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Abstract. We developed a new method for tuning sea ice rheology parameters, which consists of two components: a new

metric for characterising sea ice deformation patterns and an ML-based approach for tuning rheology parameters. We applied

the new method to tune the brittle Bingham-Maxwell rheology (BBM) parametrisation, which was implemented and used in

the next-generation sea-ice model (neXtSIM). As a reference dataset, we used sea ice drift and deformation observations from

the Radarsat Geophysical Processing System (RGPS).5

The metric characterises a field of sea ice deformation with a vector of values. It includes well-established descriptors such

as the mean and standard deviation of deformation, the structure-function of the spatial scaling analysis, and the density and

intersection of linear kinematic features (LKFs). We added more descriptors to the metric that characterise the pattern of ice

deformation, including image anisotropy and Haralick texture features. The developed metric can describe ice deformation

from any model or satellite platform.10

In the parameter tuning method, we first run an ensemble of neXtSIM members with perturbed rheology parameters and

then train a machine-learning model using the simulated data. We provide the descriptors of ice deformation as input to the

ML model and rheology parameters as targets. We apply the trained ML model to the descriptors computed from RGPS

observations. The developed ML-based method is generic and can be used to tune the parameters of any model.

We ran experiments with tens of members and found optimal values for four neXtSIM BBM parameters: scaling parameter15

for compressive strength (P0 ≈ 5.1 kPa), cohesion at the reference scale (cref ≈ 1.2 MPa), internal friction angle tangent (µ≈
0.7), ice–atmosphere drag coefficient (CA ≈ 0.00228). A NeXtSIM run with the optimal parametrisation produces maps of

sea ice deformation visually indistinguishable from the RGPS observations. These parameters exhibit weak interannual drift

related to changes in sea ice thickness and corresponding changes in ice deformation patterns.

1 Introduction20

Sea-ice dynamics in highly compact ice result from the interaction between surface stress on the ice supplied by wind and

ocean currents and the emerging internal stress in the ice. In sea-ice models, the internal stress is calculated by a set of

equations commonly referred to as rheology. Virtually all large-scale sea-ice models used for sea-ice forecasting and climate

modelling use the so-called viscous-plastic (VP) rheology of Hibler (1979), or more numerically efficient derivatives thereof.

Additionally, the elastic-plastic-anisotropic (EAP) approach was introduced by parameterising the anisotropy of the ice stress25

through interactions of diamond-shaped floes (e.g. Tsamados et al., 2013; Wilchinsky and Feltham, 2004). The free parameters

1



of the VP rheology have been estimated in various traditional sensitivity experiments (e.g. Panteleev et al., 2020, 2023), and

their values are generally considered fixed by the community today.

A new branch of brittle rheologies has been proposed and extended by Girard et al. (2011), Dansereau et al. (2016), and

Ólason et al. (2022), with the latest version, the brittle Bingham-Maxwell rheology (BBM) implemented and used in the next30

generation sea-ice model, neXtSIM (e.g. Rampal et al., 2016, 2019). NeXtSIM, with the BBM rheology, has already been used

in several scientific studies (e.g. Boutin et al., 2022, 2023; Korosov et al., 2023; Regan et al., 2023) and is used for operational

sea-ice forecasts (Williams et al., 2021), and BBM has been implemented in SI3, the sea-ice component of the NEMO model

(Brodeau et al., 2024). However, the free parameters of BBM have only been briefly explored, and their range and relation to

other model components and parameters remain unclear.35

The BBM rheology, like the other brittle rheologies, is a damage-propagation model. It parameterises the density of fractures

(the mechanical weakness of sea ice) at the sub-grid scale with a scalar damage variable. In this framework, undamaged ice is

fully elastic, and damage increases when the local stresses reach the Mohr-Coulomb failure criterion. An increase in damage

results in a decrease in elasticity, simulating the fracturing of the ice. Once fractured, the ice can also deform viscously,

simulating the permanent deformation of fractured ice. This permanent viscous deformation is limited in convergence by40

resistance to ridge formation, which is also accounted for by the BBM rheology.

As pointed out in Ólason et al. (2022), BBM has many parameters, some well-defined constants and some poorly constrained.

These parameters strongly and nonlinearly impact the patterns of sea ice drift and deformation simulated by the model. Visually,

the differences between observed and simulated deformation fields can guide the selection of a model parameter value. Still,

such manual tuning can become complicated when several parameters must be considered. This work aims to develop a set45

of metrics for quantitative comparison of the simulated and observed sea ice deformation fields and to use these metrics for

tuning BBM parameters utilising a deep learning approach.

2 A brief introduction of BBM rheology

The constitutive model of BBM consists of a parallel dashpot and a friction element, connected in series with a spring (see

Figure A1). The spring represents elastic ice deformation, the dashpot viscous deformation when the ice is fractured, and50

the friction element represents the resistance of broken ice to ridge formation. In a simple 1D case, these regimes can be

summarised as follows (with σ, σE and σv denoting total, elastic and viscous internal stresses, and ε, εE and εv , total, elastic

and viscous deformations). Note that due to the serial connectivity, the elastic stress always equals the total stress σE = σ.

– Sea ice is undamaged, viscous stress is zero, and total deformation is fully reversible (elastic): d= 0, σv = 0, ε= εE ,

where damage is a single scalar to parametrise the fracture density at the sub-grid scale. The damage value is altered55

whenever the local stress exceeds the Mohr-Coulomb failure criterion.

– Ice is damaged and diverging; the friction element is inactive and, therefore, the viscous stress equals the elastic and the

total stress. Deformation is both elastic and viscous: d > 0, σ > 0, σv = σE = σ, ε= εE + εv
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– Ice is damaged and converging with weak internal stress, the friction element is active, viscous stress is zero, and all

deformations are elastic. d > 0, Pmax < σ < 0, σv = 0; ε= εE , where Pmax is a compressive ice strength threshold that60

separates elastic from elastic and stress-dissipative behaviour of damaged sea ice.

– Ice is damaged and converging with strong internal stresses, the friction element is inactive and, therefore, the viscous

stress is equal to the elastic and the total stress, deformation is both elastic and viscous: d > 0, σ < Pmax, σv = σ−Pmax;

ε= εE + εv

Accounting for two components of the internal stress tensor (normal stress, σN and tangent stress, τ ), we can generalise the65

equation for the viscous stress as follows:

σv = (1+ P̃ )σ, (1a)

P̃ =


Pmax

σN
for σN <−Pmax,

−1 for −Pmax < σN < 0,

0 for σN > 0.

(1b)

where the threshold Pmax separates the elastic and visco-elastic regimes and can be computed following the results of Hopkins

(1998) and Hibler (1979):70

Pmax = P0

(
h

h0

)H

eC(1−A), (2)

where h is sea ice thickness, h0 = 1 m is a constant reference thickness, H = 3/2 is the exponent of the compression factor,

P0 is a constant reference stress, C < 0 is compaction parameter and A is ice concentration.

The time derivative of total stress (see details in Olason et al., 2022) is

σ̇ = EK : ε̇− σ

λ

(
1+ P̃ +

λḋ

1− d

)
, (3)75

where elasticity is a function of damage and concentration:

E = E0(1− d)eC(1−A), (4)

K : ε̇ is the stiffness tensor operation:
(K : ε̇)11

(K : ε̇)22

(K : ε̇)12

=
1

1− ν2


1 ν 0

ν 1 0

0 0 1− ν



ε̇11

ε̇22

ε̇12

 , (5)

λ is the viscous relaxation time:80

λ= λ0(1− d)α−1, (6)
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Table 1. The default and optimised (see Section 5.4) parameters of BBM rheology.

Parameter Symbol Default value Optimal value

Undamaged elasticity E0 5.96× 108 Pa

Undamaged viscous relaxation time λ0 1× 107 s

Reference thickness h0 1 m

Damage parameter α 5

Compaction parameter C -28

Scaling parameter for compressive strength P0 10 kPa 5.1 KPa

Cohesion at the reference scale cref 1 MPa 1.2 MPa

Poisson’s ratio ν 1/3

Internal friction angle tangent µ 0.7 0.7

Exponent of compression factor H 3/2

Ice–atmosphere drag coefficient CA 2.0× 10−3 2.28× 10−3

with E0 (undamaged elasticity), ν (Poisson’s ratio), λ0 (undamaged viscous relaxation time), and α > 0 is a constant.

Damaging occurs in the BBM rheology whenever the simulated stress in a grid cell or element is outside the failure envelope,

or yield curve. The failure envelope of the BBM rheology is the Mohr-Coulomb criterion:

τ = µσN + c, (7)85

where µ is the internal friction coefficient and c is the cohesion. Following Bouillon and Rampal (2015), we let the cohesion

scale with model resolution as

c∼ cref

√
lref

∆x
, (8)

where ∆x is the distance between model node points, and cref is the cohesion at the reference length scale, lref = 10 cm, where

the cohesion was measured to be of the order of 1 MPa (Schulson et al., 2006).90

The aforementioned parameters of the neXtSIM BBM rheology are summarised in Table 1. The ice-atmosphere drag coef-

ficient CA is also added to the table (although, strictly speaking, it is not a rheology parameter) because it controls the amount

of energy transferred from wind and ocean into sea ice, strongly affects the sea ice drift speed and, correspondingly, sea ice

deformation. According to Ólason et al. (2022), such parameters as P0 and cref require tuning using satellite observations at

large spatial and temporal scales. Given that the rheology parameters nonlinearly affect the field of sea ice deformation, a95

metric based on satellite-derived deformation should be used, and the tuning should capitalise on nonlinear methods, such as

deep learning.
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3 Data

We used the Lagrangian sea ice motion data from the Radarsat Geophysical Processing System (RGPS) (Kwok et al., 2008)

for tuning the above rheology parameters. The dataset contains trajectories of virtual buoys tracked using pattern-matching100

techniques on SAR imagery from Radarsat-2. The buoys are initialised by RGPS in mid-December in the western Arctic on

a regular grid with 10 km spacing on individual SAR images. The position of each virtual buoy is tracked from one image to

another overlapping image during the entire winter season (December – May). The trajectory is terminated if a virtual buoy

cannot be tracked due to a loss of similarity between SAR images or the absence of images. New virtual buoys are initialised

in the regions with low density of the tracked buoys that appear due to sea ice divergence or disappearance of older buoys. The105

average time between overlapping Radarsat-2 image acquisitions is three days but may vary from 0.5 to 10 days. Therefore,

the timing of virtual buoy positions is highly heterogeneous, even for neighbour trajectories (see Section A for details).

4 Methodology

4.1 Overview of the parameter tuning algorithm

In our approach, we compute a set of descriptors that characterise patterns in the fields of observed and simulated sea ice110

deformation. Since the correlation between the descriptors and model parameters is weak (see Fig. 6), we could not use linear

regression-based methods (e.g., Ensemble Kalman filter; Massonnet et al., 2014; Zhang et al., 2021; Chen et al., 2024) and

chose a deep learning (DL) approach instead. In our DL approach for tuning the neXtSIM parameter values, we train a neural

network based on the modelling results and apply it to actual observations. The inputs for the neural network are the descriptors

of the sea ice deformation, and the target is a value of a rheological parameter.115

The algorithm for DL parameter tuning can be summarised as follows:

1. We choose the neXtSIM rheology parameters for tuning and perturb their values to generate an ensemble. Let ϕm,n

denote the m-th parameter for the n-th member of the ensemble, then ϕm denotes a vector of the m-th parameter for all

members.

2. An ensemble of neXtSIM instances is run with the same forcings but with different rheology parameters:120

x̃n,t+1 =M(t, x̃n,t;ϕn), (9)

where x̃ is the sea ice model state (e.g., sea ice concentration, thickness, drift, etc.), M is neXtSIM model, and t is time.

3. Let x denote only one model variable: sea ice drift. Then H denotes the operator for computing a sea ice deformation

field and a quantitative characterisation of ice deformation pattern y:

yn,t =H(xn,t). (10)125

The size of yn,t is much smaller than the ice deformation field. For example, a daily deformation field containing ∼ 1010

sea ice deformation values can be characterised by a vector with ∼ 50 values.
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Figure 1. Scheme of ML-based tuning of neXtSIM parameters. Blue arrows denote operations with data. Yellow squares denote modelling

data. Green squares denote observations. The operators M and H denote, correspondingly, neXtSIM simulations and computation of sea ice

deformation descriptors.

4. Let y denote a set of yn,t vectors from all members and all time steps. Hereafter, y is called deformation pattern

descriptors, or simply, descriptors. A neural network N is trained (operator T ) with the deformation pattern descriptors

(y) as input and the rheology parameters (ϕm) as the target:130

Nm = T (y,ϕm). (11)

5. Deformation fields and deformation pattern descriptors are computed from the observed sea ice drift xo for each time

step t:

yo
t =H(xo

t ). (12)

6. The neural network is applied to the deformation pattern descriptors computed from the observed ice drift, and averaging135

(⟨⟩) is applied for computing the optimal value of a neXtSIM parameter:

ϕo
m,t =Nm(yo

t )

ϕo
m =

〈
ϕo

m,t

〉
.

(13)

All these steps are described in detail below.

4.2 Running an ensemble of neXtSIM instances

We ran two ensembles with neXtSIM instances. In the first experiment, the ensemble consisted of 50 members and the values140

of four parameters were perturbed using Latin Hypercube (McKay et al., 1979): P0, cref, ν and µ. In the second experiment with

70 members, the following parameters were perturbed with the same method: P0, cref, H , C and CA. The H and C parameters

were added because they control the influence of sea ice thickness on Pmax. See the ranges of the perturbed parameters in

Table 2.
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Table 2. Ranges of parameters perturbed in two experiments.

Experiment Parameter Symbol Min Max

1 Scaling parameter for compressive strength P0 0 20 KPa

1 Cohesion at the reference scale cref 0.5 3 MPa

1 Poisson’s ratio ν 0.27 0.33

1 Internal friction angle tangent µ 0.55 0.75

2 Scaling parameter for compressive strength P0 0 15 KPa

2 Cohesion at the reference scale cref 0.2 2 MPa

2 Exponent of compression factor H 0.5 2.5

2 Compaction parameter C -50 -5

2 Ice–atmosphere drag coefficient CA 0.001 0.003

NeXtSIM instances were run at 10 km resolution mesh, covering the central Arctic Ocean. Ocean forcing from TOPAZ4145

reanalysis (Sakov et al., 2012) and atmosphere forcing from ERA5 reanalysis (Hersbach et al., 2020) were used. NeXtSIM

exports snapshot outputs every hour with coordinates and connectivity of the nodes of the triangular mesh and model variables

for each mesh element, including ice concentration, thickness, etc. End-to-end indexing of the model nodes allows the iden-

tification of similar nodes on two snapshots and the computation of the displacement of the node, i.e., the simulated sea ice

drift.150

4.3 Preprocessing of neXtSIM data

To ensure comparability of sea ice drift and deformation from RGPS and neXtSIM, we subsample the model mesh using the

mesh of satellite observations. First, for a given set of virtual RGPS buoys that have the same starting time and ending time

(i.e., a single pair of SAR images is used for ice drift computation for these buoys), two model snapshots with the closest

simulation time are selected from the neXtSIM outputs. Next, only the neXtSIM nodes near the RGPS nodes are selected on155

the first snapshot, and the corresponding nodes are chosen on the second snapshot (see Figure A3 for an example). Nodes may

disappear during simulation, or new nodes appear due to convergence/divergence and consequent remeshing. In that case, a

new Delaunay triangulation connectivity is computed between the nodes existing on the first and the second snapshots. Further

drift, deformation, and descriptor calculations are performed on subsets of trajectories (same for RGPS or neXtSIM) with the

same start and end time. They are somewhat limited in space (by the intersection area of two SAR images).160

4.4 Computing the descriptors of the sea ice deformation

We compute the divergence and shear components of the deformation tensor and the total deformation rates using a standard

method of contour integrals of velocity (Kwok, 2006) for each element of the mesh subset mentioned above. The following

descriptors of the total deformation field are computed from each subset as described in the subsections below:
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1. Structure-function from the spatial scaling analysis165

2. Image anisotropy at different spatial scales

3. Haralick texture features at different spatial scales

4. Length, density and angle of intersection of linear kinematic features (LKFs)

5. Mean and 90th percentile of ice deformation values

4.4.1 Spatial scaling analysis170

As described in Ólason et al. (2022), the deformation is computed at different spatial scales by iterative coarse-graining (Marsan

and Weiss, 2010). First, the deformation is calculated on the native resolution of RGPS and neXtSIM (which are very similar).

Next, some nodes are randomly removed, the remaining node positions are triangulated, and deformation is computed again.

The last step is repeated several times until at least three nodes remain in the subset. Information about the area of the ele-

ment used for computing deformation is preserved. This iterative procedure is repeated several times, starting from the initial175

deformation field to collect sufficient deformation observations computed at different spatial scales.

The spatial scale L is linked with the statistical moments Q of the total deformation probability density function using the

following equation:

Llg = αN +βNQN
lg , (14)

where α and β are coefficients found using the least squares method, N is the statistical moment order, and the subscript180

lg indicates logarithmic space. The N -th statistical moment is computed as QN
lg =

〈
log10((ε− ε̂)N )

〉
, where ε̂ is mean total

deformation and ⟨⟩ denotes averaging.

Coarse graining is performed on each deformation subset (see Section 3.3). Still, the α and β coefficients are computed

using deformation values (and corresponding spatial scales) from all image pairs acquired within three days. Hereafter, the

offset and scale of the 1st statistical moment is denoted mom_1o and mom_1s, and so on (see Table 3).185

4.4.2 Image anisotropy

Image anisotropy aI characterises localisation of image intensity in a linear feature (Lehoucq et al., 2015). Anisotropy is high

(up to 1) for images of bright, narrow, long lines and is low (down to 0) for images with darker, shorter or thicker lines. We

compute the image anisotropy as:

aI = 1−
√

λ1

λ2
(15)190

where λ1, and λ1 are the eigenvalues of the inertia matrix P:

P=
∑
box

X2 XY

XY Y 2

I (16)
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Figure 2. Computation of image anisotropy on a mesh subset. The upper row shows a mesh subset with values of ice deformation (d−1), and

the lower row - values of anisotropy computed at different spatial scales. The blue dot on the upper row shows the location of an arbitrary

element for which anisotropy is computed, and the red dots show the neighbours from which the deformation and coordinates are collected.

where X and Y are coordinates of the pixels of the image with intensities I (i.e. ice deformation in our case).

In our study, anisotropy is computed on triangular mesh elements as illustrated in Fig. 2. Only elements with deformation

above 0.1 d−1 are used to avoid the impact of noise in sea ice drift and deformation (Dierking et al., 2020). For computing aI195

in a selected element, the nearest neighbour elements are found, and values of deformation and the coordinates of the centres

of the elements are used in Eqs. 15 and 16 (see Fig. 2, left column). For larger spatial scales (Fig. 2, 2nd, 3rd and 4th columns),

values of the deformation and coordinates are collected from the neighbours of the neighbours. After processing a single mesh

subset, each element is characterised by a vector of image anisotropy computed at spatial scales of 10, 20, 30, 40 and 50 km.

For every three days, a median and 90th percentile (P90) of anisotropy from all elements of all mesh subsets are computed for200

each spatial scale and denoted hereafter as a50_00, a90_00 and so on (see Table 3).

4.4.3 Texture features

Haralick texture features (TF) are extensively used for quantitative characterisation of image texture in tasks dealing with image

segmentation (Haralick et al., 1973; Zakhvatkina et al., 2017; Park et al., 2019). A grey-level co-occurrence matrix (GLCM)

is computed at the first stage of the texture analysis. GLCM is a 2D distribution of the probability of a pixel value and its205

neighbour value. The neighbours can be selected at varying orientations and distances from the central pixel. At the second

stage of texture analysis, several simple algebraic formulas are applied to the GLCM to compute statistical moments of the

distribution (e.g., mean, standard deviation, kurtosis, etc.) and more complex characteristics (energy, entropy, etc.)

In our study, we compute the GLCM from the triangular mesh elements. We accumulate information about an element

and all its neighbours at a given distance in all directions in one GLCM. For one–edge distance, we use the values from210
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Figure 3. Scheme of GLCM computation. The upper left map shows a mesh subset with values of total deformation from neXtSIM. The

upper row shows neXtSIM mesh with the central element coloured orange, and the neighbours at the one, two, four, and eight edge distances

are coloured yellow. The lower row of images shows corresponding GLCM matrices.

three immediate neighbours; for two–edge distances, we use the values from neighbours of neighbours (excluding the central

element and duplication), and so on, as shown in Fig. 3. We populate the GLCM matrix with data from all elements from all

mesh subsets acquired within three days. The following texture features (TFs) are computed at distances of 1, 2, 4, and 8 edges

using the scikit-image Python library (van der Walt et al., 2014): Dissimilarity, Homogeneity, Angular Second Moment,

Energy, Correlation, Contrast. For notation, see Table 3. Zakhvatkina et al. (2017) provides the exact formulas.215

4.4.4 LKF intersection angle

Hutter et al. (2019) proposed a method for detecting linear kinematic features (LKFs) on RGPS and model data and several

metrics for the characterisation of LKFs. These metrics are successfully applied to evaluate sea ice models in a large intercom-

parison experiment (Hutter and Losch, 2020). In our work, we rasterised the 3-day deformation maps on 12.5 km resolution

grids and applied the LKF detection method of Hutter et al. (2019). The number of LKFs, average length of LKFs, and average220

intersection angle of conjugate faults were used as the descriptors (see Table 3 for notations).

In addition to the descriptors listed above, the median and P90 of divergence, convergence and shear were computed for

each of the three days. Thus, a vector of descriptors constituted 49 values: median and P90 of deformation; median and P90 of

image anisotropy computed at five spatial scales; 6 texture features at four distances; slopes and offsets of 3 statistical moments;

length, number and intersection of LKFs. Table 3 shows the notation used hereafter in detail. Such vectors were generated from225

neXtSIM simulations for each day (using a sliding window of 3 days) from 5 December 2006 to 11 April 2007 for the first

experiment and from 5 December 2006 to 15 May 2007 for the second experiment. Therefore, we had 127× 50 = 6350 and

161× 70 = 11270 vectors for training the ML model in the first and the second experiments.
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Table 3. Descriptors notation.

Description Notation

Divergence, Convergence and Shear median and P90 div_50, div_90, cnv_50, cnv_90, she_50, she_90

Anisotropy median at 10, 20, 30, 40 and 50 km spatial scale a50_00, a50_05, a50_10, a50_15, a50_20

Anisotropy P90 at 10, 20, 30, 40 and 50 km spatial scale a90_00, a90_05, a90_10, a90_15, a90_20

Dissimilarity TF at a distance of 1, 2, 4, 8 pix dis_01, dis_02, dis_04, dis_05

Homogeneity TF at a distance of 1, 2, 4, 8 pix hom_01, hom_02, hom_04, hom_05

Angular Second Moment TF at a distance of 1, 2, 4, 8 pix asm_01, asm_02, asm_04, asm_05

Energy TF at a distance of 1, 2, 4, 8 pix ene_01, ene_02, ene_04, ene_05

Correlation TF at a distance of 1, 2, 4, 8 pix cor_01, cor_02, cor_04, cor_05

Contrast TF at distances of 1, 2, 4, 8 pix con_01, con_02, con_04, con_05

1st, 2nd and 3rd statistical moment slope and offset mom_1s, mom_2s, mom_3s, mom_1o, mom_2o, mom_3o

Average LKF intersection angle, length and number lkf_an, lkf_ln, lkf_no

4.5 Selection of usable descriptors

We test the applicability of these descriptors in two steps: comparison of PDFs for descriptors from RGPS and neXtSIM on230

the one hand and using an autoencoder on the other. In the first step, we scale the values of descriptors from RGPS using the

mean and standard deviation of the values from neXtSIM: ys = (yo −µ)/σ, where yo are all descriptors from RGPS, µ and σ

are mean and standard deviation for all descriptors from neXtSIM.

The mean and standard deviation of the scaled descriptors are analysed, and only the descriptors with scaled standard

deviation below 3 remain for further use. Six descriptors computed from RGPS data have significantly different values from235

the neXtSIM descriptors and are expected to mislead the training.

We trained an autoencoder (Hinton and Salakhutdinov, 2006; Vincent et al., 2008) with dense layers with 32, 16, 8, 16, and

32 neurons on the down-selected descriptors from neXtSIM. Due to the bottleneck, the autoencoder acts as a nonlinear principal

component analysis. It can be used for anomaly detection either in the input features (Hinton and Salakhutdinov, 2006) or in

input records (Vincent et al., 2008). We applied the autoencoder to the down-selected neXtSIM and RGPS descriptors and240

computed the root mean square difference (RMSD) between the input vector and the autoencoder output for neXtSIM and

RGPS. We excluded seven descriptors with high RMSE in RGPS data from further processing as anomalous compared to

neXtSIM training data.

4.6 Training of machine learning algorithms

We trained two types of ML models with the values of deformation pattern descriptors on input and a single value of a neXtSIM245

parameter as a target: a linear regression model (LR) and a deep neural network (DNN). For both models, we split the dataset

from neXtSIM into two parts (85:15) for training and validation. Training and validation data are taken from different months
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selected randomly. The models are trained on neXtSIM data and then applied to all RGPS descriptors. We repeated this

procedure ten times with a new random permutation and averaged the inference results on RGPS from each repetition. The

Eqs. 11 and 13 can be rewritten as follows with i being the index of repetition:250

Nm,i = T (yi,ϕm,i), (17a)

ϕo
m,t,i =Nm,i(y

o
t ), (17b)

ϕo
m =

〈
ϕo

m,t,i

〉
(17c)

The LR model can be formulated as:

ϕp =ApY, (18)255

where ϕp is the vector of the p-th model parameter for all 3-day periods, Y is a matrix with down-selected descriptors for all

periods, and Ap is a matrix with linear regression coefficients for that model parameter. Values in Ap are found using the least

squares method. The LR model does not require a split into training/validation datasets. However, only the training dataset was

compared with the DNN results.

The DNN model contains three hidden dense layers with 32, 16, and 8 fully connected neurons. We found this architecture260

optimal in a simple hyperparameter tuning experiment. The hidden layers use the rectified linear units (ReLu) activation

function, and the output layer uses linear activation. We trained the DNN with the Adam optimiser (Kingma and Ba, 2017),

and the validation loss (computed as absolute error) decreased.

5 Results and discussions

5.1 Sea ice deformation fields from neXtSIM265

Ólason et al. (2022) identified P0 and cref as two parameters of their rheology, which are poorly constrained and have a

substantial visual impact on the deformation fields. Fig. 4 compares total sea ice deformation derived from RGPS (first column),

and neXtSIM runs from the first experiments with the highest and lowest values of P0 and cref. Three dates were chosen for Fig.

4 in 2007 with low (15 February), moderate (25 January) and high (3 February) deformation events. These maps illustrate that

both parameters significantly affect the pattern of sea ice deformation, but their influence is manifested differently. For example,270

the increase of P0 results in broader and longer LKFs with higher deformation rates. These pronounced LKFs surround quite

large floes; the background deformation remains relatively low. The increase of cref seems to affect the background deformation

more — at the lowest cref value, the deformation between the main LKFs is mostly zero, and it increases with higher cref to

become almost spatially homogeneous. Visually, it is hard to say which of these maps better matches the RGPS data, but

we can use the similarity of deformation descriptors in PDFs as the metric. Nevertheless, optimisation of multiple rheology275

parameters is required to find the best match.

12



Figure 4. Maps of total deformation from RGPS and neXtSIM for three selected dates representing low, moderate and strong deformation

events. Each map represents a three-day mosaic, i.e., the deformation is derived from pairs of Radarsat-1 images (and corresponding neXtSIM

snapshots) accumulated over three days starting from the indicated date.
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5.2 Deformation pattern descriptors

Figure 5 shows the PDFs of the deformation pattern descriptors computed from RGPS and the first neXtSIM experiment.

Comparison of the PDFs from all neXtSIM runs (blue shaded area) with the PDFs from the run with the lowest (orange line) or

the highest (green line) P0 value illustrates that some descriptors (e.g., a50_00, a90_05, hom_02, con_01-08, etc.) are280

strongly affected by P0 — their PDF peaks are distinctly different. Other descriptors (e.g., ASM_01-08, a50_10, etc.) have

very similar PDFs without regard for the P0 parameter. See Figure A4 with PDFs of all deformation descriptors for reference.

The PDF of most RGPS–derived descriptors lies well within the range of neXtSIM-derived descriptors and peaks between

the highest and lowest P0 PDFs (e.g., a90_05, dis_04, mom_3o, etc.) suggesting that we can use these descriptors for

parameter tuning. Some RGPS descriptors, however, show a completely different distribution (e.g., hom_08, cor_08, etc.),285

probably due to sensitivity to noise in observations. Such descriptors are not usable for parameter training and are excluded as

described in section 4.5.

Figure 6 shows the correlation of all descriptors with the values of all parameters from the first experiment. The correlations

are generally relatively low, except for cref, which correlates with she_50 and cor_01 above 0.35. Results from the second

experiment are pretty similar.290

Figure 7 presents the mean and standard deviation of the RGPS-derived descriptors normalised by the mean and standard

deviation of the neXtSIM descriptors. We use it at the first step of evaluating usability and downselecting the descriptors.

Only 43 descriptors computed from RGPS data show the relative mean value between -1.5 and 1.5 standard deviations of

the neXtSIM descriptors. We exclude the following six descriptors from further processing: cor_08, a50_08, cor_01,

ene_08, dis_08, hom_08. The standard deviation of the RGPS descriptor a90_00 is very large compared to the neXtSIM295

due to noise in the RGPS observations of ice drift and deformation (see Figure 3, left panel).

Fig. 8 compares root mean square difference (RMSD) between input and predictions of the autoencoder trained on nor-

malised neXtSIM data and applied to neXtSIM and RGPS descriptors. The RMSD of neXtSIM — derived descriptors is below

one, showing that even a relatively shallow autoencoder (five layers with eight neurons in the bottleneck) can reproduce the

variability of the descriptors well. When the same autoencoder is applied to the RGPS data, some of the descriptors (cnv_90,300

con_08, lkf_ln, lkf_no, a90_20, lkf_an, and a90_00) have RMSD higher than the maximum neXtSIM RMSD.

High RMSD indicates abnormal values, and we exclude the corresponding descriptors from further training.

5.3 Training and inference of ML models

Fig. 9 shows the DNN training results for the first (upper row) and the second (lower row) experiments (see also Table 4).

These scatterplots compare the actual and the predicted neXtSIM parameters from the test dataset from all ten repetitions. In305

the first experiment, the DNN derives only the P0 and cref with sufficient accuracy (correlation is 0.75 and 0.88, respectively).

In the second experiment, the accuracy of P0 retrieval is somewhat lower (r = 0.61), while the accuracy of cref and CA retrieval

is high (correlation is 0.83 and 0.75, respectively). The DNN does not show any skill in retrieving ν or H parameters, and the
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Figure 5. PDFs of few deformation descriptors for RGPS (red), all neXtSIM runs (blue), and runs with lowest (orange) or highest values of

P0. The descriptor div90|ispromisingasitshowsstrongsensitivitytoP0 parameter, and the RGPS values vary

within a similar range. The descriptors

ASM08|andcor08|arelessusableastheyareeithernotsensitivetoP0 (i.e., ASM08|)orRGPSvaluesareoutofthetrainingrange(i.e.,cor08|).

Figure 6. Correlations between four parameters of the first experiment and the deformation descriptors.

Figure 7. Relative values of the mean (shown by bar height) and standard deviation (shown by error bars) of descriptors computed from

RGPS data. The blue colour shows the excluded descriptors.
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Figure 8. RMSD between input and output of the autoencoder trained on neXtSIM data and applied to neXtSIM (orange) and RGPS (blue

or green). The blue colour shows RGPS descriptors excluded from further analysis.

Figure 9. Comparison of the actual neXtSIM parameters (X-axis) and the retrievals by the DNN. The upper row shows results from the first

experiment, and the lower — the second one. The black lines show a 1:1 relation.

accuracy of retrieving µ and C is somewhat higher for a short range of values. Still, overall, these four parameters cannot be

derived with the machine learning approach. LR accuracy is lower (see Table 4), and the scatterplots are not shown.310

Figure 10 shows PDFs of parameters used for training (blue line) and derived from the RGPS data using DNN (orange line)

and LR (green line) models in the two experiments mentioned above (upper and lower row). In both experiments, PDFs of P0

and cref parameters have a clear peak at ≈5000 kPa and ≈1.1 MPa, correspondingly. Notably, these peaks do not correspond

to the centre of the distribution of the parameters used for training (blue line). We can observe similar behaviour for µ and

CA parameters, which also have relatively high retrieval accuracy of testing data. For ν, H , and C parameters, the situation is315

16



Figure 10. PDFs of parameters used for training (blue lines) and derived from RGPS descriptors using DNN (orange) and LR (green). The

upper row shows the results from the first experiment, and the lower — the second.

different — the accuracy of the retrievals on the testing data was low, and the retrievals from the RGPS data are centred in the

distribution of training values.

5.4 Optimal rheology parameters for neXtSIM

Since the training accuracy was high, the peaks of PDFs of RGPS-derived parameters are pronounced and have offset from

the centre of the input data distribution; we can conclude that the values of P0, cref, µ and CA parameters derived from RGPS320

can be used for optimal representation of the deformation patterns by neXtSIM. Table 4 lists the parameter values derived in

different experiments and the accuracy of the model training. Note that DNN always has higher accuracy than the LR model.

We ran neXtSIM with the optimal parameter values, and Figure 11 shows a comparison with RGPS for the exact three dates.

We can see that the patterns of the divergence and shear fields are very similar for neXtSIM and RGPS concerning the density

and orientation of LKFs, the magnitude of deformation, and, overall, the texture of the deformation field, thus confirming that325

the found parameters are indeed optimal.

We compared the PDFs of the deformation descriptors using the Kholmogorov-Smirnov (KS) test. The KS test is applied

to the PDFs of deformation descriptors computed from neXtSIM and RGPS and is averaged over all usable descriptors. The

average KS test is the lowest for the neXtSIM run with the optimal parameters (0.41) and is slightly lower than for the default

parameters (0.49).330

The simulated sea ice drift was validated against the RGPS drift by comparing the velocity vectors of each virtual buoy

from RGPS data and the matching node on the neXtSIM mesh. The ice drift root mean square error for the run with optimal

parameters is 0.04 m/s, slightly lower than for the run with the default parameters (0.05 m/s).
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Table 4. Average values of neXtSIM parameters derived from RGPS. The optimal values are marked in bold.

Param Exp Method r

training

Mean

inference

P0 1 LR 0.66 4.88 kPa

P0 1 NN 0.75 5.11 kPa

cref 1 LR 0.83 1.10 MPa

cref 1 NN 0.88 1.21 MPa

ν 1 LR 0.36 0.305

ν 1 NN 0.35 0.305

µ 1 LR 0.4 0.70

µ 1 NN 0.5 0.70

P0 2 LR 0.59 4.72 kPa

P0 2 NN 0.61 5.26 kPa

cref 2 LR 0.78 1.11 MPa

cref 2 NN 0.83 1.19 MPa

H 2 LR 0.3 1.49

H 2 NN 0.35 1.38

C 2 LR 0.47 -36.1

C 2 NN 0.54 -28.7

CA 2 LR 0.69 2.32 ×10−3

CA 2 NN 0.75 2.28×10−3

Sea ice thickness (SIT) from different runs was compared to the monthly average ice thickness from ICESat-1 in March

2007 (Zwally et al., 2014). SIT RMSE is the highest (≈ 1.3 m) for the runs with Cref ≈ 0.5 MPa, but no significant differences335

between the other runs were found (RMSE ≈ 1 m).

It is interesting to note similarities and differences between the parameters used by Ólason et al. (2022). We note that the

values we get for ν, µ, and H are very similar to those Ólason et al. (2022) used. This is to be expected for ν and µ, which

are based on well established values (see, e.g. Weiss and Schulson, 2009; Mellor, 1986). Ólason et al. (2022) chose H = 3/2

based on the modelling work of Hopkins (1998), but it is unclear whether this should be valid at the geophysical scale. The340

accuracy of our estimate for H is low, but it is reasonably close to H = 3/2 and within the expected range of H ∈ [1,2].

In terms of the stress balance in the ice, CA, P0, and cref are the most important, as they determine the momentum transfer

from atmosphere to ice, the resistance to ridging, and the shear strength of the ice, respectively. Interestingly, our estimate of

CA is higher than the value used by Ólason et al. (2022); 2.28× 10−3 vs. 2.0× 10−3, resulting in more momentum transfer

from the atmosphere to the ice. At the same time, both P0 and cref are lower; 5.11 kPa vs. 10.0 kPa and 1.21 MPa vs. 2.0 MPa,345

respectively. This results in an overall weaker ice cover compared to the parameters used by Ólason et al. (2022). It would,

therefore, be reasonable to expect that our set of parameters would lead to an overestimate of the deformation, but this is not
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Figure 11. Maps of divergence and shear from neXtSIM run with default parameters (left column), optimal parameters (central column) and

from RGPS (right column) for 3rd February 2007.

the case. This underlines the system’s complexity and indicates that there may be multiple local minima in the parameter space,

giving reasonable results. For such a system, using a systematic approach which samples the full parameter space - similar to

what we propose here - is extremely beneficial.350

5.5 Temporal variations of neXtSIM parameter values

The PDFs of parameters presented in Figure 10 are derived from all RGPS descriptors computed in winter 2006–2007. How-

ever, we can also apply the ML model trained on neXtSIM data from winter 2006/07 to the RGPS data acquired since 1998. We

applied the autoencoder described in Sections 4.5 and 5.3 to the RGPS data from the earlier period to test that the trained ML
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model has sufficient generalisation skills. We could not detect any significant anomalies in this data. Since the encoder section355

of the autoencoder has the same architecture as the ML model used for inferring the rheology parameters, we can conclude

that the ML model trained on data from winter 2006/07 is general enough to be applied to the earlier RGPS data.

Figure 12 shows temporal variations of the derived optimal parameters on daily and inter-annual time scales. To create the

latter plot, we computed the descriptors from the RGPS data for 1997–2008 and applied the DNN models trained on neXtSIM

data from 2006–2007.360

On daily time scales, the derived parameters show very high variability, reflecting frequent changes in the pattern of sea ice

deformation due to varying atmospheric forcing. The DNN model from the first experiment is more sensitive to these variations

and even produces unphysical negative values of P0 during very high deformation at the beginning of February 2007. Despite

substantial variability, the parameters are stable on the annual scale and don’t show any significant trends.

On the interannual scale, the parameters tend to change; P0 and µ slightly decrease, while cref and AC gradually increase. A365

gradual change in the observed pattern of sea ice deformation can explain this observation. In the 90s, thicker ice had sparser

and more pronounced LKFs (see Fig. 4, high P0 and low cref maps). As ice became thinner, more background deformation

appeared, LKFs became denser, and the magnitude of deformation in LKFs slightly decreased (see Fig. 4, low P0 and high

cref maps). The impact of internal friction angle or air drag is not shown in Figure 4, but the mechanisms are similar: higher

Mohr-Coulomb slope allows the ice to resist breakup longer and creates larger floes (mimicking earlier, thicker ice situation);370

low air coefficient decreases ice drift and, consequently, ice deformation which again corresponds to an earlier period of RGPS

observations.

After the first experiments, we observed the interannual trends in the P0 and cref parameters (see Figure 12). This leads us

to conclude that the weak dependence of these rheology parameters on ice thickness (and potentially concentration) indicates

that the parameterisation of Pmax (see Eq. 2) requires optimised tuning of H and C parameters. That was the motivation to run375

the second experiment and to retrieve values of H , C and CA. Unfortunately, as table 4 shows, the accuracy of ML models

for these parameters is not sufficiently high, and we cannot derive their optimal values. Nevertheless, accounting for these

parameters in the second experiment allowed us to train ML models that show fewer diurnal variations and are more stable on

interannual time scales. Moreover, despite low accuracy, the ML models predict lower values of H (1.38) and C (-28.7) than

the default ones. Dedicated experiments are needed to tune these parameters further.380

6 Conclusions

We developed a new set of metrics for characterising the patterns in the sea ice deformation fields. These metrics are sensitive

to the parameters of a sea ice model rheology and can be used to compare simulated and observed ice deformation for model

evaluation or parameter tuning.

We developed a new method for tuning model parameters using machine learning. In our process, we train an ML model385

using simulated data and apply it to observations. In our case, the inputs to the ML model are the descriptors of sea ice

deformation, and the targets are the sea ice rheology parameters. We tested a linear regression (LR) and a deep neural network
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Figure 12. Time series of parameter values derived from RGPS for one year (left column) and several years (right column). Colour denotes

the experiment, and the shaded area shows the standard deviation of samples produced by ten neural networks for the daily values (left

column) or the samples collected from the entire year (right column).

(DNN) as ML models, and DNN always showed higher accuracy. This method can be applied to tune the parameters of any

other model.

Using the new set of metrics and the new ML-based method, we found values of four BBM rheology parameters that were390

poorly constrained previously: scaling parameter for compressive strength (P0 ≈ 5.1 kPa), cohesion at the reference scale

(cref ≈ 1.2 MPa), internal friction angle tangent (µ≈ 0.7), ice–atmosphere drag coefficient (CA ≈ 0.00228).

Our experiments cover a wide range of weather and sea ice conditions: from thin young ice in the Eastern Arctic to thick

MYI near the Canadian Archipelago, from the beginning to the end of the freezing period, from calm days to winter storms.

Presumably, the ML model trained on such heterogeneous data is general enough to be applied in regions with similar ice395

conditions, e.g., Laptev, Kara, Barents, and Lincoln Seas in the Arctic or Weddel and Ross Seas in the Antarctic. Applying

neXTSIM in the Antarctic shows that the model reproduces the seasonal cycle of sea ice extent and that BBM rheology

simulates the sea ice drift with higher accuracy (Santana et al., 2024). In other regions (e.g., the Marginal Ice Zone), where the

conditions are quite different, the sea ice concentration is lower, the ice elasticity drops substantially (see Eq. 4), the rheology

is no longer sensitive to cref, P , or other parameters.400

The tuned parameters exhibit weak interannual drift related to changes in sea ice thickness and corresponding changes

in ice deformation patterns. Improving the dependence on thickness and concentration in the BBM rheology or tuning the

corresponding parameters may reduce the drift and make the rheology completely independent of ice thickness influence.

Recent observations of ice drift and deformation obtained from Sentinel-1 SAR data processing are recommended for tuning

the rheology to reflect the current situation and provide higher accuracy forecasts.405

Other parameters in our experiments (exponent of compression factor, Poisson’s ratio, compaction parameter) did not impact

the pattern of sea ice deformation, or the influence of other parameters masked their impact. Therefore, their values could not
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be derived using our method. Dedicated experiments are required to study the sensitivity of the proposed metrics to these

parameters and to tune their values.

Appendix A: Additional figures410

Figure A1 presents a scheme of the Bingham-Maxwell rheology, where a spring is connected in series with a block, where a

dashpot and a friction element are connected in parallel.

max
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Figure A1. A schematic of the Bingham-Maxwell constitutive model showing a dashpot and a friction element connected in parallel, with

both connected to a spring in series. The figure is adapted from (Ólason et al., 2022).

Figure A2.A shows examples of RGPS trajectories spanning 150 – 180 days, and A2.B shows positions of virtual buoys

detected on SAR images acquired between 1st and 5th Jan 2007. Points are coloured by the time of image acquisition. Panel

C on Figure A2 shows the shear component of deformation computed from the drift of buoys shown on panel B. The figure415

illustrates how heterogeneous the RGPS Lagrangian ice motion data is in space and time.

Figure A3 shows a collocation of a neXtSIM mesh (shown in black colour) and a triangulated subset from the RGPS dataset

(shown in red colour). The RGPS subset is created by selecting starting and ending virtual buoy positions belonging to the

same Radarsat-1 images separated by 3 days. All nodes on the neXtSIM mesh within 10 km from the RGPS subset are selected

(blue colour) and used for the computation of deformation.420
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Figure A2. A. Example trajectories of virtual buoys detected on Radarsat-1 data by the RGPS system between 1st December 2006 and 15th

May 2007. B. Position of virtual buoys on SAR images acquired between 1st and 5th January 2007. Points are coloured by the starting and

ending image acquisition time, as shown in the legend. C. Shear computed from the Radarsat-1 image pairs shown on B.

Figure A3. Illustration of RGPS and neXtSIM mesh collocation. The neXtSIM mesh from one snapshot is shown in black. The RGPS mesh

created by triangulation of virtual drifters detected on a pair of Radarsat-2 images is shown in red. The neXtSIM mesh subsampled from the

original mesh for collocation with the RGPS mesh is shown in blue.
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Figure A4. PDFs of all deformation descriptors for RGPS (red), all neXtSIM runs (blue), and runs with lowest (orange) or highest values of

P0.
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