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Abstract. 

Increasing demand for agricultural land resources and changing climate conditions require for strategic land-use 

planning and the development of adaptation strategies. Therefore, information about the suitability of agricultural 

land is a prerequisite. Current suitability approaches often focus on single crops, can only be applied regionally 

and usually neglect the impact of climate variability on crop suitability. Here, we introduce CropSuite, a new 

comprehensive and easy-to-use crop suitability model that allows to overcome these shortcomings. It provides a 

graphical user interface (GUI) and a wide range of pre- and postprocessing options, including a tool for data 

analysis, which allows users to easily apply the model and analyze the results. Further, it includes a spatial 

downscaling approach for climate data, which enables crop suitability analysis at very high spatial resolution. 

CropSuite uses a fuzzy logic approach and is based on the assumption of Liebig’s law of the minimum. An 

expandable number of environmental and socio-economic factors that impact on crop suitability can flexibly be 

integrated into CropSuite by determining membership functions. CropSuite allows for the consideration of 

irrigated and rainfed agricultural systems, vernalization requirements for winter crops, lethal temperature 

thresholds, photoperiodic sensitivity and several other limitations for crop growth. The model endogenously 

calculates and outputs climate-, soil-, and crop suitability, the optimal sowing- and harvest dates, the potential for 

multiple cropping, the (most) limiting factor(s), as well as the recurrence rate of potential crop failures according 

to the inter-annual climate variability. 

In this study, we apply CropSuite for 48 crops at a spatial resolution of 30 arc seconds (1 km at the equator) for 

Africa. Thereby, we consider regionally important staple and cash crops that are usually understudied, such as 

coffee, cassava, banana, oil palm, cocoa, cowpea, groundnuts, mango, millet, papaya, rubber, sesame, sorghum, 

sugar cane, tobacco, and yams. We find that the consideration of climate variability for calculating crop suitability 

makes a significant difference on suitable areas, but also affects optimal sowing dates, and multiple cropping 

potentials. The most vulnerable regions for climate variability are identified in Somalia, Kenya, Ethiopia, South 

Africa, and the Maghreb countries. The results provide valuable crop-specific information that can be further used 

for climate impact assessments, adaptation and land-use planning at global, regional, or local scale. CropSuite is 

provided open source and could be of interest for model developers, scientists, and a wide range of potential users 

and stakeholders, such as farmers, companies, GOs, and NGOs. 

 



2 
 

Key Words: Agriculture, Africa, Optimal Sowing Dates, Multiple Cropping, Maize 

1 Introduction 

Climate change poses major challenges for agricultural production and food security. With warming climate, 

agricultural suitability changes and suitable areas shift towards higher latitudes (Franke et al., 2021; Zabel et al., 

2014). Crop suitability models allow for a quantitative evaluation of land for crop cultivation and can therefore 

assess how the suitability of land changes with changing climate. Contrary to mechanistic crop models (Jägermeyr 

et al., 2021; Jägermeyr et al., 2020; Müller et al., 2024), crop suitability models are based on empirical approaches 

but are less computational intensive and thus allow for the consideration of more crops at higher spatial resolution 

(Zabel et al., 2014). As a result, crop suitability models provide important insights for sustainable land-use 

planning and climate change adaptation, e.g. through cultivar change or land-use change. Akpoti et al. (2019) give 

an overview of existing crop suitability approaches. Most studies are applied at regional scale (Maleki et al., 2017; 

Bonfante et al., 2015; Ranjitkar et al., 2016), while just a few global approaches exist (Akpoti et al., 2019). In 

addition, most studies focus just on single crops and do not cover a variety of different crops (Ramirez-Villegas et 

al., 2013; Akpoti et al., 2020). Particularly for Africa, domestically consumed staple crops, such as yams and 

cassava are often overseen in current studies, due to minor economic relevance, despite their regional importance 

for food security (Chapman et al., 2020; Chemura et al., 2024; Van Zonneveld et al., 2023; Karl et al., 2024). So 

far, none of the existing approaches systematically considers the impact of climate variability on crop suitability, 

which is a major shortcoming, since climate variability is expected to increase with climate warming and has a 

strong impact on agriculture (Vogel et al., 2019; Goulart et al., 2021; Ipcc, 2021). 

The aim of this study is to introduce the CropSuite model, which is based on the crop suitability approach 

developed by Zabel et al. (2014) and has continuously been further developed by Cronin et al. (2020) and 

Schneider et al. (2022a). The model has previously been applied globally for 23 crops for different climate 

scenarios (Zabel, 2022). The model applies Liebig’s law of the minimum, assuming that the scarcest resource 

limits the crop growth. CropSuite is based on a fuzzy logic approach where, in contrast to Boolean logic, the truth 

value of variables can be any real number between 0 and 1. In fuzzy logic, fuzzy sets consist of elements whose 

degrees of memberships are described by membership functions (Zadeh, 1965). In our approach, we apply fuzzy 

logic to create crop-specific membership functions (Fig. 1) describing the abiotic crop requirements between 0 

(not suitable) and 100 (highly suitable) according to various climatic, soil, and topographic variables (Zabel et al., 

2014). Using a value range between 0 and 100 (instead of 0 and 1) enables the use of an 8-bit integer data type for 

the internal calculation and storage of the results, which allows efficient use of memory and hard disk. This 

approach is adopted, fundamentally redesigned and expanded with the goal to provide a comprehensive but easy-

to-use and flexible open-source model that can be applied e.g. by scientists, farmers, companies, national or 

international GOs, and NGOs. Therefore, CropSuite is now completely reprogrammed in Python and consists of 

a graphical user interface (GUI), as well as several pre-processing and analysis tools, e.g. for selecting a simulation 

domain, statistically downscaling the climate data, interpolating the membership functions and automatically 

analyzing and mapping the results. In addition, CropSuite is complemented with a new approach to consider the 

impact of climate variability on crop suitability. It includes a user manual, which is provided together with the 

source code (Knüttel and Zabel, 2024). 
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2 Methods and Data 

For this study, we apply CropSuite for Africa at 30 arc seconds spatial resolution (approximately 1 km2 at the 

equator) with the goal to simulate relevant but often overseen crops for this continent (Van Zonneveld et al., 2023). 

Table 1 shows the 48 crops, that have been parameterized and simulated with CropSuite. 

 
Table 1: List of 48 considered crops simulated with CropSuite. Binomial names are given in brackets. 

1. Alfalfa (Medicago sativa) 
2. Arabica Coffee (Coffea arabica) 
3. Avocado (Persea americana) 
4. Banana (Musea spp.) 
5. Barley (Hordeum vulgare) 
6. Beans (Phaseolus vulgaris) 
7. Cabbage (Brassica oleracca) 
8. Carrot (Daucus carota) 
9. Cashew (Anacardium occidentale) 
10. Cassava (Manihot esculenta) 
11. Castor Bean (Ricinus commuis) 
12. Chickpea (Cicer arietinum) 
13. Citrus (Citrus spp.) 
14. Cocoa (Theobroma cacao) 
15. Coconut (Cocos nucifera) 
16. Cotton (Gossypium hirsutum) 
17. Cowpea (Vigna unguiculata) 
18. Green Pepper (Capsium annuum) 
19. Groundut (Arachis hypogaea) 
20. Guava (Psidium guijava) 
21. Maize (Zea mais) 
22. Mango (Mangifera indica) 
23. Millet (Pennisetum americanum) 
24. Oil Palm (Elaeis guineensis)  

25. Olive (Olea europacae) 
26. Onion (Allium cepa) 
27. Papaya (Carica papaya) 
28. Pea (Pisum sativum) 
29. Pineapple (Ananas comosus) 
30. Potato (Solanum tuberosum) 
31. Rapeseed (Brassica napus) 
32. Rice (Oryza sativa) 
33. Robusta Coffee (Coffea canephora) 
34. Rubber (Hevea brasiliensis) 
35. Rye (Secale cereale) 
36. Safflower (Carthamus tinctorius) 
37. Sesame (Sesamum indicum) 
38. Sorghum (Sorghum bicolor) 
39. Soy (Glycine maximum) 
40. Sugar Cane (Saccharum officinarum) 
41. Sunflower (Helianthus annus) 
42. Sweet Potato (Ipomoea batatas) 
43. Tea (Camellia senesis) 
44. Tobacco (Nicotiana tabacum) 
45. Tomato (Solanum lycopersicum esculentum) 
46. Watermelon (Colocynthis citrullus) 
47. Wheat (Triticum aesticum) 
48. Yams (Dioscorea) 

 

We simulate a 20-year time period from 1991 to 2010 using the Climate Hazards group Infrared Precipitation with 

Stations (CHIRPS) v2.0 daily data for precipitation (Funk et al., 2015) and the Climate Hazards Center Infrared 

Temperature with Stations (CHIRTS) v1.0 data for temperature (Funk et al., 2019; Verdin et al., 2020) at 2.5 arc 

minutes spatial resolution for Africa. Both data sets provide climatologies at daily to monthly resolution based on 

a combination of satellite remote sensing and climate stations. They benefit from long-term geostationary satellite 

observations, delivering consistent data since the 1980s at the quasi-global (50°S-50°N) scale. 

In addition, soil and terrain information is required. Table 2 gives an overview of the soil and terrain data used for 

this study. Soil data is mainly based on ISRIC SoilGrids (Hengl et al., 2017), which has a spatial resolution of 250 

m but is also provided at 1000 m spatial resolution. This data is reprojected to WGS84 and spatially interpolated 

using nearest neighbor to the spatial resolution of 30 arc seconds applied in this study. Base saturation, gypsum, 

and exchangeable sodium content (ESP, sodicity) are taken from the WISE database at a spatial resolution of 30 

arc seconds (Batjes, 2016). For electric conductivity, the ISRIC Global Soil Salinity Map with a resolution of 250 

m is used (Ivushkin et al., 2019). In contrast to the harmonized world soil database (HWSD) (FAO et al., 2012), 

the ISRIC soil datasets do not contain a layer for texture class. For this reason, the texture class is determined using 

the sand and clay layer of SoilGrids according to the United States Department of Agriculture (USDA) triangular 
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diagram of soil texture classes (FAO et al., 2012). For soil depths greater than 200 cm up to 50 m, the ISRIC 

dataset on absolute depth to bedrock (Hengl et al., 2017) is complemented with the dataset from Pelletier et al. 

(2016), which covers soil depths up to 200 cm. 

Available soil layers can be weighted in CropSuite as required. The SoilGrids datasets provide information for six 

depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm (Hengl et al., 2017; Hengl et al., 2014). 

According to Sys et al. (1991), soil properties have different effects on crop suitability depending on the soil layer. 

Accordingly, we use weighting factors as proposed by Sys et al. (1991) (see Table 2). The different distribution of 

the soil depths between the SoilGrids data and the weighting factors by Sys et al. (1991) is taken into account by 

using a proportional weighting of the SoilGrids layers.Terrain data are taken from the Shuttle Radar Topography 

Mission (SRTM) data set (Farr et al., 2007), which are used to calculate the slope at the applied spatial resolution. 

Please be aware that a coarser spatial resolution generally reduces the slope, which could result in an 

underestimation of possible slope limitations in mountainous regions. A possible terracing could remove the 

restriction due to the slope but usually terraces are too small to be considered at the aggregated spatial resolution 

of 30 arc seconds of the SRTM data in this study. 

 
Table 2: Soil and terrain data used in this study and the applied weighting of the different soil layers. 

Parameter Source Weighting 

Base Saturation ISRIC Harmonized Dataset of Derived Soil 

Properties for the World (WISE30sec) (Batjes, 

2016) 

Only Top Soil 

Coarse Fragments ISRIC SoilGrids 250m (Hengl et al., 2017) 0 - 25 cm: 2.0 

25 - 50 cm: 1.5 

50 - 75 cm: 1.0 

75 - 100 cm: 0.75 

100 - 125 cm: 0.5 

125 - 150 cm: 0.25 

Electric Conductivity ISRIC Global Soil Salinity Map (Ivushkin et 

al., 2019) 

Only Top Soil 

Gypsum Content ISRIC Harmonized Dataset of Derived Soil 

Properties for the World (WISE30sec) 

(Batjes, 2016) 

Only Top Soil 

Organic Carbon 

Content 

ISRIC SoilGrids 250m (Hengl et al., 2017) 0 - 25 cm: 2.0 

25 - 50 cm: 1.5 

50 - 75 cm: 1.0 

75 - 100 cm: 0.75 

100 - 125 cm: 0.5 

125 - 150 cm: 0.25 

Soil pH ISRIC SoilGrids 250m (Hengl et al., 2017) 0 - 5 cm: 0.33 

5 - 15 cm: 0.33 

15 - 30 cm: 0.33 

Sodicity ISRIC Harmonized Dataset of Derived Soil Only Top Soil 
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Properties for the World (WISE30sec) (Batjes, 

2016) 

Soil Depth ISRIC SoilGrids 2017 (Soil Depth <= 200 cm) 

(Hengl et al., 2017) 

 

Pelletier et al. (2016) (Soil Depth > 200 cm) 

No Weighting 

Texture Class Texture class calculated from ISRIC SoilGrids 

250m clay and sand content (Hengl et al., 

2017) according to USDA (FAO et al., 2012) 

0 - 25 cm: 2.0 

25 - 50 cm: 1.5 

50 - 75 cm: 1.0 

75 - 100 cm: 0.75 

100 - 125 cm: 0.5 

125 - 150 cm: 0.25 

Slope SRTM aggregated to 30 arcsec (Farr et al., 

2007) 

No Weighting 

 

Membership functions for temperature, precipitation, slope, soil depth, texture class, coarse fragments, gypsum, 

base saturation, pH, organic carbon, electric conductivity, sodicity (Fig. 1) are defined for the considered 48 crops 

relying on information from Sys et al. (1993), which provide membership functions for most of the considered 

crops. Additionally, data from the EcoCrop database, which provides crop ecological requirements for more than 

2500 plant species (FAO, 2024), is used for Cowpea, Rye, and Yams. CropSuite in principle allows the flexible 

addition of any further membership function and dataset that is relevant for the use case. 

Nutrient deficits, such as nitrogen content are not considered in our approach, since according to our definition of 

crop suitability, they are not a decisive factor for the suitability of crops but rather depend on the crop management. 

Accordingly, we do not consider any soil tillage that can affect the soil properties, such as liming, which can 

influence the pH value. 
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Figure 1: Membership functions exemplarily for maize with a growing cycle of 110 days for considered climatic (mean 
temperature over the growing cycle, total precipitation over the growing cycle), topographic (slope), and soil constraints (soil 
depth, texture class, coarse fragments, gypsum, base saturation, pH, organic carbon, salinity, sodicity). 

Sys et al. (1993) uses a classification system with 6 classes, ranging from N2 as unsuitable to S0 as highly suitable. 

In this study, we dismiss the N1 class due to a vague definition and differentiate three suitability classes, 

marginally, moderately, and highly suitable (Table 3). 

 
Table 3: Crop suitability classification system as used in this study compared to Sys et al. (1993). 

Suitability classes according to Sys et al. Suitability range Suitability classes used in this study 

S0 (highly suitable) 100 
75 – 100 (highly suitable) 

S1 (very suitable) 80 – 99 

S2 (moderately suitable) 60 – 79 33 – 74 (moderately suitable) 

S3 (marginally suitable) 40 – 59 1 – 32 (marginally suitable) 

N1  (actually unsuitable and potentially suitable) 20 – 39 
0  (unsuitable) 

N2  (unsuitable) 0 - 19 

2.1 The CropSuite Model 

Figure 2 shows the workflow and outputs of CropSuite, which first calculates a climate suitability (considering all 

climate constraints) and then calculates a soil suitability (considering all soil and topography constraints). Both 

data records can be output separately. Thereby, CropSuite applies Liebig’s law of the minimum, for both the 

climate and the soil suitability by choosing the lowest suitability value between the different soil parameters and 

climate variables respectively. Finally, the crop suitability is calculated from the combination of both climate and 

soil suitability by again following Liebig’s law of the minimum, which means that the lowest suitability value 

between climate and soil suitability is chosen, since it restricts overall crop suitability. The most limiting factor is 
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identified as the parameter that imposes the greatest constraint on growth for a specific crop. In addition, the 

magnitude of the constraint is output for each input factor. Overall, CropSuite allows for a variety of outputs on 

optimal sowing- and harvest dates, suitable sowing days, multiple cropping potentials, the limiting factor, and the 

recurrence rate of potential crop failures. Output data format can be set to GeoTIFF or NetCDF. 

CropSuite includes a pre-processing procedure which creates intermediate results for climate variability. Since 

climate model data are usually available at relatively coarse spatial resolution, CropSuite has implemented a spatial 

downscaling module for the climate data, which allows the model to be applied at very high spatial resolution from 

global to regional to local scale. In this study, we apply a statistical downscaling to the climate data, refining the 

spatial resolution from 2.5 arc minutes to 30 arc seconds. In principle, the targeted spatial resolution can be set in 

CropSuite but is limited to the available resolution of the additional input data, such as the soil data, whereas for 

the climate data, two different statistical spatial downscaling methods are implemented requiring little 

computational effort. The first methodology is based on an altitude regression for temperature (Marke et al., 2014), 

where the temperature gradients are extracted from the climate model data itself via a moving window that can be 

set in size. Thereby, the extracted gradients must remain within the natural boundaries for wet and dry adiabatic 

temperature gradients. The second downscaling methodology uses the historical high-resolution spatial patterns 

for monthly temperature and precipitation taken from WorldClim at 30 arc seconds spatial resolution (Fick and 

Hijmans, 2017). To downscale a coarse-resolution grid cell, all fine-resolution WorldClim grid cells within the 

coarse-resolution cell are selected and aggregated per month. On this basis, additive factors are calculated for 

temperature and multiplicative factors for precipitation separately for each month. Thereby the sum (mean) of 

these additive (multiplicative) factors within the coarse-resolution cell amounts 0 (1). Considering the monthly 

seasonality, these factors are applied to the coarse-resolution climate data, imprinting the spatial pattern of the 

high-resolution reference data onto the coarse climate data at daily time step. Both downscaling methods conserve 

mass and energy from the climate input data by iteratively minimizing residuals over the simulation domain. For 

a more advanced statistical downscaling to kilometer-scale, the expert user may apply more complex topographical 

downscaling methods (Daly et al., 1994; Fiddes et al., 2022; Karger et al., 2023) or downscaling based on machine 

learning (Damiani et al., 2024; Wang et al., 2021) outside of CropSuite. Furthermore, we do not recommend 

applying the implemented downscaling methods with high scaling factors from very coarse (hundreds of 

kilometers) to very high (single kilometer) resolution. 
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Figure 2: CropSuite workflow. Input data in blue, intermediate results in red and output data in green. The processing steps 
are shown in white. 

CropSuite requires daily climate data as an input for temperature and precipitation. As climate models tend to 

produce too many days with low-intensity precipitation called “drizzle bias” (Chen et al., 2021), days with 

aggregated daily precipitation values below 1 mm per day are considered to be dry days (Sun et al., 2006). This 

threshold can be set in the model. Both downscaled temperature and precipitation data and the calculated datasets 

for climate variability are used to calculate the climate suitability. Therefore, the crop-specific membership 

functions determine the suitability according to the average temperature, total precipitation and the recurrence rate 

of potential crop failures over the length of the growing cycle (time from sowing till maturity) for each day of year 

(DOY). Thereby, the suitability value for each DOY refers to the average conditions during the growing cycle 

from that DOY, which corresponds to the sowing date, until maturity, determined by the length of the growing 

cycle which is set in the crop parameterization for each crop. For perennial crops, the length of the growing cycle 

is set to 365 days. Climate suitability throughout the year is then identified by selecting the minimum value (most 

limiting) of the three individual suitabilities for temperature, precipitation, and climate variability. As shown in 

Fig. 3, the DOY with the highest climate suitability value over the year finally determines the optimal sowing date 

for annual crops (optimal planting date for rice, which is not sown, but planted as a seedling in wet rice cultivation). 

For perennial crops this is set to 1. 
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Figure 3: Schematic illustration of the determination of climate suitability, the optimal sowing date and the limiting 
factor. The input data shows the annual course of temperature, precipitation and the recurrence rate of potential crop failure, 
indicating whether it is too cold, too dry, or too wet. The crop parameterizations show the membership functions resulting in 
the individual suitability values for each DOY for either temperature (red line), precipitation (blue line), and climate variability 
(green line).Climate suitability throughout the year (black dashed line) results from the lowest of the three curves (most 
limiting) on any day. The highest value of climate suitability over the year finally determines the optimal sowing date. The 
limiting factor is the most constraining factor at this point. 

For annual crops, CropSuite also calculates the potential for multiple harvests without considering crop rotation. 

Between harvest and reseeding, we assume a certain time period (21 days in this study) for field work and 

processing, which can be set flexibly in the model. Accordingly, all possible combinations of sowing dates are 

tested with the aim to maximize climatic suitability to achieve the highest sum of climatic suitability within a year. 

The optimal sowing dates are selected from the best sowing date combinations, resulting in one, two, or three 

sowing dates per year. A multiple cropping layer is output that shows how often a crop can be harvested. 

CropSuite distinguishes between rainfed and irrigated agricultural systems, which can be selected before starting 

the simulation. For the irrigated case, precipitation is not considered as a constraining factor with consequences 

for all further calculations, affecting e.g. the climate variability, the optimal sowing date, and the multiple cropping. 

For this study, we separately simulated both, rainfed and irrigated options for all crops. In the post-processing, we 
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combined both datasets according to the irrigated areas dataset by Meier et al. (2018) (Fig. S1), which is available 

at 30 arc-seconds spatial resolution. 

For germination, crop-specific temperature and soil water requirements can be set in the model. The latter can be 

considered for rainfed conditions by defining a certain amount of precipitation within a certain period of time after 

sowing. 

Some crops, such as soybean have a high photoperiodic sensitivity which can limit their suitability (Cober and 

Morrison, 2010; Abdulai et al., 2012). Therefore, crop-specific photoperiodic sensitivity can be considered in 

CropSuite by defining a maximum and minimum day length in average over the growing cycle. 

Additional lethal climatic limitations can be taken into account in CropSuite. We assume permafrost on areas with 

an average annual temperature below 0° C, which is computed from the downscaled climate input data. A 

maximum lethal temperature threshold of >40°C in average over the growing cycle is set for all crops (Asseng et 

al., 2021). In addition, a minimum and maximum threshold for the lethal temperature over a certain consecutive 

number of days can be set in the model crop-specifically. Further, the maximum number of consecutive dry days 

can be set dependent on the crop.CropSuite allows for the consideration of vernalization requirements for winter 

crops. Therefore, crop-specific temperature requirements with minimal and maximal temperature thresholds for a 

certain number of vernalization effective days can be configured in the model. Accordingly, CropSuite simulates 

for each location, if and when these vernalization requirements are fulfilled, which impacts on the length of the 

vernalization period and the optimal sowing date. An offset of days from sowing to the start of the vernalization 

period can optionally be added. 

A GUI is available for CropSuite that allows users to easily set-up the model, parameterize the crop requirements 

and the membership functions (Fig. 4a-e), and to start the simulations. Further, new membership functions can be 

created, an unlimited number of crop-specific requirements can be defined, and any additional data can be added, 

which can be flexibly assigned to the defined membership functions (Fig. 4e). Moreover, new crops or crop 

varieties can be added. The GUI also allows for the visualization, analysis and comparison of the results (Fig. 4f). 
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Figure 4: Graphical User Interface of CropSuite. (a) shows the main screen, (b) exemplarily shows available model settings, 

(c) shows the available options for crop parameterizations exemplarily for maize, (d) shows the window to set-up the simulation 

domain, (e) exemplarily shows the set-up of a parameter dataset for soil pH, and (f) shows the integrated data viewer in 

CropSuite. 

2.2 Climate Variability 

 In addition to several improvements and redesigns, one of the most important advancements in CropSuite is the 

consideration of climate variability for the assessment of crop suitability. Usually, crop suitability models consider 

long-term climate averages, e.g. 10, 20 or 30-year periods and climatic trends that affect crop suitability (Ramirez-

Villegas et al., 2013; Schneider et al., 2022b). They are not designed so simulate seasonal yields, as for instants 

mechanistic crop models do (Jägermeyr et al., 2021). However, existing crop suitability approaches may 

overestimate crop suitability when only long-term averages are considered, because a high climatic variability may 

result in a high frequency of unsuitable years, which would result in crop failures. This would however 

significantly increase the risk for farmers that require stable and plannable conditions. As a result, a farmer may 

conclude that the risk of crop failures due to unstable climate conditions in a certain region is too high for being 

suitable for crop cultivation. As such, climate variability is not a purely ecological limitation but depends on the 

socio-economic circumstances of how farmers deal with the risk of crop failure. We developed an approach that 

allows for the consideration of climate variability, and thus the implicit integration of socio-economic limitations 

in the suitability assessment of crops. 
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Therefore, we specify a crop-specific lower and upper threshold for temperature and precipitation. We recommend 

these thresholds between the higher and lower 5% and 10% suitability values of the crop-specific membership 

function, respectively (Figs. 1, 4c). If the suitability of the membership function does not approach 0 at its high 

(low) limit, we recommend setting the threshold to the highest (lowest) value of the membership function. This is 

the case for the wet limit of the precipitation membership function for maize (see Fig. 4c). For each year within a 

given period of time (here we use 20-year time periods), it is tested and totaled, how often these thresholds exceed 

or fall below during the growing cycle for all possible sowing dates (January 1st until December 31st). As a result, 

a variability dataset is generated for each DOY, indicating the number of years in which at least either the 

temperature or the precipitation exceeds or falls below the threshold values. The number of years is divided by the 

length of the time period (here 20 years) to obtain the recurrence rate of potential crop failures. This data can be 

stored as a two-dimensional raster file for perennial crops or as a three-dimensional raster file for non-perennial 

crops, with each of the 365 DOYs representing the condition for the respective sowing day. 

For rainfed agricultural systems, cases that are considered for climate variability include excessively high or low 

temperatures and precipitation, while for irrigated agricultural systems, only excessively high or low temperatures 

and excessively high precipitation are considered, to address potential water logging, plant diseases or root rotting. 

Due to computational limitations, the preprocessing of the climate variability is carried out at the resolution of the 

input climate data (2.5 arc minutes) and is further interpolated bilinearly to the output resolution of 30 arc seconds. 

Finally, we introduce a membership function defining the impact of climate variability on crop suitability. As 

shown in Fig. 5, a sigmoid is adopted for the course of the function. According to expert knowledge, we set this 

sigmoid function in a way that it reduces suitability to 0 when the recurrence rate of potential crop failure is greater 

than once every 4 years (25%). However, this function may be different in different parts of the world and different 

between crops (see Discussion). 

 
Figure 5: Membership function for climate variability showing the impact of the recurrence rate of potential crop 
failures on crop suitability. The seasonal recurrence rate is shown in percent. 

3 Model evaluation 

Crop suitability is difficult to validate or measure, nor is it equivalent to agricultural yields or production values. 

However, a comparison with other studies and data can provide valuable information and build confidence in the 

approach. 
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3.1 Comparison with Harvested Area 

In principle, a crop should be suitable where it is already cultivated. According to this premise, we compare the 

suitable area simulated with CropSuite with the harvested areas from the global spatially-disaggregated crop 

production statistics data for 2020 (MapSPAM 2020 v1.0) produced by the International Food Policy Research 

Institute (IFPRI) using the Spatial Production Allocation Model (SPAM) (Ifpri, 2024). The CropSuite results for 

Africa consider climate variability and are combined for irrigated and rainfed areas according to Meier et al. 

(2018). While MapSPAM relates to the year 2020, our simulations refer to the 1991-2010 time period, which could 

be a source of uncertainty. Nevertheless, we used MapSPAM 2020 instead of other available versions of 

MapSPAM, since it includes 32 crops from our investigation and is the latest released version of MapSPAM. A 

comparison between CropSuite and different MapSPAM versions is shown exemplarily for maize in Fig. S2, 

revealing a considerably better fit with CropSuite in the MapSPAM 2020 version. For comparison, harvested areas 

below 10 ha per pixel are excluded from the calculation and the high spatial resolution of the CropSuite model 

output is resampled to the same spatial resolution (5 arc minutes) than the MapSPAM 2020 data. Figure 6 depicts 

the results of this analysis for all crops, where green and purple bars represent areas that are suitable, while orange 

and green areas represent harvested areas in MapSPAM. Purple bars indicate suitable areas that are currently not 

used by the respective crop.While green areas are also identified as being suitable in our approach, orange areas 

are not suitable in CropSuite despite the respective crop is harvested according to MapSPAM. Crops with the 

largest mismatching areas are rice, maize, and onion (Fig. 6). Most crops show a small proportion of orange to 

green areas, except for onions, rapeseed, cocoa, pea, rubber, tea, coffee, and rice (Fig. S3). This can have various 

causes, such as data uncertainty of climate, soil and irrigation data (Avellan et al., 2012), incorrect membership 

functions, the use of different crop varieties, or an incorrect localization of the cultivation areas in MapSPAM due 

to high uncertainties in the underlying national statistical data, especially in African countries (Yu et al., 2020), or 

applied crop management practices that could level out ecological limitations. 
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Figure 6: Comparison of CropSuite with MapSPAM 2020 for all matching crops. CropSuite results combine irrigated and 
rainfed areas according to Meier et al. (2018) and consider climate variability. Areas on which the respective crop is harvested 
according to MapSPAM and which are suitable according to CropSuite are shown in green, areas that are suitable but on which 
the crop is not harvested are shown in purple. Areas that are unsuitable but are harvested according to MapSPAM are shown 
in orange, while unsuitable areas that are not harvested according to MapSPAM are shown in gray. 

Figure 7a shows the spatial comparison between crop suitability and harvested areas for maize. Areas where maize 

is harvested according to MapSPAM, although CropSuite has identified these areas as unsuitable, are found mainly 

in Egypt, the northern Sahel, the Congo Basin, as well as parts of Cameroon, Gabon, Kenya, Tanzania, Zimbabwe 

and South Africa. Figure 7b shows the comparison ignoring the impact of climate variability on crop suitability. 

Disregarding climate variability results in large (blue) areas, which are considered suitable but are no harvest areas 

according to MapSPAM, especially along the dry belts (15°N and 20°S). Our approach considering climate 

variability (Fig. 7a) reduces these blue areas, but induces some mismatches, where MapSPAM indicates harvested 

areas and CropSuite shows no suitability (red areas). We find that the mismatching areas along the dry belts 

(including the Sahel) and in eastern Africa (Tanzania, Kenya) are often associated with limits due to climate 

variability. This indicates that the thresholds for climate variability (section 2.2) and the membership function 

(Fig. 5) might be parameterized slightly too exclusive. However, some of these regions might be used as cropland 

by smallholders or subsistence farmers despite the high risk of crop failures. 
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While in the inner tropics, the reason for limited crop suitability can primarily be attributed to soil acidity (pH), 

indicating possible uncertainties with used SoilGrids dataset, differences in Egypt mainly result from discrepancies 

according to different assumptions on irrigated areas. 

 
Figure 7: Comparison of CropSuite with MapSPAM 2020 for maize. (a) shows the comparison with consideration of 
climate variability in CropSuite, while climate variability is not considered in (b). Areas on which the respective crop is 
harvested according to MapSPAM and which are suitable according to CropSuite are shown in green, areas that are suitable 
but on which the crop is not harvested are shown in blue. Areas that are not suitable but are harvested according to MapSPAM 
are shown in red. Unsuitable areas that are not harvested according to MapSPAM are shown in white.  

3.2 Comparison with GAEZ 

A state-of-the-art climate-edaphic suitability assessment for crops is provided by the Global Agro-Ecological 

Zones (GAEZ) v4 (Fischer et al., 2021). For comparison with CropSuite, we used GAEZ data for the time period 

1981-2010 for high input level, rainfed conditions and the option ‘all land in grid cell’. The high input level refers 

to advanced management assumptions (fully mechanized, optimum application of nutrients and chemical pest, 

disease and weed control) (Fischer et al., 2021), which correspond best to the assumptions made in CropSuite for 

this study. The suitability range of the GAEZ data is transformed to the classification system as shown in Table 3. 

The CropSuite data for rainfed conditions is resampled (using the average) to the same spatial resolution of 5 arc 

minutes than the GAEZ data. For this comparison, we use CropSuite data without climate variability, since the 

GAEZ approach does not consider climate variability as well. Coffee was compared against the best type of robusta 

and arabica, as done in the GAEZ data (Fischer et al., 2021).Overall, there are large overlaps between the GAEZ 

and CropSuite (Fig. 8). Generally, CropSuite identifies larger suitable areas than GAEZ for Africa (purple bar in 

Fig. 8), particularly for barley, cabbage, chickpea, rapeseed, rye and wheat. A main reason for differences may be 

due to different underlying soil data, GAEZ uses the HWSD while CropSuite uses the SoilGrids data. As an 

example, we found abrupt changes in the GAEZ results, especially between borders (e.g. between Angola and 

Zambia), which follows patterns of the underlying HWSD, which is a known issue (Dewitte et al., 2013). The 

consideration of climate variability in CropSuite mainly results in larger areas that are unsuitable in CropSuite but 

still suitable in GAEZv4 (orange bars) (Fig. S4). 
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Figure 8: Comparison between CropSuite and GAEZv4 suitability data for all matching crops. CropSuite results are 
shown without consideration of climate variability. Areas that are suitable in both data, CropSuite and GAEZv4 are shown in 
green, areas suitable in CropSuite but not suitable in GAEZv4 are shown in purple. Unsuitable area in CropSuite that is suitable 
in GAEZv4 is shown in orange. Areas that are unsuitable in both data are shown in gray. 

3.3 Comparison of Optimal Sowing Dates with the GGCMI Crop Calendar 

Another method of validation involves comparing the optimal sowing dates computed with CropSuite with the 

crop calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which is available globally for a 

variety of different crops at half degree spatial resolution (Jägermeyr et al., 2021). Figure 9 illustrates the average 

differences of the sowing dates across Africa, averaged for the matching crops between the two datasets. The 

comparison is performed at a spatial resolution of 30 arc seconds (Fig. 9) and at half degree resolution (see Fig. 

S5). For the high spatial resolution, the GGCMI data are interpolated to 30 arc seconds using nearest neighbor. 

Unlike CropSuite, which displays the optimal sowing date, the GGCMI data show the actual sowing date based 

on extrapolated statistics. Thus, there might be differences between the optimal and actual sowing dates. It must 

also be considered that the GGCMI crop calendar is based on statistics that apply to discrete areas at relatively 

coarse half degree spatial resolution, while CropSuite was simulated at a pixel accuracy of 30 arc seconds spatial 

resolution. In fact, the median differences are mostly within one month of the GGCMI crop calendar, which 

generally indicates a high agreement. Generally, we found that a greater distance to the equator potentially 

increased the discrepancy between the two data. As an example, in tropical climates with occurring dry and rainy 
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seasons, a shift from one rainy season to another rainy season might result in a greater discrepancy. Also, we found 

that the distribution of sowing dates over the year was less concentrated in CropSuite, which could be a result of 

the higher spatial resolution (see Fig. S6). At the coarse resolution, the difference between the two datasets is less 

and the spread is smaller (Fig. S5). 

 
Figure 9: Comparison of the optimal sowing dates of CropSuite with the actual sowing dates of the GGCMI crop 
calendars. The area-weighted shift of the sowing date in days is shown for all matching crops. Negative values mean an earlier 
sowing date in CropSuite, positive values mean a later sowing date in CropSuite compared to the GGCMI Crop Calendar. The 
bars show the 5th and 95th percentile, the orange marker shows the median. The color of the bars indicates the climatically 
suitable area for the whole of Africa. Irrigated areas are considered according to Meier et al. (2018). The comparison is 
performed at 30 arc seconds spatial resolution for both datasets. 

4 Simulation Results 

Crop suitability is simulated for historical climate conditions (1991-2010) for rainfed and irrigated conditions. 

Figure 10a illustrates the overall crop suitability, showing for each location the value for the most suitable of all 

considered crops. Irrigation is considered according to the currently irrigated areas for Africa (Meier et al., 2018), 

such as along the Nile river in Egypt (see Fig. S1 for irrigated areas in Africa). In total for Africa, 5.7 million km2 

are highly suitable, 10.6 million km2 are moderately suitable, 3.3 million km2 are marginally suitable and 10.4 

million km2 are not suitable for crop cultivation. Mainly between 10° N and 10° S, a high potential for multiple 

cropping exists with the possibility of two or three harvests per year (Fig. 10b). Looking at the number of crops 

suitable for cultivation (Fig. 10c), a large proportion of the considered crops can grow particularly along the wet 

savannahs, which gives these regions plenty of opportunities for cultivation. In contrast, only a few crops are 

suitable for the inner tropics and the dry savannahs, which limits the possibilities for switching between crops. 
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Figure 10: (a) Overall crop suitability, (b) potential multiple cropping, and (c) number of suitable crops under historical 
climate conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). The overall crop 
suitability (a) and the potential multiple cropping (b) are each shown for the most suitable crop at each location. The maximal 
number of suitable crops results from the number of 48 considered crops (see Table 1). Figure 10a is shown with different 
colormap in the supplement (Fig. S7). 

Figure 11 shows the suitable area for each of the simulated crops for Africa. The five crops with the largest suitable 

areas in Africa are safflower (16.82 mio km2), sesame (15.76), guava (14.15), cowpea (13.61), and mango (13.39). 

 
Figure 11: Marginally, moderately and highly suitable areas for all 48 crops under historical climate conditions from 
1991 to 2010 for Africa. Suitability classes are chosen according to Table 3. Irrigated areas are considered according to Meier 
et al. (2018).  

Figure 12a exemplarily shows the crop suitability simulated for maize. The maps for all crops are provided via 

Zenodo (see Data Availability). Maize is highly suitable along a strip of the 10° N and the 20° S parallel as well as 

large parts of Mozambique and Madagascar. In total, 0.49 million km2 are highly suitable, 4.34 million km2 are 

moderately suitable, 3.97 million km2 are marginally suitable and 21.23 million km2 are unsuitable. 

The optimal sowing date for single cropping (Fig. 12b) for maize shifts with latitude from the northern hemisphere 

across the equator to the southern hemisphere. Figure 12c shows the potential number of potential harvests per 

year for maize. Climate conditions allow up to two harvests per year in some parts of Congo and Cameroon and 
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in the irrigated areas e.g. along the Nile river. Optimal sowing dates for first and second sowing on areas suitable 

for multiple cropping are shown in Fig. S8. 

Figure 12d shows the climate suitability for maize, which just considers climatic constraints for the suitability of 

maize. In comparison to the crop suitability map (Fig. 12a), more areas are suitable and suitability is substantially 

higher, if soil and topography are not considered and therefore do not limit or reduce crop suitability. 

 
Figure 12: (a) Crop suitability, (b) optimal sowing date for single cropping, (c) potential multiple cropping, and (d) 
climate suitability for maize under historical climate conditions from 1991 to 2010. Irrigated areas are considered 
according to Meier et al. (2018). Figure 12a is shown with different colormap in the supplement (Fig. S9). 

The most limiting factor is shown in Fig. 13a. While low precipitation prevents maize from being suitable in large 

parts of Africa in the arid deserts, soil is predominantly restricting suitability in tropical regions. Particularly pH 

is the most limiting factor in the humid tropics, such as the Congo Basin, where soils are too acid for growing 

maize. A large band along the drylands highlights regions where inter-annual climate variability is most limiting 

maize suitability (in orange, Fig. 13a). Here, climate conditions are instable for maize cultivation, and the 
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recurrence rate of potential crop failures is larger than 25% (every fourth year). For maize, climate variability is 

limiting crop suitability on 4.4 million km2 for Africa (Fig 13a). 

Figure 13b shows the degree of limitation for all considered climate, soil and terrain factors along a transect 

following the 20° E from North to South. In the Sahara, several factors, including temperature, organic carbon 

content, and soil pH, are not in an optimal range, while precipitation and the climate variability are the most 

limiting (note that climate variability is by definition a limiting factor if precipitation and/or temperature are 

limiting factors). Due to the unfavorable soil conditions, irrigation would only slightly improve maize suitability 

here. Between 15° N and 5° N, the limitations of all factors are relatively low. Here, coarse fragments and base 

saturation are most limiting. The tropical areas along the transect between 5° N and 10° S are mainly constrained 

by soil pH. Accordingly, soil management or practices that increase pH in these regions would have a significantly 

positive impact on crop suitability in this region, since no other factor has such a strong impact on maize suitability. 

Further south, low precipitation again mostly limits maize suitability. 

 
Figure 13: Limiting factors. (a) Most limiting factor of the crop suitability for maize under historical climate conditions from 
1991 to 2010. (b) shows the degree of limitation of all factors along a transect of the 20° East from 30° North to 30° South. 
The most limiting factors are displayed with priority according to the order in the legend in (a), if more than one factor fully 
limits the suitability. For visualization, the shapes in (b) are smoothed using a moving average. Irrigated areas are considered 
according to Meier et al. (2018) in (a) and are not considered in (b). 

The consideration of climate variability significantly reduces climate suitability for maize as shown in Fig. 14a, 

mainly in the transition area between dry savannah and desert in the Sahel zone, in Burundi and Tanzania in 

Eastern Africa, and in the southern part of Africa in Angola, Zambia, Zimbabwe, Mozambique, South Africa, and 

the southern part of Madagascar. In total, climate variability reduces climate suitability on more than 5.4 million 

km2. 

Optimal sowing dates also shift when considering climate variability, since the algorithm identifies the best 

suitable time window for the growing cycle over the year (Fig. S10). As a result, optimal sowing for maize 

considerably shifts in Tanzania, Mozambique and Madagascar. 
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Over all crops, Fig. 14b shows the impact of climate variability on the overall crop suitability. In this case, overall 

crop suitability is reduced on 2.2 million km2, mainly reduced in Somalia, Kenya, Ethiopia, South Africa, and the 

Maghreb countries of Morocco, Algeria, Tunesia, and Libya. These regions generally show a high vulnerability to 

climatic variability. Climate variability also reduces the potential for multiple cropping in general over all crops 

on more than 2.3 million km2 (Fig. S11). 

 
Figure 14: Impact of the consideration of climate variability on crop suitability (a) for maize (b) for the overall crop 
suitability of all crops under historical climate conditions from 1991 to 2010. Irrigated areas are considered according to 
Meier et al. (2018). 

5 Discussion 

We found that the consideration of climate variability significantly affects crop suitability, multiple cropping, and 

optimal sowing dates in Africa. Our approach allows to adjust the risk aversion of farmers by adjusting the 

thresholds for climate variability (section 2.2.) and the membership function (Fig. 5). The shape of this function 

may differ between crops and regions and might be influenced by several socio-economic factors, such as the 

degree of mechanization, financial possibilities, and the availability of crop insurances, which is likely to reduce 

risk aversion of farmers. We suggest the function as shown in Fig. 5 as a broad and general solution which is 

primarily designed to represent risk aversion of commercial farms. In our comparison analysis for maize (section 

3), reference data showed some cultivation in the regions we identified as unsuitable due to the high recurrence 

rate of potential crop failures caused by high climate variability (Fig. 7). In some regions, despite the high risk of 

crop failures, land might be cultivated by smallholders or subsistence farmers that have no other choice but to 

cultivate these lands. However, we admit that the tuning of the climate variability thresholds and the membership 

function requires more research, and the optimal results will vary depending on crop and region. CropSuite offers 

the platform and the possibilities to conduct such assessments.  

The results of CropSuite (section 4) are subject to uncertainties in the applied climate, soil, terrain, and irrigation 

data as well as the membership functions (Fig. 1). Soil and terrain data are assumed to be static, although 

management could influence soil properties such as pH, and terracing could reduce slope limitations. The applied 

climate data from CHIRPS and CHIRTS are found to be particularly valuable in regions, where climate stations 

are sparse. Over Africa, CHIRPS is successfully validated (Dinku et al., 2018) showing good performance (Lemma 
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et al., 2019; Muthoni et al., 2019). Verdin et al. (2020) also report good agreement of CHIRTS over Africa, 

however with a poor performance over central Africa, the Horn of Africa, and parts of northern Mali. Generally, 

both data sets rely on station data to correct the satellite estimations, which is why uncertainties for very data-

scarce regions remain. To apply CropSuite in regions outside 50°S-50°N, or to larger time periods before the 

1980s, the user of CropSuite could also rely on global high-resolution climate reanalysis, such as ERA5 (Hersbach 

et al., 2020). For the African continent, ERA5 reanalysis shows large improvements over its predecessor ERA-

Interim (Gleixner et al., 2020). Still, considerable deviations in precipitation from CHIRPS are reported, e.g., wet 

biases over Uganda (Gleixner et al., 2020) and a dry bias over the western Sahel (Gbode et al., 2023), where 

CHIRPS is applied as reference. We therefore assume that CHIRPS and CHIRTS are very suitable climatic data 

sets to investigate our example of maize suitability in Africa. The soil profiles used for the generation of the 

SoilGrids show a heterogeneous distribution, with large gaps over central Africa, which is why Hengl et al. (2017) 

attribute uncertainty in the data to the under-sampling. They argue that a few hundred additional profiles in under-

sampled areas could massively improve the resulting SoilGrids.  

The membership functions derived by Sys et al. (1993) are widely applied but are also governed by inherent 

uncertainties. Herzberg et al. (2019) argue that the assessment by Sys et al. (1993) is not detailed enough to capture 

specific features of small areas. They find that Sys et al. (1993) would consider a hilly area in tropical Vietnam 

unsuitable due to too acidic soils and steep slopes, whereas the local farmers can cultivate the land. Furthermore, 

the approach cannot account for compound effects and interactions of the climate and soil variables (Elsheikh et 

al., 2013). The membership functions cover the general behavior in a univariate manner, while the real plant 

physiology is a more complex interplay of climatic variables and soil conditions (Joswig et al., 2022). This also 

applies particularly to compound extremes, for example the combination of hot and dry climatic conditions 

(Goulart et al., 2023) that limit water availability and favor evaporation, which can trigger water and temperature 

stress in plants. This is relevant in the course of a warming climate, as the joint probability of hot and dry conditions 

is projected to increase in many regions of the world (Bevacqua et al., 2022; Felsche et al., 2024). This is however 

no specific drawback of CropSuite, but rather a lack of bivariate, multivariate or interactive membership functions. 

The assessment of the membership functions by Sys et al. (1993) is also outdated for new crop varieties that might 

be more resilient to climatic and environmental stressors (Peter et al., 2020). Furthermore, we argue that the 

uncertainty in the temperature and precipitation membership functions is by design larger at its low and high ends, 

as the functions are derived empirically. Since our consideration of climate variability is based on the 5% to 10% 

suitability values, respectively (see Section 2.2), the uncertainties of the membership functions are propagated to 

the assessment of climate variability. More research and updated functions could support the results by CropSuite. 

The sampling of climate variability within 20-year periods is limited as variability can cover wide time ranges. 

There, the application of single-model initial condition large ensembles can help to robustly assess the variability 

based on decadal or multidecadal time periods (Deser et al., 2020). This is especially important for precipitation 

and precipitation extremes, which show a high sensitivity to climate variability (Lang and Poschlod, 2024; Tebaldi 

et al., 2021). Furthermore, for the assessment of climate variability, we only capture the occurrence of growing 

seasons exceeding the percentile thresholds, but we do not consider the intensity of the according events. Single 

days with extreme precipitation can induce flooding that leads to crop failures (Balgah et al., 2023; Müller et al., 

2023), even though the average precipitation for the growing season is still within the suitable range of the 

membership function. This drawback however also applies for most of the mechanistic crop models at global scale 

(Ruane et al., 2017), while regional applications evolve incorporating crop losses due to waterlogging and flooding 



23 
 

(Li et al., 2016; Monteleone et al., 2023; Pasley et al., 2020). This is why we claim to assess climate variability 

not climate extremes inducing potential crop failures. 

6 Conclusions 

CropSuite is a new easy-to-use comprehensive open-source model that provides a complete processing chain 

(preprocessing, spatial downscaling, suitability simulations, data analysis and visualization) for carrying out crop 

suitability and climate change impact analysis. CropSuite allows users to easily parameterize different varieties of 

the same crops or additional crops by determining the membership functions in the GUI. Thereby, the fuzzy logic 

approach makes it easy to use expert knowledge for the parameterization of the membership functions. Besides all 

data and compiled maps generated, we provide a user manual for CropSuite (Zabel and Knüttel, 2024) and the 

parameterizations of the considered 48 crops in this study. Furthermore, the model allows the flexible addition of 

further parameters and membership functions that might affect suitability, if the required data is provided. For the 

future, this allows the consideration of further ecological and socio-economic limitations (such as access to 

fertilizers, available labor, know-how, infrastructure and transportation, heat stress impacts on labor) that have not 

yet been sufficiently considered in crop suitability assessments (Orlov et al., 2024; Akpoti et al., 2019). 

For this study, we simulated 48 crops for Africa under the consideration of climate variability for historical climate 

conditions. Thus, we created a huge dataset, providing detailed high-resolution information on climate-, soil-, and 

crop suitability, optimal sowing dates, multiple cropping potentials and the limiting factors, which can be used for 

follow-up studies and climate impact assessments. Additionally, the data include substantial information to 

develop strategies for an efficient land-use (Schneider et al., 2024; Molina Bacca et al., 2023; Delzeit et al., 2019). 

The consideration of future climate change scenarios will allow for investigating efficient strategies for climate 

change adaptation through shifting sowing dates, or cultivar and land-use change. Further, information about the 

limiting factors can be helpful to optimize crop management, since it identifies the parameter that most efficiently 

improves crop suitability. 

Code Availability 

CropSuite (v1.0) code is written in Python and is available Open-Source (CC BY-SA 4.0) together with the GUI 

at Zenodo (https://doi.org/10.5281/zenodo.14259375) and GitHub (https://github.com/flozabel/CropSuite). A user 

manual is provided separately via Zenodo (https://doi.org/10.5281/zenodo.14196315). 

Data Availability 

The resulting data are available for download as GeoTIFF files via Zenodo 

(https://doi.org/10.5281/zenodo.14514729). In addition to the figures shown as examples for maize in this paper, 

the compiled figures for all 48 considered crops are provided for download, including a separation of rainfed and 

irrigated agricultural systems and a comparison with MapSPAM 2020 (https://doi.org/10.5281/zenodo.14514729). 

https://doi.org/10.5281/zenodo.14259375
https://github.com/flozabel/CropSuite
https://doi.org/10.5281/zenodo.14196315
https://doi.org/10.5281/zenodo.14514729
https://doi.org/10.5281/zenodo.14514729
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