



# **Locating and quantifying CH4 sources within a wastewater**

# treatment plant based on mobile measurements

3

2

- 4 Junyue Yang<sup>1</sup>, Zhengning Xu<sup>1</sup>, Zheng Xia<sup>4,5</sup>, Xiangyu Pei<sup>1</sup>, Yunye Yang<sup>1</sup>, Botian Qiu<sup>2,3</sup>, Shuang
- 5 Zhao<sup>2,3</sup>, Yuzhong Zhang<sup>2,3\*</sup>, Zhibin Wang<sup>1,6\*</sup>
- 6 <sup>1</sup>Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, MOE Key
- 7 Laboratory of Environment Remediation and Ecological Health, College of Environmental and
- 8 Resource Sciences, Zhejiang University, Hangzhou 310058, China
- 9 <sup>2</sup>Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of
- 10 Engineering, Westlake University, Hangzhou 310030, China
- <sup>11</sup> <sup>3</sup>Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024,
- 12 China
- 13 <sup>4</sup>Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
- <sup>14</sup> <sup>5</sup>Zhejiang Key Laboratory of modern Ecological and Environmental Monitoring, Hangzhou 310012,
- 15 China
- 16 <sup>6</sup>ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University,
- 17 Hangzhou 311200, China
- 18
- 19 Correspondence to: Zhibin Wang (<u>wangzhibin@zju.edu.cn</u>) and Yuzhong Zhang
   20 (<u>zhangyuzhong@westlake.edu.cn</u>)
- 21

Abstract. Wastewater treatment plants (WWTPs) are substantial contributors to greenhouse gas (GHG) emission because of the high production of methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). A typical WWTP complex contains multiple functional areas that are potential sources for GHG emissions. Accurately quantifying GHG emissions from





| 26 | these sources is challenging due to the inaccuracy of emission data, the ambiguity of                                    |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 27 | emission sources, and the absence of monitoring standards. Locating and quantifying                                      |
| 28 | WWTPs emission sources in combination with measurement-based GHG emission                                                |
| 29 | quantification methods are crucial for evaluating and improving traditional emission                                     |
| 30 | inventories. In this study, $\mathrm{CH}_4$ mobile measurements were conducted within a WWTP                             |
| 31 | complex in the summer and winter of 2023. We utilized a multi-source Gaussian plume                                      |
| 32 | model combined with the genetic algorithm inversion framework, designed to locate                                        |
| 33 | major sources within the plant and quantify the corresponding $\mathrm{CH}_4$ emission fluxes. We                        |
| 34 | identified 12 main point sources in the plant and estimated plant-scale $\mathrm{CH}_4$ emission                         |
| 35 | fluxes of 603.33 $\pm$ 152.66 t $a^{\text{-1}}$ for the summer and 418.95 $\pm$ 187.59 t $a^{\text{-1}}$ for the winter. |
| 36 | The predominant sources of CH4 emissions were the screen and primary clarifier,                                          |
| 37 | contributing 55 % and 67 % to the total emissions in summer and winter, respectively.                                    |
| 38 | The comparison against traditional emission inventories revealed that the $\rm CH_4$ emission                            |
| 39 | fluxes in the summer were 2.8 times greater than the inventory estimates, and in the                                     |
| 40 | winter, emissions were twice the inventory values. Our flux inversion method achieved                                    |
| 41 | a good agreement between simulations and observations (correlation $> 0.6$ and a root                                    |
| 42 | mean square error (RMSE) < 0.7 mg m <sup>-3</sup> ). This study demonstrated that mobile                                 |
| 43 | measurements, combined with the multi-source Gaussian plume inversion framework,                                         |
| 44 | are a powerful tool to locate and quantify GHG sources in a complex site, with the                                       |
| 45 | potential for further refinement to accommodate different types of factories and gas                                     |
| 46 | species.                                                                                                                 |
|    |                                                                                                                          |

47

# 48 **1 Introduction**

Greenhouse gas (GHG) emissions exacerbate the greenhouse effect, causing adverse impacts on human health, ecosystems, and the environment (IPCC, 2023). Methane (CH<sub>4</sub>) is the second-largest contributor to climate change, with the global warming potential 27.9 times that of carbon dioxide (CO<sub>2</sub>). Reducing CH<sub>4</sub> emissions is essential





for mitigating climate change and progressively achieving the global target of limiting 53 warming to 1.5 °C. The latest observational study from the WMO Global Atmospheric 54 Watch network indicated that the global annual average concentration of CH<sub>4</sub> in 2022 55 was  $1923 \pm 2$  ppb, representing a 264 % increase from pre-industrial levels (WMO, 56 2023). The International Energy Agency (IEA) 's 2024 Global Methane Tracker report 57 suggests that global CH<sub>4</sub> emissions reached 580 Mt in 2023, with anthropogenic CH<sub>4</sub> 58 emissions accounting for 60 %. The complexity of CH4 emission processes, lack of 59 monitoring systems, and limitations of emission estimation models present challenges 60 in accurately estimating anthropogenic CH<sub>4</sub> emissions. 61

The quantification of CH<sub>4</sub> emission fluxes is typically achieved through a bottom-up 62 inventory method. However, due to the difficulties in obtaining actual emission factors 63 activity data, and specific information on different emission sources, there is 64 considerable uncertainty in the assessing of the emission inventory method (Lin et al., 65 2021). In contrast, a top-down method that estimates CH<sub>4</sub> emissions by monitoring 66 67 atmospheric concentration has been increasingly applied in recent years (Sun et al., 2019; Cusworth et al., 2024; Han et al., 2024; Maazallahi et al., 2023; Riddick et al., 68 2017). The monitoring technology mainly includes satellite (Zhang et al., 2021; Liang 69 et al., 2023; Jacob et al., 2022) and airborne (Allen et al., 2019; Abeywickrama et al., 70 2023; Cui et al., 2017) remote sensing, as well as ground-based monitoring such as 71 vehicle-based mobile monitoring (Albertson et al., 2016; Al-Shalan et al., 2022; 72 Caulton et al., 2018), station monitoring (Dietrich et al., 2021; Hase et al., 2015; Heerah 73 et al., 2021) and tower monitoring (Richardson et al., 2017; Balashov et al., 2020). 74 Numerous studies use satellite remote sensing, unmanned aerial vehicle (UAV) 75 monitoring, and vehicle-based mobile monitoring techniques to measure CH<sub>4</sub> emissions 76 (Sun et al., 2023). However, satellite spatiotemporal resolution is limited and UAVs 77 have short endurance, making vehicle-based mobile monitoring a better choice for 78 measuring emissions at wastewater treatment plants (WWTPs). Vehicle-based mobile 79 monitoring can perform continuous real-time monitoring and precise identification of 80





| 81  | emission sources, and hence have been applied to urban (von Fischer et al., 2017;                     |
|-----|-------------------------------------------------------------------------------------------------------|
| 82  | Defratyka et al., 2021) and plant-scale (Zhao et al., 2021; Jin et al., 2010) monitoring of           |
| 83  | GHG concentrations and emission fluxes. Vogel et al. (2024) investigated CH4 leaks in                 |
| 84  | 12 cities across 8 countries, using high-precision fast-response GHG analyzers                        |
| 85  | combined with the mobile survey methodology (von Fischer et al., 2017). Chen et al.                   |
| 86  | (2020) utilized the multiple-Gaussian-plume model and a forward modeling approach                     |
| 87  | for mobile measurements of CH4 emissions during the Munich Oktoberfest. Shi et al.                    |
| 88  | (2023) proposed a CO <sub>2</sub> /CH <sub>4</sub> emission quantification model (EMISSION-PARTITION) |
| 89  | and conducted mobile measurements with vehicle-based monitoring system at chemical,                   |
| 90  | coal washing, and waste incineration plants in two cities and one industrial park in                  |
| 91  | China, assuming different numbers of emission sources for quantitative assessment.                    |
| 92  | Wang et al. (2022a; 2022b) employed the Environmental Protection Agency's Other                       |
| 93  | Test Method 33A (OTM 33A) for monitoring downwind of fueling stations to estimate                     |
| 94  | the CH4 emission fluxes of nine compressed natural gas (CNG) stations and five                        |
| 95  | liquefied natural gas (LNG) stations in Eastern China. Emission flux inversion methods                |
| 96  | also include isotope tracer method (Jackson et al., 2014; Zimnoch et al., 2018), cross-               |
| 97  | sectional flux method (Luther et al., 2019; Makarova et al., 2021), and atmospheric                   |
| 98  | diffusion model inversion method (Kumar et al., 2021; Yacovitch et al., 2015).                        |
| 99  | Atmospheric transport models with varied degrees of complexity, including Gaussian                    |
| 100 | diffusion models (Stadler et al., 2021), Lagrangian models (Mckain et al., 2015), and                 |
| 101 | Eulerian models (Bergamaschi et al., 2018), are used in the inversion to relate GHG                   |
| 102 | concentrations with emissions. Optimization methods, such as Bayesian optimization                    |
| 103 | (Karion et al., 2019) and linear regression models (Kumar et al., 2021), are applied to               |
| 104 | achieve accurate inversion results. Furthermore, some studies incorporate carbon                      |
| 105 | isotope observations to better attribute the contribution of different CH4 emission                   |
| 106 | sources (Maazallahi et al., 2020).                                                                    |
|     |                                                                                                       |

As a significant source of GHG emissions, WWTPs generate substantial amounts of
 CH<sub>4</sub>, N<sub>2</sub>O, and CO<sub>2</sub> during the collection, treatment, and discharge of sewage and





| 109 | sludge, contributing 3 % of the global total GHG emissions (Bai et al., 2022). The                             |
|-----|----------------------------------------------------------------------------------------------------------------|
| 110 | estimation of $CH_4$ emission fluxes from WWTPs has increasingly attracted widespread                          |
| 111 | attention. Li et al. (2024) developed a plant-level and technology-based $\mathrm{CH}_4$ emission              |
| 112 | inventory for municipal WWTPs in China, estimating the $CH_4$ emissions for 2020 to                            |
| 113 | be 150.6 Gg. Wang et al. (2022) systematically considered process technological                                |
| 114 | differences in wastewater treatment, constructing a high-resolution greenhouse gas                             |
| 115 | emission inventory for Chinese WWTPs from 2006 to 2019. Delre et al. (2017)                                    |
| 116 | measured the $\mathrm{CH}_4$ and $\mathrm{N}_2\mathrm{O}$ concentrations downwind of five WWTPs in Scandinavia |
| 117 | using tracer gas dispersion, which obtained a range of CH4 emission fluxes from 1.1 $\pm$                      |
| 118 | 0.1 to 18.1 $\pm$ 6.3 kg h^-1. Moore et al. (2023) employed an integrated Gaussian plume                       |
| 119 | model with a Bayesian framework for mobile measurements of $CH_4$ emissions from 63                            |
| 120 | WWTPs in the United States, pointing to a significant underestimation in the $\mathrm{CH}_4$                   |
| 121 | emission inventories.                                                                                          |

We present a mobile measurement investigation of a WWTP in Hangzhou 2023. To 122 analyze the mobile data, we construct a multi-source Gaussian plume model combined 123 with the genetic algorithm inversion framework, which assists us to locate and quantify 124 CH<sub>4</sub> emission sources, based on the concentration distribution measured within the 125 WWTP. Additionally, we compare CH4 emission fluxes from the measurements with 126 the bottom-up estimates of emission inventories. A sensitivity analysis is performed to 127 elucidate the discrepancies arising from variations in emission source locations. Our 128 results provide insight into formulating and evaluating emission reduction measures for 129 WWTPs. 130

131

## 132 **2 Instruments and methods**

# 133 **2.1 Site selection**

134 The monitoring site was chosen at a WWTP in Hangzhou, a megacity in East China.





This WWTP is a large-scale plant located in Hangzhou, processing up to 1.5 million 135 tons of domestic wastewater daily. The plant roads were flat and wide, suitable for 136 vehicle-mounted CRDS (Cavity Ring-Down Spectroscopy) to conduct monitoring 137 along the internal roads of the plant to monitor various functional areas within the plant. 138 WWTPs processes typically encompass mechanical treatment, biological treatment, 139 sedimentation, advanced treatment, disinfection, and sludge treatment. As illustrated in 140 Fig. 1, we divide the WWTP into 14 functional areas according to treatment processes. 141 142 For instance, areas associated with primary treatment were labeled as coarse screens and primary sedimentation tanks, while those linked to secondary treatment were 143 indicated as aeration tanks and secondary sedimentation tanks. Mobile measurements 144 were conducted by driving around the outer periphery and internal functional areas of 145 the wastewater treatment plant, with each monitoring experiment involving circling the 146 functional areas 1-2 times. 10 days of experiments were carried out from June to 147 December 2023. This yielded 8 valid sets of monitoring data, including 3 days of 148 149 summer data and 5 days of winter data.



150 151

Figure 1. Distribution of functional areas of the WWTP. Map data are from ESRI.

152





#### 153 **2.2 Instrumentation**

The monitoring instruments consisted of a vehicle-mounted CRDS monitoring 154 system and a portable meteorological station. The vehicle-mounted CRDS system was 155 anchored by the CRDS analyzer (Picarro G2201-i), accompanied by GPS and 156 meteorological instruments. The CRDS analyzer measures <sup>12</sup>CO<sub>2</sub>, <sup>13</sup>CO<sub>2</sub>, <sup>12</sup>CH<sub>4</sub>, <sup>13</sup>CH<sub>4</sub> 157 and H<sub>2</sub>O, the volume fraction of CH<sub>4</sub> is measured with an accuracy of 5 ppb  $\pm$  0.05 % 158 (Picarro 2010). CRDS measurements have the advantages of strong interference 159 resistance, high sensitivity and accuracy, making them widely employed in research 160 focused on monitoring GHG emissions (Rella et al., 2015; Lopez et al., 2017). In this 161 study, the CRDS analyzer was securely placed inside the monitoring vehicle, with the 162 sampling probe mounted on the roof to mitigate the effects of vehicular emissions. The 163 system was powered by a battery, drawing in ambient air through a pump, and 164 displaying real-time monitoring data on a screen. The mobile meteorological instrument 165 was placed on the roof of the vehicle to gather meteorological data. In addition, the 166 GPS unit was integrated to record the location of sampling points during the 167 measurement period. 168

Two portable meteorological stations (SWS-500) were positioned adjacent to the 169 main entrance and atop the filter tank at the WWTP. Capable of measuring key 170 171 meteorological parameters such as wind speed, direction, temperature, humidity, and atmospheric pressure, this station provided essential climatic data for the monitoring 172 experiments. Mobile measurements were performed by the monitoring vehicle along 173 the entire roads of the WWTP, as well as the internal roads, to pinpoint the locations of 174 emission sources, scrutinize variations in emission concentrations. The concentration 175 data was subsequently integrated with an inversion model to estimate the CH4 emission 176 177 fluxes.

178





#### 179 **2.3 Inventory accounting method**

We used the methods suggested by the IPCC Guidelines for National Greenhouse Gas Inventories (2006) to calculate the amounts of CH<sub>4</sub> emissions from wastewater. The formula for calculating the amounts of CH<sub>4</sub> emissions from wastewater is described as:

184 
$$E_{CH_a} = (TOW - S \cdot a) \cdot EF_{CH_a} - R_{CH_a}$$
(1)

Where  $E_{CH_4}$  denotes the direct CH<sub>4</sub> emissions from the wastewater treatment plant, tCH<sub>4</sub> a<sup>-1</sup>. *TOW* is defined as the total organic pollutant load in the influent wastewater, tCOD a<sup>-1</sup>. *S* refers to the annual production total of dry sludge, t a<sup>-1</sup>. The parameter *a* signifies the organic matter content in the dry sludge, tCOD t<sup>-1</sup>.  $EF_{CH_4}$  is the CH<sub>4</sub> emission factor, tCH<sub>4</sub> tCOD<sup>-1</sup>.  $R_{CH_4}$  quantifies the annual recovery of CH<sub>4</sub> from anaerobic treatment processes, t a<sup>-1</sup>.

Operational data of the WWTP examined in this study is derived from the Urban 191 Drainage Statistical Yearbook, an annual publication of urban water supply and 192 drainage systems in China. This data set includes details such as the water treatment 193 volume, sludge production, and the concentrations of six pollutants (COD<sub>cr</sub>, BOD, SS, 194 NH<sub>3</sub>-N, TN, and TP) in both influent and effluent. The Total Organic Waste (TOW) is 195 deduced from the yearbook's foundational data, while the annual sludge production (S) 196 is extracted directly from it. The organic matter content in dry sludge is estimated at an 197 198 empirical 40 %, assuming a sludge moisture content of 75 %, leading to a value of 0.1 (Guo et al., 2019).  $EF_{CH_4}$  is selected based on the recommended value for Zhejiang 199 province, 0.0046 (Cai et al., 2015). Given the infrequency of anaerobic treatment in 200 wastewater,  $R_{CH_4}$  is set to 0. 201

202

#### 203 2.4 Inversion method

204 We developed an inversion framework for CH<sub>4</sub> emission fluxes designed for plant-





| 205 | level applications. The framework used CH4 concentration measurements, specific                    |
|-----|----------------------------------------------------------------------------------------------------|
| 206 | locations of emission sources, and initial emission estimates, alongside wind speed and            |
| 207 | direction data, as inputs to the multi-point and line source Gaussian diffusion models.            |
| 208 | The preliminary localization of the emission sources was chiefly contingent upon the               |
| 209 | concentration distribution along the roads within the internal functional areas.                   |
| 210 | Meanwhile, the initial emission estimates for each source were determined by                       |
| 211 | integrating the concentration data from these areas with an improved empirical equation            |
| 212 | (Weller et al., 2018). These inputs were fed into a multi-source Gaussian plume model              |
| 213 | that simulates the concentration patterns of CH4 given multiple point and line sources.            |
| 214 | We then used a genetic algorithm to iteratively optimize source emission fluxes and                |
| 215 | their locations. The inversion framework simulation dictated the placement of 12 main              |
| 216 | point sources throughout the WWTP, specifically within Aeration Tank ①②③④⑤,                        |
| 217 | Primary Clarifier 345, Screen 1, Secondary Clarifier 12, and the Sludge                            |
| 218 | Treatment ② (Fig. 1). The inclusion of a Gaussian line source model was determined                 |
| 219 | based on the actual emission conditions. Within this study, a uniform line source was              |
| 220 | established, with the assumed location along the road between the Screen $\textcircled{1}$ and the |
| 221 | Primary Clarifier (1). This assumption was grounded in the CH4 concentration                       |
| 222 | distribution observed within this road segment and was substantiated through model                 |
| 223 | validation, confirming the existence of a line source emission pattern. The remaining              |
| 224 | emission flux inversion processes followed the same procedure as the point source                  |
| 225 | simulation. Adjustments to the source locations within the model narrow the gap                    |
| 226 | between simulated and measured concentrations, thus enhancing the accuracy of                      |
| 227 | inversion. This section delineates each model incorporated into the inversion                      |
| 228 | framework.                                                                                         |





### 229 2.4.1 Multiple-point-source Gaussian plume model

We developed a multiple-point-source Gaussian plume model to relate CH<sub>4</sub> concentration enhancement to CH<sub>4</sub> emissions. This method approximates atmospheric dispersion of CH<sub>4</sub> from an individual source as a Gaussian plume under uniform and stable wind conditions (Nassar et al., 2017), which is usually good for describing average atmospheric transport tens to hundreds of meters downwind the source, making the Gaussian plume model a useful tool to study emissions from industrial and traffic sources.

The mass concentration enhancement (C, mg m<sup>-3</sup>) is computed as superposition of Gaussian plumes from multiple point sources.

239 
$$C(x, y, z) = \sum_{i=1}^{n} \frac{Q_i}{2\pi \bar{u}\sigma_{i,y}\sigma_{i,z}} exp\left(-\frac{(y-y_i)^2}{2\sigma_{i,y}^2}\right) \left\{ exp\left[\frac{-(z-z_i)^2}{2\sigma_{i,z}^2}\right] + exp\left[\frac{-(z+z_i)^2}{2\sigma_{i,z}^2}\right] \right\}$$
(2)

The variables *x*, *y*, and *z* denote the downwind, crosswind distances, and the height above the ground from the source, m.  $Q_i$  signifies the emission rate from the  $i_{th}$  point source, mg/s, for i = 1, 2, 3, ..., N, where *N* represents the total count of point sources. The average wind speed is indicated by  $\bar{u}$ , m s<sup>-1</sup>. The  $x_i$ ,  $y_i$  and  $z_i$  are represented as the spatial position of the  $i_{th}$  point source, m.  $\sigma_{i,y}$  and  $\sigma_{i,z}$  are the horizontal and vertical dispersion parameters of the  $i_{th}$  point source, respectively, which are given by the formula below:

247 
$$\sigma_{i,y} = \gamma_1 \cdot (x - x_i)^{\alpha_1}, \text{ when } x > x_i \tag{3}$$

$$\sigma_{i,z} = \gamma_2 \cdot (x - x_i)^{\alpha_2}, \text{ when } x > x_i \tag{4}$$

The power functions, known as the Pasquill's curves, associates with the downwind distance x and the prevailing atmospheric stability (Briggs et al., 1973). Atmospheric stability is determined based on the Pasquill stability classes recommended in the Technical Principles and Methods for Formulating Local Air Pollution Emission Standards (GB3840-83).





# 254 2.4.2 General Finite Line Source Model

Our analysis of measurement at WWTPs indicates that multiple-point-source 255 Gaussian plume model is insufficient to capture the observed CH<sub>4</sub> concentrations. The 256 entire road between the Screen (1) and the Primary Clarifier (1) shows high 257 distribution of CH<sub>4</sub> concentrations. To match the observations, we further consider a 258 line source based on observed concentration distribution. The line source model is used 259 to confirm that the road concentration distribution is consistent with line source 260 emissions (Fig. S1). The contribution of a line source to CH<sub>4</sub> concentration is given by 261 the General Finite Line Source Model (GFLSM) (Luhar et al., 1989; Venkatram et al., 262 2006), which represents the line source as an ensemble of point sources: 263

264

265 
$$C = \frac{Q}{2\pi\bar{u}\sigma_{y}\sigma_{z}} \left\{ exp\left[\frac{-(z-H)^{2}}{2\sigma_{z}^{2}}\right] + exp\left[\frac{-(z+H)^{2}}{2\sigma_{z}^{2}}\right] \right\}$$
  
266 
$$\cdot \left[ erf\left(\frac{\sin\theta(\frac{L}{2}-y) - x\cos\theta}{\sqrt{2}\sigma_{y}}\right) + erf\left(\frac{\sin\theta(\frac{L}{2}+y) + x\cos\theta}{\sqrt{2}\sigma_{y}}\right) \right]$$
(5)

267

268 *x*, *y*, and *z* correspond to the downwind, crosswind distances, and the altitude above 269 ground level from the source, m.  $Q_i$  is the emission fluxes of the unit source, mg s<sup>-1</sup>.  $\bar{u}$ 270 is the average wind speed, m s<sup>-1</sup>.  $H_i$  is the effective emission height of the line source, 271 with the length of the line source represented by *L*, m. The angle between the line 272 source and the wind direction is given by  $\theta$ . The horizontal and vertical dispersion 273 parameters are characterized by  $\sigma_y$  and  $\sigma_z$ , respectively.

#### 274 **2.4.2 Genetic algorithm**

Genetic algorithms, which mimic the evolutionary process of biological systems, serve as optimization search algorithms. The algorithms encode practical problems into binary genetic coding. Through the simulation of natural selection, crossover, and mutation processes, these algorithms are in a constant state of evolution and iteration,





all in the pursuit of the optimal solution (Katoch et al., 2021). We deployed genetic
algorithms to enhance the source emission flux outcomes modeled by the Gaussian
plume model.

The process of inverting multi-source CH<sub>4</sub> emission fluxes utilizing genetic 282 algorithms involves a series of steps. Initially, the emission flux of each source is treated 283 as a gene, with binary-encoded gene sequences randomly assigned to a set number of 284 individuals within the predefined range of a priori emission fluxes. Subsequently, the 285 formulation of a fitness function is based on the defined optimization goals and 286 constraints. This function serves as a critical tool for assessing the relative merits of 287 each individual within the population. In this study, the objective of the optimization is 288 centered on minimizing the aggregate absolute discrepancy between the values 289 predicted by the model and those obtained from measurements. Ultimately, the 290 population is subjected to the processes of selection, crossover, and mutation. 291 Individuals with elevated fitness values, as determined by the fitness function, are 292 293 chosen for the generation of new individuals. Through an iterative process, the optimal solution is refined, representing the emission fluxes for each source. Genetic algorithms 294 are distinguished by the parallel computation capabilities, the propensity for identifying 295 global optima, and the commendable stability and reliability (Harada et al., 2020). 296

297

#### 298 **3 Results and discussion**

# 299 **3.1 Concentration mapping**

The closed-path mobile measurements were conducted by vehicle-mounted CRDS monitoring system along the external roads encircling the WWTP, with further monitoring conducted along the internal roads. This strategy depicts the distribution of CH<sub>4</sub> concentrations within an WWTP, allowing for identification of specific CH<sub>4</sub> emission sources. Based on 8 days of CH<sub>4</sub> monitoring experimental data, the CH<sub>4</sub>





concentration range on the overall roads was determined to be 1.98-17.13 ppm. The 305 CH<sub>4</sub> concentration distribution indicated higher levels downwind, with the highest 306 concentrations consistently recorded at the Screen (1) throughout mobile experiments. 307 Due to the similarity of concentration measurement methods, we chose 29th June and 308 13<sup>th</sup> December as a typical example for measuring the spatial distribution of CH<sub>4</sub> and 309 evaluating the seasonal variability of WWTP. Figure 2 illustrates measured CH<sub>4</sub> 310 concentration enhancement distributions on 29th June (summer) and 13th December 311 (winter) 2023 (other days are shown in Figures S2-S7). The CH<sub>4</sub> concentration 312 enhancements depicted within the figures were calculated by subtracting the 313 background concentrations from the measured values, with the background determined 314 as the mean of the bottom 10 % of the concentration data. Specifically, the background 315 concentrations register at 1.98 ppm on 29<sup>th</sup> June and at a slightly elevated 2.11 ppm on 316 13<sup>th</sup> December. Moreover, increased concentrations are detected in the regions 317 surrounding the Screen 1), Primary Clarifier (4), and Aeration Tank (3) during these 318 two days. The complete concentration maps, which include the internal roads, reveal 319 that the experiment on 29<sup>th</sup> June exhibits heightened concentrations at the Screen (1), 320 Secondary Clarifier (2), and Primary Clarifier (2)(4). The Screen (1) exhibits the highest 321 CH<sub>4</sub> concentration, with an enhancement of 14.83 ppm. On 13<sup>th</sup> December, the 322 concentration enhancements are noted in proximity to the Secondary Clarifier (1) and 323 Primary Clarifier (2), with the Primary Clarifier (2) showing the highest CH<sub>4</sub> 324 concentration at 4.79 ppm. 325 CH<sub>4</sub> concentrations in summer surpass those observed in winter, consistent with a 326

CH<sub>4</sub> concentrations in summer surpass those observed in winter, consistent with a previous study on WWTPs (Masuda et al., 2015). The screen, primary clarifier and aeration tank are identified as sources with notably higher concentrations. Analysis of concentration distributions reveals that Screen ① shows a peak concentration reaching 14.83 ppm, which is 7.5 times the background concentration. The four primary





clarifiers record high concentrations between 4.79 and 10.88 ppm. The high value 331 measured by aeration tanks is mainly detected in Aeration Tank (3) at 4.60ppm. The 332 screen in this study includes coarse and fine screens and a grit chamber, constituting 333 preliminary wastewater treatment to capture larger suspended solids and particulates. 334 The anaerobic environment of the sewer network promotes the production of CH<sub>4</sub> from 335 organic compounds in municipal wastewater. As this wastewater enters the WWTP, the 336 influent contains dissolved CH<sub>4</sub> that originated in the sewer network. During primary 337 treatment, wastewater is elevated through riser mains, facilitating the release of CH4 338 into the atmosphere (Guisasola et al., 2008; Bao et al., 2016). Flow velocity, hydraulic 339 340 design and detention times in these facilities may affect CH<sub>4</sub> production and release (Alshboul et al., 2016; Yin et al., 2024). The primary clarifier physically removes 341 suspended solids from wastewater through sedimentation, while organic matter 342 undergoes anaerobic microbial degradation to the substantial production of CH<sub>4</sub> 343 (Masuda et al., 2017). In the aeration tank, operated under anaerobic and anoxic 344 conditions, complex organic compounds are converted to CH4 by facultative and 345 anaerobic bacteria through biological processes (Yoshida et al., 2014). In contrast, 346 Kupper et al. (2018) identified sludge storage tanks as the primary source of CH<sub>4</sub> 347 emissions in Swiss WWTPs, accounting for 70 % or more of the total emissions. Stadler 348 et al. (2022) monitored CH<sub>4</sub> concentrations inside and around wastewater treatment 349 facilities ranging from 2.04-32.78 ppm, with elevated CH<sub>4</sub> levels predominantly 350 measured near sludge treatment tank, the digesters and secondary clarifiers. 351







352

Figure 2. CH<sub>4</sub> concentration maps in the WWTP. The concentration maps for the external roads for 29<sup>th</sup> June (a) and 13<sup>th</sup> December (c). The corresponding complete concentration maps that include the internal roads for 29<sup>th</sup> June (b) and 13<sup>th</sup> December (d). Map data are from ESRI.

357

# 358 **3.2 Emission quantification**

The mobile measured CH4 concentrations were employed in combination with the 359 inversion framework to achieve the quantification of CH<sub>4</sub> emissions and localization of 360 the emission sources within the WWTP. Figures 3 and 4 show the locations of identified 361 point sources and the comparison between monitored and simulated concentrations for 362 the point source locations at the WWTP on the dates of 29th June and 13th December. 363 The experiment conducted on 29th June finds the Screen ① to be the most significant 364 contributor to CH<sub>4</sub> point source emissions at 160.19 t a<sup>-1</sup>, and the Secondary Clarifier 365 (2) as the least significant at 10.78 t a<sup>-1</sup>. The correlation coefficient R<sup>2</sup> for the monitored 366 and simulated concentrations is 0.63, with an RMSE of 0.70 mg m<sup>-3</sup>. On 13<sup>th</sup> December, 367





the Aeration Tank (5) is the largest point source of CH<sub>4</sub> emissions at 34.48 t a<sup>-1</sup>, and the Primary Clarifier (5) is the smallest at 4.82 t a<sup>-1</sup>, with a correlation coefficient  $R^2$ of 0.70 and an RMSE of 0.28 mg m<sup>-3</sup>. The enhanced correlation between winter monitoring and simulation data, as well as the improved fit of the monitoring and simulation value curves, is attributed to the shorter monitoring cycle and more stable meteorological conditions.



374

Figure 3. The emission distribution for the source locations (a) and the comparison
between monitored and simulated CH<sub>4</sub> concentrations (b) at the WWTP on 29<sup>th</sup> June.
Map data are from ESRI.

378



379

380 Figure 4. The emission distribution for the source locations (a) and the comparison





<sup>381</sup> between monitored and simulated CH<sub>4</sub> concentrations (b) at the WWTP on 13<sup>th</sup>

382 December. Map data are from ESRI.

383

Table 1 displays the CH<sub>4</sub> emission fluxes, meteorological data, and the coefficients 384 of the power function expressions for diffusion parameters from the 8-day monitoring 385 experiment. The emission flux values of CH4 emission sources (12 point sources and 1 386 line source) for all experimental days are detailed in Tables S1 and S2. It is observed 387 that the summer average CH<sub>4</sub> emission flux ( $603.33 \pm 152.66$  t a<sup>-1</sup>) surpasses the winter 388 average CH<sub>4</sub> emission flux ( $418.95 \pm 187.59$  t a<sup>-1</sup>). This seasonal disparity in emissions 389 is primarily attributed to the aeration tank, followed by the screen and primary clarifier. 390 The activated sludge in the aeration tank contains a higher population of methanogens, 391 whose CH<sub>4</sub> production capability intensifies with rising temperatures (Vítěz et al., 392 2020). Notably, the seasonal variance in the aeration tank is predominantly driven by 393 394 the performance of the Aeration Tank (4). However, the substantial variation in the 395 emissions from the three summer experiments of the Aeration Tank (4) suggests a degree of emission instability. Conversely, the uniformity in the low emissions from the 396 five winter experiments might be associated with the meteorological conditions and the 397 actual operational status of the plant on those days. 398

Analysis of emission source data from Tables S1 and S2 reveals that the screen and 399 primary clarifier are the predominant emission sources at the WWTP. Specifically, these 400 sources emit 329 t a<sup>-1</sup> in the summer and 280 t a<sup>-1</sup> in the winter, accounting for 55 % 401 and 67 % of the total emissions. The study hypothesizes that emissions are boosted by 402 pipeline leaks near the emission sources in the screen and primary clarifier, leading to 403 more CH4 release. Previous research has similarly examined major emission sources at 404 WWTPs. Yin et al. (2024) conducted offline monitoring of WWTPs in Beijing and 405 Guiyang, identifying the primary treatment zone as the primary source of CH<sub>4</sub>, 406 accounting for 60.1 % and 35.8 % of the respective total emissions. Masuda et al. (2017) 407





| 408 | analyzed $\mathrm{CH}_4$ emissions from different processes at three WWTPs in Japan, concluding |
|-----|-------------------------------------------------------------------------------------------------|
| 409 | that primary clarifiers are one of the major sources of $CH_4$ emissions. He et al. (2023)      |
| 410 | compiled $\mathrm{CH}_4$ emission proportions for different processes in WWTPs based on         |
| 411 | reported data, finding percentages of 7 %-12 % for grit chamber, 8.2 %-68.1 % for               |
| 412 | primary clarifier, and 18.3 %-86.4 % for aeration tank.                                         |
|     |                                                                                                 |

413

414 Table 1. CH<sub>4</sub> emission fluxes, meteorological data and diffusion parameter power

| Date | Q (t a <sup>-1</sup> ) | $W_{s}$ (m s <sup>-1</sup> ) | $W_d$ (°) | $\gamma_1$ | α1   | $\gamma_2$ | α2   |
|------|------------------------|------------------------------|-----------|------------|------|------------|------|
| 0601 | $542.50 \pm 179.03$    | 2.3                          | 248.5     | 0.28       | 0.91 | 0.13       | 0.94 |
| 0629 | $657.18\pm308.88$      | 1.9                          | 238.3     | 0.28       | 0.91 | 0.13       | 0.94 |
| 0711 | $610.31 \pm 286.85$    | 0.9                          | 225.8     | 0.28       | 0.91 | 0.13       | 0.94 |
| 1213 | $431.51 \pm 185.55$    | 1.6                          | 175.7     | 0.28       | 0.91 | 0.13       | 0.94 |
| 1214 | $379.77 \pm 239.26$    | 1.2                          | 209.9     | 0.28       | 0.91 | 0.13       | 0.94 |
| 1220 | $438.55\pm219.28$      | 3.8                          | 342.3     | 0.18       | 0.92 | 0.11       | 0.92 |
| 1221 | $422.53\pm152.11$      | 2.7                          | 342.6     | 0.43       | 1.10 | 0.08       | 1.12 |
| 1222 | $422.40\pm190.08$      | 3.0                          | 342.5     | 0.43       | 1.10 | 0.08       | 1.12 |

415 function expression coefficients from the 8-day monitoring experiment.

416

# 417 **3.3 Comparison with IPCC method**

The direct CH4 emissions from WWTP were calculated using the IPCC method, with 418 data sourced from the Urban Drainage Statistical Yearbook of 2017. By applying the 419 formula to the basic information of the WWTP outlined in the yearbook, the emission 420 flux of  $213.95 \pm 128.37$  t a<sup>-1</sup> was determined, with the uncertainty derived from the data 421 summarized in the research (Lin et al., 2021). Figure 5 shows the contrast between the 422 emission inversion results from the monitoring experiment and the emission inventory. 423 The uncertainty of the inversion results was determined by the uncertainties in wind 424 speed, wind direction, and instrument measurements. The summer average inversion 425





emission flux ( $603.33 \pm 152.66$  t a<sup>-1</sup>) was calculated to be 2.8 times that of the inventory, and the winter average ( $418.95 \pm 187.59$  t a<sup>-1</sup>) was twice as much. It is posited that the discrepancy may stem from significant uncertainties in the emission factors associated with the WWTPs or the lack of updated activity level data, as the statistical yearbook provided data only up to 2017, the emission inventory might have underestimated the actual emissions.

Furthermore, other studies have also investigated the comparison between CH4 432 emissions obtained from different measurement methods at WWTPs and IPCC 433 inventory estimates. The majority of these studies indicate that the measured 434 values exceed the inventory values. Wang et al. (2021) conducted a measurement-435 based assessment of CH<sub>4</sub> emissions (46.58 t a<sup>-1</sup>) in Wuhu City, revealing a 46.71 % 436 higher than those calculated using the IPCC method. Moore et al. (2023) 437 employed mobile monitoring to evaluate CH<sub>4</sub> emissions at 63 WWTPs across the 438 United States. The study showed that the estimates based on the IPCC guidelines 439 underestimated the emissions from most of the measured plants. Specifically, CH<sub>4</sub> 440 emissions from centrally treated domestic wastewater in the U.S. amount to 4.64×10<sup>5</sup> t 441 a<sup>-1</sup>, which is 1.9 times greater than the EPA inventory. Song et al. (2023) investigated 442 CH<sub>4</sub> emissions from sewer systems and water resource recovery facilities. Utilizing a 443 collected dataset, they employed the Monte Carlo analysis method to determine the CH4 444 emissions from municipal wastewater treatment in the U.S. at  $(4.36 \pm 2.8) \times 10^5$  t a<sup>-1</sup>. 445 This value was approximately twice the estimates provided by the IPCC. The lower 446 estimated results provided by the IPCC method can be attributed to the neglect of 447 certain potential emission sources from the emission inventories, including emissions 448 from equipment in sludge treatment facilities and leaks from pressure relief valves. 449

450







Figure 5. Comparison of CH<sub>4</sub> emission fluxes from the monitoring experiment andemission inventory in the WWTP.

#### 454 **3.4 Sensitivity analysis**

451

In this section, we evaluated the stability of the inversion framework through 455 sensitivity analysis and explored the impact of different point source locations on the 456 inversion of emission concentrations. The precise identification of emission sources can 457 enhance the accuracy of emission flux inversion, making a sensitivity analysis of the 458 source location essential. We applied the method of controlling variables to perform a 459 sensitivity analysis on the location of a single point source. The central position of the 460 plant was taken as the reference origin, the positions of 12 emission sources were 461 determined to analyze the variation in error between measured and simulated 462 463 concentrations within a 200 m × 200 m range around each emission source. We sequentially modified the source position parameters in the model input to analyze the 464 congruence between the simulated concentrations and the observed measurements, 465 quantifying the fit with RMSE. The change in concentration error serves as an indicator 466 of the accuracy of the emission source localization. 467

Figures 6 and 7 describe the error variation between monitored and simulated concentrations when the point source location is subject to change within a 200 m  $\times$ 200 m range from the monitoring experiment on 29<sup>th</sup> June and 13<sup>th</sup> December. The error





- 471 variation of the remaining days can be seen in Figures S8-S13. The point source 472 locations simulated based on the inversion framework are mostly in areas with minor 473 relative concentration errors, which can be considered to have a high reliability in 474 simulating point source locations. The emission source location errors for the two 475 experiments are within the ranges of 0.7-1.3 mg m<sup>-3</sup> and 0.2-0.3 mg m<sup>-3</sup>. The winter 476 emission source locations exhibit greater stability and accuracy in the inversion results 477 than the summer ones.
- 478





Figure 6. RMSE of monitoring simulated concentration changes with the location of WWTP source on 29<sup>th</sup> June. The x and y axes denote the horizontal and vertical distances of the simulated point source from the central point of the WWTP. The variation in color signifies the alteration in the root mean square error between the





- 484 actual monitored and simulated concentrations, with the red star symbolizing the
- 485 simulated point source location.

486



487

Figure 7. RMSE of monitoring simulated concentration changes with the location of
 WWTP source on 13<sup>th</sup> December.

490

# 491 4 Conclusions and outlook

The study carried out CRDS mobile measurements at a WWTP across the summer and winter seasons from Hangzhou 2023. By employing a multi-source Gaussian plume model combined with the genetic algorithm inversion framework, the inversion of CH<sub>4</sub> emission fluxes and their source locations was achieved. A sensitivity analysis of the





parameters within the inversion framework was conducted to verify the reliability of 496 the model, offering a strategic approach for the quantification of GHG emissions at the 497 plant scale. The results showed that 12 distinct CH4 emission sources were pinpointed 498 within the facility through the inversion framework. The average CH<sub>4</sub> emission flux 499 during the summer was calculated to be  $603.33 \pm 152.66$  t a<sup>-1</sup>, and  $418.95 \pm 187.59$  t a<sup>-1</sup> 500 <sup>1</sup> for the winter. The screen and primary clarifier were the main sources, accounting for 501 55 % of summer and 67 % of winter emissions. When contrasted with bottom-up 502 503 emission inventory estimates, the summer CH<sub>4</sub> inversion emissions were found to be 504 2.8 times higher, and the winter inversion emissions were twice as much as the inventory values. 505

The inversion framework is capable of validating emission coefficients in the 506 inventory, identifying emission sources within the plant, and monitoring abnormal 507 emissions. It can be applied to various monitoring systems, such as UAV systems and 508 networks of fixed monitoring stations. We believe that collaborative monitoring by 509 510 different methods can significantly improve the accuracy of emission fluxes and emission sources inversions. It is suggested that future endeavors focus on refining the 511 inversion framework for broader applicability to various pollutant gases, enhancing the 512 inversion efficiency, and extending the validation of the framework through monitoring 513 experiments in a diverse range of industrial facilities. 514

515

516

517 *Data availability.* The raw data in this paper can be obtained from the corresponding 518 author upon request.

*Author contributions.* ZW and YZ administrated the project and determined the main
goal of this study. ZX, JY and XP designed the methods and planned the campaign. JY,
ZX, YY, SZ and BQ performed the measurements. JY wrote the paper with
contributions from all co-authors.

523 Competing interests. At least one of the (co-)authors is a member of the editorial board





of Atmospheric Chemistry and Physics. 524

-

. .

-

| 525 | Financial support. The study has been supported by the National Key Research and |
|-----|----------------------------------------------------------------------------------|
| 526 | Development Program of China (grant nos. 2022YFC3703500 and 2022YFE0209100),     |
| 527 | the National Natural Science Foundation of China (grant no. 42307129), the Key   |
| 528 | Research and Development Program of Zhejiang Province (grant nos. 2021C03165 and |
| 529 | 2022C03084), the Zhejiang Provincial Natural Science Foundation (grant no.       |
| 530 | LZJMZ24D050005), and the Ecological Environment Research and Achievement         |
| 531 | Promotion Project of Zhejiang Province (grant nos. 2024XM0053 and 2024XM0052).   |
| 532 |                                                                                  |

#### References 533

- Abeywickrama, H. G. K., Bajón-Fernández, Y., Srinamasivayam, B., Turner, D., and 534 Rivas Casado, M.: Development of a UAV based framework for CH4 monitoring in 535 sludge treatment centres, Remote Sens., 15, 3704, https://doi.org/10.3390/ 536 rs15153704, 2023. 537
- Albertson, J. D., Harvey, T., Foderaro, G., Zhu, P., Zhou, X., Ferrari, S., Amin, M. S., 538 539 Modrak, M., Brantley, H., and Thoma, E. D.: A Mobile Sensing Approach for regional surveillance of fugitive methane emissions in oil and gas production, 540 Environ. Sci. Technol., 50, 2487-2497, https://doi.org/10.1021/acs.est.5b05059, 541 2016. Allen, G., Hollingsworth, P., Kabbabe, K., Pitt, J. R., Mead, M. I., Illingworth, 542 543 S., Roberts, G., Bourn, M., Shallcross, D. E., and Percival, C. J.: The development and trial of an unmanned aerial system for the measurement of methane flux from 544 landfill and greenhouse gas emission hotspots, Waste Manage., 87, 883-892, 545 https://doi.org/10.1016/j.wasman.2017.12.024, 2019. 546 Al-Shalan, A., Lowry, D., Fisher, R. E., Nisbet, E. G., Zazzeri, G., Al-Sarawi, M., 547
- France, J. L.: Methane emissions in Kuwait: Plume identification, isotopic 548 characterisation and inventory verification, Atmos. Environ., 268, 118763, 549 550 https://doi.org/10.1016/j.atmosenv.2021.118763, 2022.





| 551 | Alshboul, Z., Encinas-Fernández, J., Hofmann, H., and Lorke, A.: Export of dissolved       |
|-----|--------------------------------------------------------------------------------------------|
| 552 | methane and carbon dioxide with effluents from municipal wastewater treatment              |
| 553 | plants, Environ. Sci. Technol., 50, 5555-5563, https://doi.org/10.1021/acs.est.            |
| 554 | <u>5b04923</u> , 2016.                                                                     |
| 555 | Bai, R. L., Jin, L., Sun, S. R., Cheng, Y., and Wei, Y.: Quantification of greenhouse gas  |
| 556 | emission from wastewater treatment plants, Greenhouse. Gas. Sci. Technol., 12, 587-        |
| 557 | 601, <u>https://doi.org/10.1002/ghg.2171</u> , 2022.                                       |
| 558 | Balashov, N. V., Davis, K. J., Miles, N. L., Lauvaux, T., Richardson, S. J., Barkley, Z.   |
| 559 | R., and Bonin, T. A.: Background heterogeneity and other uncertainties in estimating       |
| 560 | urban methane flux: results from the Indianapolis Flux Experiment (INFLUX),                |
| 561 | Atmos. Chem. Phys., 20, 4545-4559, https://doi.org/10.5194/acp-20-4545-2020,               |
| 562 | 2020.                                                                                      |
| 563 | Bao, Z., Sun, S., and Sun, D.: Assessment of greenhouse gas emission from A/O and          |
| 564 | SBR wastewater treatment plants in Beijing, China. Int. Biodeterior. Biodegrad., 108,      |
| 565 | 108-114, https://doi.org/10.1016/j.ibiod.2015.11.028, 2016.                                |
| 566 | Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A., Berchet, A.,      |
| 567 | Vermeulen, A. T., Arnold, T., Janssens-Maenhout, G., Hammer, S., Levin, I., Schmidt,       |
| 568 | M., Ramonet, M., Lopez, M., Lavric, J., Aalto, T., Chen, H., Feist, D. G., Gerbig, C.,     |
| 569 | Haszpra, L., Hermansen, O., Manca, G., Moncrieff, J., Meinhardt, F., Necki, J.,            |
| 570 | Galkowski, M., O'Doherty, S., Paramonova, N., Scheeren, H. A., Steinbacher, M.,            |
| 571 | and Dlugokencky, E.: Inverse modelling of European CH4 emissions during 2006-              |
| 572 | 2012 using different inverse models and reassessed atmospheric observations, Atmos.        |
| 573 | Chem. Phys., 18, 901-920, https://doi.org/10.5194/acp-18-901-2018, 2018.                   |
| 574 | Cai, B., Gao, Q., Li, Z., Wu, J., Cao, D., and Liu, L.: Study on the methane emission      |
| 575 | factors of wastewater treatment plants in China, China Population Resources and            |
| 576 | Environment, 25, 118-124, https://doi.org/10.3969/j.issn.1002-2104.2015.04.015,            |
| 577 | 2015.                                                                                      |
| 578 | Caulton, D. R., Li, Q., Bou-Zeid, E., Fitts, J. P., Golston, L. M., Pan, D., Lu, J., Lane, |





| 579 | H. M., Buchholz, B., Guo, X., McSpiritt, J., Wendt, L., and Zondlo, M. A.:               |
|-----|------------------------------------------------------------------------------------------|
| 580 | Quantifying uncertainties from mobile-laboratory-derived emissions of well pads          |
| 581 | using inverse Gaussian methods, Atmos. Chem. Phys., 18, 15145-15168,                     |
| 582 | https://doi.org/10.5194/acp-18-15145-2018, 2018.                                         |
| 583 | Chen, J., Dietrich, F., Maazallahi, H., Forstmaier, A., Winkler, D., Hofmann, M. E. G.,  |
| 584 | Denier van der Gon, H., and Röckmann, T.: Methane emissions from the Munich              |
| 585 | Oktoberfest, Atmos. Chem. Phys., 20, 3683-3696, https://doi.org/10.5194/acp-20-          |
| 586 | <u>3683-2020,</u> 2020.                                                                  |
| 587 | Cui, Y. Y., Brioude, J., Angevine, W. M., Peischl, J., McKeen, S. A., Kim, SW.,          |
| 588 | Neuman, J. A., Henze, D. K., Bousserez, N., Fischer, M. L., Jeong, S., Michelsen, H.     |
| 589 | A., Bambha, R. P., Liu, Z., Santoni, G. W., Daube, B. C., Kort, E. A., Frost, G. J.,     |
| 590 | Ryerson, T., Wofsy, S. C., and Trainer, M.: Top-down estimate of methane emissions       |
| 591 | in California using a mesoscale inverse modeling technique: The San Joaquin Valley,      |
| 592 | J. Geophys. Res., 122, 3686–3699, <u>https://doi.org/10.1002/2016JD026398</u> , 2017.    |
| 593 | Cusworth, D. H., Duren, R. M., Ayasse, A. K., Jiorle, R., Howell, K., Aubrey, A., Green, |
| 594 | R. O., Eastwood, M. L., Chapman, J. W., Thorpe, A. K., Heckler, J., Asner, G. P.,        |
| 595 | Smith, M. L., Thoma, E., Krause, M. J., Heins, D., and Thorneloe, S.: Quantifying        |
| 596 | methane emissions from United States landfills, Science, 383, 1499-1504,                 |
| 597 | https://www.science.org/doi/10.1126/science.adi7735, 2024.                               |
| 598 | Defratyka, S. M., Paris, J. D., Yver-Kwok, C., Fernandez, J. M., Korben, P., and         |
| 599 | Bousquet, P.: Mapping Urban Methane Sources in Paris, France, Environ. Sci.              |
| 600 | Technol., 55, 8583-8591, https://doi.org/10.1021/acs.est.1c00859, 2021.                  |
| 601 | Delre, A., Mønster, J., and Scheutz, C.: Greenhouse gas emission quantification from     |
| 602 | wastewater treatment plants, using a tracer gas dispersion method, Sci. Total.           |
| 603 | Environ., 605-606, 258-268, http://dx.doi.org/10.1016/j.scitotenv.2017.06.177, 2017.     |
| 604 | Dietrich, F., Chen, J., Voggenreiter, B., Aigner, P., Nachtigall, N., and Reger, B.:     |
|     |                                                                                          |
| 605 | MUCCnet: Munich Urban Carbon Column network, Atmos. Meas. Tech., 14, 1111-               |





| 607 | Guisasola, A., de Haas, D., Keller, J., and Yuan, Z.: Methane formation in sewer systems.   |
|-----|---------------------------------------------------------------------------------------------|
| 608 | Water Res., 42, 1421-1430, https://doi.org/10.1016/j.watres.2007.10.014, 2008.              |
| 609 | Guo, S., Huang, H., Dong, X., and Zeng, S.: Calculation of greenhouse gas emissions         |
| 610 | of municipal wastewater treatment and its temporal and spatial trend in China, Water        |
| 611 | & Wastewater Engineering, 45, 56-62, https://doi.org/10.13789/j.cnki.wwe1964.               |
| 612 | <u>2019.04.009</u> , 2019.                                                                  |
| 613 | Hase, F., Frey, M., Blumenstock, T., Groß, J., Kiel, M., Kohlhepp, R., Mengistu Tsidu,      |
| 614 | G., Schäfer, K., Sha, M. K., and Orphal, J.: Application of portable FTIR                   |
| 615 | spectrometers for detecting greenhouse gas emissions of the major city Berlin, Atmos.       |
| 616 | Meas. Tech., 8, 3059-3068, https://doi.org/10.5194/amt-8-3059-2015, 2015.                   |
| 617 | Han, G., Pei, Z., Shi, T., Mao, H., Li, S., Mao, F., Ma, X., Zhang, X., and Gong, W.:       |
| 618 | Unveiling unprecedented methane hotspots in China's leading coal production hub:            |
| 619 | A satellite mapping revelation. Geophys. Res. Lett., 51, e2024GL109065,                     |
| 620 | https://doi.org/10.1029/2024GL109065, 2024.                                                 |
| 621 | Heerah, S., Frausto-Vicencio, I., Jeong, S., Marklein, A. R., Ding, Y., Meyer, A. G.,       |
| 622 | Parker, H. A., Fischer, M. L., Franklin, J. E., Hopkins, F. M., and Dubey, M.: Dairy        |
| 623 | methane emissions in California's San Joaquin Valley inferred with ground-based             |
| 624 | remote sensing observations in the summer and winter, J. Geophys. Res-Atmos., 126,          |
| 625 | e2021JD034785. https://doi.org/10.1029/2021JD03478, 2021.                                   |
| 626 | Harada, T., and Alba, E.: Parallel Genetic Algorithms: A Useful Survey, ACM Comput.         |
| 627 | Surv., 53, 1-39, <u>https://doi.org/10.1145/3400031</u> , 2020.                             |
| 628 | He, Y., Li, Y., Li, X., Liu, Y., Wang, Y., Guo, H., Hou, J., Zhu, T., and Liu, Y.: Net-zero |
| 629 | greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and            |
| 630 | perspectives, Renew. Sust. Energ. Rev., 184, 113547, https://doi.org/10.1016/j.rser.        |
| 631 | <u>2023.113547</u> , 2023.                                                                  |
| 632 | IPCC: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II           |
| 633 | and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate            |
| 634 | Change, 35-115, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.                      |
|     | 27                                                                                          |





- 635 Jackson, R. B., Down, A., Phillips, N. G., Ackley, R. C., Cook, C. W., Plata, D. L., and
- 636 Zhao, K.: Natural gas pipeline leaks across Washington, DC, Environ. Sci. Technol.,
- 637 48, 2051-2058, <u>https://doi.org/10.1021/es404474x</u>, 2014.
- 438 Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam,
- R., Guanter, L., Kelley, J., McKeever, J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A.
- 640 K., Worden, J. R., and Duren, R. M.: Quantifying methane emissions from the global
- scale down to point sources using satellite observations of atmospheric methane,
- Atmos. Chem. Phys., 22, 9617–9646, <u>https://doi.org/10.5194/acp-22-9617-2022</u>,
  2022.
- Karion, A., Lauvaux, T., Lopez Coto, I., Sweeney, C., Mueller, K., Gourdji, S.,
  Angevine, W., Barkley, Z., Deng, A., Andrews, A., Stein, A., and Whetstone, J.:
  Intercomparison of atmospheric trace gas dispersion models: Barnett Shale case
  study, Atmos. Chem. Phys., 19, 2561-2576, <u>https://doi.org/10.5194/acp-19-2561-</u>
  2019, 2019.
- Katoch, S., Chauhan, S.S. and Kumar, V.: A review on genetic algorithm: past, present,
  and future. Multimed. Tools Appl., 80, 8091-8126, <u>https://doi.org/10.1007/s11042-</u>
  020-10139-6, 2021.
- Kumar, P., Broquet, G., Yver-Kwok, C., Laurent, O., Gichuki, S., Caldow, C., Cropley,
  F., Lauvaux, T., Ramonet, M., Berthe, G., Martin, F., Duclaux, O., Juery, C., Bouchet,
  C., and Ciais, P.: Mobile atmospheric measurements and local-scale inverse
  estimation of the location and rates of brief CH<sub>4</sub> and CO<sub>2</sub> releases from point sources,
  Atmos. Meas. Tech., 14, 5987-6003, <a href="https://doi.org/10.5194/amt-14-5987-2021">https://doi.org/10.5194/amt-14-5987-2021</a>,
- *657* 2021.
- Li, H., You, L., Du, H., Yu, B., Lu, L., Zheng, B., Zhang, Q., He, K., and Ren, N.:
  Methane and nitrous oxide emissions from municipal wastewater treatment plants in
  China: A plant-level and technology-specific study, Environ. Sci. Technol., 20,
  100345, https://doi.org/10.1016/j.ese.2023.100345, 2024.
- 662 Liang, R., Zhang, Y., Chen, W., Zhang, P., Liu, J., Chen, C., Mao, H., Shen, G., Qu, Z.,





| 663 | Chen, Z., Zhou, M., Wang, P., Parker, R. J., Boesch, H., Lorente, A., Maasakkers,          |
|-----|--------------------------------------------------------------------------------------------|
| 664 | J.D., and Aben, I.: East Asian methane emissions inferred from high-resolution             |
| 665 | inversions of GOSAT and TROPOMI observations: a comparative and evaluative                 |
| 666 | analysis, Atmos. Chem. Phys., 23, 8039-8057, https://doi.org/10.5194/acp-23-8039-          |
| 667 | <u>2023</u> , 2023.                                                                        |
| 668 | Lin, X., Zhang, W., Crippa, M., Peng, S., Han, P., Zeng, N., Yu, L., and Wang, G.: A       |
| 669 | comparative study of anthropogenic CH4 emissions over China based on the                   |
| 670 | ensembles of bottom-up inventories, Earth Syst. Sci. Data, 13, 1073-1088,                  |
| 671 | https://doi.org/10.5194/essd-13-1073-2021, 2021.                                           |
| 672 | Lopez, M., Sherwood, O. A., Dlugokencky, E. J., Kessler, R., Giroux, L., and Worthy,       |
| 673 | D. E. J.: Isotopic Signatures of Anthropogenic CH <sub>4</sub> Sources in Alberta, Canada, |
| 674 | Atmos. Environ., 164, 280-288, https://doi.org/10.1016/j.atmosenv.2017.06.021,             |
| 675 | 2017.                                                                                      |
| 676 | Luther, A., Kleinschek, R., Scheidweiler, L., Defratyka, S., Stanisavljevic, M.,           |
| 677 | Forstmaier, A., Dandocsi, A., Wolff, S., Dubravica, D., Wildmann, N., Kostinek, J.,        |
| 678 | Jöckel, P., Nickl, AL., Klausner, T., Hase, F., Frey, M., Chen, J., Dietrich, F., Nęcki,   |
| 679 | J., Swolkień, J., Fix, A., Roiger, A., and Butz, A.: Quantifying CH4 emissions from        |
| 680 | hard coal mines using mobile sun-viewing Fourier transform spectrometry, Atmos.            |
| 681 | Meas. Tech., 12, 5217-5230, https://doi.org/10.5194/amt-12-5217-2019, 2019.                |
| 682 | Maazallahi, H., Fernandez, J. M., Menoud, M., Zavala-Araiza, D., Weller, Z. D.,            |
| 683 | Schwietzke, S., von Fischer, J. C., Denier van der Gon, H., and Röckmann, T.:              |
| 684 | Methane mapping, emission quantification, and attribution in two European cities:          |
| 685 | Utrecht (NL) and Hamburg (DE), Atmos. Chem. Phys., 20, 14717-14740,                        |
| 686 | https://doi.org/10.5194/acp-20-14717-2020, 2020.                                           |
| 687 | Maazallahi, H., Delre, A., Scheutz, C., Fredenslund, A. M., Schwietzke, S., Denier van     |
| 688 | der Gon, H., and Röckmann, T.: Intercomparison of detection and quantification             |
| 689 | methods for methane emissions from the natural gas distribution network in                 |

690 Hamburg, Germany, Atmos. Meas. Tech., 16, 5051-5073, <u>https://doi.org/10.5194/</u>





# 691 <u>amt-16-5051-2023</u>, 2023.

- 692 Makarova, M. V., Alberti, C., Ionov, D. V., Hase, F., Foka, S. C., Blumenstock, T.,
- 693 Warneke, T., Virolainen, Y. A., Kostsov, V. S., Frey, M., Poberovskii, A. V.,
- <sup>694</sup> Timofeyev, Y. M., Paramonova, N. N., Volkova, K. A., Zaitsev, N. A., Biryukov, E.
- 695 Y., Osipov, S. I., Makarov, B. K., Polyakov, A. V., Ivakhov, V. M., Imhasin, H. K.,
- and Mikhailov, E. F.: Emission Monitoring Mobile Experiment (EMME): an
- 697 overview and first results of the St. Petersburg megacity campaign 2019, Atmos.
- <sup>698</sup> Meas. Tech., 14, 1047-1073, <u>https://doi.org/10.5194/amt-14-1047-2021</u>, 2021.
- 699 Masuda, S., Suzuki, S., Sano, I., Li, Y.-Y., and Nishimura, O.: The seasonal variation of
- emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere,
  140, 167-173, <u>https://doi.org/10.1016/j.chemosphere.2014.09.042</u>, 2015.
- Masuda, S., Sano, I., Hojo, T., Li, Y.-Y., and Nishimura, O.: The comparison of
  greenhouse gas emissions in sewage treatment plants with different treatment
  processes, Chemosphere, 193, 581-590, <u>https://doi.org/10.1016/j.chemosphere.2017.</u>
  11.018, 2017.
- 706 McKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., Floerchinger, C.,
- 707 Herndon, S. C., Nehrkorn, T., Zahniser, M. S., Jackson, R. B., Phillips, N., and Wofsy,
- 708 S. C.: Methane emissions from natural gas infrastructure and use in the urban region
- of Boston, Massachusetts, Proc Natl Acad Sci USA, 112, 1941-1946, <u>www.pnas.org/</u>
   cgi/doi/10.1073/pnas.1416261112, 2015.
- 711 Moore, D. P., Li, N. P., Wendt, L. P., Castañeda, S. R., Falinski, M. M., Zhu, J.-J., Song,
- 712 C., Ren, Z. J., and Zondlo, M. A.: Underestimation of Sector-Wide Methane
- Emissions from United States Wastewater Treatment, Environ. Sci. Technol., 57,

714 4082-4090, <u>https://doi.org/10.1021/acs.est.2c05373</u>, 2023.

- 715 Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A., and Crisp, D.:
- 716 Quantifying CO<sub>2</sub> emissions from Individual Power Plants From Space, Geophys. Res.
- 717 Let.t, 44, 10045-10053, <u>https://doi.org/10.1002/2017GL074702</u>, 2017.
- 718 Picarro: Datasheet G2201-i  $\delta^{13}$ C in CH<sub>4</sub> and CO<sub>2</sub> Gas Analyzer, available at:





- 719 <u>https://www.picarro.com/environmental/support/library/documents/g2201i\_analyze</u>
- 720 <u>r\_datasheet</u> (last access: 5 August 2024), 2010.
- 721 Rella, C. W., Hoffnagle, J., He, Y., and Tajima, S.: Local- and regional-scale
- measurements of CH<sub>4</sub>,  $\delta^{13}$ CH<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub> in the Uintah Basin using a mobile stable
- isotope analyzer, Atmos. Meas. Tech., 8, 4539–4559, <u>https://doi.org/10.5194/amt-8-4539-2015</u>, 2015.
- 725 Richardson, S. J., Miles, N. L., Davis, K. J., Lauvaux, T., Martins, D. K., Turnbull, J.
- 726 C., McKain, K., Sweeney, C., and Cambaliza, M. O. L.: Tower measurement network
- 727 of in-situ CO<sub>2</sub>, CH<sub>4</sub>, and CO in support of the Indianapolis FLUX (INFLUX)
- 728 Experiment. Elem. Sci. Anth., 5, 59, <u>https://doi.org/10.1525/elementa.140</u>, 2017.
- 729 Riddick, S. N., Connors, S., Robinson, A. D., Manning, A. J., Jones, P. S. D., Lowry,
- 730 D., Nisbet, E., Skelton, R. L., Allen, G., Pitt, J., and Harris, N. R. P.: Estimating the
- size of a methane emission point source at different scales: from local to landscape,
- Atmos. Chem. Phys., 17, 7839-7851, <u>https://doi.org/10.5194/acp-17-7839-2017</u>,
  2017.
- Shi, T., Han, G., Ma, X., Mao, H., Chen, C., Han, Z., Pei, Z., Zhang, H., Li, S., and
  Gong, W.: Quantifying factory-scale CO<sub>2</sub>/CH<sub>4</sub> emission based on mobile
  measurements and EMISSION-PARTITION model: cases in China, Environ. Res.
- 737 Lett., 18, 034028, <u>https://doi.org/10.1088/1748-9326/acbce7</u>, 2023.
- 738 Song, C., Zhu, J.-J., Willis, J. L., Moore, D. P., Zondlo, M. A., and Ren, Z. J.: Methane
- r39 emissions from municipal wastewater collection and treatment systems, Environ. Sci.
- 740 Technol., 57, 2248-2261, <u>https://doi.org/10.1021/acs.est.2c04388</u>, 2023.
- 741 Stadler, C., Fusé, V. S., Linares, S., and Juliarena, P.: Estimation of methane emission
- <sup>742</sup> from an urban wastewater treatment plant applying inverse Gaussian model, Environ.
- 743 Monit. Assess., 194, 27, <u>https://doi.org/10.1007/s10661-021-09660-4</u>, 2021.
- 744 Sun, W., Deng, L., Wu, G., Wu, L., Han, P., Miao, Y., and Yao, B.: Atmospheric
- monitoring of methane in Beijing using a mobile observatory, Atmosphere, 10, 554,
- 746 <u>https://doi.org/10.3390/atmos10090554</u>, 2019.





- 747 Sun, Y., Yang, T., Gui, H., Li, X., Wang, W., Duan, J., Mao, S., Yin, H., Zhou, B., Lang,
- <sup>748</sup> J., Zhou, H., Liu, C., and Xie, P.: Atmospheric environment monitoring technology
- and equipment in China: A review and outlook, J. Environ. Sci., 123, 41-53,
   https://doi.org/10.1016/j.jes.2022.01.014, 2023.
- 751 Venkatram, A. and Horst, T. W.: Approximating dispersion from a finite line source,
- 752 Atmos. Environ., 40, 2401-2408, <u>https://doi.org/10.1016/j.atmosenv.2005.12.014</u>,
- 753 2006.
- Vítěz, T., Novák, D., Lochman, J., and Vítězová, M.: Methanogens diversity during
  anaerobic sewage sludge stabilization and the effect of temperature, Processes, 8,
  822, https://doi.org/10.3390/pr8070822, 2020.
- 757 Vogel, F., Ars, S., Wunch, D., Lavoie, J., Gillespie, L., Maazallahi, H., Röckmann, T.,
- 758 Nęcki, J., Bartyzel, J., Jagoda, P., Lowry, D., France, J., Fernandez, J., Bakkaloglu,
- 759 S., Fisher, R., Lanoiselle, M., Chen, H., Oudshoorn, M., Yver-Kwok, C., Defratyka,
- 760 S., Morgui, J. A., Estruch, C., Curcoll, R., Grossi, C., Chen, J., Dietrich, F.,
- <sup>761</sup> Forstmaier, A., Denier van der Gon, H. A. C., Dellaert, S. N. C., Salo, J., Corbu, M.,
- 762 Iancu, S. S., Tudor, A. S., Scarlat, A. I., and Calcan, A.: Ground-Based Mobile
- 763 Measurements to Track Urban Methane Emissions from Natural Gas in 12 Cities
- across Eight Countries, Environ. Sci. Technol., 58, 2271-2281, <u>https://doi.org/</u>
   <u>10.1021/acs.est.3c03160</u>, 2024.
- von Fischer, J. C., Cooley, D., Chamberlain, S., Gaylord, A., Griebenow, C. J., Hamburg,
  S. P., Salo, J., Schumacher, R., Theobald, D., and Ham, J.: Rapid, Vehicle-Based
  Identification of Location and Magnitude of Urban Natural Gas Pipeline Leaks,
- 769 Environ. Sci. Technol., 51, 4091-4099, <u>https://doi.org/10.1021/acs.est.6b06095</u>,
- 770 2017.
- Wang, D., Ye, W., Wu, G., Li, R., Guan, Y., Zhang, W., Wang, J., Shan, Y., and Hubacek,
  K.: Greenhouse gas emissions from municipal wastewater treatment facilities in
  China from 2006 to 2019, Sci. Data., 9, 317, https://doi.org/10.1038/s41597-022-
- $\frac{1}{3}$  China noin 2000 to 2019, Sci. Data., 9, 517, <u>https://doi.org/10.1050/8</u>
- 774 <u>01439-7</u>, 2022.





- 775 Wang, X., Wang, T., Chen, S., and Tang, Y.: Study on methane emission from
- vastewater treatment plants-A case study of Wuhu city, Advances in Geosciences,
- 11, 677-689, <u>https://doi.org/10.12677/AG.2021.115063</u>, 2021.
- 778 Wang, Y., Tang, J., Li, F., Xie, D., Zuo, F., Yu, X., Xu, Y., and Chen, J.: Measurement
- of methane emissions from CNG fueling stations in East China, Environ. Sci. Pollut.
- 780 R., 29, 71949-71957, https://doi.org/10.1007/s11356-022-20929-0, 2022a.
- 781 Wang, Y., Tang, J., Xie, D., Li, F., Xue, M., Zhao, B., Yu, X., and Wen, X.: Temporal
- variation and grade categorization of methane emission from LNG fueling stations,
- 783 Sci. Rep., 12, 18428, <u>https://doi.org/10.1038/s41598-022-23334-2</u>, 2022b.
- WMO: WMO greenhouse gas Bulletin. The state of greenhouse gases in the atmosphere
  based on global observations through 2022. <u>https://library.wmo.int/idurl/4/68532</u>,
  2023.
- Yacovitch, T. I., Herndon, S. C., Petron, G., Kofler, J., Lyon, D., Zahniser, M. S., and
  Kolb, C. E.: Mobile Laboratory Observations of Methane Emissions in the Barnett
  Shale Region, Environ. Sci. Technol., 49, 7889-7895, <u>https://doi.org/10.1021/</u>
  es506352j, 2015.
- 791 Yin, Y., Qi, X., Gao, L., Lu, X., Yang, X., Xiao, K., Liu, Y., Qiu, Y., Huang, X and Liang,
- P.: Quantifying methane influx from sewer into wastewater treatment processes,
  Environ. Sci. Technol., 58, 9582-9590, <u>https://doi.org/10.1021/acs.est.4c00820</u>,
- 794 2024.
- 795 Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen,
- <sup>796</sup> L., Qu, Z., Sulprizio, M. P., Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R.
- <sup>797</sup> J., and Boesch, H.: Attribution of the accelerating increase in atmospheric methane
- <sup>798</sup> during 2010–2018 by inverse analysis of GOSAT observations, Atmos. Chem. Phys.,
- <sup>799</sup> 21, 3643–3666, <u>https://doi.org/10.5194/acp-21-3643-2021</u>, 2021.
- 800 Zhao, T., Yang, D., Liu, Y., Cai, Z., Yao, L., Che, K., Ren, X., Bi, Y., Yi, Y., Wang, J.,
- and Zhu, S.: Development of an Integrated Lightweight Multi-Rotor UAV Payload
- for Atmospheric Carbon Dioxide Mole Fraction Measurements, Atmosphere, 13, 855,





- 803 <u>https://doi.org/10.3390/atmos13060855</u>, 2022.
- 804 Zhao, Y., Xue, M., Li, X., Liu, G., Liu, S., and Sun, X.: Application of Vehicle-Mounted
- 805 Methane Detection Method in the Oil and Gas Industry, Environmental Protection of
- 806 Oil & Gas Fields, 31, 4, <u>https://doi.org/10.3969/j.issn.1005-3158.2021.04.001</u>, 2021.
- 807 Zimnoch, M., Necki, J., Chmura, L., Jasek, A., Jelen, D., Galkowski, M., Kuc, T.,
- 808 Gorczyca, Z., Bartyzel, J., and Rozanski, K.: Quantification of carbon dioxide and
- 809 methane emissions in urban areas: source apportionment based on atmospheric
- observations, Mitig. Adapt. Strateg. Glob. Change, 24, 1051-1071, https://doi.org/
- 811 <u>10.1007/s11027-018-9821-0</u>, 2018.