods allows to repair, restore, improve or replace (building) foundations to re-establish their structural capacity: Slab jacking, also called concrete lifting, slab levelling or mud jacking. It is a reparation method used to relevel uneven or sinking concrete slabs. Small holes are drilled into the concrete slab, and strong cementing mixture is injected under the slab to align it back to its original position. Cement mixture, polymer resin, sand, gravel, ash and polyurethane foam can be used as base material. Underpinning, also called piering. A system of vertical anchors is installed below an existing foundation to reach deeper soil layers with better geo-mechanical properties. This method can be used either to strengthen an existing foundation or to improve the soil before placing a new foundation system. Different techniques can be adopted to achieve this: a. Mass concrete underpinning. The soil around an existing foundation is excavated through controlled stages (or pins) and, when a new suitable foundation soil layer is reached, the excavation is filled with concrete. b. Cantilever needle beam underpinning. The area surrounding the foundation is excavated and a cantilever needle beam is placed through a hole cut in the existing foundation wall. The beam is supported by micropiles, which are placed before excavation.
		 c. Pier and beam underpinning. Helical or push piers made of galvanized or epoxy-coated steel are drilled below the foundation till reaching a suitable depth where concrete bases are placed. d. Micropiling underpinning. Micropiles are driven below the existing foundation with a certain inclination. Earth is excavated till the top of the

		pile to be able to replace the earth between the foundation and the pile with
		concrete.
		e. Pile underpinning. Piles are driven in the proximity of a foundation wall.
		Then, a needle beam is placed through the foundation wall and connected to
		the adjacent piles.
		 Installation of (additional) piles. It consists in placing (additional) piles or micro-piles below an existing (shallow) foundation to redistribute the loading. Reduction of bacterial decay in wooden piles. Wooden piles area treated with special coatings to preserve them from unforeseen
		 anaerobic conditions and degradation. Reduction of negative adhesion/friction around piles. When piles pass through cohesive soils, they can experience negative adhesion due to downwards shear drag movements. This can be reduced by using anti-friction coatings around the piles, by improving the soil characteristics with injections, or by using slender pile sections (e.g., H-pile or precast pile) with smaller pile area. Reinforced geotextiles. Geotextiles can be places on top of a system of piles to improve their bearing capacity. This technique is used often to reinforce the foundations of roads and railways.
		Lightweight aggregates can be added to the cement to reduce the
		construction load. Pumice, scoria, volcanic cinders, tuff, diatomite, heating
Lightweight construction		clay, shale, slate, diatomaceous shale, perlite, obsidian and vermiculite can
materials		be used as lightweight aggregates. For road construction, cellular
		geosynthetics (geofoams and geocombs), the block-moulded expanded
		polystyrene (EPS) and recycled plastic can be used.
		A porous paving surface is made of permeable pavers (in concrete or
		polymer), concrete or asphalt that allow surface or rainwater to pass through
Permeable pavement	Permeable paving or	or around them and be slowly infiltrated into the soil. This pavement allows
	porous asphalt	reducing the runoff volume and peak rates of water discharge, and it is
		mostly used for parking lots, sidewalks or low-traffic roads.
		Different foam- and resin-based materials are used to repair cracks that
		appear on building facades or road pavements. Additional filling materials
Repairing cracks		are fibre cement, epoxy resin, non-shrink grouts, hot rubber and polymer
		asphalt. Buildings are physically moved from their original location to another. This
Structure relocation		can be done by disassembling and reassembling the construction, or by
		transporting it whole to the new location. This method is used especially for
		monumental buildings.

Appendix B: Applicability and effectiveness

Table B.1 reports the assessment of applicability (see Section 4.1) and effectiveness (see Section 4.2) of the subsidence reduction measures adopted in the 49 cases investigated in this paper.

Table B.1. Assessment of applicability and effectiveness of subsidence reduction measures employed in the 49 investigated cases derived from literature review, expert sessions and surveys. The applicability results from the Question-and-Response (Q&R) decision tree system. Effectiveness is evaluated using the indicators of reduction potential (RP), operational reliability (OR), negative impact (NI) and service life (SL). NA denotes 'Not Available' information.

Reference		_	Applicability	y		Indicator of effective			ess
Keierence	Scale	Objective	Target	Urban area	Space	RP	OR	NI	SL
		Aquifer rech	arge (surface :	spreading and tre	enches)	•		_	
Abidin et al., 2015	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	NA
Bell et al., 2002	Large	Mitigation	Hazard	Rehabilitation	NA	High	Fair	Significant	Long
Han, 2003	Large, regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	Long
Jha et al., 2009	Large	Mitigation	Hazard	Rehabilitation	Public	Mediu m	NA	Significant	Long
Nutalaya et al., 1996	Large	Mitigation	Hazard	Rehabilitation	Public	High	NA	Significant	Long
Pacheco-Martínez et al., 2013	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	Bad	Significant	Long
Poland, 1984	Regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	NA
Sneed and Brandt, 2020	NA	Mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	NA
Szucs et al., 2009	NA	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Significant	Long
Ting et al., 2020	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	Goo d	Minimal	Long
Expert sessions and survey	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	Fair	NA	Long
			Compartmen	talization					
Kok and Hommes-Slag, 2020	Medium	Prevention , mitigation	Hazard	Rehabilitation	Public	NA	Goo d	Minimal	Long
Kok and Hommes-Slag, 2020	Medium		Hazard <i>Exfiltratio</i>		Public	NA NA		Minimal	Lon

Jha et al., 2009	Small	Mitigation	Hazard	Rehabilitation	Public	Mediu m	NA	Minimal	Mediu m
McBean et al., 2019	Small	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	Mediu m
Pramono, 2021	Micro	Mitigation	Hazard	Rehabilitation	Privat e	NA	NA	NA	NA
Expert sessions and survey	Small	Prevention , mitigation	Hazard	Rehabilitation , new development	Public	High	Goo d	Significant	Mediu m
	_		Infiltratio	n well					
Andriani et al., 2021	Medium	Prevention , mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	Mediu m
Saputra et al., 2017	NA	Mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	NA
Szucs et al., 2009	NA	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Significant	Mediu m
Expert sessions and survey	Small	Prevention , mitigation	Hazard	Rehabilitation , new development	Public	High	Goo d	Significant	Long
			Injection	well		ı	1	1	ı
Brighenti, 1991	NA	Mitigation	Hazard	NA	NA	NA	NA	Significant	Short
Galloway and Riley, 1999	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Significant	Long
Gambolati et al., 2005	Regional	Mitigation	Hazard	Rehabilitation	Public	Mediu m	NA	Minimal	Short
Han, 2003	Regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	Long
Huang et al., 2015	Medium	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Minimal	Long
Li et al., 2021	Regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	Significant	Long
Phien-Wej et al., 1998	Medium , large	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Significant	Short
Poland, 1984	Regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	Significant	Long
Shi et al., 2016	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	Fair	Significant	Long
Tang et al., 2022	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Minimal	Long
Testa, 1991	NA	Mitigation	Hazard	NA	NA	Low	NA	NA	NA
Wu et al., 2020	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Minimal	Short
Yang et al., 2020	NA	Mitigation	Hazard	Rehabilitation	Public	NA	Goo d	Minimal	Long
Ye et al., 2016	Regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	Minimal	Long
Expert sessions and survey	Medium	Mitigation	Hazard	Rehabilitation	Public	Mediu m	Fair	Significant	Short

			Retention	pond					
Akbar et al., 2019	Large	Mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	NA
Andriani et al., 2021	Large	Mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	Mediu m
Bell et al., 2002	Large	Mitigation	Hazard	Rehabilitation	NA	High	Fair	Significant	Mediu m
Galloway and Riley, 1999	Large, regional	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Significant	Mediu m
Han, 2003	Regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	Mediu m
Jha et al., 2009	Large	Mitigation	Hazard	Rehabilitation	Public	Mediu m	-	Significant	Mediu m
Lixin et al., 2022	Regional	Prevention , mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	NA
Poland, 1984	Regional	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	Mediu m
Pramono, 2021	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	NA
Sneed and Brandt, 2020	NA	Mitigation	Hazard	Rehabilitation	Public	NA	NA	NA	NA
Szucs et al., 2009	NA	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Significant	Mediu m
Ting et al., 2020	Regional	Mitigation	Hazard	Rehabilitation	Public	NA	Goo d	Minimal	Mediu m
Zektser et al., 2005	NA	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	Mediu m
Expert sessions and survey	Large	Prevention , mitigation	Hazard	Rehabilitation , new development	Public	Mediu m	Fair	Significant	Mediu m
	1	A	ccelerate soil c	onsolidation	1	ı		1	1
Andriani et al., 2021	Large	Prevention	Hazard	Rehabilitation , new development	Public, private	NA	NA	NA	Mediu m
Bergado et al., 1993	Medium	NA	Hazard	NA	NA	NA	NA	NA	Long
Poland, 1984	NA	Prevention	Hazard	Rehabilitation	NA	NA	Goo d	NA	Long
Ritzema, 2015	Medium	Prevention	Hazard	New development	Public, private	NA	NA	NA	NA
Expert sessions and survey	Medium	Prevention	Hazard	New development	Public, private	High	Goo d	Significant	Mediu m
		D	ynamic compa	ction of soil		r			1
Al-Zabedy and Al-Kifae, 2020	Medium	Prevention	Hazard	New development	NA	High	NA	NA	Mediu m
Hamidi et al., 2011	Small, medium	Prevention	Hazard	New development	Public	NA	NA	Significant	Mediu m
	·		1	I.			1	I	<u> </u>

Liang et al., 2015	Small	Mitigation	Hazard	Rehabilitation	Public	NA	NA	Significant	Mediu m
Shen et al., 2019	Medium	Mitigation	Hazard	Rehabilitation	NA	NA	NA	NA	Mediu m
		<u> </u>	Mechanical so	oil mixing			I		111
Bergado et al., 1993	Medium	Mitigation	Hazard	Rehabilitation	Public	NA	Goo d	Minimal	Long
	ı	Į.	Soil injec	tions	ı	I	1	•	II.
Al-Zabedy and Al-Kifae, 2020	Small	Prevention	Hazard	New development	Public, private	Mediu m	NA	NA	Mediu m
Xuan et al., 2015	Micro	Prevention	Hazard	New development	Public, private	NA	Fair	NA	Short
	ı	Į.	Building je	acking		I	1		
Andreas et al., 2018	Small	Prevention	Vulnerabilit y & exposure	Rehabilitation	Privat e	NA	NA	NA	NA
Saputra et al., 2017	NA	Prevention	Vulnerabilit y & exposure	Rehabilitation	Privat e	NA	NA	NA	NA
Expert sessions and survey	Micro, small	Prevention	Vulnerabilit y & exposure	Rehabilitation	Privat e	High	Fair	Significant	Short
	ı	Elev	ation of linear	infrastructures	I		ı		1
Akbar et al., 2019	Medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public	NA	NA	NA	NA
Andreas et al., 2018	Micro, small, medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public	NA	NA	NA	NA
Andriani et al., 2021	Medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public	NA	NA	NA	Mediu m
Carreón-Freyre et al., 2010	Small, medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public	High	Goo d	Minimal	Mediu m
Kok and Hommes-Slag, 2020	Medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public	NA	NA	NA	NA
Poland, 1984	Medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	NA	NA	NA	NA	Long
	1	lexible conn	ections to unde	erground infrasti	ructures				
Alferink and Cordóva, 2017	Micro, small	Prevention	Vulnerabilit y & exposure	Rehabilitation , new development	NA	NA	Fair	Minimal	Mediu m

Gutiérrez and Cooper, 2002	Micro	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation , new development	NA	NA	NA	NA	NA				
Paukstys et al., 1999	Small	Prevention	Vulnerabilit y & exposure	New development	NA	NA	NA	NA	NA				
Ritzema, 2015	Small	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation , new development	Public, private	NA	NA	NA	NA				
	Floating and amphibious housing												
Basak and Chowdhury, 2021	Small	Prevention	Vulnerabilit y & exposure	New development	Privat e	NA	NA	Minimal	Long				
English et al., 2016	Small	Prevention	Vulnerabilit y & exposure	New development	Privat e	NA	NA	Minimal	Long				
Pötz and Bleuzé, 2009	Small	NA	NA	NA	NA	NA	NA	NA	Long				
Ritzema, 2015	Small	Prevention	Vulnerabilit y & exposure	New development	Privat e	NA	NA	NA	NA				
Expert sessions and survey	Micro, small	Prevention	Vulnerabilit y & exposure	New development	Privat e	High	Fair	Minimal	Long				
			Improved fou	ndations									
Al-Zabedy and Al-Kifae, 2020	Medium	Prevention	Vulnerabilit y & exposure	New development	NA	Mediu m	NA	NA	Long				
Deakin, 2005	Micro, small	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Privat e	NA	NA	NA	Short				
Gutiérrez and Cooper, 2002	Micro, small	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation , new development	NA	NA	NA	NA	NA				
Kok and Hommes-Slag, 2020	Medium	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation	Privat e	NA	NA	Minimal	Long				
Ovando-Shelley et al., 2013	NA	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation	Public, private	NA	Goo d	Minimal	Long				

Poland, 1984	Medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	NA	NA	NA	NA	Long
Ritzema, 2015	Medium	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation , new development	Public, private	NA	NA	NA	NA
Expert sessions and survey	Small, medium	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation	Privat e	High	Goo d	Minimal	Long
		Light	tweight constru	ction materials	•	•	•	-	•
Andriani et al., 2021	Small	Mitigation	Vulnerabilit y & exposure	Rehabilitation , new development	Public, private	NA	NA	NA	Mediu m
Kohlnhofer, 1992	NA	Prevention	Vulnerabilit y & exposure	New development	Public	NA	NA	Minimal	Long
Kok and Hommes-Slag, 2020	Medium	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public, private	NA	NA	NA	NA
Ritzema, 2015	Medium	Prevention	Vulnerabilit y & exposure	New development	Public, private	NA	NA	NA	NA
Saputra et al., 2017	NA	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation	NA	NA	NA	NA	NA
Expert sessions and survey	Micro, small	Prevention , mitigation	Vulnerabilit y & exposure	Rehabilitation , new development	Public, private	High	Fair	Minimal	Mediu m
		1	Permeable p	avement	1	ı			
Poland, 1984	Medium	Mitigation	Hazard **Repairing**	Rehabilitation	Public, private	NA	Fair	Minimal	Long
			Kepan ing	crucus					
Carreón-Freyre et al., 2010	Micro	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public	High	Goo d	Minimal	Mediu m
Deakin, 2005	Micro, small	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Privat e	NA	NA	NA	Short
Luo et al., 2019	Micro	Mitigation	Vulnerabilit y & exposure	Rehabilitation	Public	NA	NA	NA	Short
			Structure re	location					

Andreas et al., 2018 Micro, small Prevention	Vulnerabilit y & exposure Rehabilitatio	n Privat High	Goo Significant	Long
--	--	---------------	-----------------	------

Author contribution

475

485

495

NN and MK conceptualized the research. NN collected and analysed the data, designed the methodology and prepared the manuscript – draft and edited version. MK reviewed the manuscript and supervised the activities involved in the research.

Competing interests

480 The authors declare that they have no conflict of interest.

Acknowledgments

The research presented in this article is part of the project Living on soft soils: subsidence and society (grantnr.: NWA.1160.18.259), which is funded by the Dutch Research Council (NWO-NWA-ORC), Utrecht University, Wageningen University, Delft University of Technology, Ministry of Infrastructure & Water Management, Ministry of the Interior & Kingdom Relations, Deltares, Wageningen Environmental Research, TNO-Geological Survey of The Netherlands, STOWA, Water Authority: Hoogheemraadschap de Stichtse Rijnlanden, Water Authority: Drents Overijsselse Delta, Province of Utrecht, Province of Zuid-Holland, Municipality of Gouda, Platform Soft Soil, Sweco, Tauw BV, NAM.

References

Abidin, H. Z., Andreas, H., Gamal, M., Djaja, R., Subarya, C., Hirose, K., Maruyama, Y., Murdohardono, D., and Rajiyowiryono, H.: Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling, GPS Survey and InSAR Techniques, 2005.

Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., and Deguchi, T.: Land subsidence of Jakarta (Indonesia) and its relation with urban development, Natural Hazards, 59, 1753–1771, https://doi.org/10.1007/s11069-011-9866-9, 2011.

Abidin, H. Z., Andreas, H., Gumilar, I., and Brinkman, J. J.: Study on the risk and impacts of land subsidence in Jakarta, in: Proceedings of the International Association of Hydrological Sciences, 115–120, https://doi.org/10.5194/piahs-372-115-2015, 2015.

- 500 Akbar, I., Poerbo, H. W., and Soedarsono, W. K.: Adaptive Urban Design Principles for Land Subsidence and Sea Level Rise in Coastal Area of Tambak Lorok, Semarang, in: IOP Conference Series: Earth and Environmental Science, https://doi.org/10.1088/1755-1315/273/1/012005, 2019.
- Alferink, F. and Cordóva, H. G.: Consideration on Design and Choice of Modern Pipelines for Use in Earthquake Areas, Civil Engineering and Architecture, 5, 94–103, https://doi.org/10.13189/cea.2017.050304, 2017.
 - Al-Zabedy, S. and Al-Kifae, A.: Controlling collapsibility potential by improving Iraqi gypseous soils subsidence: A Review study, IOP Conf Ser Mater Sci Eng, 745, https://doi.org/10.1088/1757-899X/745/1/012107, 2020.
- Andreas, H., Zainal Abidin, H., Pradipta, D., Anggreni Sarsito, Di., and Gumilar, I.: Insight look the subsidence impact to infrastructures in Jakarta and Semarang area; Key for adaptation and mitigation, MATEC Web of Conferences, 147, 08001, https://doi.org/10.1051/MATECCONF/201814708001, 2018.
- Andriani, A., Novasari, H., Syukur, M., and Hadie, M. S. N.: Spatial model of land subsidence mitigation at lowland areas, E3S Web of Conferences, 331, 1–5, https://doi.org/10.1051/e3sconf/202133103008, 2021.
 - Bagheri-Gavkosh, M., Hosseini, S. M., Ataie-Ashtiani, B., Sohani, Y., Ebrahimian, H., Morovat, F., and Ashrafi, S.: Land subsidence: A global challenge, Science of the Total Environment, 778, https://doi.org/10.1016/j.scitotenv.2021.146193, 2021.
- Basak, O. and Chowdhury, S. A.: Flood Resilient Amphibious Housing: Barriers and Prospects, Proceedings of International Conference on Planning, Architecture and Civil Engineering, 9–11, 2021.
- Bell, J. W., Amelung, F., Ramelli, A. R., and Blewitt, G.: Land Subsidence in Las Vegas, Nevada, 1935-2000: New Geodetic Data Show Evolution, Revised Spatial Patterns, and Reduced Rates, Environmental and Engineering Geoscience, 8, 155–174, 2002.
 - Bergado, D. T., Alfaro, M. C., and Balasubramaniam, A. S.: Improvement of soft Bangkok clay using vertical drains, Geotextiles and Geomembranes, 12, 615–663, https://doi.org/10.1016/0266-1144(93)90032-J, 1993.
- Brighenti, G.: Land subsidence due to thermal water withdrawal: the case of Abano Terme, Northern Italy, in: Proceedings of the Fourth International Symposium on Land Subsidence, May 1991, IAHS Publ. no. 200, 1991.

Bründl, M., Baumann, R., Burkard, A., Dolf, F., Gauderon, A., Gertsch, E., Gutwein, P., Krummenacher, B., Loup, B., Schertenleib, A., Oggier, N., Zaugg-Ettlin, L.: Evaluating the Effectiveness and the Efficiency of Mitigation Measures against Natural Hazards, Interpraevent, Lucerne, Switzerland, 27–33, 2016.

Bucx, T. H. M., Van Ruiten, C. J. M., Erkens, G., and De Lange, G.: An integrated assessment framework for land subsidence in delta cities, in: Proceedings of the International Association of Hydrological Sciences, 485–491, https://doi.org/10.5194/piahs-372-485-2015, 2015.

540

Carreón-Freyre, D., Cerca, M., Gutiérrez Calderón, R., and Huerta Ladrón De Guevara, M.: Monitoring of land subsidence and fracturing in Iztapalapa, Mexico City, IAHS Publ, 17–22 pp., 2010.

Davydzenka, T., Tahmasebi, P., and Shokri, N.: Data for "Unveiling the Global Extent of Land Subsidence: The sinking crisis," https://doi.org/https://doi.org/10.5281/zenodo.10223637, 2023.

Deakin, N.: Repair of subsidence damage: An insurer's perspective, Journal of Building Appraisal, 1, 225–243, https://doi.org/10.1057/palgrave.jba.2940020, 2005.

550 Department of Regional NSW: Guide – Managing risks of subsidence, WHS (Mines and Petroleum Sites) Legislation, 2023.

Dinar, A., Esteban, E., Calvo, E., Herrera, G., Teatini, P., Tomás, R., Li, Y., Ezquerro, P., and Albiac, J.: We lose ground: Global assessment of land subsidence impact extent, Science of the Total Environment, 786, https://doi.org/10.1016/j.scitotenv.2021.147415, 2021.

555

English, E., Klink, N., and Turner, S.: Thriving with water: Developments in amphibious architecture in North America, FLOODrisk 2016 - 3rd European Conference on Flood Risk Management, 13009, 2016.

English, E. C., Chen, M., Zarins, R., Patange, P., and Wiser, J. C.: Building Resilience through Flood Risk Reduction: The
Benefits of Amphibious Foundation Retrofits to Heritage Structures, International Journal of Architectural Heritage, 15, 976–
984, https://doi.org/10.1080/15583058.2019.1695154, 2021.

Erkens, G. and Stouthamer, E.: The 6M approach to land subsidence, Proceedings of the International Association of Hydrological Sciences, 382, 733–740, https://doi.org/10.5194/PIAHS-382-733-2020, 2020.

- Erkens, G., Bucx, T., Dam, R., De Lange, G., and Lambert, J.: Sinking coastal cities, in: Proceedings of the International Association of Hydrological Sciences, 189–198, https://doi.org/10.5194/piahs-372-189-2015, 2015.
- Ezquerro, P., Soldato, M. Del, Solari, L., Tomás, R., Raspini, F., Ceccatelli, M., Fernández-Merodo, J. A., Casagli, N., and 570 Herrera, G.: Vulnerability Assessment of Buildings due to Land Subsidence using InSAR Data in the Ancient Historical City of Pistoia (Italy), Sensors, 20, 2749, https://doi.org/10.3390/s20102749, 2020.
 - Flood-MAR Hub (Flood-MAR): https://floodmar.org/, last access: 30 November 2024.
- 575 Galloway, D. and Riley, F. S.: San Joaquin Valley, California: Largest human alteration of the Earth's surface, 1999.
 - Galloway, D. L. and Burbey, T. J.: Review: Regional land subsidence accompanying groundwater extraction, Hydrogeol J, 19, 1459–1486, https://doi.org/10.1007/s10040-011-0775-5, 2011.
- 580 Gambolati, G. and Teatini, P.: Land Subsidence and its Mitigation, 2021.

- Gambolati, G., Teatini, P., and Ferronato, M.: Anthropogenic Land Subsidence, in: Encyclopedia of Hydrological Sciences, John Wiley & Sons, Ltd, https://doi.org/10.1002/0470848944.hsa164b, 2005.
- 585 Gutiérrez, F. and Cooper, A. H.: Evaporite Dissolution Subsidence in the Historical City of Calatayud, Spain: Damage Appraisal and Prevention, Natural Hazards, 259–288 pp., 2002.
 - Hamidi, B., Nikraz, H., and Varaksin, S.: Dynamic Compaction for Treating Millions of Square Meters of Sand, International Conference on Advances in Geotechnical Engineering (ICAGE 2011), 7-9 November, 1–6, 2011.
 - Han, Z.: Groundwater resources protection and aquifer recovery in China, in: Environmental Geology, 106–111, https://doi.org/10.1007/s00254-002-0705-x, 2003.
- Herrera, G., Tomás, R., Monells, D., Centolanza, G., Mallorquí, J. J., Vicente, F., Navarro, V. D., Lopez-Sanchez, J. M., Sanabria, M., Cano, M., and Mulas, J.: Analysis of subsidence using TerraSAR-X data: Murcia case study, Eng Geol, 116, 284–295, https://doi.org/10.1016/j.enggeo.2010.09.010, 2010.
 - Herrera-García, G., Ezquerro, P., Tomas, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., Mateos, R. M., Carreón-Freyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W. C., Kakar, N., Sneed, M., Tosi, L., Wang,

- 600 H., and Ye, S.: Mapping the global threat of land subsidence, Science (1979), 371, 34–36, https://doi.org/10.1126/science.abb8549, 2021.
 - Huang, Y., Yang, Y., and Li, J.: Numerical simulation of artificial groundwater recharge for controlling land subsidence, KSCE Journal of Civil Engineering, 19, 418–426, https://doi.org/10.1007/s12205-015-0505-y, 2015.
 - Hudson, P., Botzen, W. J. W., Kreibich, H., Bubeck, P., and H. Aerts, J. C. J.: Evaluating the effectiveness of flood damage mitigation measures by the application of propensity score matching, Natural Hazards and Earth System Sciences, 14, 1731–1747, https://doi.org/10.5194/nhess-14-1731-2014, 2014.

- Hutabarat, L. E. and Ilyas, T.: Mapping of land subsidence induced by groundwater extraction in urban areas as basic data for sustainability countermeasures, International Journal of Technology, 8, 1001–1011, https://doi.org/10.14716/ijtech.v8i6.754, 2017.
- Ikuemonisan, F. E., Ozebo, V. C., and Olatinsu, O. B.: Investigation of Sentinel-1-derived land subsidence using wavelet tools and triple exponential smoothing algorithm in Lagos, Nigeria, Environ Earth Sci, 80, 1–17, https://doi.org/10.1007/s12665-021-10020-1, 2021.
- Januriyadi, N. F., Kazama, S., Moe, I. R., and Kure, S.: Effectiveness of Structural and Nonstructural Measures on the Magnitude and Uncertainty of Future Flood Risks. J Water Resour Prot. 12. 401-415. https://doi.org/10.4236/jwarp.2020.125024, 2020. 620
 - Jha, M. K., Kamii, Y., and Chikamori, K.: Cost-effective approaches for sustainable groundwater management in alluvial aquifer systems, Water Resources Management, 23, 219–233, https://doi.org/10.1007/s11269-008-9272-6, 2009.
- Jin, B., Zeng, T., Wang, T., Zhang, Z., Gui, L., Yin, K., and Zhao, B.: Advanced risk assessment framework for land subsidence impacts on transmission towers in Salt Lake region, Environmental Modelling & Software, 106058, https://doi.org/10.1016/j.envsoft.2024.106058, 2024.
- Kohlnhofer, G.: Lightweight Fill Materials for Road Construction, Sixth International Conference on Low Volume Roads, 139–148, 1992.
 - Kok, S. and Costa, A. L.: Framework for economic cost assessment of land subsidence, Natural Hazards, 106, 1931–1949, https://doi.org/10.1007/s11069-021-04520-3, 2021.

Kok, S. and Hommes-Slag, S.: Cost-benefit analysis of urban subsidence mitigation strategies in Gouda, the Netherlands, 382, 761–766, https://doi.org/10.5194/piahs-382-761-2020, 2020.

640

655

665

Lees, M., Knight, R., Smith, R.: Modeling 65 Years of Land Subsidence in California's San Joaquin Valley, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-609832/v1], 11 June 2021.

Li, M. G., Chen, J. J., Xu, Y. S., Tong, D. G., Cao, W. W., and Shi, Y. J.: Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai, Eng Geol, 282, 105995, https://doi.org/10.1016/j.enggeo.2021.105995, 2021.

645 Liang, R., Xu, S., and Edil, T.: Innovative soft soil improvement method through intelligent use of vacuum de-watering and dynamic compaction techniques, Geotechnical Engineering, 46, 57–67, 2015.

Lixin, Y., Yanxiang, J., Yajie, Z., Lixin, D., Jing, K., Jie, Y., and Yongpeng, Y.: Generating strategies for land subsidence control and remediation based on risk classification evaluation in Tianjin, China, Natural Hazards, 114, 733–749, https://doi.org/10.1007/s11069-022-05410-y, 2022.

López-Quiroz, P., Doin, M. P., Tupin, F., Briole, P., and Nicolas, J. M.: Time series analysis of Mexico City subsidence constrained by radar interferometry, J Appl Geophy, 69, 1–15, https://doi.org/10.1016/j.jappgeo.2009.02.006, 2009.

Luo, Y., Yang, J., and Jiang, H.: Techniques for Assessing and Mitigating Longwall Subsidence Effects on Interstate Highways, Min Metall Explor, 36, 1157–1167, https://doi.org/10.1007/s42461-019-0087-1, 2019.

Margreth, S. and Romang, H.: Effectiveness of mitigation measures against natural hazards, Cold Reg Sci Technol, 64, 199–207, https://doi.org/10.1016/j.coldregions.2010.04.013, 2010.

McBean, E., Huang, G., Yang, A., Cheng, H., Wu, Y., Liu, Z., Dai, Z., Fu, H., and Bhatti, M.: The Effectiveness of Exfiltration Technology to Support Sponge City Objectives, Water 2019, Vol. 11, Page 723, 11, 723, https://doi.org/10.3390/W11040723, 2019.

Nappo, N., Peduto, D., Polcari, M., Livio, F., Ferrario, M. F., Comerci, V., Stramondo, S., and Michetti, A. M.: Subsidence in Como historic centre (northern Italy): assessment of building vulnerability combining hydrogeological and stratigraphic

features, Cosmo-SkyMed InSAR and damage data, International Journal of Disaster Risk Reduction, 56, 102115, https://doi.org/10.1016/j.ijdrr.2021.102115, 2021.

Nutalaya, P., Yong, R. N., Chumnankit, T., and Buapeng, S.: Land Subsidence in Bangkok during 1978-1988, 1996.

670

680

690

Ovando-Shelley, E., Ossa, A., and Santoyo, E.: Effects of regional subsidence and earthquakes on architectural monuments in MEXICO CITY, Boletin de la Sociedad Geologica Mexicana, 65, 157–167, https://doi.org/10.18268/BSGM2013v65n1a12, 2013.

Pacheco-Martínez, J., Hernandez-Marín, M., Burbey, T. J., González-Cervantes, N., Ortíz-Lozano, J. Á., Zermeño-De-Leon, M. E., and Solís-Pinto, A.: Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México, Eng Geol, 164, 172–186, https://doi.org/10.1016/j.enggeo.2013.06.015, 2013.

Paukstys, B., Cooper, A. H., and Arustiene, J.: Planning for gypsum geohazards in Lithuania and England, Eng Geol, 52, 93–103, https://doi.org/10.1016/S0013-7952(98)00061-1, 1999.

Pedretti, L., Giarola, A., Korff, M., Lambert, J., and Meisina, C.: Database of subsidence in major coastal cities around the world, https://doi.org/https://doi.org/10.5281/zenodo.8410441, 2023.

Pedretti, L., Giarola, A., Korff, M., Lambert, J., and Meisina, C.: A comprehensive database of land subsidence in 143 major coastal cities around the world: an overview of the issues, causes and future challenges, Front. Earth Sci., Sec. Geohazards and Georisks, Volume 12 - 2024 | doi: 10.3389/feart.2024.1351581, 2024.

Peduto, D., Cascini, L., Arena, L., Ferlisi, S., Fornaro, G., and Reale, D.: A general framework and related procedures for multiscale analyses of DInSAR data in subsiding urban areas, ISPRS Journal of Photogrammetry and Remote Sensing, 105, 186–210, https://doi.org/10.1016/j.isprsjprs.2015.04.001, 2015.

Peduto, D., Korff, M., Nicodemo, G., Marchese, A., and Ferlisi, S.: Empirical fragility curves for settlement-affected buildings: Analysis of different intensity parameters for seven hundred masonry buildings in The Netherlands, Soils and Foundations, 59, 380–397, https://doi.org/10.1016/j.sandf.2018.12.009, 2019.

Phien-Wej, N., Giao, P. H., and Nutalaya, P.: Field experiment of artificial recharge through a well with reference to land subsidence control, Eng Geol, 50, 187–201, https://doi.org/10.1016/S0013-7952(98)00016-7, 1998.

- Piper, C.:A New Diagrammatic Framework for Illustrating and Explaining Disaster Management, Australian & New Zealand Disaster & Emergency Management Conference Gold Coast, Queensland, Australia, 2-3 September 2021
- 705 Poland, J. F.: Guidebook to studies of land subsidence due to ground-water withdrawal, UNESCO, 1984.
 - Pötz, H., Bleuzé, P.: Vorm geven aan stedelijk water, SUN architecture: Amsterdam, 2009
 - Pramono, I. B.: Nature-based solutions for integrating flood and land subsidence: A case study in Jakarta and Semarang, in: IOP Conference Series: Earth and Environmental Science, https://doi.org/10.1088/1755-1315/874/1/012001, 2021.
 - Ritzema, H.: Coastal Lowland development: coping with climate change: examples from the Netherlands, ICID WG-SDTA (International committee on Irrigation and Drainage), 2015.
- Saputra, E., Hartmann, T., Zoomers, A., and Spit, T.: Fighting the Ignorance: Public Authorities' and Land Users' Responses to Land Subsidence in Indonesia, Am J Clim Change, 06, 1–21, https://doi.org/10.4236/ajcc.2017.61001, 2017.
 - Saputra, E., Spit, T., and Zoomers, A.: Living in a Bottomless Pit: Households' Responses to Land Subsidence, an Example from Indonesia, J Environ Prot (Irvine, Calif), 10, 1–21, https://doi.org/10.4236/jep.2019.101001, 2019.
- 720 Scopus: https://www.scopus.com/, last access: 30 July 2024.

- Sendai Framework for Disaster Risk Reduction 2015-2030, Third UN World Conference on Disaster Risk Reduction, Sendai, Japan, 2015.
- Shen, M., Juang, C. H., and Chen, Q.: Mitigation of liquefaction hazard by dynamic compaction A random field perspective, Canadian Geotechnical Journal, 56, 1803–1815, https://doi.org/10.1139/cgj-2018-0502, 2019.
- Shi, X., Jiang, S., Xu, H., Jiang, F., He, Z., and Wu, J.: The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China, Environ Earth Sci, 75, 1–18, https://doi.org/10.1007/s12665-015-5019-x, 2016.
 - Singh, K. B. and Dhar, B. B.: Sinkhole subsidence due to mining, Geotechnical and Geological Engineering, 327–341 pp., 1997.

- Sneed, M. and Brandt, J. T.: Mitigating Land Subsidence in the Coachella Valley, California, USA: An Emerging Success Story, in: Proceedings of the International Association of Hydrological Sciences, 809–813, https://doi.org/10.5194/piahs-382-809-2020, 2020.
- Stouthamer, E., Erkens, G., Cohen, K., Hegger, D., Driessen, P., PeterWeikard, H., Hefting, M., Hanssen, R., Fokker, P., Van Den Akker, J., Groothuijse, F., and Van Rijswick, M.: Dutch national scientific research program on land subsidence: Living on soft soils subsidence and society, Proceedings of the International Association of Hydrological Sciences, 382, 815–819, https://doi.org/10.5194/PIAHS-382-815-2020, 2020.
- Szucs, P., Madarasz, T., and Civan, F.: Remediating over-produced and contaminated aquifers by artificial recharge from surface waters, https://doi.org/10.1007/s10666-008-9156-4, 2009.
 - Tang, W., Zhao, X., Motagh, M., Bi, G., Li, J., Chen, M., Chen, H., and Liao, M.: Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management, Remote Sens Environ, 269, 112792, https://doi.org/10.1016/j.rse.2021.112792, 2022.
 - Testa, S.M.: Elevation Changes Associated with Groundwater Withdrawal and Reinjection in the Wilmington Area, Los Angeles Coastal Plain, California, in: Proceedings of the Fourth International Symposium on Land Subsidence, May 1991, IAHS Publ. no. 200, 1991.
- Ting, C. S., Chiang, K. F., Hsieh, S. H., Tsao, C. H., Chuang, C. H., and Fan, K. T.: Land subsidence and managed aquifer recharge in Pingtung Plain, Taiwan, in: Proceedings of the International Association of Hydrological Sciences, 843–849, https://doi.org/10.5194/piahs-382-843-2020, 2020.
- United Nations Office for Disaster Risk Reduction (UNDRR): https://www.undrr.org/terminology/, last access: 30 July 2024 760
 - United Nations Terminology Database (UNTERM):

- http://untermportal.un.org/UNTERM/portal/welcome, last access: 30 July 2024
- US Geological Survey (USGS): https://www.usgs.gov/centers/land-subsidence-in-california/science/land-subsidence-san-joaquin-valley, last access: 30 July 2024

Wu, J., Yan, X., Yang, T., and Huang, X.: Research on solute transport characteristics in the process of artificial recharge to control land subsidence in deep confined aquifer, in: Proceedings of the International Association of Hydrological Sciences, 709–713, https://doi.org/10.5194/piahs-382-709-2020, 2020.

770

- Xuan, D., Xu, J., Wang, B., and Teng, H.: Borehole Investigation of the Effectiveness of Grout Injection Technology on Coal Mine Subsidence Control, Rock Mech Rock Eng, 48, 2435–2445, https://doi.org/10.1007/s00603-015-0710-5, 2015.
- Yang, T., Yan, X., Huang, X., and Wu, J.: Integrated management of groundwater exploitation and recharge in Shanghai based on land subsidence control, Proceedings of the International Association of Hydrological Sciences, 382, 831–836, https://doi.org/10.5194/piahs-382-831-2020, 2020.
 - Ye, S., Xue, Y., Wu, J., Yan, X., and Yu, J.: Progression and mitigation of land subsidence in China, Hydrogeol J, 24, 685–693, https://doi.org/10.1007/s10040-015-1356-9, 2016.

780

Zektser, S., Loáiciga, H. A., and Wolf, J. T.: Environmental impacts of groundwater overdraft: Selected case studies in the southwestern United States, https://doi.org/10.1007/s00254-004-1164-3, February 2005.