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Abstract. 10 

Increasing demand for agricultural land resources and changing climate conditions require for strategic land-use planning 11 

and the development of adaptation strategies. Therefore, information about the suitability of agricultural land is a 12 

prerequisite. Current suitability approaches often focus on single crops, can only be applied regionally and usually neglect 13 

the impact of climate variability on crop suitability. Here, we introduce CropSuite, a new comprehensive and easy-to-use 14 

crop suitability model that allows to overcome these shortcomings. It provides a graphical user interface (GUI) and a 15 

wide range of pre- and postprocessing options, including a tool for data analysis, which allows users to easily apply the 16 

model and analyze the results. Further, it includes a spatial downscaling approach for climate data, which enables crop 17 

suitability analysis at very high spatial resolution. CropSuite uses a fuzzy logic approach and is based on the assumption 18 

of Liebig’s law of the minimum. An expandable number of environmental and socio-economic factors that impact on 19 

crop suitability can flexibly be integrated into CropSuite by determining membership functions. CropSuite allows for the 20 

consideration of irrigated and rainfed agricultural systems, vernalization requirements for winter crops, lethal temperature 21 

thresholds, photoperiodic sensitivity and several other limitations for crop growth. The model endogenously calculates 22 

and outputs climate-, soil-, and crop suitability, the optimal sowing- and harvest dates, the potential for multiple cropping, 23 

the (most) limiting factor(s), as well as the recurrence rate of potential crop failures according to the inter-annual climate 24 

variability. 25 

In this study, we apply CropSuite for 48 crops at a spatial resolution of 30 arc seconds (1 km at the equator) for Africa. 26 

Thereby, we consider regionally important staple and cash crops that are usually understudied, such as coffee, cassava, 27 

banana, oil palm, cocoa, cowpea, groundnuts, mango, millet, papaya, rubber, sesame, sorghum, sugar cane, tobacco, and 28 

yams. We find that the consideration of climate variability for calculating crop suitability makes a significant difference 29 

on suitable areas, but also affects optimal sowing dates, and multiple cropping potentials. The most vulnerable regions 30 
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for climate variability are identified in Somalia, Kenya, Ethiopia, South Africa, and the Maghreb countries. The results 31 

provide valuable crop-specific information that can be further used for climate impact assessments, adaptation and land-32 

use planning at global, regional, or local scale. CropSuite is provided open source and could be of interest for model 33 

developers, scientists, and a wide range of potential users and stakeholders, such as farmers, companies, GOs, and NGOs. 34 
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1 Introduction 37 

Climate change poses major challenges for agricultural production and food security. With warming climate, agricultural 38 

suitability changes and suitable areas shift towards higher latitudes (Franke et al., 2021; Zabel et al., 2014). Crop 39 

suitability models allow for a quantitative evaluation of land for crop cultivation and can therefore assess how the 40 

suitability of land changes with changing climate. Contrary to mechanistic crop models (Jägermeyr et al., 2021; 41 

Jägermeyr et al., 2020; Müller et al., 2024), crop suitability models are based on empirical approaches but are less 42 

computational intensive and thus allow for the consideration of more crops at higher spatial resolution (Zabel et al., 2014). 43 

As a result, crop suitability models provide important insights for sustainable land-use planning and climate change 44 

adaptation, e.g. through cultivar change or land-use change. Akpoti et al. (2019) give an overview of existing crop 45 

suitability approaches. Most studies are applied at regional scale (Maleki et al., 2017; Bonfante et al., 2015; Ranjitkar et 46 

al., 2016), while just a few global approaches exist (Akpoti et al., 2019). In addition, most studies focus just on single 47 

crops and do not cover a variety of different crops (Ramirez-Villegas et al., 2013; Akpoti et al., 2020). Particularly for 48 

Africa, domestically consumed staple crops, such as yams and cassava are often overseen in current studies, due to minor 49 

economic relevance, despite their regional importance for food security (Chapman et al., 2020; Chemura et al., 2024; 50 

Van Zonneveld et al., 2023; Karl et al., 2024). So far, none of the existing approaches systematically considers the impact 51 

of climate variability on crop suitability, which is a major shortcoming, since climate variability is expected to increase 52 

with climate warming and has a strong impact on agriculture (Vogel et al., 2019; Goulart et al., 2021; Ipcc, 2021). 53 

The aim of this study is to introduce the CropSuite model, which is based on the crop suitability approach developed by 54 

Zabel et al. (2014) and has continuously been further developed by Cronin et al. (2020) and Schneider et al. (2022a). The 55 

model has previously been applied globally for 23 crops for different climate scenarios (Zabel, 2022). The model applies 56 

Liebig’s law of the minimum, assuming that the scarcest resource limits the crop growth. CropSuite is based on a fuzzy 57 

logic approach where, in contrast to Boolean logic, the truth value of variables can be any real number between 0 and 1. 58 

In fuzzy logic, fuzzy sets consist of elements whose degrees of memberships are described by membership functions 59 

(Zadeh L.A., 1965). In our approach, we apply fuzzy logic to create crop-specific membership functions (Fig. 1) 60 

describing the abiotic crop requirements between 0 (not suitable) and 100 (highly suitable) according to various climatic, 61 

soil, and topographic variables (Zabel et al., 2014). Using a value range between 0 and 100 (instead of 0 and 1) enables 62 
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the use of an 8-bit integer data type for the internal calculation and storage of the results, which allows efficient use of 63 

memory and hard disk. This approach is adopted, fundamentally redesigned and expanded with the goal to provide a 64 

comprehensive but easy-to-use and flexible open-source model that can be applied e.g. by scientists, farmers, companies, 65 

national or international GOs, and NGOs. Therefore, CropSuite is now completely reprogrammed in Python and consists 66 

of a graphical user interface (GUI), as well as several pre-processing and analysis tools, e.g. for selecting a simulation 67 

domain, statistically downscaling the climate data, interpolating the membership functions and automatically analyzing 68 

and mapping the results. In addition, CropSuite is complemented with a new approach to consider the impact of climate 69 

variability on crop suitability. It includes a user manual, which is provided together with the source code (Knüttel and 70 

Zabel, 2024). 71 

2 Methods and Data 72 

For this study, we apply CropSuite for Africa at 30 arc seconds spatial resolution (approximately 1 km2 at the equator) 73 

with the goal to simulate relevant but often overseen crops for this continent (Van Zonneveld et al., 2023). Table 1 shows 74 

the 48 crops, that have been parameterized and simulated with CropSuite. 75 

 76 
Table 1: List of 48 considered crops simulated with CropSuite. Binomial names are given in brackets. 77 

1. Alfalfa (Medicago sativa) 
2. Arabica Coffee (Coffea arabica) 
3. Avocado (Persea americana) 
4. Banana (Musea spp.) 
5. Barley (Hordeum vulgare) 
6. Beans (Phaseolus vulgaris) 
7. Cabbage (Brassica oleracca) 
8. Carrot (Daucus carota) 
9. Cashew (Anacardium occidentale) 
10. Cassava (Manihot esculenta) 
11. Castor Bean (Ricinus commuis) 
12. Chickpea (Cicer arietinum) 
13. Citrus (Citrus spp.) 
14. Cocoa (Theobroma cacao) 
15. Coconut (Cocos nucifera) 
16. Cotton (Gossypium hirsutum) 
17. Cowpea (Vigna unguiculata) 
18. Green Pepper (Capsium annuum) 
19. Groundut (Arachis hypogaea) 
20. Guava (Psidium guijava) 
21. Maize (Zea mais) 
22. Mango (Mangifera indica) 

25. Olive (Olea europacae) 
26. Onion (Allium cepa) 
27. Papaya (Carica papaya) 
28. Pea (Pisum sativum) 
29. Pineapple (Ananas comosus) 
30. Potato (Solanum tuberosum) 
31. Rapeseed (Brassica napus) 
32. Rice (Oryza sativa) 
33. Robusta Coffee (Coffea canephora) 
34. Rubber (Hevea brasiliensis) 
35. Rye (Secale cereale) 
36. Safflower (Carthamus tinctorius) 
37. Sesame (Sesamum indicum) 
38. Sorghum (Sorghum bicolor) 
39. Soy (Glycine maximum) 
40. Sugar Cane (Saccharum officinarum) 
41. Sunflower (Helianthus annus) 
42. Sweet Potato (Ipomoea batatas) 
43. Tea (Camellia senesis) 
44. Tobacco (Nicotiana tabacum) 
45. Tomato (Solanum lycopersicum esculentum) 
46. Watermelon (Colocynthis citrullus) 
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23. Millet (Pennisetum americanum) 
24. Oil Palm (Elaeis guineensis)  

47. Wheat (Triticum aesticum) 
48. Yams (Dioscorea) 

 78 

We simulate a 20-year time period from 1991 to 2010 using the Climate Hazards group Infrared Precipitation with 79 

Stations (CHIRPS) v2.0 daily data for precipitation (Funk et al., 2015) and the Climate Hazards Center Infrared 80 

Temperature with Stations (CHIRTS) v1.0 data for temperature (Funk et al., 2019; Verdin et al., 2020) at 2.5 arc minutes 81 

spatial resolution for Africa. Both data sets provide climatologies at daily to monthly resolution based on a combination 82 

of satellite remote sensing and climate stations. They benefit from long-term geostationary satellite observations, 83 

delivering consistent data since the 1980s at the quasi-global (50°S-50°N) scale. 84 

In addition, soil and terrain information is required. Table 2 gives an overview of the soil and terrain data used for this 85 

study. Soil data is mainly based on ISRIC SoilGrids (Hengl et al., 2017), which has a spatial resolution of 250 m but is 86 

also provided at 1000 m spatial resolution. This data is reprojected to WGS84 and spatially interpolated using nearest 87 

neighbor to the spatial resolution of 30 arc seconds applied in this study. Base saturation, gypsum, and exchangeable 88 

sodium content (ESP, sodicity) are taken from the WISE database at a spatial resolution of 30 arc seconds (Batjes, 2016). 89 

For electric conductivity, the ISRIC Global Soil Salinity Map with a resolution of 250 m is used (Ivushkin et al., 2019). 90 

In contrast to the harmonized world soil database (HWSD) (Fao et al., 2012), the ISRIC soil datasets do not contain a 91 

layer for texture class. For this reason, the texture class is determined using the sand and clay layer of SoilGrids according 92 

to the United States Department of Agriculture (USDA) triangular diagram of soil texture classes (Fao et al., 2012). For 93 

soil depths greater than 200 cm up to 50 m, the ISRIC dataset on absolute depth to bedrock (Hengl et al., 2017) is 94 

complemented with the dataset from Pelletier et al. (2016), which covers soil depths up to 200 cm. 95 

Available soil layers can be weighted in CropSuite as required. The SoilGrids datasets provide information for six depths: 96 

0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm (Hengl et al., 2017; Hengl et al., 2014). According 97 

to Sys et al. (1991), soil properties have different effects on crop suitability depending on the soil layer. Accordingly, we 98 

use weighting factors as proposed by Sys et al. (1991) (see Table 2). The different distribution of the soil depths between 99 

the SoilGrids data and the weighting factors by Sys et al. (1991) is taken into account by using a proportional weighting 100 

of the SoilGrids layers.Terrain data are taken from the Shuttle Radar Topography Mission (SRTM) data set (Farr et al., 101 

2007), which are used to calculate the slope at the applied spatial resolution. Please be aware that a coarser spatial 102 

resolution generally reduces the slope, which could result in an underestimation of possible slope limitations in 103 

mountainous regions. A possible terracing could remove the restriction due to the slope but usually terraces are too small 104 

to be considered at the aggregated spatial resolution of 30 arc seconds of the SRTM data in this study. 105 

 106 
Table 2: Soil and terrain data used in this study and the applied weighting of the different soil layers. 107 

Parameter Source Weighting 
Base Saturation ISRIC Harmonized Dataset of Derived Soil 

Properties for the World (WISE30sec) (Batjes, 
Only Top Soil 
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2016) 
Coarse Fragments ISRIC SoilGrids 250m (Hengl et al., 2017) 0 - 25 cm: 2.0 

25 - 50 cm: 1.5 
50 - 75 cm: 1.0 
75 - 100 cm: 0.75 
100 - 125 cm: 0.5 
125 - 150 cm: 0.25 

Electric Conductivity ISRIC Global Soil Salinity Map (Ivushkin et al., 
2019) 

Only Top Soil 

Gypsum Content ISRIC Harmonized Dataset of Derived Soil 
Properties for the World (WISE30sec) 
(Batjes, 2016) 

Only Top Soil 

Organic Carbon 
Content 

ISRIC SoilGrids 250m (Hengl et al., 2017) 0 - 25 cm: 2.0 
25 - 50 cm: 1.5 
50 - 75 cm: 1.0 
75 - 100 cm: 0.75 
100 - 125 cm: 0.5 
125 - 150 cm: 0.25 

Soil pH ISRIC SoilGrids 250m (Hengl et al., 2017) 0 - 5 cm: 0.33 
5 - 15 cm: 0.33 
15 - 30 cm: 0.33 

Sodicity ISRIC Harmonized Dataset of Derived Soil 
Properties for the World (WISE30sec) (Batjes, 
2016) 

Only Top Soil 

Soil Depth ISRIC SoilGrids 2017 (Soil Depth <= 200 cm) 
(Hengl et al., 2017) 
 
Pelletier et al. (2016) (Soil Depth > 200 cm) 

No Weighting 

Texture Class Texture class calculated from ISRIC SoilGrids 
250m clay and sand content (Hengl et al., 2017) 
according to USDA (Fao et al., 2012) 

0 - 25 cm: 2.0 
25 - 50 cm: 1.5 
50 - 75 cm: 1.0 
75 - 100 cm: 0.75 
100 - 125 cm: 0.5 
125 - 150 cm: 0.25 

Slope SRTM aggregated to 30 arcsec (Farr et al., 2007) No Weighting 
 108 

Membership functions for temperature, precipitation, slope, soil depth, texture class, coarse fragments, gypsum, base 109 

saturation, pH, organic carbon, electric conductivity, sodicity (Fig. 1) are defined for the considered 48 crops relying on 110 

information from Sys et al. (1993), which provide membership functions for most of the considered crops. Additionally, 111 

data from the EcoCrop database, which provides crop ecological requirements for more than 2500 plant species (Fao, 112 

2024), is used for Cowpea, Rye, and Yams. CropSuite in principle allows the flexible addition of any further membership 113 

function and dataset that is relevant for the use case. 114 

Nutrient deficits, such as nitrogen content are not considered in our approach, since according to our definition of crop 115 

suitability, they are not a decisive factor for the suitability of crops but rather depend on the crop management. 116 
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Accordingly, we do not consider any soil tillage that can affect the soil properties, such as liming, which can influence 117 

the pH value. 118 

 119 
Figure 1: Membership functions exemplarily for maize with a growing cycle of 110 days for considered climatic (mean temperature 120 
over the growing cycle, total precipitation over the growing cycle), topographic (slope), and soil constraints (soil depth, texture class, 121 
coarse fragments, gypsum, base saturation, pH, organic carbon, salinity, sodicity). 122 

Sys et al. (1993) uses a classification system with 6 classes, ranging from N2 as unsuitable to S0 as highly suitable. In 123 

this study, we dismiss the N1 class due to a vague definition and differentiate three suitability classes, marginally, 124 

moderately, and highly suitable (Table 3). 125 

 126 
Table 3: Crop suitability classification system as used in this study compared to Sys et al. (1993). 127 

Suitability classes according to Sys et al. Suitability range Suitability classes used in this study 
S0 (highly suitable) 100 75 – 100 (highly suitable) S1 (very suitable) 80 – 99 
S2 (moderately suitable) 60 – 79 33 – 74 (moderately suitable) 
S3 (marginally suitable) 40 – 59 1 – 32 (marginally suitable) 
N1  (actually unsuitable and potentially suitable) 20 – 39 0  (unsuitable) N2  (unsuitable) 0 - 19 
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2.1 The CropSuite Model 128 

Figure 2 shows the workflow and outputs of CropSuite, which first calculates a climate suitability (considering all climate 129 

constraints) and then calculates a soil suitability (considering all soil and topography constraints). Both data records can 130 

be output separately. Thereby, CropSuite applies Liebig’s law of the minimum, for both the climate and the soil suitability 131 

by choosing the lowest suitability value between the different soil parameters and climate variables respectively. Finally, 132 

the crop suitability is calculated from the combination of both climate and soil suitability by again following Liebig’s 133 

law of the minimum, which means that the lowest suitability value between climate and soil suitability is chosen, since 134 

it restricts overall crop suitability. The most limiting factor is identified as the parameter that imposes the greatest 135 

constraint on growth for a specific crop. In addition, the magnitude of the constraint is output for each input factor. 136 

Overall, CropSuite allows for a variety of outputs on optimal sowing- and harvest dates, suitable sowing days, multiple 137 

cropping potentials, the limiting factor, and the recurrence rate of potential crop failures. Output data format can be set 138 

to GeoTIFF or NetCDF. 139 

CropSuite includes a pre-processing procedure which creates intermediate results for climate variability. Since climate 140 

model data are usually available at relatively coarse spatial resolution, CropSuite has implemented a spatial downscaling 141 

module for the climate data, which allows the model to be applied at very high spatial resolution from global to regional 142 

to local scale. In this study, we apply a statistical downscaling to the climate data, refining the spatial resolution from 2.5 143 

arc minutes to 30 arc seconds. In principle, the targeted spatial resolution can be set in CropSuite but is limited to the 144 

available resolution of the additional input data, such as the soil data, whereas for the climate data, two different statistical 145 

spatial downscaling methods are implemented requiring little computational effort. The first methodology is based on an 146 

altitude regression for temperature (Marke et al., 2014), where the temperature gradients are extracted from the climate 147 

model data itself via a moving window that can be set in size. Thereby, the extracted gradients must remain within the 148 

natural boundaries for wet and dry adiabatic temperature gradients. The second downscaling methodology uses the 149 

historical high-resolution spatial patterns for monthly temperature and precipitation taken from WorldClim at 30 arc 150 

seconds spatial resolution (Fick and Hijmans, 2017). To downscale a coarse-resolution grid cell, all fine-resolution 151 

WorldClim grid cells within the coarse-resolution cell are selected and aggregated per month. On this basis, additive 152 

factors are calculated for temperature and multiplicative factors for precipitation separately for each month. Thereby the 153 

sum (mean) of these additive (multiplicative) factors within the coarse-resolution cell amounts 0 (1). Considering the 154 

monthly seasonality, these factors are applied to the coarse-resolution climate data, imprinting the spatial pattern of the 155 

high-resolution reference data onto the coarse climate data at daily time step. Both downscaling methods conserve mass 156 

and energy from the climate input data by iteratively minimizing residuals over the simulation domain. For a more 157 

advanced statistical downscaling to kilometer-scale, the expert user may apply more complex topographical downscaling 158 

methods (Daly et al., 1994; Fiddes et al., 2022; Karger et al., 2023) or downscaling based on machine learning (Damiani 159 

et al., 2024; Wang et al., 2021) outside of CropSuite. Furthermore, we do not recommend applying the implemented 160 
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downscaling methods with high scaling factors from very coarse (hundreds of kilometers) to very high (single kilometer) 161 

resolution. 162 

 163 
Figure 2: CropSuite workflow. Input data in blue, intermediate results in red and output data in green. The processing steps are 164 
shown in white. 165 

CropSuite requires daily climate data as an input for temperature and precipitation. As climate models tend to produce 166 

too many days with low-intensity precipitation called “drizzle bias” (Chen et al., 2021), days with aggregated daily 167 

precipitation values below 1 mm per day are considered to be dry days (Sun et al., 2006). This threshold can be set in the 168 

model. Both downscaled temperature and precipitation data and the calculated datasets for climate variability are used to 169 

calculate the climate suitability. Therefore, the crop-specific membership functions determine the suitability according 170 

to the average temperature, total precipitation and the recurrence rate of potential crop failures over the length of the 171 

growing cycle (time from sowing till maturity) for each day of year (DOY). Thereby, the suitability value for each DOY 172 

refers to the average conditions during the growing cycle from that DOY, which corresponds to the sowing date, until 173 
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maturity, determined by the length of the growing cycle which is set in the crop parameterization for each crop. For 174 

perennial crops, the length of the growing cycle is set to 365 days. Climate suitability throughout the year is then identified 175 

by selecting the minimum value (most limiting) of the three individual suitabilities for temperature, precipitation, and 176 

climate variability. As shown in Fig. 3, the DOY with the highest climate suitability value over the year finally determines 177 

the optimal sowing date for annual crops (optimal planting date for rice, which is not sown, but planted as a seedling in 178 

wet rice cultivation). For perennial crops this is set to 1. 179 
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 180 
Figure 3: Schematic illustration of the determination of climate suitability, the optimal sowing date and the limiting factor. The 181 
input data shows the annual course of temperature, precipitation and the recurrence rate of potential crop failure, indicating whether it 182 
is too cold, too dry, or too wet. The crop parameterizations show the membership functions resulting in the individual suitability values 183 
for each DOY for either temperature (red line), precipitation (blue line), and climate variability (green line).Climate suitability 184 
throughout the year (black dashed line) results from the lowest of the three curves (most limiting) on any day. The highest value of 185 
climate suitability over the year finally determines the optimal sowing date. The limiting factor is the most constraining factor at this 186 
point. 187 
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For annual crops, CropSuite also calculates the potential for multiple harvests without considering crop rotation. Between 188 

harvest and reseeding, we assume a certain time period (21 days in this study) for field work and processing, which can 189 

be set flexibly in the model. Accordingly, all possible combinations of sowing dates are tested with the aim to maximize 190 

climatic suitability to achieve the highest sum of climatic suitability within a year. The optimal sowing dates are selected 191 

from the best sowing date combinations, resulting in one, two, or three sowing dates per year. A multiple cropping layer 192 

is output that shows how often a crop can be harvested. 193 

CropSuite distinguishes between rainfed and irrigated agricultural systems, which can be selected before starting the 194 

simulation. For the irrigated case, precipitation is not considered as a constraining factor with consequences for all further 195 

calculations, affecting e.g. the climate variability, the optimal sowing date, and the multiple cropping. For this study, we 196 

separately simulated both, rainfed and irrigated options for all crops. In the post-processing, we combined both datasets 197 

according to the irrigated areas dataset by Meier et al. (2018) (Fig. S1), which is available at 30 arc-seconds spatial 198 

resolution. 199 

For germination, crop-specific temperature and soil water requirements can be set in the model. The latter can be 200 

considered for rainfed conditions by defining a certain amount of precipitation within a certain period of time after 201 

sowing. 202 

Some crops, such as soybean have a high photoperiodic sensitivity which can limit their suitability (Cober and Morrison, 203 

2010; Abdulai et al., 2012). Therefore, crop-specific photoperiodic sensitivity can be considered in CropSuite by defining 204 

a maximum and minimum day length in average over the growing cycle. 205 

Additional lethal climatic limitations can be taken into account in CropSuite. We assume permafrost on areas with an 206 

average annual temperature below 0° C, which is computed from the downscaled climate input data. A maximum lethal 207 

temperature threshold of >40°C in average over the growing cycle is set for all crops (Asseng et al., 2021). In addition, a 208 

minimum and maximum threshold for the lethal temperature over a certain consecutive number of days can be set in the 209 

model crop-specifically. Further, the maximum number of consecutive dry days can be set dependent on the 210 

crop.CropSuite allows for the consideration of vernalization requirements for winter crops. Therefore, crop-specific 211 

temperature requirements with minimal and maximal temperature thresholds for a certain number of vernalization 212 

effective days can be configured in the model. Accordingly, CropSuite simulates for each location, if and when these 213 

vernalization requirements are fulfilled, which impacts on the length of the vernalization period and the optimal sowing 214 

date. An offset of days from sowing to the start of the vernalization period can optionally be added. 215 

A GUI is available for CropSuite that allows users to easily set-up the model, parameterize the crop requirements and the 216 

membership functions (Fig. 4a-e), and to start the simulations. Further, new membership functions can be created, an 217 

unlimited number of crop-specific requirements can be defined, and any additional data can be added, which can be 218 

flexibly assigned to the defined membership functions (Fig. 4e). Moreover, new crops or crop varieties can be added. 219 

The GUI also allows for the visualization, analysis and comparison of the results (Fig. 4f). 220 
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 221 
Figure 4: Graphical User Interface of CropSuite. (a) shows the main screen, (b) exemplarily shows available model settings, (c) 222 
shows the available options for crop parameterizations exemplarily for maize, (d) shows the window to set-up the simulation domain, 223 
(e) exemplarily shows the set-up of a parameter dataset for soil pH, and (f) shows the integrated data viewer in CropSuite. 224 

2.2 Climate Variability 225 

 In addition to several improvements and redesigns, one of the most important advancements in CropSuite is the 226 

consideration of climate variability for the assessment of crop suitability. Usually, crop suitability models consider long-227 

term climate averages, e.g. 10, 20 or 30-year periods and climatic trends that affect crop suitability (Ramirez-Villegas et 228 

al., 2013; Schneider et al., 2022b). They are not designed so simulate seasonal yields, as for instants mechanistic crop 229 

models do (Jägermeyr et al., 2021). However, existing crop suitability approaches may overestimate crop suitability when 230 

only long-term averages are considered, because a high climatic variability may result in a high frequency of unsuitable 231 

years, which would result in crop failures. This would however significantly increase the risk for farmers that require 232 

stable and plannable conditions. As a result, a farmer may conclude that the risk of crop failures due to unstable climate 233 
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conditions in a certain region is too high for being suitable for crop cultivation. As such, climate variability is not a purely 234 

ecological limitation but depends on the socio-economic circumstances of how farmers deal with the risk of crop failure. 235 

We developed an approach that allows for the consideration of climate variability, and thus the implicit integration of 236 

socio-economic limitations in the suitability assessment of crops. 237 

Therefore, we specify a crop-specific lower and upper threshold for temperature and precipitation. We recommend these 238 

thresholds between the higher and lower 5% and 10% suitability values of the crop-specific membership function, 239 

respectively (Figs. 1, 4c). If the suitability of the membership function does not approach 0 at its high (low) limit, we 240 

recommend setting the threshold to the highest (lowest) value of the membership function. This is the case for the wet 241 

limit of the precipitation membership function for maize (see Fig. 4c). For each year within a given period of time (here 242 

we use 20-year time periods), it is tested and totaled, how often these thresholds exceed or fall below during the growing 243 

cycle for all possible sowing dates (January 1st until December 31st). As a result, a variability dataset is generated for each 244 

DOY, indicating the number of years in which at least either the temperature or the precipitation exceeds or falls below 245 

the threshold values. The number of years is divided by the length of the time period (here 20 years) to obtain the 246 

recurrence rate of potential crop failures. This data can be stored as a two-dimensional raster file for perennial crops or 247 

as a three-dimensional raster file for non-perennial crops, with each of the 365 DOYs representing the condition for the 248 

respective sowing day. 249 

For rainfed agricultural systems, cases that are considered for climate variability include excessively high or low 250 

temperatures and precipitation, while for irrigated agricultural systems, only excessively high or low temperatures and 251 

excessively high precipitation are considered, to address potential water logging, plant diseases or root rotting. Due to 252 

computational limitations, the preprocessing of the climate variability is carried out at the resolution of the input climate 253 

data (2.5 arc minutes) and is further interpolated bilinearly to the output resolution of 30 arc seconds. 254 

Finally, we introduce a membership function defining the impact of climate variability on crop suitability. As shown in 255 

Fig. 5, a sigmoid is adopted for the course of the function. According to expert knowledge, we set this sigmoid function 256 

in a way that it reduces suitability to 0 when the recurrence rate of potential crop failure is greater than once every 4 years 257 

(25%). However, this function may be different in different parts of the world and different between crops (see 258 

Discussion). 259 



14 
 

 260 
Figure 5: Membership function for climate variability showing the impact of the recurrence rate of potential crop failures on 261 
crop suitability. The seasonal recurrence rate is shown in percent. 262 

3 Model evaluation 263 

Crop suitability is difficult to validate or measure, nor is it equivalent to agricultural yields or production values. However, 264 

a comparison with other studies and data can provide valuable information and build confidence in the approach. 265 

3.1 Comparison with Harvested Area 266 

In principle, a crop should be suitable where it is already cultivated. According to this premise, we compare the suitable 267 

area simulated with CropSuite with the harvested areas from the global spatially-disaggregated crop production statistics 268 

data for 2020 (MapSPAM 2020 v1.0) produced by the International Food Policy Research Institute (IFPRI) using the 269 

Spatial Production Allocation Model (SPAM) (Ifpri, 2024). The CropSuite results for Africa consider climate variability 270 

and are combined for irrigated and rainfed areas according to Meier et al. (2018). While MapSPAM relates to the year 271 

2020, our simulations refer to the 1991-2010 time period, which could be a source of uncertainty. Nevertheless, we used 272 

MapSPAM 2020 instead of other available versions of MapSPAM, since it includes 32 crops from our investigation and 273 

is the latest released version of MapSPAM. A comparison between CropSuite and different MapSPAM versions is shown 274 

exemplarily for maize in Fig. S2, revealing a considerably better fit with CropSuite in the MapSPAM 2020 version. For 275 

comparison, harvested areas below 10 ha per pixel are excluded from the calculation and the high spatial resolution of 276 

the CropSuite model output is resampled to the same spatial resolution (5 arc minutes) than the MapSPAM 2020 data. 277 

Figure 6 depicts the results of this analysis for all crops, where green and purple bars represent areas that are suitable, 278 

while orange and green areas represent harvested areas in MapSPAM. Purple bars indicate suitable areas that are currently 279 

not used by the respective crop.While green areas are also identified as being suitable in our approach, orange areas are 280 
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not suitable in CropSuite despite the respective crop is harvested according to MapSPAM. Crops with the largest 281 

mismatching areas are rice, maize, and onion (Fig. 6). Most crops show a small proportion of orange to green areas, 282 

except for onions, rapeseed, cocoa, pea, rubber, tea, coffee, and rice (Fig. S3). This can have various causes, such as data 283 

uncertainty of climate, soil and irrigation data (Avellan et al., 2012), incorrect membership functions, the use of different 284 

crop varieties, or an incorrect localization of the cultivation areas in MapSPAM due to high uncertainties in the underlying 285 

national statistical data, especially in African countries (Yu et al., 2020), or applied crop management practices that could 286 

level out ecological limitations. 287 

 288 
Figure 6: Comparison of CropSuite with MapSPAM 2020 for all matching crops. CropSuite results combine irrigated and rainfed 289 
areas according to Meier et al. (2018) and consider climate variability. Areas on which the respective crop is harvested according to 290 
MapSPAM and which are suitable according to CropSuite are shown in green, areas that are suitable but on which the crop is not 291 
harvested are shown in purple. Areas that are unsuitable but are harvested according to MapSPAM are shown in orange, while 292 
unsuitable areas that are not harvested according to MapSPAM are shown in gray. 293 
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Figure 7a shows the spatial comparison between crop suitability and harvested areas for maize. Areas where maize is 294 

harvested according to MapSPAM, although CropSuite has identified these areas as unsuitable, are found mainly in 295 

Egypt, the northern Sahel, the Congo Basin, as well as parts of Cameroon, Gabon, Kenya, Tanzania, Zimbabwe and 296 

South Africa. Figure 7b shows the comparison ignoring the impact of climate variability on crop suitability. Disregarding 297 

climate variability results in large (blue) areas, which are considered suitable but are no harvest areas according to 298 

MapSPAM, especially along the dry belts (15°N and 20°S). Our approach considering climate variability (Fig. 7a) 299 

reduces these blue areas, but induces some mismatches, where MapSPAM indicates harvested areas and CropSuite shows 300 

no suitability (red areas). We find that the mismatching areas along the dry belts (including the Sahel) and in eastern 301 

Africa (Tanzania, Kenya) are often associated with limits due to climate variability. This indicates that the thresholds for 302 

climate variability (section 2.2) and the membership function (Fig. 5) might be parameterized slightly too exclusive. 303 

However, some of these regions might be used as cropland by smallholders or subsistence farmers despite the high risk 304 

of crop failures. 305 

While in the inner tropics, the reason for limited crop suitability can primarily be attributed to soil acidity (pH), indicating 306 

possible uncertainties with used SoilGrids dataset, differences in Egypt mainly result from discrepancies according to 307 

different assumptions on irrigated areas. 308 

 309 
Figure 7: Comparison of CropSuite with MapSPAM 2020 for maize. (a) shows the comparison with consideration of climate 310 
variability in CropSuite, while climate variability is not considered in (b). Areas on which the respective crop is harvested according 311 
to MapSPAM and which are suitable according to CropSuite are shown in green, areas that are suitable but on which the crop is not 312 
harvested are shown in blue. Areas that are not suitable but are harvested according to MapSPAM are shown in red. Unsuitable areas 313 
that are not harvested according to MapSPAM are shown in white.  314 
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3.2 Comparison with GAEZ 315 

A state-of-the-art climate-edaphic suitability assessment for crops is provided by the Global Agro-Ecological Zones 316 

(GAEZ) v4 (Fischer et al., 2021). For comparison with CropSuite, we used GAEZ data for the time period 1981-2010 317 

for high input level, rainfed conditions and the option ‘all land in grid cell’. The high input level refers to advanced 318 

management assumptions (fully mechanized, optimum application of nutrients and chemical pest, disease and weed 319 

control) (Fischer et al., 2021), which correspond best to the assumptions made in CropSuite for this study. The suitability 320 

range of the GAEZ data is transformed to the classification system as shown in Table 3. The CropSuite data for rainfed 321 

conditions is resampled (using the average) to the same spatial resolution of 5 arc minutes than the GAEZ data. For this 322 

comparison, we use CropSuite data without climate variability, since the GAEZ approach does not consider climate 323 

variability as well. Coffee was compared against the best type of robusta and arabica, as done in the GAEZ data (Fischer 324 

et al., 2021).Overall, there are large overlaps between the GAEZ and CropSuite (Fig. 8). Generally, CropSuite identifies 325 

larger suitable areas than GAEZ for Africa (purple bar in Fig. 8), particularly for barley, cabbage, chickpea, rapeseed, 326 

rye and wheat. A main reason for differences may be due to different underlying soil data, GAEZ uses the HWSD while 327 

CropSuite uses the SoilGrids data. As an example, we found abrupt changes in the GAEZ results, especially between 328 

borders (e.g. between Angola and Zambia), which follows patterns of the underlying HWSD, which is a known issue 329 

(Dewitte et al., 2013). The consideration of climate variability in CropSuite mainly results in larger areas that are 330 

unsuitable in CropSuite but still suitable in GAEZv4 (orange bars) (Fig. S4). 331 



18 
 

 332 
Figure 8: Comparison between CropSuite and GAEZv4 suitability data for all matching crops. CropSuite results are shown 333 
without consideration of climate variability. Areas that are suitable in both data, CropSuite and GAEZv4 are shown in green, areas 334 
suitable in CropSuite but not suitable in GAEZv4 are shown in purple. Unsuitable area in CropSuite that is suitable in GAEZv4 is 335 
shown in orange. Areas that are unsuitable in both data are shown in gray. 336 

3.3 Comparison of Optimal Sowing Dates with the GGCMI Crop Calendar 337 

Another method of validation involves comparing the optimal sowing dates computed with CropSuite with the crop 338 

calendar from the Global Gridded Crop Model Intercomparison (GGCMI), which is available globally for a variety of 339 

different crops at half degree spatial resolution (Jägermeyr et al., 2021). Figure 9 illustrates the average differences of the 340 

sowing dates across Africa, averaged for the matching crops between the two datasets. The comparison is performed at 341 

a spatial resolution of 30 arc seconds (Fig. 9) and at half degree resolution (see Fig. S5). For the high spatial resolution, 342 

the GGCMI data are interpolated to 30 arc seconds using nearest neighbor. Unlike CropSuite, which displays the optimal 343 
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sowing date, the GGCMI data show the actual sowing date based on extrapolated statistics. Thus, there might be 344 

differences between the optimal and actual sowing dates. It must also be considered that the GGCMI crop calendar is 345 

based on statistics that apply to discrete areas at relatively coarse half degree spatial resolution, while CropSuite was 346 

simulated at a pixel accuracy of 30 arc seconds spatial resolution. In fact, the median differences are mostly within one 347 

month of the GGCMI crop calendar, which generally indicates a high agreement. Generally, we found that a greater 348 

distance to the equator potentially increased the discrepancy between the two data. As an example, in tropical climates 349 

with occurring dry and rainy seasons, a shift from one rainy season to another rainy season might result in a greater 350 

discrepancy. Also, we found that the distribution of sowing dates over the year was less concentrated in CropSuite, which 351 

could be a result of the higher spatial resolution (see Fig. S6). At the coarse resolution, the difference between the two 352 

datasets is less and the spread is smaller (Fig. S5). 353 

 354 
Figure 9: Comparison of the optimal sowing dates of CropSuite with the actual sowing dates of the GGCMI crop calendars. 355 
The area-weighted shift of the sowing date in days is shown for all matching crops. Negative values mean an earlier sowing date in 356 
CropSuite, positive values mean a later sowing date in CropSuite compared to the GGCMI Crop Calendar. The bars show the 5th and 357 
95th percentile, the orange marker shows the median. The color of the bars indicates the climatically suitable area for the whole of 358 
Africa. Irrigated areas are considered according to Meier et al. (2018). The comparison is performed at 30 arc seconds spatial resolution 359 
for both datasets. 360 
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4 Simulation Results 361 

Crop suitability is simulated for historical climate conditions (1991-2010) for rainfed and irrigated conditions. Figure 10a 362 

illustrates the overall crop suitability, showing for each location the value for the most suitable of all considered crops. 363 

Irrigation is considered according to the currently irrigated areas for Africa (Meier et al., 2018), such as along the Nile 364 

river in Egypt (see Fig. S1 for irrigated areas in Africa). In total for Africa, 5.7 million km2 are highly suitable, 10.6 365 

million km2 are moderately suitable, 3.3 million km2 are marginally suitable and 10.4 million km2 are not suitable for 366 

crop cultivation. Mainly between 10° N and 10° S, a high potential for multiple cropping exists with the possibility of 367 

two or three harvests per year (Fig. 10b). Looking at the number of crops suitable for cultivation (Fig. 10c), a large 368 

proportion of the considered crops can grow particularly along the wet savannahs, which gives these regions plenty of 369 

opportunities for cultivation. In contrast, only a few crops are suitable for the inner tropics and the dry savannahs, which 370 

limits the possibilities for switching between crops. 371 

 372 
Figure 10: (a) Overall crop suitability, (b) potential multiple cropping, and (c) number of suitable crops under historical climate 373 
conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). The overall crop suitability (a) and the 374 
potential multiple cropping (b) are each shown for the most suitable crop at each location. The maximal number of suitable crops 375 
results from the number of 48 considered crops (see Table 1). Figure 10a is shown with different colormap in the supplement (Fig. 376 
S7). 377 

Figure 11 shows the suitable area for each of the simulated crops for Africa. The five crops with the largest suitable areas 378 

in Africa are safflower (16.82 mio km2), sesame (15.76), guava (14.15), cowpea (13.61), and mango (13.39). 379 
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 380 
Figure 11: Marginally, moderately and highly suitable areas for all 48 crops under historical climate conditions from 1991 to 381 
2010 for Africa. Suitability classes are chosen according to Table 3. Irrigated areas are considered according to Meier et al. (2018).  382 

Figure 12a exemplarily shows the crop suitability simulated for maize. The maps for all crops are provided via Zenodo 383 

(see Data Availability). Maize is highly suitable along a strip of the 10° N and the 20° S parallel as well as large parts of 384 

Mozambique and Madagascar. In total, 0.49 million km2 are highly suitable, 4.34 million km2 are moderately suitable, 385 

3.97 million km2 are marginally suitable and 21.23 million km2 are unsuitable. 386 

The optimal sowing date for single cropping (Fig. 12b) for maize shifts with latitude from the northern hemisphere across 387 

the equator to the southern hemisphere. Figure 12c shows the potential number of potential harvests per year for maize. 388 

Climate conditions allow up to two harvests per year in some parts of Congo and Cameroon and in the irrigated areas e.g. 389 

along the Nile river. Optimal sowing dates for first and second sowing on areas suitable for multiple cropping are shown 390 

in Fig. S8. 391 

Figure 12d shows the climate suitability for maize, which just considers climatic constraints for the suitability of maize. 392 

In comparison to the crop suitability map (Fig. 12a), more areas are suitable and suitability is substantially higher, if soil 393 

and topography are not considered and therefore do not limit or reduce crop suitability. 394 



22 
 

 395 
Figure 12: (a) Crop suitability, (b) optimal sowing date for single cropping, (c) potential multiple cropping, and (d) climate 396 
suitability for maize under historical climate conditions from 1991 to 2010. Irrigated areas are considered according to Meier et 397 
al. (2018). Figure 12a is shown with different colormap in the supplement (Fig. S9). 398 
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The most limiting factor is shown in Fig. 13a. While low precipitation prevents maize from being suitable in large parts 399 

of Africa in the arid deserts, soil is predominantly restricting suitability in tropical regions. Particularly pH is the most 400 

limiting factor in the humid tropics, such as the Congo Basin, where soils are too acid for growing maize. A large band 401 

along the drylands highlights regions where inter-annual climate variability is most limiting maize suitability (in orange, 402 

Fig. 13a). Here, climate conditions are instable for maize cultivation, and the recurrence rate of potential crop failures is 403 

larger than 25% (every fourth year). For maize, climate variability is limiting crop suitability on 4.4 million km2 for 404 

Africa (Fig 13a). 405 

Figure 13b shows the degree of limitation for all considered climate, soil and terrain factors along a transect following 406 

the 20° E from North to South. In the Sahara, several factors, including temperature, organic carbon content, and soil pH, 407 

are not in an optimal range, while precipitation and the climate variability are the most limiting (note that climate 408 

variability is by definition a limiting factor if precipitation and/or temperature are limiting factors). Due to the unfavorable 409 

soil conditions, irrigation would only slightly improve maize suitability here. Between 15° N and 5° N, the limitations of 410 

all factors are relatively low. Here, coarse fragments and base saturation are most limiting. The tropical areas along the 411 

transect between 5° N and 10° S are mainly constrained by soil pH. Accordingly, soil management or practices that 412 

increase pH in these regions would have a significantly positive impact on crop suitability in this region, since no other 413 

factor has such a strong impact on maize suitability. Further south, low precipitation again mostly limits maize suitability. 414 

 415 
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Figure 13: Limiting factors. (a) Most limiting factor of the crop suitability for maize under historical climate conditions from 1991 416 
to 2010. (b) shows the degree of limitation of all factors along a transect of the 20° East from 30° North to 30° South. The most limiting 417 
factors are displayed with priority according to the order in the legend in (a), if more than one factor fully limits the suitability. For 418 
visualization, the shapes in (b) are smoothed using a moving average. Irrigated areas are considered according to Meier et al. (2018) 419 
in (a) and are not considered in (b). 420 

The consideration of climate variability significantly reduces climate suitability for maize as shown in Fig. 14a, mainly 421 

in the transition area between dry savannah and desert in the Sahel zone, in Burundi and Tanzania in Eastern Africa, and 422 

in the southern part of Africa in Angola, Zambia, Zimbabwe, Mozambique, South Africa, and the southern part of 423 

Madagascar. In total, climate variability reduces climate suitability on more than 5.4 million km2. 424 

Optimal sowing dates also shift when considering climate variability, since the algorithm identifies the best suitable time 425 

window for the growing cycle over the year (Fig. S10). As a result, optimal sowing for maize considerably shifts in 426 

Tanzania, Mozambique and Madagascar. 427 

Over all crops, Fig. 14b shows the impact of climate variability on the overall crop suitability. In this case, overall crop 428 

suitability is reduced on 2.2 million km2, mainly reduced in Somalia, Kenya, Ethiopia, South Africa, and the Maghreb 429 

countries of Morocco, Algeria, Tunesia, and Libya. These regions generally show a high vulnerability to climatic 430 

variability. Climate variability also reduces the potential for multiple cropping in general over all crops on more than 2.3 431 

million km2 (Fig. S11). 432 

 433 
Figure 14: Impact of the consideration of climate variability on crop suitability (a) for maize (b) for the overall crop suitability 434 
of all crops under historical climate conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). 435 
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5 Discussion 436 

We found that the consideration of climate variability significantly affects crop suitability, multiple cropping, and optimal 437 

sowing dates in Africa. Our approach allows to adjust the risk aversion of farmers by adjusting the thresholds for climate 438 

variability (section 2.2.) and the membership function (Fig. 5). The shape of this function may differ between crops and 439 

regions and might be influenced by several socio-economic factors, such as the degree of mechanization, financial 440 

possibilities, and the availability of crop insurances, which is likely to reduce risk aversion of farmers. We suggest the 441 

function as shown in Fig. 5 as a broad and general solution which is primarily designed to represent risk aversion of 442 

commercial farms. In our comparison analysis for maize (section 3), reference data showed some cultivation in the 443 

regions we identified as unsuitable due to the high recurrence rate of potential crop failures caused by high climate 444 

variability (Fig. 7). In some regions, despite the high risk of crop failures, land might be cultivated by smallholders or 445 

subsistence farmers that have no other choice but to cultivate these lands. However, we admit that the tuning of the 446 

climate variability thresholds and the membership function requires more research, and the optimal results will vary 447 

depending on crop and region. CropSuite offers the platform and the possibilities to conduct such assessments.  448 

The results of CropSuite (section 4) are subject to uncertainties in the applied climate, soil, terrain, and irrigation data as 449 

well as the membership functions (Fig. 1). Soil and terrain data are assumed to be static, although management could 450 

influence soil properties such as pH, and terracing could reduce slope limitations. The applied climate data from CHIRPS 451 

and CHIRTS are found to be particularly valuable in regions, where climate stations are sparse. Over Africa, CHIRPS is 452 

successfully validated (Dinku et al., 2018) showing good performance (Lemma et al., 2019; Muthoni et al., 2019). Verdin 453 

et al. (2020) also report good agreement of CHIRTS over Africa, however with a poor performance over central Africa, 454 

the Horn of Africa, and parts of northern Mali. Generally, both data sets rely on station data to correct the satellite 455 

estimations, which is why uncertainties for very data-scarce regions remain. To apply CropSuite in regions outside 50°S-456 

50°N, or to larger time periods before the 1980s, the user of CropSuite could also rely on global high-resolution climate 457 

reanalysis, such as ERA5 (Hersbach et al., 2020). For the African continent, ERA5 reanalysis shows large improvements 458 

over its predecessor ERA-Interim (Gleixner et al., 2020). Still, considerable deviations in precipitation from CHIRPS are 459 

reported, e.g., wet biases over Uganda (Gleixner et al., 2020) and a dry bias over the western Sahel (Gbode et al., 2023), 460 

where CHIRPS is applied as reference. We therefore assume that CHIRPS and CHIRTS are very suitable climatic data 461 

sets to investigate our example of maize suitability in Africa. The soil profiles used for the generation of the SoilGrids 462 

show a heterogeneous distribution, with large gaps over central Africa, which is why Hengl et al. (2017) attribute 463 

uncertainty in the data to the under-sampling. They argue that a few hundred additional profiles in under-sampled areas 464 

could massively improve the resulting SoilGrids.  465 

The membership functions derived by Sys et al. (1993) are widely applied but are also governed by inherent uncertainties. 466 

Herzberg et al. (2019) argue that the assessment by Sys et al. (1993) is not detailed enough to capture specific features of 467 

small areas. They find that Sys et al. (1993) would consider a hilly area in tropical Vietnam unsuitable due to too acidic 468 
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soils and steep slopes, whereas the local farmers can cultivate the land. Furthermore, the approach cannot account for 469 

compound effects and interactions of the climate and soil variables (Elsheikh et al., 2013). The membership functions 470 

cover the general behavior in a univariate manner, while the real plant physiology is a more complex interplay of climatic 471 

variables and soil conditions (Joswig et al., 2022). This also applies particularly to compound extremes, for example the 472 

combination of hot and dry climatic conditions (Goulart et al., 2023) that limit water availability and favor evaporation, 473 

which can trigger water and temperature stress in plants. This is relevant in the course of a warming climate, as the joint 474 

probability of hot and dry conditions is projected to increase in many regions of the world (Bevacqua et al., 2022; Felsche 475 

et al., 2024). This is however no specific drawback of CropSuite, but rather a lack of bivariate, multivariate or interactive 476 

membership functions. The assessment of the membership functions by Sys et al. (1993) is also outdated for new crop 477 

varieties that might be more resilient to climatic and environmental stressors (Peter et al., 2020). Furthermore, we argue 478 

that the uncertainty in the temperature and precipitation membership functions is by design larger at its low and high 479 

ends, as the functions are derived empirically. Since our consideration of climate variability is based on the 5% to 10% 480 

suitability values, respectively (see Section 2.2), the uncertainties of the membership functions are propagated to the 481 

assessment of climate variability. More research and updated functions could support the results by CropSuite. 482 

The sampling of climate variability within 20-year periods is limited as variability can cover wide time ranges. There, 483 

the application of single-model initial condition large ensembles can help to robustly assess the variability based on 484 

decadal or multidecadal time periods (Deser et al., 2020). This is especially important for precipitation and precipitation 485 

extremes, which show a high sensitivity to climate variability (Lang and Poschlod, 2024; Tebaldi et al., 2021). 486 

Furthermore, for the assessment of climate variability, we only capture the occurrence of growing seasons exceeding the 487 

percentile thresholds, but we do not consider the intensity of the according events. Single days with extreme precipitation 488 

can induce flooding that leads to crop failures (Balgah et al., 2023; Müller et al., 2023), even though the average 489 

precipitation for the growing season is still within the suitable range of the membership function. This drawback however 490 

also applies for most of the mechanistic crop models at global scale (Ruane et al., 2017), while regional applications 491 

evolve incorporating crop losses due to waterlogging and flooding (Li et al., 2016; Monteleone et al., 2023; Pasley et al., 492 

2020). This is why we claim to assess climate variability not climate extremes inducing potential crop failures. 493 

6 Conclusions 494 

CropSuite is a new easy-to-use comprehensive open-source model that provides a complete processing chain 495 

(preprocessing, spatial downscaling, suitability simulations, data analysis and visualization) for carrying out crop 496 

suitability and climate change impact analysis. CropSuite allows users to easily parameterize different varieties of the 497 

same crops or additional crops by determining the membership functions in the GUI. Thereby, the fuzzy logic approach 498 

makes it easy to use expert knowledge for the parameterization of the membership functions. Besides all data and 499 

compiled maps generated, we provide a user manual for CropSuite (Zabel and Knüttel, 2024) and the parameterizations 500 
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of the considered 48 crops in this study. Furthermore, the model allows the flexible addition of further parameters and 501 

membership functions that might affect suitability, if the required data is provided. For the future, this allows the 502 

consideration of further ecological and socio-economic limitations (such as access to fertilizers, available labor, know-503 

how, infrastructure and transportation, heat stress impacts on labor) that have not yet been sufficiently considered in crop 504 

suitability assessments (Orlov et al., 2024; Akpoti et al., 2019). 505 

For this study, we simulated 48 crops for Africa under the consideration of climate variability for historical climate 506 

conditions. Thus, we created a huge dataset, providing detailed high-resolution information on climate-, soil-, and crop 507 

suitability, optimal sowing dates, multiple cropping potentials and the limiting factors, which can be used for follow-up 508 

studies and climate impact assessments. Additionally, the data include substantial information to develop strategies for 509 

an efficient land-use (Schneider et al., 2024; Molina Bacca et al., 2023; Delzeit et al., 2019). The consideration of future 510 

climate change scenarios will allow for investigating efficient strategies for climate change adaptation through shifting 511 

sowing dates, or cultivar and land-use change. Further, information about the limiting factors can be helpful to optimize 512 

crop management, since it identifies the parameter that most efficiently improves crop suitability. 513 

Code Availability 514 
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