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Abstract. Dryland ecosystems are the habitat supporting two billion people on the Earth planet and strongly impact the 

global terrestrial carbon sink. Vegetation growth in drylands is mainly controlled by water availability with strong intra-

seasonal variability. Timely availability of information at such scales (e.g., from days to weeks) is essential for early warning 20 

of potential catastrophic impacts of emerging climate extremes on crops and natural vegetation. However, the large-scale 

monitoring of intra-seasonal vegetation dynamics has been very challenging for drylands. Satellite solar-induced chlorophyll 

fluorescence (SIF) has emerged as a promising tool to characterize the spatiotemporal dynamics of photosynthetic carbon 

uptake and has the potential to detect intra-seasonal vegetation growth dynamics. Yet, few studies have evaluated its 

capability for detecting fast-changing intra-seasonal vegetation dynamics and advantages over traditional, vegetation indices 25 

(VIs)-based approaches in drylands. To fill this knowledge gap, this study utilized the vast dryland ecosystems in the Horn 

of Africa (HoA) as a testbed, to characterize their intra-seasonal dynamics inferred from satellite SIF. HoA is an ideal 

testbed because its dryland ecosystems have highly dynamic responses to short term environmental changes. The satellite 

data based analysis was corroborated with a unique in-situ SIF dataset collected in Kenya - so far, the only ground SIF time 

series collected in the continent of Africa. We found that SIF from TROPOspheric Monitoring Instrument (TROPOMI) with 30 

daily revisit frequency identified highly dynamic week-to-week variations in both shrublands and grasslands; such rapid-

changing vegetation dynamics corresponded to the up- and down- regulation by the fluctuations of environmental variables 

(e.g., air temperature, vapor pressure deficit, soil moisture). However, neither reconstructed SIF products nor near-infrared 

reflectance of terrestrial vegetation (NIRv) from Moderate Resolution Imaging Spectroradiometer (MODIS), which is widely 

used in literature, was able to capture such fast-changing intra-seasonal variations. The same findings hold at the site scale, 35 

where we found only TROPOMI SIF revealed two separate within-season growth cycles in response to extreme soil 

https://doi.org/10.5194/egusphere-2024-2529
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



2 

 

moisture and rainfall amount and duration, consistent with in-situ SIF measurements. This study generates novel insights on 

the monitoring of dryland vegetation dynamics and evaluation of their climate sensitivities, enabling development of 

predictive and scalable understanding of how dryland ecosystems may respond to future climate change and informing future 

design of effective vegetation monitoring systems for dryland vegetation. 40 

 

1 Introduction 

Drylands account for about 41% of the total terrestrial land surface and play a critical role in maintaining ecological 

functions and services, regulating global carbon cycles as well as contributing to socio-economic well-being (Prăvălie 2016; 

Poulter et al. 2014; Ahlström et al. 2015; Piao et al. 2020; Yao et al. 2020). In particular, drylands have been expanding 45 

globally in the recent decades (Lian et al., 2021) and are projected to continue expanding in the future (Huang et al., 2015). 

Therefore, it is of critical importance to understand how dryland ecosystems respond to the ongoing and future climate 

change for the sake of human welfares (Huang et al. 2017; Smith et al., 2019; Zhang et al. 2020a, 2022; Wang et al., 2022a). 

Vegetation growth in drylands is mainly controlled by water availability with strong intra-seasonal variability. Monitoring 

vegetation dynamics at the intra-seasonal scale (e.g., from days to weeks) is critical for understanding climate impacts on 50 

carbon dynamics, detecting plant early stress and informing climate risk management (Otkin et al., 2018; Qing et al., 2022; 

Gerhards et al., 2019), as dryland ecosystems exhibit hyper-complex and rapid physiological/phenological dynamics at short 

time scales (Adams et al., 2021; Wang et al., 2022a). To do this, timely availability of information at such scales is crucial. 

However, for multiple reasons, intra-seasonal dynamics can be more challenging to monitor than trends at longer time scales 

such as inter-seasonal or inter-annual variations. First, the former characterizes signals that are mainly controlled by changes 55 

in vegetation function (e.g., leaf physiology), while the latter characterizes signals that are largely driven by changes in 

vegetation structure (e.g., leaf area) (Li et al., 2024). Second, the time window is shorter for the former than for the latter, 

with less observation sampling for accurate depiction of temporal dynamics. Consequently, detecting fast-changing intra-

seasonal vegetation dynamics for early warning purposes requires high-frequency observations that are sensitive to dryland 

functional changes. 60 

Greenness-based vegetation indices (VIs), such as Normalized Difference Vegetation Index (Tucker et al., 1979) and near-

infrared reflectance of terrestrial vegetation (NIRv, Badgley et al., 2017), from Earth Observation (EO) satellites have been 

used for vegetation monitoring for decades (Qu et al., 2019; Lawal et al., 2021; Ouma et al., 2022; Fava et al., 2021). In the 

recent decade, solar-induced chlorophyll fluorescence (SIF) has emerged as a promising proxy for inferring photosynthetic 

dynamics from canopy to global scales (Porcar-Castell et al., 2014; Sun et al., 2023a, 2023b). SIF has unique mechanistic 65 

advantages as it is emitted from the core of the photosynthetic machinery and therefore contains additional functional 

information (e.g., light use efficiency) beyond structural information (e.g., light absorption) that is usually carried by VIs. 

Indeed, there have been many studies that investigated the relative advantages of satellite SIF compared to VIs in depicting 
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photosynthetic dynamics and evaluating drought responses of dryland ecosystems (e.g., Smith et al., 2018; Robinson et al., 

2019; Mengistu et al. 2021, Constenla-Villoslada et al., 2022). However, most of such evaluation were conducted at the 70 

seasonal scale or beyond, and very few have been focused on short time scales, e.g., intra-seasonal. We hypothesize that SIF 

may present more complex intra-seasonal dynamics due to functional changes in response to short-term environmental 

fluctuations, while NIRv remains relatively constant as there are minimal structural changes at a temporal scale of several 

days to weeks especially during the peak growing season. 

To test this hypothesis, we utilized dryland ecosystems in the Horn of Africa (HoA, Fig. 1a) as a testbed to evaluate the 75 

capacity of satellite SIF and NIRv in capturing the intra-seasonal vegetation dynamics of drylands. The HoA has experienced 

frequent droughts and excessive rainfall (Williams et al., 2012; Lyon and Dewitt, 2012; Funk et al., 2015; Ngoma et al., 

2021) and suffered strong vulnerability to climate change (IPCC, 2022). The highly dynamic vegetation growth in response 

to volatile environmental conditions puts millions of pastoralists and smallholder farmers at risk (Matanó et al., 2022) and 

exacerbates the persistent food insecurity challenges in this region (Pricope et al. 2013; Beal et al. 2023), calling for accurate 80 

and prompt vegetation monitoring and early warning systems (Merbold et al. 2021). In particular, in this study we focused 

on the period from October 2019 to February 2020, when excessive rainfall occurred in the HoA (Fig. 1e), leading to 

anomalous vegetation dynamics that are challenging to be accurately depicted by satellite measurements. We employed 

multiple high-temporal-resolution satellite SIF products, including original SIF retrievals from TROPOspheric Monitoring 

Instrument (TROPOMI, with unprecedented daily revisit frequency for satellite SIF retrieval, Köhler et al., 2018; Guanter et 85 

al., 2021) and several machine-learning reconstructed SIF products (at a temporal resolution from 4-day to 16-day), and 

NIRv from Moderate Resolution Imaging Spectroradiometer (MODIS) (at daily resolution), along with a unique ground SIF 

dataset measured at an environmental research infrastructure site located in Kenya - so far, the only in situ SIF time series 

reported in the continent of Africa. 

This paper is structured as follows: Sect. 2 introduces the region of interest and datasets employed in this study. Sect. 3 90 

evaluates different satellite SIF products with in-situ SIF time series (Sect. 3.1) and investigates the intra-seasonal vegetation 

dynamics under excessive precipitation at site and regional levels (in Sect. 3.2, Sect. 3.3, respectively). Sect. 4 discusses 

possible reasons and implications for discrepancies among different datasets. Sect. 5 summarizes the conclusions. 

2 Study region and datasets 

2.1 The HoA drylands 95 

The HoA region is located in eastern Africa, including Somalia, Ethiopia, Kenya, Eritrea, and Djibouti, with most area 

covered by drylands (Fig. 1a). From the eastern coast to inner highlands, there is a general gradient of increasing water 

availability (Fig. 1d), which drives a land cover shift from barren areas, to shrublands, and to grasslands (Fig. 1b), with a 

corresponding variation in vegetation greenness (Fig. 1c). The HoA is signatured by a short rainy season (SR, usually from 

October to the following January, with variations depending on the location) and a long rainy season (LR, usually from 100 
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March to June), with two dry seasons in between (Fig. 1h). Vegetation thrives during the rainy seasons and wanes during the 

dry seasons (Fig. 1f, 1g). During the short rainy season in 2019 (i.e., October 2019 – January 2020), the HoA experienced 

anomalously high precipitation compared to normal years (Fig. 1e). 50% of the total area had precipitation two standard 

deviations (> 2 σ) higher than normal years, mostly in central and southern HoA drylands, and another 39% of the area had 

precipitation one to two standard deviations (1 – 2 σ) higher than normal years. In this study, we selected three sub-domains 105 

of interest to investigate the intra-seasonal vegetation dynamics under excessive precipitation: Region 1 (including eastern 

Ethiopia and central Somalia, dominated by shrublands), Region 2 (including southern Somalia, dominated by grasslands), 

and Region 3 (i.e., Kenya, dominated by grasslands) (Fig. 1b). These three sub-domains were selected, because within each 

sub-domain, (1) the land cover type is relatively homogeneous; and (2) the precipitation pattern and vegetation response are 

relatively consistent (Sect. 3.3). 110 

 

 

Figure 1: (a) Spatial extent of the HoA (orange) and drylands (light yellow) (defined as areas where the ratio of precipitation and 

potential evapotranspiration, i.e., aridity index (AI), is less than 0.65, Sorensen et al., 2007). The location of the FloX tower is 

marked as a green dot. (b) MODIS land cover map (Friedl and Sulla-Menashe 2022) of the HoA in 2019. The land cover categories 115 
are: grasslands (GRA), shrublands (SHR), barren areas (BAR), savannas (SAV), and others. The three white dashed squares 

mark the three sub-domains of interest in our regional analysis. (c) – (d) Spatial maps of multi-year mean (2011-2020) of near-

infrared reflectance of vegetation (NIRv) and annual precipitation (Precip), respectively. (e) Spatial map of the standardized 

anomaly of precipitation during the SR season in 2019 (from October 2019 to January 2020) relative to the multi-year SR mean 

(2011-2020), in the unit of standard deviation σ. (f) – (g) Pictures of the grasslands at Kapiti where the FloX tower is located, 120 
captured before (September 28th, 2019) and during (October 26th, 2019) SR, respectively. (h) Time series of precipitation at Kapiti 

during 2019-2020 (dashed) and 2020-2021 (dotted), when in situ SIF was collected, compared to the multi-year mean (2011-2020, 
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solid). The shade denotes one standard deviation of monthly precipitation during 2011 and 2020. The lengths of SR and LR 

seasons are marked on the x-axis in light blue. 

 125 

2.2 Description of in situ SIF collection: site characteristics, instrumentation, and SIF retrieval algorithms 

Site description: The Kapiti Research Station and Wildlife Conservancy (from now called Kapiti for simplicity) is a 

research facility owned and managed by the International Livestock Research Institute (ILRI) located in Machakos county of 

southern Kenya (Fig. 1a). Kapiti, largely characterized by flat or gently sloped topography, covers approximately 13,000 ha 

and is located at about 1,650 m above mean sea level (Dowling et al. 2022, Carbonell et al. 2021). Kapiti is dominated by 130 

semi-arid vegetation, including grasses, shrubs and isolated trees (Fig. 1f, 1g). The climate is semi-arid with an average 

annual precipitation of approximately 500 mm distributed among two main rainy seasons (Fig. 1h). However, the mean 

annual precipitation and the seasonal distribution of precipitation are highly variable, with frequent droughts or excess rain 

episodes.  

In situ instrument: In situ SIF data used in this study were collected from a tower positioned in a flat area of the Kapiti site 135 

dominated by open grasslands (1.6144°S, 37.1338°E, Fig. 1a). SIF was measured using the fluorescence box (FloX, JB 

Hyperspectral Devices GmbH, Germany), an automatic hyperspectral device for the continuous observation of SIF and 

reflectance. The FloX system consists of two internal spectrometers (Ocean Insight, USA) contained in a temperature-

controlled case. The first spectrometer (i.e., QEPro) covers the spectral range 650-800 nm with a full width at half maximum 

(FWHM) of 0.3 nm and is specifically designed for the retrieval of SIF. The second spectrometer (i.e., FLAME) covers a 140 

broader spectral range (400-950 nm) with a FWHM of 1.5 nm and is intended for the observation of reflectance. Each 

spectrometer measures the downwelling irradiance with an up-looking cosine optic, as well as the upwelling radiance with a 

down-looking bare optical fiber (25° field of view). The down-looking fibers were placed nadir-looking at a height of 4.5 m 

above the ground, which corresponds to a footprint of ca. 1.9 m diameter. The system was installed at the Kapiti research site 

on September 25th, 2019, and has been measuring continuously until August 31st, 2021.  145 

Processing of in situ SIF: The FloX raw data were processed using a dedicated R script (R Core Team, 2022) developed by 

the manufacturer (v. 20.7). The processing included the conversion from raw data to radiance using the calibration files of 

the spectrometers, the retrieval of SIF, the calculation of apparent reflectance and the computation of quality flags. SIF was 

retrieved at the O2-A absorption band (i.e., 760 nm) using both the improved Fraunhofer Line Depth method (iFLD) (Alonso 

et al., 2008) and the Spectral Fitting Method (SFM) (Cogliati et al., 2015), denoted as FloXiFLD SIF and FloXSFM SIF. For the 150 

iFLD, we used the bands at 756.04 nm and 760.05 nm outside and within the absorption band, respectively, while for the 

SFM we used a fitting window of 750.12-779.90 nm. A multiplicative wavelength conversion factor of 1.72 from Yang et al. 

(2015) was applied to the retrieved SIF values to allow comparison with satellite SIF datasets derived at 740 nm. The data 

from both the QEPro and FLAME spectrometers were then filtered to discard low-quality measurements. The filtering 

criteria were defined as follows: (a) solar zenith angle (SZA) less than 70°; (b) incoming solar radiation variation (i.e., 155 
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percent difference between the irradiance measurement before and after each target measurement) less than 1%; (c) dynamic 

range of the spectrometer between 60% and 90%; (d) clearness index (i.e., the ratio between actual and potential solar 

irradiance, Chang et al. 2020) between 0.9 and 1.1. 

2.3 Satellite vegetation datasets 

TROPOMI SIF: The TROPOMI instrument onboard Sentinel-5 Precursor (S-5P) satellite was launched in October 2017, 160 

with an equatorial overpass time at 13:30 local solar time. It has a spatial resolution of 3.5 × 7.5 km2 (3.5 × 5.5 km2 since 

August 2019), with a wide swath (~2600 km) that enables daily global coverage (Köhler et al., 2018; Guanter et al., 2021). 

There are three TROPOMI SIF datasets available, one provided by the California Institute of Technology (Caltech) with 

fitting window 743-758 nm (Köhler et al., 2018), the other two by the European Space Agency (ESA) with fitting windows 

735-758 nm and 743-758 nm (Guanter et al., 2021). All datasets are retrieved using the singular value decomposition (SVD) 165 

approach. We employed two different thresholds of cloud fraction (CF) for SIF intercomparison and intra-seasonal 

vegetation dynamics analysis, following Guanter et al. (2021): we selected Level 2 SIF retrievals with CF less than 0.2 when 

we compared TROPOMI SIF with in situ SIF (Sect. 3.1) to minimize the cloud influence on the retrieved SIF; we applied a 

less stricter rule (CF less than 0.8) when we used TROPOMI SIF to evaluate vegetation dynamics (Sect. 3.2 and 3.3), to 

enable a good temporal sampling. Level 2 SIF retrievals with SZA larger than 70° were excluded. All selected level 2 SIF 170 

retrievals were first converted to daily corrected SIF based on SZA (Frankenberg et al., 2011) and then re-gridded to a 0.15° 

pixel using a gridding tool (https://github.com/cfranken/gridding). 0.15° was selected to include enough soundings for spatial 

aggregation to reduce measurement noise while maintaining overall representativeness of the area around the tower (Fig. 

S1). 

Reconstructed SIF products: CSIF (version 2, Zhang et al., 2018), GOSIF (version 2, Li and Xiao, 2019) and 175 

SIF_oco2_005 (updated version based on OCO-2 v10r retrievals, Yu et al., 2019) are reconstructed based on SIF retrievals 

from OCO-2. OCO-2, launched in 2014, provides SIF retrievals at a resolution of 1.3 × 2.25 km2 with a 16-day revisit cycle 

and an equatorial overpass time at 13:30 local solar time (Sun et al. 2018). One of the limitations of OCO-2 SIF retrievals is 

the incomplete global coverage, with large spatial gaps between satellite tracks. The overall strategy for generating these 

reconstructed SIF products is similar: (1) establishing statistical relationships between available OCO-2 SIF measurements 180 

and ancillary variables (e.g., surface reflectance, vegetation indices, meteorological forcings) using machine learning 

algorithms (e.g., neural networks, cubic regression tree model); (2) applying the relationship on ancillary variables with 

global coverage to fill the gaps where OCO-2 retrievals are not available. These three products differ in the choice of 

machine learning approaches and ancillary variables that were used to generate them. They are provided at a spatial 

resolution of 0.05° and a temporal resolution of 4-day, 8-day, and 16-day, respectively. A wavelength correction factor of 185 

1.69 was multiplied to the three OCO-2 based SIF products (evaluated at 757 nm) to match with TROPOMI SIF (evaluated 

at 740 nm). In addition, we also employed RTSIF, a recent reconstructed SIF dataset based on TROPOMI SIF (Chen et al., 
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2022). As TROPOMI SIF is only available since 2018, Chen et al. (2022) similarly utilized a machine learning algorithm 

and ancillary datasets to reconstruct a long-term SIF record during 2001-2020, at 0.05° and 8-day resolution.  

MODIS NIRv: NIRv used in this study was calculated from MODIS MCD43A4 (Version 6.1) Nadir Bidirectional 190 

Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) dataset (Schaaf and Wang, 2021), provided at 

daily and 500 m resolution. To maintain a good sample size for vegetation dynamics analysis, we kept the data with quality 

flags as 0 (full BRDF inversions) or 1 (magnitude inversion), following Wang et al. (2018). 

2.4 Climate variables 

Precipitation data were obtained from Climate Hazards group Infrared Precipitation with Stations (CHIRPS, version 2.0) 195 

(Funk et al., 2015). CHIRPS covers 50°S - 50°N from 1981 to present at 0.05° and daily resolution and is generated by 

incorporating Cold Cloud Duration (CCD) from satellite observations and ground data from rain gauges (Funk et al., 2015). 

CHIRPS precipitation estimates have shown a great agreement with ground data in Africa (Dinku et al., 2018; Ayehu et al., 

2018; Ageet et al., 2021; Ngoma et al., 2021). 

Soil moisture (SM) was from ESA-CCI (v06.1) by the European Space Agency (ESA) Climate Change Initiative (CCI) 200 

program, offered at 0.25°, daily resolution from 1978 to 2020 (Preimesberger et al., 2021). It was generated by harmonizing 

the soil moisture estimates (typically at a depth of 0-5 cm) from multiple active and passive satellite microwave sensors 

(Dorigo et al., 2017; Gruber et al., 2019). In this study, we employed an updated version from Preimesberger et al. (2021). 

Air temperature (Tair), water vapor pressure deficit (VPD) and photosynthetically active radiation (PAR), at the OCO-2 and 

TROPOMI nominal overpass time at the equator (i.e., 13:30 local solar time), were extracted from the Global Modeling and 205 

Assimilation Office (GMAO) Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 

reanalysis (hourly, lon 0.625°× lat 0.5°) (GMAO, 2015a, 2015b). 

The spatial and temporal matching criteria of different datasets are described in Text S1. 

3 Results 

3.1 Evaluation of satellite SIF datasets with in-situ SIF 210 

Leveraging the in situ SIF time series at Kapiti, here we evaluated the fidelity of various satellite-based SIF datasets during 

two consecutive years (i.e., from September 2019 to August 2021) when in situ SIF was collected (Figs. 2, S2). In situ SIF 

showed strong inter-annual variations (i.e., a much stronger signal in the first year compared to the second year, driven by 

the difference in precipitation, Fig. 1h), and pronounced intra-annual variations such as growth peaks during SR seasons 

(e.g., November 2019 - January 2020, December 2020) and LR seasons (e.g., May 2020, June 2021), and a dry season with 215 

precipitation occurrence (February - March 2021, Fig. 1h) (Fig. 2a). The satellite-based SIF datasets showed different 

degrees of consistency with in situ SIF. The temporal dynamics of in situ SIF were well captured by TROPOMI SIF (Fig. 

2a), showing high agreement against FloX SIFiFLD (r = 0.71-0.83, Fig. 2c-2e), with slightly reduced agreement against FloX 
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SIFSFM (r = 0.64-0.76, Fig. S2c-S2e). Instead, the reconstructed SIF products (i.e., CSIF, GOSIF, SIF_oco2_005, RTSIF), 

although highly consistent among each other, showed a greater discrepancy with in situ SIF compared to TROPOMI (Fig. 220 

2b). The temporal fluctuations are flatter and the magnitude of variation in SIF values is sometimes inaccurate (e.g., the drop 

in December 2019 and the peak in February - March 2021), leading to lower correlation against FloX SIFiFLD compared to 

TROPOMI (r = 0.58-0.62, Fig. 2f-2i). Their correlation against FloX SIFSFM became not significant (Fig. S2f-S2i), likely 

because the SFM approach with a wide fitting window is more sensitive to atmospheric contamination (Chang et al., 2020). 

This is probably magnified when the data are aggregated over time windows of several days, such as in the comparison 225 

against the reconstructed SIF products. 

In the following analysis of intra-seasonal vegetation dynamics, we only selected a subset of SIF datasets. We selected: FloX 

SIFiFLD because of its lower data noise compared to FloX SIFSFM; TROPOMI SIF from ESA (fitting window 743-758 nm) 

because of its higher consistency with in situ SIF compared to the other two TROPOMI SIF datasets (Figs. 2d, S2d); GOSIF 

as a representative of the three OCO-2 based reconstructed SIF products given the overall consistency among them; RTSIF 230 

as it is a TROPOMI-based reconstructed SIF product. 
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Figure 2: (a), (b) Time series of FloX SIFiFLD and satellite SIF at 740 nm from October 2019 to September 2021. (c) - (e) 

Scatterplots between FloX SIFiFLD and TROPOMI SIF from ESA (fitting window 735-758 nm and 743-758 nm) and Caltech, 235 
respectively. (f) - (i) Scatterplots between FloX SIFiFLD and CSIF, GOSIF, SIF_oco2_005, RTSIF, respectively. All SIF values are 

daily corrected. The dotted line marks the 1:1 line. 

3.2 Intra-seasonal dynamics at Kapiti 

We evaluated the capability of satellite SIF and NIRv in characterizing the intra-seasonal vegetation dynamics at Kapiti from 

October 2019 to February 2020 (i.e., the SR season and the subsequent dry season) (Fig. 3), where/when in situ data 240 

(including SIF) are available to help verify and interpret the intra-seasonal dynamics. This period was chosen because 

excessive precipitation occurred during this SR season (i.e., 799 mm relative to the 2011-2020 average 343 ± 170 mm, Fig. 

1h), leading to anomalous vegetation dynamics that are challenging to be accurately depicted by satellite measurements. 

We found that there was a rapid growth revealed in all SIF datasets in response to precipitation and soil moisture increase in 

October 2019 (Fig. 3a, 3b). NIRv showed a similar increase during this period. However, divergence among different SIF 245 
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and NIRv datasets started to emerge in early November 2019 and persisted through February 2020. The reconstructed SIF 

products (i.e., RTSIF, GOSIF) and MODIS NIRv remained relatively stable from November 2019 to mid-January 2020 

before a subsequent gradual decline. In contrast, TROPOMI SIF exhibited distinct dynamics during this period, with double 

peaks in mid-November 2019 and late January, and a sharp reduction (by 52% relative to the first peak) in between. This 

double-peak pattern in TROPOMI SIF held, regardless of sources of TROPOMI data, fitting windows used for SIF 250 

retrievals, or quality filtering criteria (e.g., solar zenith angle, cloud fraction) (Fig. S3a-S3c). The double-peak pattern was 

not an artifact of variations in escape probability or sun-viewing geometry, but was a result of the true SIF emission (Fig. 

S3d). 

In situ SIF confirmed these distinct intra-seasonal dynamics depicted by TROPOMI SIF, with similar magnitude (61%) and 

duration of the mid-season dip (Fig. 3b). As the product of NIRv and incoming PAR (i.e., NIRvP, Dechant et al., 2022) has 255 

been recently promoted as a strong proxy for photosynthesis, we further computed NIRvP with in situ NIRv and PAR. 

However, we found that it only accounted for a limited extent of mid-season reduction (22%, relative to the maximum in 

mid-November) (Fig. S4). This finding suggests that 1) suppression of PAR during the excessively rainy period was not the 

cause of the observed SIF reduction, and that 2) NIRv itself is insufficient to timely capture the rapid and complex intra-

seasonal dynamics. 260 

To better demonstrate the intra-seasonal temporal dynamics, we further calculated the temporal change rate for each dataset 

(i.e., temporal changes between two consecutive time steps that are 8 days apart), to present the rate of temporal fluctuations 

(Fig. 3c). It was evident that both in situ SIF and TROPOMI SIF showed strong intra-seasonal variations, while the 

reconstructed SIF products and MODIS NIRv presented minimal intra-seasonal variations. 

What are the underlying processes driving such fast-changing intra-seasonal dynamics revealed by in situ and TROPOMI 265 

SIF? The strong mid-season reduction in SIF likely resulted from functional changes in vegetation photosynthetic activities, 

driven by grass phenology due to persistent rainfall (Reyer et al., 2013; Zeppel et al., 2014) (Fig. 3a). The onset of the 

herbaceous vegetation growth occurred in October 2019 triggered by abundant precipitation and soil moisture; the growth 

peaked in early November 2019 as alluded by the Phenocam images collected at Kapiti (Fig. S5a). The anomalous 

persistence of precipitation toward mid-December pushed grass to quickly progress to the reproductive stage, resulting in a 270 

gradual decrease in the photosynthetic activity (Fig. S5b). At the same time, the persistence of soil moisture facilitated the 

onset of a new growth cycle, likely with a species composition shift (Muthoka et al., 2022; Shaw et al., 2022), which reached 

its second peak in early February 2020 (Fig. S5c). However, such complex intra-seasonal dynamics cannot be captured by 

NIRv or the reconstructed SIF (thorough discussions in Sect. 4). 

 275 
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Figure 3: (a) Temporal variation of daily precipitation and 8-day average SM at Kapiti between October 2019 and February 2020. 

The multi-year average of SM during 2011-2020 is plotted as a blue dashed line for reference. (b) Temporal variation of vegetation 

signals at Kapiti from various SIF and NIRv datasets. A factor of 2.25 was multiplied to NIRv to match the magnitude range of 

SIF for visual clarity. (c) Temporal change rate of SIF (ΔSIF) or NIRv (ΔNIRv), calculated as the change of the current 8-day 280 
period relative to the previous 8-day period. The horizontal dashed line denotes no change in SIF or NIRv. The vertical dashed 

lines roughly divide the study period into four segments based on the sign of ΔSIF of in situ and TROPOMI SIF (mostly consistent 

with each other, as marked along the x axis). The x axis labels represent the starting date of each 8-day interval.  

3.3 Intra-seasonal dynamics for the entire HoA drylands 

Does the stronger sensitivity of TROPOMI SIF (compared to the reconstructed SIF and NIRv) in characterizing fast-285 

changing intra-seasonal dynamics hold across HoA drylands, beyond the single site at Kapiti? To answer this question, we 

conducted in-depth regional analysis for the entire HoA drylands from October 2019 to February 2020 when excessive 

precipitation occurred in most of the region (Fig. 1e). Given the outstanding spatial heterogeneity of biome types, 

precipitation patterns and vegetation responses in the HoA, we selected three sub-domains for analysis (Fig. 1b), to ensure 

that within each sub-domain, 1) the land cover type is relatively homogeneous; and 2) the intra-seasonal variations of 290 

precipitation and subsequent vegetation growth were relatively consistent (Figs. S6, S7). For example, Region 1 and Region 

2 (in central and southeastern HoA, dominated by shrublands and grasslands, respectively) started their rainy season in early 

https://doi.org/10.5194/egusphere-2024-2529
Preprint. Discussion started: 15 August 2024
c© Author(s) 2024. CC BY 4.0 License.



12 

 

October, which stimulated fast vegetation growth. The vegetation activity peaked around early November and gradually 

decreased after December when there was little precipitation. In contrast, in Region 3 (in southern HoA, dominated by 

grasslands) precipitation occurred later (e.g., mainly during late October and early December). Correspondingly, the 295 

vegetation phenology was shifted with a peak around early December. 

While all the satellite SIF and NIRv datasets well tracked the seasonal variations of the three sub-domains, we found that 

TROPOMI SIF revealed more intra-seasonal variations during the growing seasons compared to the reconstructed SIF (i.e., 

RTSIF and GOSIF) and MODIS NIRv. In addition, TROPOMI SIF also showed higher values during the peak growing 

season and lower values during the dry season (i.e., February). 300 

 

 
Figure 4: Temporal variations of various SIF and NIRv datasets for the three sub-domains (Fig. 1b) in the HoA drylands from 

October 2019 to February 2020. A factor of 2.25 was multiplied to NIRv in order to match the magnitude range of SIF for visual 

clarity. The date labels represent the starting date of each 8-day interval. The dashed boxes mark the periods when TROPOMI 305 
SIF revealed strong intra-seasonal variations. 

 

To investigate the intra-seasonal variations revealed by TROPOMI SIF, we zoomed into a shorter time window for each of 

the sub-domains (i.e., dashed boxes in Fig. 4). For each time window, TROPOMI SIF showed a faster and stronger increase 

from a similar starting point, compared to the reconstructed SIF and MODIS NIRv. As a result, TROPOMI SIF showed a 310 

much stronger vegetation signal (i.e., higher values) during the peak growing season, e.g., November 1st in the central area of 

Region 1 (Fig. 5), November 1st in the coastal area of Region 2 (Fig. S8), November 25th in the central and southern area of 

Region 3 (Fig. S10). After reaching a peak or close-to-peak value, TROPOMI SIF showed a decline during all three selected 

windows, e.g., a region-wide reduction for Region 1 and 2 on November 9th, and a reduction in the central and southern area 

of Region 3 on December 3rd. These reductions in TROPOMI SIF were quickly recovered within a week. For Region 1 and 315 

Region 3, there was another subsequent regional-wide sharp reduction, on November 25th and December 19th respectively, 

before the vegetation activity gradually ceased. Figures. 6, S9, S11 depicted the temporal change rate of different SIF and 

NIRv datasets. While TROPOMI revealed strong intra-seasonal variations during the peak growing season, the reconstructed 

SIF and MODIS NIRv remained nearly invariant. 
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 320 

 
Figure 5: Intra-seasonal variations of (a) TROPOMI SIF, (b) RTSIF, (c) GOSIF, (d) MODIS NIRv in the shrublands of Region 1 

during October 8th and November 25th, 2019. The date labels represent the starting date of each 8-day period. 

 

 325 
Figure 6: Temporal change rate of (a) TROPOMI SIF, (b) RTSIF, (c) GOSIF, (d) MODIS NIRv in the shrublands of Region 1 

during October 16th and November 25th, 2019. The date labels represent the starting date of each 8-day period. 

 

To identify drivers underlying the intra-seasonal variations observed in TROPOMI SIF, we further investigated 

meteorological variables from MERRA-2 and ESA-CCI SM (Fig. 7). We found that the reductions in TROPOMI SIF (e.g., 330 

Region 1 on November 9th and 25th, Region 2 on November 9th, and Region 3 on December 3rd and 19th) mostly coincided 

with increased Tair and VPD, and decreased SM. On the other hand, the subsequent recoveries (e.g., Region 1 and 2 on 

November 17th, and Region 3 on December 11th), all corresponded to decreased Tair and VPD, and increased SM. Such 

relationships between TROPOMI SIF and meteorological variations suggest that the intra-seasonal variations observed in 

TROPOMI SIF may represent the real vegetation status and are less likely artifacts of data noise. Again, the reconstructed 335 

SIF and MODIS NIRv, on the contrary, failed to capture such fast-changing intra-seasonal vegetation dynamics driven by 

environmental fluctuations (Fig. S12). With variations in PAR mostly showing opposite changes to variations in TROPOMI 

SIF (e.g., Fig. 7a), NIRvP could not capture such intra-seasonal variations either. 

Furthermore, we found that the SIF yield calculated from TROPOMI SIF (i.e., SIF yield = SIF / PAR / NIRv, following 

Dechant et al., 2020) has an even higher consistency with the short-term fluctuations in Tair, VPD and SM (Fig. 7). This 340 
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further suggests that the intra-seasonal variations in TROPOMI SIF are largely driven by the functional changes regulated by 

environmental conditions. Interestingly, while TROPOMI SIF showed a slight increasing trend in Region 2 during October 

16th and November 1st, TROPOMI SIF yield showed a large decreasing trend which corresponded to an increasing trend of 

Tair and VPD and a decreasing trend of SM (Fig. 7b). While TROPOMI SIF continued to increase as a result of increasing 

PAR, the grasslands in Region 2 already suffered functional depression due to thermal and/or water stress. Similarly, in 345 

Region 1 on October 24th, TROPOMI SIF also showed a slight increase due to an increase in PAR, while TROPOMI SIF 

yield showed a reduction related to increased Tair and VPD and decreased SM (Fig. 7a). This underscores the unique and 

valuable functional information contained in TROPOMI SIF for stress early detection and preparedness. In addition, during 

the second timestamp of all three selected windows (i.e., October 16th for Region 1 and 2, and November 25th for Region 3), 

when TROPOMI SIF had a strong increase, TROPOMI SIF yield also increased under favourable conditions (e.g., relatively 350 

lower Tair and VPD and higher SM). This might explain the stronger vegetation signals observed in TROPOMI SIF 

compared to other datasets (with less increase in SIF yield, Fig. S12) during the peak growing season (Fig. 4). This 

highlights the unique capability of TROPOMI SIF for vegetation monitoring and ultimately carbon budget quantification.  

 

 355 
Figure 7: Intra-seasonal variations of TROPOMI SIF, TROPOMI SIF yield, Tair, VPD, SM and PAR for the three sub-domains 

during the selected time windows (Fig. 4). The y axis for Tair and VPD are reversed for visual clarity. The x axis labels represent 

the starting date of each 8-day interval. 

 

4 Discussion 360 

4.1 Dryland intra-seasonal vegetation dynamics under excessive precipitation  

Dryland ecosystems are characterized by highly variable vegetation dynamics in response to environmental drivers at short 

time scales. Monitoring and understanding their behavior under different environmental conditions is critical to predict the 

fate of the global terrestrial carbon sink as well as support the livelihood of billions of people who live therein. In this study, 

we revealed the fast-changing intra-seasonal vegetation dynamics of HoA drylands under excessive precipitation, utilizing 365 
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several high-temporal-resolution SIF and VI datasets, especially TROPOMI SIF with unprecedented daily revisit frequency 

for satellite SIF retrieval. As revealed by TROPIMI SIF, we found interesting temporal dynamics of dryland vegetation 

under excessive precipitation at both site and regional levels. At the Kapiti site, there was not only a more pronounced 

vegetation signal (Fig. 2), but also complex phenological and physiological changes happening. In response to extreme soil 

moisture and rainfall amount and duration, two separate growth cycles occurred within a single rainy season, accompanied 370 

with a reduction in SIF (possibly also productivity) during the transition period between the two growth cycles (Fig. 3). 

Turner et al. (2019) also reported a double-peak SIF signal within one single growing season, due to different phenology of 

grasses and evergreen forests, while MODIS VIs failed to capture. At the regional scale, TROPOMI SIF showed highly 

dynamic week-to-week variations (Figs. 4-6) functionally up- and down- regulated by environment fluctuations (e.g., Tair, 

VPD and SM, Fig. 7) for all three selected sub-domains with distinct land cover types, precipitation variations and 375 

vegetation responses. Such short-term plant stresses and recoveries suggested strong environmental constraints (e.g., thermal 

and/or water stress) on dryland ecosystem functions, even during a rainy season with anomalously high precipitation. Such 

vegetation dynamics were not able to be unraveled by other datasets (e.g., MODIS NIRv). The findings in this study may 

alter our knowledge about monitoring of dryland ecosystems and their phenological and physiological responses to a 

changing climate under future projections, which inspires further investigation.  380 

4.2 Advantages of SIF over VIs in revealing intra-seasonal dynamics 

Satellite SIF has emerged as a promising proxy for inferring spatiotemporal dynamics of photosynthetic activities from 

canopy to global scales. Numerous studies have compared the capability of SIF and VIs in characterizing the temporal 

dynamics of gross primary production (GPP) at seasonal or inter-annual scales. SIF has unique mechanistic advantages as it 

is emitted from the core of the photosynthetic machinery and therefore contains additional functional information beyond the 385 

structural information usually carried by VIs. On the other hand, SIF has its practical limitations (e.g., comparatively coarser 

spatial and temporal resolutions, and higher data noise) relative to the greenness-based VIs that are much easier to retrieve. 

The general consensus from previous studies is that satellite SIF has overall similar performance to greenness-based VIs at 

seasonal cycles and beyond. This is especially the case for crops and deciduous forests where seasonal variations of structure 

(e.g., leaf area index and pigment content) are dominant (Dechant et al. 2020; Yang et al. 2015). In ecosystems where 390 

functional changes (e.g., leaf physiology) play a more impactful role compared to structural changes (e.g., evergreen 

conifers), more pronounced advantages have been found in SIF over greenness-based VIs in inferring GPP seasonal 

dynamics (Magney et al., 2019; Pierrat et al., 2022). 

While previous studies have been mostly focused on evaluation at the seasonal scale and beyond, this study highlighted the 

differences in shorter time scales, e.g., intra-seasonal. To achieve this, we took advantage of TROPOMI SIF (with daily 395 

revisit frequency) and employed HoA drylands (with highly dynamic vegetation changes in response to the environment) as 

a testbed. We found that only TROPOMI SIF revealed fast-changing phenological and physiological variations at both site 

and regional levels, while MODIS NIRv failed to capture them, despite that the latter is provided at high temporal resolution. 
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This is mainly because, at a temporal scale of several days to weeks especially during the peak growing season, the 

functional changes (as contained in SIF) in response to short-term environmental fluctuations are dominant compared to 400 

structural changes (as represented by NIRv), as greenness remains relatively constant (Daumard et al., 2010; Martini et al., 

2022). This is in analogy to the case of evergreen conifers at the seasonal scale (Magney et al., 2019; Pierrat et al., 2022). 

Such differences suggest that SIF contains unique mechanistic value in estimating carbon sequestration, monitoring 

vegetation status, detecting early plant stress, and understanding climate-vegetation interactions at short time scales. 

4.3 Deficiencies of reconstructed SIF products 405 

The native satellite SIF retrievals have been long suffering coarse spatial and/or temporal resolutions, large data noise, and 

short time spans. It has been hoped that the reconstructed SIF products that are derived from the native SIF retrievals could 

overcome these practical limitations, improving the capability of satellite SIF in depicting vegetation dynamics across scales. 

Indeed, there have been many efforts in the past years in developing such products (e.g., Duveiller and Cescatti 2016; Zhang 

et al., 2018; Li and Xiao, 2019; Yu et al., 2019; Wen et al., 2020; Ma et al., 2020, 2022; Chen et al., 2022; Wang et al., 410 

2022b). However, this study found that these reconstructed SIF products (i.e., based on OCO-2 or TROPOMI) resembled the 

spatiotemporal patterns of MODIS NIRv and were unable to characterize the complex fast-changing intra-seasonal dynamics 

(that were successfully captured by TROPOMI SIF), although these products were provided at fine temporal resolutions 

(e.g., 4 days for CSIF). 

This may be explained by two aspects of generating these reconstructed SIF products. First, the native SIF retrievals used for 415 

SIF reconstruction must contain the signals of fast-changing intra-seasonal vegetation dynamics. However, the native SIF 

retrievals from OCO-2 (with a 16-day revisit cycle) most likely miss these fast-changing signals, especially during the rainy 

seasons when clouds may exacerbate the issue. In contrast, the native SIF retrievals from TROPOMI (with daily revisit 

frequency) can track the complex intra-seasonal vegetation dynamics. This highlights the demand for native SIF retrievals 

with high temporal resolutions, e.g., several upcoming geostationary missions such as Tropospheric Emissions: Monitoring 420 

of Pollution (TEMPO) and the Copernicus Sentinel-4, which may greatly facilitate capturing vegetation dynamics at fine 

temporal scales and understanding climate-vegetation interactions. 

Second, the SIF reconstruction must faithfully preserve the spatiotemporal variations of native SIF. The procedure of SIF 

reconstruction is essentially a mapping from the ancillary datasets to SIF with calibrated relationships (Section 2.3). Most of 

the SIF reconstruction studies calibrated the relationships based on evaluation across all timestamps and all pixels, 425 

when/where the structural changes overwhelmingly dominate the variations, therefore whether the important functional 

information is preserved is not effectively evaluated. For example, the SIF yield calculated from RTSIF and GOSIF is 

largely dampened compared to that from TROPOMI SIF, which leads to flatter intra-seasonal variations in RTSIF and 

GOSIF, therefore a much weaker environmental sensitivities (Fig. S12), and lower consistency with in situ SIF (Fig. 2). This 

is however not contradicted with the high consistency between RTSIF and TROPOMI (e.g., R2 = 0.907, regression slope = 430 

1.001, reported in Chen et al., 2022), probably as a result of both correlating with absorbed PAR. To preserve the functional 
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information of the native SIF retrievals in the reconstructed SIF, one general idea is to impose a stronger constraint from the 

native SIF during the SIF reconstruction. For example, Wen et al. (2020) demonstrated that by stratifying the models in time 

and space, the reconstructed SIF could be better constrained by spatiotemporal variations of the native SIF and therefore be 

capable of capturing the functional changes. Another possible approach is to calculate the differences between the 435 

reconstructed SIF and the native SIF and redistribute the prediction residuals to the reconstructed SIF. Recently, Ma et al. 

(2022) utilized such an approach to reconstruct high-resolution SIF from the Global Ozone Monitoring Experiment-2 

(GOME-2). With the redistribution of prediction residuals, the reconstructed SIF showed a greater consistency with the 

native GOME-2 SIF. However, such approaches can only be applied to timestamps/regions when/where the native SIF 

retrievals are available. It could be challenging to make such adjustments for the extrapolated SIF when/where the native SIF 440 

retrievals do not exist (e.g., TROPOMI before 2018, spatial gaps for OCO-2). 

4.4 Limitations and future work 

Nonetheless, there are still several limitations in this study, which warrants future work. First, while this study utilized the 

HoA dryland ecosystems as a testbed to evaluate the capability of different satellite SIF and VI products in capturing intra-

seasonal dynamics, such comparison could be further conducted for other dryland regions or other vegetation types towards 445 

a more comprehensive evaluation. Second, limited by the scarcity of in-situ data, the intra-seasonal variations of SIF inferred 

in this study were not directly linked to ecosystem productivity. Such evaluation could be conducted in regions with more in-

situ data, e.g., flux tower measurements, as complementary assessment. Third, while this study evaluated the intra-seasonal 

variations inferred from different products in a qualitative way, further quantitative analysis can be done in the future work, 

e.g., to quantify the climate sensitivities of vegetation carbon dynamics. 450 

5 Conclusions 

Accurately monitoring the fast-changing vegetation dynamics of dryland ecosystems has been critical for understanding their 

climate sensitivities and informing climate risk management. In this study, we evaluated the advantages of SIF over 

greenness-based VIs in characterizing intra-seasonal (i.e., from days to weeks) vegetation dynamics, utilizing dryland 

ecosystems (e.g., shrublands and grasslands) in the Horn of Africa (HoA) as a testbed. At both site and regional levels, we 455 

found that TROPOMI SIF revealed fast-changing phenological and physiological variations at the intra-seasonal scale, while 

MODIS NIRv and several reconstructed SIF products did not. Specifically, at the site level, our results showed that 

TROPOMI SIF revealed two separate within-season growth cycles in response to extreme soil moisture and rainfall amount 

and duration, which was corroborated by in situ SIF measurements and Phenocam images. At the regional level, TROPOMI 

SIF and SIF yield exhibited highly dynamic week-to-week variations in both shrublands and grasslands, driven by 460 

environmental fluctuations (e.g., Tair, VPD, SM). MODIS NIRv could not capture such fast-changing intra-seasonal 

variations but remained relatively stable during the same period. Interestingly, the machine-learning reconstructed SIF 
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products were unable to characterize such intra-seasonal dynamics either, despite their approximately weekly temporal 

resolutions, rooted in insufficient temporal granularity of their original SIF retrievals and inadequate constraints from native 

SIF retrievals during the reconstruction. Our results indicate that SIF carries mechanistic advantages over NIRv in 465 

monitoring fast-changing intra-seasonal dynamics for dryland ecosystems, but high-temporal resolution SIF is essential to 

capture such complicated patterns. This study generates novel and important insights for developing effective real-time 

vegetation monitoring systems to understand carbon dynamics and inform climate risk management. 

Data Availability 

In situ SIF is available upon request to micol.rossini@unimib.it. TROPOMI_ESA can be accessed from 470 

http://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif. TROPOMI_Caltch can be accessed from 

ftp://fluo.gps.caltech.edu. RTSIF can be accessed from https://doi.org/10.6084/m9.figshare.19336346.v2. CSIF can be 

accessed from https://osf.io/8xqy6. GOSIF can be accessed from http://data.globalecology.unh.edu/data/GOSIF_v2. 

SIF_oco2_005 can be accessed from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1863. MODIS MCD43A4 can be 

accessed from https://lpdaac.usgs.gov/products/mcd43a4v061/. CHIRPS precipitation data can be downloaded from 475 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/. ESA-CCI soil moisture data can be accessed from https://www.esa-

soilmoisture-cci.org/data. MERRA-2 reanalysis can be accessed from https://disc.gsfc.nasa.gov/datasets/. MODIS LC can be 

accessed from https://lpdaac.usgs.gov/products/mcd12c1v061.   
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