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Abstract. 

Increasing demand for agricultural land resources and changing climate conditions require for strategic land-use planning 

and the development of adaptation strategies. Therefore, information about the suitability of agricultural land is a 

necessary prerequisite. Current suitability approaches often focus on single crops, can only be applied regionally and usually 

neglect the impact of climate variability on crop suitability. Here, we introduce CropSuite, a new comprehensive and easy-

to-use open-source crop suitability model that makes it possible to overcome these shortcomings. CropSuite uses a fuzzy 

logic approach and is based on the assumption of Liebig’s law of the minimum. It includes a spatial downscaling approach 

for climate data, which allows for performing crop suitability analysis at very high spatial resolution. Several factors 

that impact on crop suitability can flexibly be integrated into CropSuite by determining membership functions. 

CropSuite allows for the consideration of irrigated and rainfed agricultural systems, vernalization requirements for 

winter crops, lethal temperature thresholds, photoperiodic sensitivity and several other limitations. The model calculates 

and outputs climate-, soil-, and crop suitability, the optimal sowing date, the potential for multiple cropping, the (most) 

limiting factor(s), as well as the recurrence rate of potential crop failures. 

In this study, we apply CropSuite for 48 crops at a spatial resolution of 30 arc seconds (1 km at the equator) for Africa. Thereby, 

we consider regionally important staple and cash crops, such as coffee, cassava, banana, oil palm, cocoa, cowpea, groundnuts, 

mango, millet, papaya, rubber, sesame, sorghum, sugar cane, tobacco, and yams. We find that the consideration of climate 

variability for calculating crop suitability makes a significant difference on suitable areas, but also affects optimal sowing 

dates, and multiple cropping potentials. The most vulnerable regions for climate variability are identified in Somalia, 

Kenya, Ethiopia, South Africa, and the Maghreb countries. The results provide valuable crop-specific information that can 

be further used for climate impact assessments, adaptation and land-use planning. 29 

30 
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1 Introduction 32 

Climate change poses major challenges for agricultural production and food security. With warming climate, agricultural 33 

suitability changes and suitable areas shift towards higher latitudes (Franke et al., 2021; Zabel et al., 2014). Crop suitability 34 

models allow for a quantitative evaluation of land for crop cultivation and can therefore assess how the suitability of land 35 

changes with changing climate. Contrary to mechanistic crop models (Jägermeyr et al., 2021; Jägermeyr et al., 2020; Müller 36 

et al., 2024), crop suitability models are based on empirical approaches but are less computational intensive and thus allow for 37 

the consideration of more crops at higher spatial resolution (Zabel et al., 2014). Therefore, crop suitability models provide 38 

important insights for sustainable land-use planning and climate change adaptation, e.g. through cultivar change or land-use 39 

change. Akpoti et al. (2019) give an overview of existing crop suitability approaches. Most studies are applied at regional scale 40 

(Maleki et al., 2017; Bonfante et al., 2015; Ranjitkar et al., 2016), while just a few global approaches exist (Akpoti et al., 41 

2019). Most studies focus just on single crops and do not cover a variety of different crops (Ramirez-Villegas et al., 2013; 42 

Akpoti et al., 2020). Particularly for Africa, domestically consumed staple crops, such as yams and cassava are often overseen 43 

in current studies, due to minor economic relevance, despite their regional importance for food security (Chapman et al., 2020; 44 

Chemura et al., 2024; Van Zonneveld et al., 2023). So far, none of the existing approaches systematically considers the impact 45 

of climate variability on crop suitability, which is a major shortcoming, since climate variability is expected to increase with 46 

climate warming and has a strong impact on agriculture (Vogel et al., 2019; Goulart et al., 2021; Ipcc, 2021). 47 

The aim of this study is to introduce the CropSuite model, which is based on the crop suitability approach developed by Zabel 48 

et al. (2014) and has continuously been further developed by Cronin et al. (2020) and Schneider et al. (2022a). The model has 49 

been applied globally for 23 crops for different climate scenarios (Zabel, 2022). The model applies Liebig’s law of the 50 

minimum, assuming that the scarcest resource limits the crop growth, and is based on a fuzzy logic approach, which uses crop-51 

specific membership functions (Fig. 1) describing the abiotic crop requirements according to various climatic, soil, and 52 

topographic variables (Zabel et al., 2014). This approach is adopted, fundamentally redesigned and expanded with the goal to 53 

provide a comprehensive but easy-to-use and flexible open-source model that can be applied e.g. by farmers, companies, 54 

institutions, GOs, or NGOs. Therefore, CropSuite is now completely reprogrammed in Python and consists of a graphical user 55 

interface (GUI), as well as several pre-processing and analysis tools, e.g. for selecting a simulation domain, statistically 56 

downscaling the climate data, interpolating the membership functions and automatically analyzing and mapping the results. In 57 

addition, CropSuite is complemented with a new approach to consider the impact of climate variability on crop suitability. 58 
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2 Methods and Data 59 

For this study, we apply CropSuite for Africa at 30 arc seconds spatial resolution (approximately 1 km2 at the equator) with 60 

the goal to simulate relevant but often overseen crops for this continent (Van Zonneveld et al., 2023). Table 1 shows the 48 61 

crops, that have been parameterized and simulated with CropSuite. 62 

63 

Table 1: List of 48 considered crops simulated with CropSuite. 64 

1. Alfalfa (Medicagosa va)

2. Arabica Coffee (Coffea arabica)

3. Avocado (Persea americana)

4. Banana (Musea spp.)

5. Barley (Hordeum vulgare)

6. Beans (Phaseolus vulgaris)

7. Cabbage (Brassica oleracca)

8. Carrots (Daucus carota)

9. Cashew (Anacardium occidentale)

10. Oil Palm (Elaeis guineensis)

11. Olives (Olea europacae)

12. Onion (Allium cepa)

13. Cassava (Manihot esculenta)

14. Castor Beans (Ricinus commuis)

15. Chickpea (Cicerorie num)

16. Citrus (Citrus spp.)

17. Cocoa (Theobroma cacao)

18. Coconut (Cocos nucifera)

19. Cotton (Gossypium hirsutum)

20. Cowpea (Vigna unguiculata)

21. Green Pepper (Capsium annuum)

22. Grounduts (Arachishypogaea)

23. Guava (Psidium guijava)

24. Maize (Zea mais)

25. Mango (Mangiferaindica)

26. Millet (Pennisetum Americanum)

27. Papaya (Carica papaya)

28. Pea (Pisum savum)

29. Pineapple (Ananas comosus)

30. Potato (Solanum tuberosum)

31. Rapeseed (Brassica napus)

32. Rice (Oryza sa va)

33. Robusta Coffee (Coffea canephora)

34. Rubber (Hevea brasiliensis)

35. Rye (Secale cereale)

36. Safflower (Carthamus nctorius)

37. Sesame (Sesamum indicum)

38. Sorghum (Sorghum bicolor)

39. Soybean (Glycine maximum)

40. Sugar Cane (Saccharum officinarum)

41. Sunflower (Helianthus annus)

42. Sweet Potato (Ipomoea batatas)

43. Tea (Camellia senesis)

44. Tobacco (Nico anatabacum)

45. Tomato (Solanum lycopersicum esculentum)

46. Watermelon (Colocynthis citrullus)

47. Wheat (Tricumaes cum)

48. Yams (Dioscorea)

65 

We simulate a 20-year time period from 1991 to 2010 using a spatially downscaled ERA5 reanalysis climate dataset (Hersbach 66 

et al., 2020). The climate data is downscaled to a spatial resolution of 2.5 arc minutes, which corresponds to about 5 km at the 67 

equator (Ramirez-Villegas and Jarvis, 2010; Navarro-Racines et al., 2020). 68 

In addition, soil and terrain information is required. Table 2 gives an overview of the soil and terrain data used for this study. 69 

Soil data is mainly based on SoilGrids (Hengl et al., 2017), which has a spatial resolution of 250 m but is also provided at 1000 70 

m spatial resolution. This data is reprojected to WGS84 and spatially interpolated using nearest neighbor to the spatial 71 

resolution of 30 arc seconds applied in this study. Base saturation, gypsum, and exchangeable sodium content (ESP, sodicity) 72 

are taken from the WISE database at a spatial resolution of 30 arc seconds. For electric conductivity, the ISRIC Global Soil 73 
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Salinity Map with a resolution of 250 m is used. In contrast to the harmonized world soil database (HWSD), the ISRIC soil 74 

datasets do not contain a layer for texture class. For this reason, the texture class is determined using the sand and clay layer 75 

of SoilGrids according to the United States Department of Agriculture (USDA) triangular diagram of soil texture classes (Fao 76 

et al., 2012). For soil depths greater than 200 cm up to 50 m, the ISRIC dataset on absolute depth to bedrock (Hengl et al., 77 

2017), is complemented with the dataset from Pelletier et al. (2016), which covers soil depths up to 200 cm. 78 

Available soil layers can be weighted in CropSuite as required. The SoilGrids datasets provide information for six depths: 0-79 

5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm (Hengl et al., 2017; Hengl et al., 2014). According to the 80 

available information, we adjust the different layers according to the weighting factors (see Table 2) as suggested by (Sys et 81 

al., 1991). 82 

Terrain data are taken from the Shuttle Radar Topography Mission (SRTM) data set (Farr et al., 2007), which are used to 83 

calculate the slope at the applied spatial resolution. Please be aware that a coarser spatial resolution generally reduces the slope, 84 

which could result in an underestimation of possible slope limitations in mountainous regions. A possible terracing could 85 

remove the restriction due to the slope but usually terraces are too small to be considered at the aggregated spatial resolution 86 

of 30 arc seconds of the SRTM data in this study. 87 

88 

Table 2: Soil and terrain data used in this study and the applied weighting of the different soil layers. 89 

Parameter Source Weighting 

Base Saturation ISRIC Harmonized Dataset of Derived Soil 

Properties for the World (WISE30sec) 

Only Top Soil 

Coarse Fragments ISRIC SoilGrids 250m 0 - 25 cm: 2.0 

25 - 50 cm: 1.5 

50 - 75 cm: 1.0 

75 - 100 cm: 0.75 

100 - 125 cm: 0.5 

125 - 150 cm: 0.25 

Electric Conductivity ISRIC Global Soil Salinity Map Only Top Soil 

Gypsum Content ISRIC Harmonized Dataset of Derived Soil 

Properties for the World (WISE30sec) 

Only Top Soil 

Organic Carbon Content ISRIC SoilGrids 250m 0 - 25 cm: 2.0 

25 - 50 cm: 1.5 

50 - 75 cm: 1.0 

75 - 100 cm: 0.75 

100 - 125 cm: 0.5 

125 - 150 cm: 0.25 

Soil pH ISRIC SoilGrids 250m 0 - 5 cm: 0.33 

5 - 15 cm: 0.33 

15 - 30 cm: 0.33 

Sodicity Properties for the World (WISE30sec) Only Top Soil 

Soil Depth ISRIC SoilGrids 2017 (Soil Depth <= 200 cm) 

Pelletier et al. 2017 (Soil Depth > 200 cm 

No Weighting 

Texture Class Texture Class calculated from ISRIC SoilGrids 

250m Clay and Sand content according to USDA 

0 - 25 cm: 2.0 

25 - 50 cm: 1.5 

https://doi.org/10.5194/egusphere-2024-2526
Preprint. Discussion started: 20 September 2024
c© Author(s) 2024. CC BY 4.0 License.



5 

 

50 - 75 cm: 1.0 

75 - 100 cm: 0.75 

100 - 125 cm: 0.5 

125 - 150 cm: 0.25 

Slope SRTM aggregated to 30 arcsec No Weighting 

 90 

Membership functions for temperature, precipitation, slope, soil depth, texture class, coarse fragments, gypsum, base 91 

saturation, pH, organic carbon, electric conductivity, sodicity (Fig. 1) are defined for the considered 48 crops relying on 92 

information from Sys et al. (1993), which provide membership functions for most of the considered crops. Additionally, data 93 

from the EcoCrop database, which provides crop ecoligocal requirements for more than 2500 plant species (Fao, 2024), is 94 

used for Cowpea, Rye, and Yams. CropSuite in principle allows the flexible addition of any further membership function and 95 

dataset that is relevant. 96 

Nutrient deficits, such as nitrogen content are not considered in our approach, since according to our definition of crop 97 

suitability, they are not a decisive factor for the suitability of crops but rather depend on the crop management. Accordingly, 98 

we do not consider any soil tillage that can affect the soil properties, such as liming, which can influence the pH value. 99 

 100 

Figure 1: Membership functions exemplarily for maize with a growing cycle of 110 days for considered climatic (temperature, 101 
precipitation), topographic (slope), and soil constraints (soil depth, texture class, coarse fragments, gypsum, base saturation, pH, organic 102 
carbon, salinity, sodicity). 103 
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Sys et al. (1993) uses a classification system with 6 classes, ranging from N2 as unsuitable to S0 as highly suitable. In this 104 

study, we dismiss the N-classes and differentiate three suitability classes, marginally, moderately, and highly suitable (Table 105 

3). 106 

 107 

Table 3: Crop suitability classification system as used in this study compared to Sys et al. (1993). 108 

Suitability classes according to Sys et al. Suitability range Suitability classes used in this study 

S0 (highly suitable) 100 
75 – 100 (highly suitable) 

S1 (very suitable) 80 – 99 

S2 (moderately suitable) 60 – 79 33 – 74 (moderately suitable) 

S3 (marginally suitable) 40 – 59 1 – 32 (marginally suitable) 

N1  (actually unsuitable and potentially suitable) 20 – 39 
0  (unsuitable) 

N2  (unsuitable) 0 - 19 

2.1 The CropSuite Model 109 

Figure 2 shows the workflow and outputs of CropSuite, which first calculates a climate suitability (considering all climate 110 

constraints) and then calculates a soil suitability (considering all soil and topography constraints). Both data records can be 111 

output separately. Thereby, CropSuite applies Liebig’s law of the minimum, for both the climate and the soil suitability by 112 

choosing the lowest suitability value between the different soil parameters and climate variables respectively. Finally, the crop 113 

suitability is calculated from the combination of both climate and soil suitability by again following Liebig’s law of the 114 

minimum, which means that the lowest suitability value between climate and soil suitability is chosen, since it restricts overall 115 

crop suitability. The most limiting factor is identified as the parameter that imposes the greatest constraint on growth for a 116 

specific crop. In addition, the magnitude of the constraint is output for each input factor. Overall, CropSuite allows for a variety 117 

of outputs on optimal sowing dates, suitable sowing days, multiple cropping potentials, the limiting factor, and the recurrence 118 

rate of potential crop failures. 119 

CropSuite includes a pre-processing procedure which creates intermediate results for climate variability. Since climate model 120 

data are usually available at relatively coarse spatial resolution, CropSuite has implemented a spatial downscaling module for 121 

the climate data, which allows the model to be applied at very high spatial resolution from global to regional to local scale. In 122 

this study, we apply a statistical downscaling to the climate data, refining the spatial resolution from 2.5 arc minutes to 30 arc 123 

seconds. In principle, the targeted spatial resolution can be set in CropSuite but is limited to the available resolution of the 124 

additional input data, such as the soil data, whereas for the climate data, two different statistical spatial downscaling methods 125 

are implemented requiring little computational effort. The first methodology is based on an altitude regression for temperature 126 

(Marke et al., 2014), where the temperature gradients are extracted from the climate model data itself via a moving window 127 

that can be set in size. Thereby, the extracted gradients must remain within the natural boundaries for wet and dry adiabatic 128 

temperature gradients. The second downscaling methodology uses the historical high-resolution spatial patterns for monthly 129 

temperature and precipitation taken from WorldClim at 30 arc seconds spatial resolution (Fick and Hijmans, 2017). To 130 

downscale a coarse-resolution grid cell, all fine-resolution WorldClim grid cells within the coarse-resolution cell are selected 131 
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and aggregated per month. On this basis, additive factors are calculated for temperature and multiplicative factors for 132 

precipitation separately for each month. Thereby the sum (mean) of these additive (multiplicative) factors within the coarse-133 

resolution cell amounts 0 (1). Considering the monthly seasonality, these factors are applied to the coarse-resolution climate 134 

data, imprinting the spatial pattern of the high-resolution reference data onto the coarse climate data. Both downscaling 135 

methods conserve mass and energy from the climate input data by iteratively minimizing residuals over the simulation domain. 136 

For a more advanced statistical downscaling to kilometer-scale, the expert user may apply more complex topographical 137 

downscaling methods (Daly et al., 1994; Fiddes et al., 2022; Karger et al., 2023) or downscaling based on machine learning 138 

(Damiani et al., 2024; Wang et al., 2021) outside of CropSuite. Furthermore, we do not recommend applying the implemented 139 

downscaling methods with high scaling factors from very coarse (hundreds of kilometers) to very high (single kilometer) 140 

resolution. 141 

 142 

Figure 2: CropSuite workflow. Input data in blue, intermediate results in red and output data in green. The processing steps are shown in 143 
white. 144 
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CropSuite requires daily climate data as an input for temperature and precipitation. As climate models tend to produce too 145 

many days with low-intensity precipitation called “drizzle bias” (Chen et al., 2021), days with aggregated daily precipitation 146 

values below 1 mm per day are considered to be dry days (Sun et al., 2006). This threshold can be set in the model. Both 147 

downscaled temperature and precipitation data and the calculated datasets for climate variability are used to calculate the 148 

climate suitability. Therefore, the crop-specific membership functions determine the suitability according to the average 149 

temperature, total precipitation and the recurrence rate of potential crop failures over the length of the growing cycle (time 150 

from sowing till maturity) for each day of year (DOY). Thereby, the suitability value for each DOY refers to the average 151 

conditions during the growing cycle from that DOY, which corresponds to the sowing date, until maturity, determined by the 152 

length of the growing cycle which is set in the crop parameterization for each crop. For perennial crops, the length of the 153 

growing cycle is set to 365 days. Climate suitability is then identified by selecting the DOY with the highest minimum of the 154 

three components throughout the year as shown in Fig. 3, thereby determining the optimal sowing date for annual crops 155 

(optimal planting date for rice). For perennial crops this is set to 1. 156 
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 157 

Figure 3: Schematic illustration of the determination of climate suitability, the optimal sowing date and the limiting factor. The input 158 
data shows the annual course of temperature, precipitation and the recurrence rate of potential crop failure indicating whether it is too cold, 159 
too dry, or too wet. The plant parameterizations show the membership functions for either temperature, precipitation, and climate variability 160 
resulting in the suitability values for each DOY. Finally, climate suitability and the optimal sowing date is determined by the highest 161 
minimum value of all three suitability curves. The limiting factor is the most constraining factor at this point. 162 
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For annual crops, CropSuite also calculates the potential for multiple harvests of the same crop per year. Between harvest and 163 

reseeding, we assume a certain time period (21 days in this study) for field work and processing, which can be set flexibly in 164 

the model. Accordingly, all possible combinations of sowing dates are tested with the aim to maximize climatic suitability to 165 

achieve the highest sum of climatic suitability within a year. The optimal sowing dates are selected from the best sowing date 166 

combinations, resulting in one, two, or three sowing dates per year. A multiple cropping layer is output that shows how often 167 

a crop can be harvested. 168 

CropSuite distinguishes between rainfed and irrigated agricultural systems, which can be selected before starting the 169 

simulation. For the irrigated case, precipitation is not considered as a constraining factor with consequences for all further 170 

calculations, affecting e.g. the climate variability, the optimal sowing date, and the multiple cropping. 171 

For germination, temperature and soil water conditions requirements can be set in the model. The latter can be considered for 172 

rainfed conditions by defining a certain amount of precipitation within a certain period of time after sowing. 173 

Some crops, such as soybean have a high photoperiodic sensitivity which can limit their suitability (Cober and Morrison, 2010; 174 

Abdulai et al., 2012). Therefore, a maximum and minimum day length in average over the growing cycle can be considered in 175 

CropSuite. 176 

Additional climatic limitations are taken into account. We assume permafrost on areas with an average annual temperature 177 

below 0° C, which is computed from the downscaled climate input data. A maximum lethal temperature threshold of >40°C 178 

in average over the growing cycle is set for all crops (Asseng et al., 2021). In addition, a minimum and maximum threshold 179 

for the lethal temperature over a certain consecutive number of days can be set in the model crop-specifically. Further, the 180 

maximum number of consecutive dry days can be set dependent on the crop. 181 

CropSuite allows for the consideration of vernalization requirements for winter crops. Therefore, crop-specific temperature 182 

requirements with minimal and maximal temperature thresholds for a certain number of vernalization effective days can be 183 

configured in the model. Accordingly, CropSuite simulates for each location, if and when these vernalization requirements are 184 

fulfilled, which impacts on the optimal sowing date. An offset of days from sowing to the start of the vernalization period can 185 

optionally be added.  186 

A GUI is available for CropSuite that allows users to easily set-up the model, parameterize the crop requirements and the 187 

membership functions (Fig. 4a-e), and to start the simulations. Further, new membership functions can be created, and any 188 

additional data can be added, which can be flexibly assigned to the defined membership functions (Fig. 4e). Moreover, new 189 

crops or crop varieties can be added. The GUI also allows for the visualization and comparison of the results (Fig. 4f). 190 
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 191 

Figure 4: Graphical User Interface of CropSuite. (a) shows the main screen, (b) exemplarily shows available model settings, (c) shows 192 

the available options for crop parameterizations exemplarily for maize, (d) shows the window to set-up the simulation domain, (e) 193 

exemplarily shows the set-up of a parameter dataset for soil pH, and (f) shows the integrated data viewer in CropSuite. 194 

2.2 Climate Variability 195 

 In addition to several improvements and redesigns, one of the most important advancements in CropSuite is the consideration 196 

of climate variability for the assessment of crop suitability. Usually, crop suitability models consider long-term climate 197 

averages, e.g. 10, 20 or 30-year periods and climatic trends that affect crop suitability (Ramirez-Villegas et al., 2013; Schneider 198 

et al., 2022b). They are not designed so simulate seasonal yields, as for instants mechanistic crop models do (Jägermeyr et al., 199 

2021). However, existing crop suitability approaches may overestimate crop suitability when only long-term averages are 200 

considered, because a high climatic variability may result in a high frequency of unsuitable years, which would result in crop 201 

failures. This would however significantly increase the risk for farmers that require stable and plannable conditions. As a 202 
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result, a farmer may conclude that the risk of crop failures due to unstable climate conditions in a certain region is too high for 203 

being suitable for crop cultivation. As such, climate variability is not a purely ecological limitation but depends on the socio-204 

economic circumstances of how farmers deal with the risk of crop failure. We developed an approach that allows for the 205 

consideration of climate variability, and thus the implicit integration of socio-economic limitations in the suitability assessment 206 

of crops. 207 

Therefore, we specify a lower and upper threshold for temperature and precipitation at the 5th and 95th percentile of the crop-208 

specific membership function (Fig. 1). For each year within a given period of time (here we use 20-year time periods), it is 209 

tested and totaled, how often these thresholds exceed or fall below during the growing cycle for all possible sowing dates 210 

(January 1st until December 31st). As a result, a variability dataset is generated for each DOY, indicating the number of years 211 

in which at least either the temperature or the precipitation exceeds or falls below the threshold values. The number of years 212 

is divided by the length of the time period (here 20 years) to obtain the recurrence rate of potential crop failures. This data can 213 

be stored as a two-dimensional raster file for perennial crops or as a three-dimensional raster file for non-perennial crops, with 214 

each of the 365 DOYs representing the condition for the respective sowing day. 215 

For rainfed agricultural systems, cases that are considered for climate variability include excessively high or low temperatures 216 

and precipitation, while for irrigated agricultural systems, only excessively high or low temperatures and excessively high 217 

precipitation are considered, to address potential water logging, plant diseases or root rotting. Due to computational limitations, 218 

the preprocessing of the climate variability is carried out at the resolution of the input climate data (2.5 arc minutes) and is 219 

further interpolated bilinearly to the output resolution of 30 arc seconds. 220 

Finally, we introduce a membership function defining the impact of climate variability on crop suitability. As shown in Fig. 5, 221 

a sigmoid is adopted for the course of the function. According to expert knowledge, we set this sigmoid function in a way that 222 

it reduces suitability to 0 when the recurrence rate of potential crop failure is greater than once every 4 years (25%). However, 223 

this function may be different in different parts of the world and different between crops (see Discussion). 224 

 225 

Figure 5: Membership function for climate variability showing the impact of the recurrence rate of potential crop failures on crop 226 
suitability. Recurrence rate is shown in percent. 227 

https://doi.org/10.5194/egusphere-2024-2526
Preprint. Discussion started: 20 September 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

3 Data Comparison 228 

Crop suitability is difficult to validate or measure, nor is it equivalent to agricultural yields or production values. However, a 229 

comparison with other studies and data can provide valuable information and build confidence in the approach. 230 

3.1 Comparison with Harvested Area 231 

In principle, a crop should be suitable where it is already cultivated. According this premise, we compare the harvested areas 232 

from MapSPAM 2020 (Ifpri, 2024) with the suitable area from our simulation results for Africa. While MapSPAM relates to 233 

the year 2020, our simulations refer to the 1990-2010 time period, which could be a source of uncertainty. Nevertheless, we 234 

used MapSPAM 2020, since it includes 32 crops from our investigation. For comparison, harvested areas below 10 ha per 235 

pixel are excluded from the calculation and the high spatial resolution of the CropSuite model output is resampled to the same 236 

spatial resolution (5 arc minutes) than the MapSPAM 2020 data. 237 

Figure 6 depicts the results of this analysis for all crops, where green and blue bars represent areas that are suitable, while red 238 

and green areas indicate harvested areas in MapSPAM. While green areas are also identified as being suitable in our approach, 239 

red areas are harvested areas according to MapSPAM but not suitable according to CropSuite. Considering the ratio of red to 240 

green areas in Fig. 6, most crops show a small proportion of mismatch, except for onions, rice, rubber, cocoa, and coffee. This 241 

can have various causes, such as data uncertainty of climate, soil and irrigation data (Avellan et al., 2012), incorrect 242 

membership functions, the use of different crop varieties, or an incorrect localization of the cultivation areas in MapSPAM 243 

due to high uncertainties in the underlying national statistical data, especially in African countries (Yu et al., 2020), or applied 244 

crop management practices that could level out ecological limitations. 245 
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 246 

Figure 6: Comparison CropSuite with MapSPAM 2020 for all crops. Areas on which the respective crop is harvested according to 247 
MapSPAM and which are suitable according to CropSuite are shown in green, areas that are suitable but on which the crop is not harvested 248 
are shown in blue. Areas that are not suitable but are harvested according to MapSPAM are shown in red. 249 

Figure 7a shows the spatial comparison between crop suitability and harvested areas for maize. Areas where maize is harvested 250 

according to MapSPAM, although CropSuite has identified these areas as unsuitable, are found mainly in Egypt, the northern 251 

Sahel, the Congo Basin, as well as parts of Cameroon, Gabon, Kenya, Tanzania, Zimbabwe and South Africa. Figure 7b shows 252 

the comparison ignoring the impact of climate variability on crop suitability. Disregarding climate variability results in large 253 

(blue) areas, which are considered suitable but are no harvest areas according to MapSPAM, especially along the dry belts 254 

(15°N and 20°S). Our approach considering climate variability (Fig. 7a) reduces these blue areas, but induces some 255 

mismatches, where MapSPAM indicates harvested areas and CropSuite shows no suitability (red areas). We find that the 256 

mismatching areas along the dry belts and in eastern Africa (Tanzania, Kenya) are often associated with limits due to climate 257 

variability. This indicates that the thresholds for climate variability (section 2.2) and the membership function (Fig. 5) might 258 
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be parameterized slightly too exclusive. However, some of these regions might be used as cropland by smallholders or 259 

subsistence farmers despite the high risk of crop failures.  260 

While in the inner tropics, the reason for limited crop suitability can primarily be attributed to soil acidity (pH), indicating 261 

possible uncertainties with used SoilGrids dataset, differences in Egypt mainly result from discrepancies according to different 262 

assumptions on irrigated areas. 263 

 264 

Figure 7: Comparison of CropSuite with MapSPAM 2020 for maize. Areas on which the respective crop is harvested according to 265 
MapSPAM and which are suitable according to CropSuite are shown in green, areas that are suitable but on which the crop is not harvested 266 
are shown in blue. Areas that are not suitable but are harvested according to MapSPAM are shown in red. Unsuitable areas that are not 267 
harvested according to MapSPAM are shown in white. (a) shows the comparison with consideration of climate variability in CropSuite, 268 
while climate variability is not considered in (b). 269 

3.2 Comparison with GAEZ 270 

A state-of-the-art agro-edaphic suitability assessment is provided by the Global Agro-Ecological Zones (GAEZ) v4 (Fischer 271 

et al., 2021). For comparison, the suitability range of the GAEZ data is transformed to the classification system as shown in 272 

Table 3. In addition, the CropSuite data is resampled (using the average) to the same spatial resolution of 5 arc minutes than 273 

the GAEZ data. 274 

Overall, there are large overlaps between the GAEZ and CropSuite (Fig. 8). Generally, CropSuite identifies larger suitable 275 

areas than GAEZ for Africa, particularly for barley, cabbage, chickpea, rapeseed, rye and wheat. A main reason for differences 276 

may be due to different underlying soil data, GAEZ uses the HWSD while CropSuite uses the SoilGrids data.  277 
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 278 

Figure 8: Comparison between CropSuite and GAEZv4 suitability data for all matching crops. 279 

3.3 Comparison of Optimal Sowing Dates with the GGCMI Crop Calendar 280 

Another method of validation involves comparing the optimal sowing dates computed with CropSuite with the GGCMI crop 281 

calendar (Jägermeyr et al., 2021). Figure 9 illustrates the average differences of the sowing dates across Africa, averaged for 282 

the matching crops between the two datasets. The analysis is performed at a resolution of 30 arc seconds. The GGCMI data 283 

are bilinearly interpolated and then compared with the CropSuite data. Unlike CropSuite, which displays the optimal sowing 284 

date, the GGCMI data show the actual sowing date based on interpolated statistics. Thus, there might be differences between 285 

the optimal and actual sowing dates. It must also be considered that the GGCMI crop calendar is based on statistics that apply 286 

to discrete areas at relatively coarse half degree spatial resolution, while CropSuite was simulated at a pixel accuracy of 30 arc 287 
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seconds spatial resolution. In fact, the median differences are mostly within one month of the GGCMI crop calendar, which 288 

generally indicates a high agreement. 289 

 290 

Figure 9: Comparison of the optimal sowing dates of CropSuite with the actual sowing dates of the GGCMI Crop Calendars. The 291 
area-weighted shift of the sowing date in days is shown for all matching crops. Negative values mean an earlier sowing date in CropSuite, 292 
positive values mean a later sowing date in CropSuite compared to the GGCMI Crop Calendar. The bars show the 5th and 95th percentile, 293 
the orange marker shows the median. The color of the bars indicates the climatically suitable area for the whole of Africa. Irrigated areas are 294 
considered according to Meier et al. (2018). 295 

4 Results 296 

Crop suitability is simulated for historical climate conditions (1991-2010) for rainfed and irrigated conditions. Figure 10a 297 

illustrates the overall crop suitability, showing for each location the value for the most suitable of all considered crops. 298 

Irrigation is considered according to the currently irrigated areas for Africa (Meier et al., 2018), such as along the Nile river in 299 

Egypt (see Fig. S1 for irrigated areas in Africa). In total for Africa, 5.7 million km2 are highly suitable, 10.6 million km2 are 300 

moderately suitable, 3.3 million km2 are marginally suitable and 10.4 million km2 are not suitable for crop cultivation. Mainly 301 

between 10° N and 10° S, a high potential for multiple cropping exists with the possibility of two or three harvests per year 302 

(Fig. 10b). Looking at the number of crops suitable for cultivation (Fig. 10c), a large proportion of the considered crops can 303 

grow particularly along the wet savannahs, which gives these regions plenty of opportunities for cultivation. In contrast, only 304 

a few crops are suitable for the inner tropics and the dry savannahs, which limits the possibilities for switching between 305 

cultures. 306 
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 307 

Figure 10: (a) Overall crop suitability, (b) potential multiple cropping, and (c) number of suitable crops under historical climate 308 
conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). The overall crop suitability (a) and the 309 
potential multiple cropping (b) are each shown for the most suitable crop at each location. The maximal number of suitable crops results 310 
from the number of 48 considered crops (see Table 1). 311 

Figure 11 shows the suitable area for each of the simulated crops. The five crops with the largest suitable areas in Africa are 312 

safflower (16.82 mio km2), sesame (15.76), guava (14.15), cowpea (13.61), and mango (13.39). 313 

 314 

Figure 11: Marginally, moderately and highly suitable areas for all 48 crops under historical climate conditions from 1991 to 2010. 315 
Suitability classes are chosen according to Table 3. Irrigated areas are considered according to Meier et al. (2018).  316 
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Figure 12a exemplarily shows the crop suitability simulated for maize. The maps for all crops are provided via Zenodo (see 317 

Data Availability). Maize is highly suitable along a strip of the 10° N and the 20° S parallel as well as large parts of Mozambique 318 

and Madagascar. In total, 0.49 million km2 are highly suitable, 4.34 million km2 are moderately suitable, 3.97 million km2 are 319 

marginally suitable and 21.23 million km2 are unsuitable. 320 

The optimal sowing date for single cropping (Fig. 12b) for maize shifts with latitude from the northern hemisphere across the 321 

equator to the southern hemisphere. Figure 12c shows the potential number of potential harvests per year for maize. Climate 322 

conditions allow up to two harvests per year in some parts of Congo and Cameroon and in the irrigated areas e.g. along the 323 

Nile river. Optimal sowing dates for first and second sowing on areas suitable for multiple cropping are shown in Fig. S2. 324 

Figure 12d shows the climate suitability for maize, which just considers climatic constraints for the suitability of maize. In 325 

comparison to the crop suitability (Fig. 12a), more areas are suitable and suitability is substantially higher, where soil and 326 

topography do not limit or reduce crop suitability. 327 
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 328 

Figure 12: (a) Crop suitability, (b) optimal sowing date for single cropping, (c) potential multiple cropping, and (d) climate suitability 329 
for maize under historical climate conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). 330 
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The most limiting factor is shown in Fig. 13a. While low precipitation prevents maize from being suitable in large parts of 331 

Africa in the arid deserts, soil is predominantly restricting suitability in tropical regions. Particularly pH is the most limiting 332 

factor in the humid tropics, such as the Congo Basin, where soils are too acid for growing maize. A large band along the 333 

drylands highlights regions where inter-annual climate variability is most limiting maize suitability (in orange, Fig. 13a). Here, 334 

climate conditions are instable for maize cultivation, and the recurrence rate of potential crop failures is larger than 25% (every 335 

fourth year). For maize, climate variability is limiting crop suitability on 4.4 million km2 for Africa (Fig 13a). 336 

Figure 13b shows the degree of limitation for all considered climate, soil and terrain factors along a transect following the 20° 337 

E from North to South. In the Sahara, several factors, including temperature, organic carbon content, and soil pH, are not in 338 

an optimal range, while precipitation and the climate variability are the most limiting (note that climate variability is by 339 

definition a limiting factor if precipitation and/or temperature are limiting factors). Due to the unfavorable soil conditions, 340 

irrigation would only slightly improve maize suitability here. Between 15° N and 5° N, the limitations of all factors are 341 

relatively low. Here, coarse fragments and base saturation are most limiting. The tropical areas along the transect between 5° 342 

N and 10° S are mainly constrained by soil pH. Accordingly, soil management or practices that increase pH in these regions 343 

would have a significantly positive impact on crop suitability in this region, since no other factor has such a strong impact on 344 

maize suitability. Further south, low precipitation again mostly limits maize suitability. 345 

 346 
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Figure 13: (a) Most limiting factor of the crop suitability for maize under historical climate conditions from 1991 to 2010. (b) shows 347 
the degree of limitation of all factors along a transect of the 20° East from 30° North to 30° South. Irrigated areas are considered 348 
according to Meier et al. (2018) in (a) and are not considered in (b). 349 

The consideration of climate variability significantly reduces climate suitability for maize as shown in Fig. 14a, mainly in the 350 

transition area between dry savannah and desert in the Sahel zone, in Burundi and Tanzania in Eastern Africa, and in the 351 

southern part of Africa in Angola, Zambia, Zimbabwe, Mozambique, South Africa, and the southern part of Madagascar. In 352 

total, climate variability reduces climate suitability on more than 5.4 million km2. 353 

Optimal sowing dates also shift when considering climate variability, since the algorithm identifies the best suitable time 354 

window for the growing cycle over the year (Fig. S3). As a result, optimal sowing for maize considerably shifts in Tanzania, 355 

Mozambique and Madagascar. 356 

Over all crops, Fig. 14b shows the impact of climate variability on the overall crop suitability. In this case, overall crop 357 

suitability is reduced on 2.2 million km2, mainly reduced in Somalia, Kenya, Ethiopia, South Africa, and the Maghreb countries 358 

of Morocco, Algeria, Tunesia, and Libya. These regions generally show a high vulnerability to climatic variability. Climate 359 

variability also reduces the potential for multiple cropping in general over all crops on more than 2.3 million km2 (Fig. S4). 360 

 361 

Figure 14: Impact of the consideration of climate variability on crop suitability (a) for maize (b) for the overall crop suitability of all 362 
crops under historical climate conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). 363 
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5 Discussion 364 

We found that the consideration of climate variability significantly affects crop suitability, multiple cropping, and optimal 365 

sowing dates in Africa. Our approach allows to adjust the risk aversion of farmers by adjusting the thresholds for climate 366 

variability (section 2.2.) and the membership function (Fig. 5). The shape of this function may differ between crops and regions 367 

and might be influenced by several socio-economic factors, such as the degree of mechanization, financial possibilities, and 368 

the availability of crop insurances, which is likely to reduce risk aversion of farmers. We suggest the function as shown in Fig. 369 

5 as a broad and general solution which is primarily designed to represent risk aversion of commercial farms. In our comparison 370 

analysis for maize cultivation, we were able to determine that still agriculture takes place in the regions we identified as 371 

unsuitable due to the high recurrence rate of potential crop failures caused by high climate variability. In some regions, despite 372 

the high risk of crop failures, land might be cultivated by smallholders or subsistence farmers that have no other choice but to 373 

cultivate these lands. Though, we admit that the tuning of the climate variability thresholds and the membership function 374 

requires more research, and the optimal results will vary depending on crop and region. However, CropSuite offers the platform 375 

and the possibilities to conduct such assessments.  376 

The results of CropSuite are subject to uncertainties in the applied climate, soil, terrain, and irrigation data as well as the 377 

membership functions. Soil and terrain data are assumed to be static, although management could influence soil properties, 378 

such as pH, and terracing could reduce slope limitations. Even though ERA5 reanalysis shows improvements over its 379 

predecessor ERA-Interim for the African continent (Gleixner et al., 2020), considerable biases remain. The soil profiles used 380 

for the generation of the SoilGrids show a heterogeneous distribution, with large gaps over central Africa, which is why Hengl 381 

et al. (2017) attribute uncertainty in the data to the under-sampling. They argue that a few hundred additional profiles in under-382 

sampled areas could massively improve the resulting SoilGrids. The membership functions derived by Sys et al. (1993) are 383 

widely applied but are also governed by inherent uncertainties. Herzberg et al. (2019) argue that the assessment by Sys et al. 384 

(1993) is not detailed enough to capture specific features of small areas. They find that Sys et al. (1993) would consider a hilly 385 

area in tropical Vietnam unsuitable due to too acidic soils and steep slopes, whereas the local farmers can cultivate the land. 386 

Furthermore, the approach cannot account for compound effects and interactions of the climate and soil variables (Elsheikh et 387 

al., 2013). The membership functions cover the general behavior in a univariate manner, while the real plant physiology is a 388 

more complex interplay of climatic variables and soil conditions (Joswig et al., 2022). This also applies particularly to 389 

compound extremes, for example the combination of hot and dry climatic conditions (Goulart et al., 2023) that limit water 390 

availability and favor evaporation, which can trigger water and temperature stress in plants. This is relevant in the course of a 391 

warming climate, as the joint probability of hot and dry conditions is projected to increase in many regions of the world 392 

(Bevacqua et al., 2022; Felsche et al., 2024). This is however no specific drawback of CropSuite, but rather a lack of bivariate, 393 

multivariate or interactive membership functions. The assessment by Sys et al. (1993) is also outdated for new crop varieties 394 

that might be more resilient to climatic and environmental stressors (Peter et al., 2020). Furthermore, we argue that the 395 
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uncertainty in the membership functions is by design larger at the low and high ends of the membership function, which affect 396 

our consideration of climate variability. More research and updated functions could support the results by CropSuite. 397 

The sampling of climate variability within 20-year periods is limited as variability can cover wide time ranges. There, the 398 

application of single-model initial condition large ensembles can help to robustly assess the variability based on decadal or 399 

multidecadal time periods (Deser et al., 2020). This is especially important for precipitation and precipitation extremes, which 400 

show a high sensitivity to climate variability (Lang and Poschlod, 2024; Tebaldi et al., 2021). Furthermore, for the assessment 401 

of climate variability, we only capture the occurrence of growing seasons exceeding the percentile thresholds, but we do not 402 

consider the intensity of the according events. Single days with extreme precipitation can induce flooding that leads to crop 403 

failures (Balgah et al., 2023; Müller et al., 2023), even though the average precipitation for the growing season is still within 404 

the suitable range of the membership function. This drawback however also applies for mechanistic crop models (Ruane et al., 405 

2017). This is why we claim to assess climate variability not climate extremes inducing potential crop failures. 406 

6 Conclusions 407 

CropSuite is a new easy-to-use comprehensive open-source model that provides a complete processing chain (preprocessing, 408 

spatial downscaling, suitability simulations, data analysis and visualization) for carrying out crop suitability and climate change 409 

impact analysis. CropSuite allows users to easily parameterize different varieties of the same crops or additional crops by 410 

determining the membership functions in the GUI. Thereby, the fuzzy logic approach makes it easy to use expert knowledge 411 

for the parameterization of the membership functions. Besides all data and compiled maps generated, we provide a user manual 412 

for CropSuite (Zabel and Knüttel, 2024) and the parameterizations of the considered 48 crops in this study. Furthermore, the 413 

model allows the flexible addition of further parameters and membership functions that might affect suitability, if the required 414 

data is provided. For the future, this allows the consideration of further ecological and socio-economic limitations (such as 415 

access to fertilizers, available labor, know-how, infrastructure and transportation, heat stress impacts on labour) that have not 416 

yet been sufficiently considered in crop suitability assessments (Orlov et al., 2024; Akpoti et al., 2019). 417 

For this study, we simulated 48 crops for Africa under the consideration of climate variability for historical climate conditions. 418 

Thus, we created a huge dataset, providing detailed high-resolution information on climate-, soil-, and crop suitability, optimal 419 

sowing dates, multiple cropping potentials and the limiting factors, which can be used for follow-up studies and climate impact 420 

assessments. Additionally, the data include substantial information to develop strategies for an efficient land-use. The 421 

consideration of future climate change scenarios will allow for investigating efficient strategies for climate change adaptation 422 

through shifting sowing dates, or cultivar and land-use change. Further, information about the limiting factors can be helpful 423 

to optimize crop management, since it identifies the parameter that most efficiently improves crop suitability. 424 
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Code Availability 425 

CropSuite (v0.9) code is written in Python and is available Open-Source (CC BY 4.0) together with the GUI and a user manual 426 

at Zenodo (https://doi.org/10.5281/zenodo.13285636). 427 

Data Availability 428 

The resulting data contribute to the Africa Agriculture Adaptation Atlas and are available for download soon 429 

(https://adaptationatlas.cgiar.org). In addition to the shown maps in this paper, the compiled maps for all 48 crops are provided 430 

via Zenodo, including a separation of rainfed and irrigated agricultural systems (https://doi.org/10.5281/zenodo.13285542). 431 
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