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Abstract. A mechanistic approach linking the population dynamics of plankton communities to the export of detrital material

to the oceans interior, remains a largely unresolved component of global bio-geochemical models. We propose that the self-

similarity of aggregation provides a tractable modelling framework for simulating the dynamics and sinking speed of natural

marine particle aggregates. It provides a means to track both size and excess density of aggregates as they are formed and

transformed by aggregation, degradation and fragmentation processes. A self-similarity parameter a in the range 1.8 to 2.1 is5

well supported by direct observations drawn from an extensive database of aggregate size and sinking speed. We provide a

simple model, SISSOMA, that uses a 2 dimensional state-space representation of aggregate dynamics for which we conduct

sensitivity analyses for the self-similarity parameter, stickiness, turbulent dissipation rate and the production rate of primary

particles. The model provides size and density resolved estimates of the export flux of detrital material generated by a diverse

community of primary producers. While open to improvement in several aspects, the model compares well with observations10

of aggregate size spectra covering the global ocean.

1 Introduction

The rain of particulate organic matter (POM) sinking from the surface to the ocean’s interior constitutes a major pathway in

global biogeochemical cycling (Volk and Hoffert, 1985; Buesseler et al., 2007). Together with active transport by vertically15

migrating organisms, it contributes to the ∼10 PgC/year export flux (∼ 20% of total marine primary production) that feeds

the world’s mesopelagic and benthic ecosystems and drives the biological carbon pump (Ducklow et al., 2001; Mouw et al.,

2016). Yet, despite its central role and the fact that relevant physical theories have existed for more than 100 years (Stokes,

1851; Smoluchowski, 1918), a mechanistic description of POM sinking rates remains elusive leaving biogeochemical models

largely at the mercy of empirically derived formulations that are not best suited for predictions under expected global change.20

In part this is due to the tendency of model descriptions to focus on size as the preeminent variable controlling POM flux.

After all, Stokes’ law and its derivatives predict a strong size dependence on sinking speed (Clift et al., 1978; White, 1991),
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Figure 1. Aggregate dynamics depicted in 2 dimensional state space. Primary particles are produce in a specific size and density range.

Aggregation, dissolution/degradation and fragmentation serve to redistribute aggregate mass within this phase-space. The distribution of

aggregates eventually reaches steady state when the rate of supply is balanced by the sinking losses and losses due to dissolution/degradation.

and coagulation theory provides a theoretical framework for how aggregates grow in size (Burd and Jackson, 2009; Jackson

and Burd, 2015). Further, with the advent of laser optics, aggregate size spectra are now routinely measured in the field. It is

often commented however, that size is a poor predictor of sinking speed; aggregates of any size from microns to centimeters25

seemingly sink at any speeds from practically zero to several 1000s of meters per day (Iversen and Lampitt, 2020), prompting an

abandonment of mechanistic approaches (Laurenceau-Cornec et al., 2020) in favour of more empirically derived formulations

(Cael et al., 2021). In these considerations, the other key variable determining sinking speed, namely the excess density of

aggregates is often sidelined. It is well understood for instance that ballasting (e.g. biogenic minerals, aolean dust (Iversen and

Ploug, 2010; Iversen and Robert, 2015; Van der Jagt et al., 2018)) or buoyant material (transparent exopolymers TEP (Azetsu-30

Scott and Passow, 2004)) can radically change sinking speeds. Further porosity, a dynamic property of the aggregation process

exerts a strong control on excess density (Laurenceau-Cornec et al., 2020; Jackson and Burd, 1998). While these processes

are qualitatively well understood, only few modelling frameworks seek to systematically include aggregate excess density as

a state variable (Jackson and Burd, 1998; Jokulsdottir and Archer, 2016). Within this context, there are 3 major controls on

aggregate excess density; the inherent density of the primary particles from which the aggregates are formed, the aggregation35

process which traps increasing volumes of interstitial water thereby systematically reducing excess density, and dissolution

and degradation processes that solubilize solid material from the aggregate matrix.

Here we propose a 2 dimensional state-space representation of a marine aggregate community (Fig. 1) where the dynam-

ics are driven by three transformative processes; aggregation producing larger less dense aggregates, degradation/dissolution

which reduces the solid mass (and hence excess density), and fragmentation. At a system level (e.g. the surface mixed layer),40

the model links the production of primary particles (e.g. dead and dying organisms, fecal pellets, aeolian dust etc.) to losses
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through sinking, dissolution and degradation. While still relatively complex, each of the sub-processes can in principle be con-

strained from observations, parameterized and mechanistically formulated. What makes this framework particularly attractive

is the development of size-based and trait-based models of plankton communities (Banas, 2011; Serra-Pompei et al., 2020;

Serra-Pompei et al., 2022) which provide precisely the type of information (size and trait resolved primary productivity and45

zooplankton grazers) that can serve as input. Indeed a resolved particle aggregation model can provide a mechanistic link be-

tween emerging plankton community structure and export flux; one of the key unresolved issues of the biological carbon pump

(Boyd and Newton, 1995; Bach et al., 2019).

The key concept we explore here is that aggregation is a geometrically self-similar process, such that the linear dimension

rioj of an aggregate formed by the combination of two parent aggregates of linear dimension ri and rj respectively is given50

by:

ri◦j = (ra
i + ra

j )(1/a) (1)

That is, for the binary process of aggregation, ra is an additive conservative property. This is not a new idea (Jackson, 1998;

Wiesner, 1992) and arises from the general observation that aggregates display fractal characteristics (Alldredge and Gotschalk,

1988; Meakin, 1987; Logan and Wilkinson, 1990). We term a the self-similarity parameter, and note a < 3 in compliance with55

the observed increase in porosity under aggregation. We stress that a is not the fractal dimension of the aggregate. Neither is it

an inherent property of aggregates and we will not attempt to use a to produce scaling laws as is usual in these considerations.

e.g. (DeVries et al., 2014; Kriest and Evans, 1999; Cael et al., 2021). At this point we simply want to treat a as a parameter

governing the binary process of aggregation.

Under geometric self-similarity, the mass of an aggregate produced by the combination of 2 aggregates of mass mi and mj60

can be deduced to be the sum of these two masses, plus a bit extra due to the inclusion of some fluid (density ρw) that occupies

the expanded aggregate volume (increased porosity). Specifically,

mioj =mi +mj +
4
3
π(r3ioj − r3i − r3j )ρw (2)

Here m is the total mass, not just the dry mass of the aggregate. It is convenient to recast this in terms of density of the

aggregates, ρi, ρj , ρioj , and their respective volumes, vi, vj and vioj . It follows that excess density65

ρioj − ρw =
vi

vioj
(ρi− ρw) +

vj

vioj
(ρj − ρw) (3)

That is, aggregation produces a daughter particle whose excess density is the volume weighted mean of the excess density of

the two parent particles. Eqs. (1) and (3) provide an iterative computational framework that can follow the size and excess

density and hence sinking speed, of aggregates as they are formed and transformed from primary particles.

2 Observed state-space distributions.70

The physics of sinking particulate matter is well understood in terms of a balance between buoyancy B and drag D forces

(Clift et al., 1978), where the precise form of the balance depends strongly on Reynolds number R (White, 1991; Loth, 2008).

3

https://doi.org/10.5194/egusphere-2024-2520
Preprint. Discussion started: 4 November 2024
c© Author(s) 2024. CC BY 4.0 License.



Specifically, the drag on an aggregate sinking at speed w transitions from a linear (D ∝ w) to a quadratic (D ∝ w2) as R

transitions from R≪ 1 (viscous regime) to R≫ 1 (inertial regime). Here Reynolds number is given by R= 2rw/η, with η

being the kinematic viscosity of seawater. For a smooth, spherical, non-permeable particle of radius r, sinking speed is given75

by

w2 =
8
3
ρ− ρw

ρw

g r

C
(4)

wherew is sinking speed, r the estimated spherical radius, g the gravitational acceleration, andC is an empirically derived drag

coefficient. While there are several formulations, generally expressed as a function of Reynolds number, the most commonly

used is80

C =
24
R

+
6

1 +
√
R

+ 0.4 (5)

White (1991). This, and similar formulas are robust for R up to about 105. As R→ 0, Eq. (4) returns the Stokes’ law. We note

that while there are additional physical factors effecting the drag coefficient, notably aggregate shape, surface roughness and

permeability, these manifest as relatively small corrections, particularly for Reynolds numbers relevant for marine aggregates

(Logan and Hunt, 1987; Dietrich, 1982; Laurenceau-Cornec et al., 2015).85

Our approach is informed by the distribution of natural marine aggregates in size-density space. Excess density itself is

not easily measured, but can be back-calculated (Engel et al., 2009; Iversen and Ploug, 2010) from sinking speed and size

observations. Indeed, from Eq. (4) it follows

ρ− ρw = ρw
3
8
Cw2

gr
(6)

We estimate excess density (Fig. 2) from existing databases (Laurenceau-Cornec et al., 2015; Cael et al., 2021) together with90

additional observations (Gärdes et al., 2011; Bach et al., 2019; Iversen and Lampitt, 2020). The preponderance of observations

correspond to R< 100 and thus lie well within the range where Eq. (5) is valid.

In general, sinking speeds tend to increase with particle size albeit with a high degree of variance (Fig. 2.a). Indeed there

is no real statistically significant relationship between w and r overall, nor within observational sub-sets (Laurenceau-Cornec

et al., 2015). Estimated excess density for these observations (Fig. 2.b) in contrast, shows a marked decrease with aggregate95

size, consistent with a commensurate increase in porosity, a signature of the self-similarity of aggregation processes. Even so,

estimated excess densities vary considerably within size classes; over 3 orders of magnitude for all observations and about 1

order of magnitude for individual observational studies.

Under special conditions, self-similarity makes quite strong predictions on how aggregate properties (e.g. mass, density,

porosity) scale with size. Specifically, for a monoculture of primary particles of size r0 and density ρ0, and in the absence of100

degradation, dissolution, or fragmentation, then aggregates’ excess density follows a power law:

ρ(r)− ρw = (ρo− ρw)
(
r

r0

)a−3

(7)

Under these conditions, the aggregation vector in the Fig. 1, would have an expected slope a− 3.
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Figure 2. (a) Aggregate sinking speed (w) observed in a large number of studies (cf. Table 1) as a function of estimated spherical radius (r)

and (b) the excess density (ρ− ρw) calculated from observed sinking speeds using a modified Stokes law. Colors represent different studies.

The lines in panel (a) are contours of Reynolds number ranging from 100 to 0.001. The grey lines in panel (b) indicate a log-log slope of

−1.4.

Within the set of field and laboratory observations reported in Table 1, a subset meet suitable criteria that can reveal such a

relationship. For instance, Iversen and Ploug (2010) conducted laboratory studies of aggregates from relatively fresh monocul-105

tures of the chain forming diatom Skeletonema costatum and the coccolithophore Emiliania huxleyi, and mixtures of the two.

Log-log regressions on these indicate b in the range −1.2 to −1.0 i.e. a in the range 1.8 to 2.0. Other laboratory observations

that have avoided degradation and extraneous manipulations with TEP and dust indicate similar relationships with b in the

range [−1.2,−0.9] (Engel and Schartau, 1999; Engel et al., 2009; Laurenceau-Cornec et al., 2015).

These values are consistent with laboratory experiments for non-biological particle aggregation Lin et al. (1989) for which a110

ranges between 1.8 and 2.1. The lower value corresponds to a relatively porous structure that arises when aggregates are built-

up of very sticky, similarly sized particles that combine immediately on contact. The value a= 2 corresponds to a random walk

arrangement in 3 dimensions, and has been used in previous model settings (Jackson and Burd, 1998; Jokulsdottir and Archer,

2016). From these considerations, it appears that a in the ranges 1.8 to 2.1 is a reasonable choice.

It is also clear that a large number, indeed the majority, of studies listed in Table 1, exhibit slopes b that are spread across a115

much broader range. These studies all follow quite different experimental (e.g. natural aggregates, lab cultures, manipulations

with ballast material) and observational procedures (e.g. in situ cameras, roller tanks, vertical flow systems). In some instances

it can be argued that the observation method is poorly designed to capture the characteristics of the full aggregate community.

Roller tanks for instance preferentially generate large, fast-sinking aggregates (Jackson, 2015) producing particle size spec-

tra that are not representative of natural aggregate communities. Perhaps more important is the heterogeneity of the primary120

particles. In some experimental setups, ballasting material of considerably different excess densities are present or introduced.

Further, natural plankton communities are seldom mono-cultures, and are generally composed of unicellular organisms cov-

ering a range of sizes and densities; some with shells and spines, some vacuolated, some chain-forming. In any given size
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range, the aggregate community will be an ad-mixture derived from different primary particles. Furthermore, as aggregates

degrade and fragment, smaller, less dense aggregates come into the mix – grist to the mill – so that aggregate density, and125

hence sinking speed, will exhibit a relatively broad distribution at any given aggregate size. We must therefore conclude that

while the majority of observations plotted in Fig. (2) are perfectly fine in relating the sinking speed to the size of an aggregate,

methodological issues mean that they remain mute on any self-similarity in the underlying aggregation process. Seen in this

light, it appears that the variance of excess density (Fig. 2.b) is composed of two elements; a general negative slope being due

to increased aggregate porosity with size, and an inherent variability due to the excess density of primary aggregate material.130

3 The SISSOMA Model

The physical setting we consider is a surface mixed layer of depth h where aggregates are produced from a range of primary

particles, transformed and sink out according to the dynamics described in Fig. (1). We introduce the state variable s = (r,ρ−
ρw) describing aggregate attributes, and note that all of the information required to estimate sinking speed is contained in s.

We denote a binary combination of aggregates as sioj = c◦(si,sj) and it is also convenient to introduce the function c⋆ such135

that si = c⋆(sioj ,sj) returns the state of a parent aggregate given the daughter and other parent. These functions follow directly

from Eqs. (1) and (3).

The equation for aggregate dynamics can be written as:

∂

∂t
N(s, t) =

qm:cP(s, t)

+
α

2

∫

S

β(s′, c⋆(s,s′)) N(c⋆(s,s′), t) N(s′, t) ds′

−αN(s, t)
∫

S

β(s,s′) N(s′, t) ds′

−N(s, t)
w(s)
h

−ψ(s) N(s, t) +
∫

S

ψ(s′) N(s′, t) θ(s,s′) ds′

− ∂s

∂t
· ∂N

∂s
(8)

where N(s)ds is the number of aggregates in a small region of state space [s,s+ds]. The first term (qm:cP) represents production140

rate of primary particles with different state space characteristics (cf Table 2 for a listing of variables and units). The following

two terms are classic coagulation theory (Smoluchowski, 1918) rewritten for multidimensional state space (denoted S), where

β(s,s′) is the encounter kernel for two aggregates in state s and s′ respectively and α is the stickiness (i.e. the probability that

on contact, aggregation occurs). The fourth term is a simplified sinking loss term, where w(s) is the sinking speed (Eq. 4),

and h is the thickness of the surface layer. The fifth and sixth terms represent fragmentation where ψ(s) is a state specific145
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fragmentation rate and θ(s,s′) is a partitioning function. This general form can accommodate both physical fragmentation or

partial consumption by zooplankton. The final term represents processes that affect internal changes in aggregate state such as

degradation, dissolution and compaction. Note that since s is a multi-dimensional variable, the last term is actually a vector

product. Similar expressions have been introduced previously (Burd and Jackson, 2009; Jackson and Burd, 2015) albeit for a

single state parameter (usually aggregate mass) and without explicit representations of fragmentation or degradation.150

Our model SISSOMA is essentially a numerical implementation of Eq.(8) in discetized state space. Its name derives from

the Greek word "σύσσωµα" which literally means "aggregation" (συν - "addition" + σώµα - "body"). In a more liberal

interpretation of this word, SISSOMA encompasses the values of unity, collaboration and support between people working

towards a common goal.

It is convenient to introduce two transformed variable (x,z) that map to (r,ρ− ρw) as:155

r = roδ
x, ρ− ρw = ρoλ

zδ(a−3)x (9)

Here x is a logarithmic scaling of aggregate size, and z a stretched logarithmic scaling of excess density. The factor δ(a−3)x

takes advantage of the reduction of density by aggregation and expands the density resolution for large aggregates. Fig (3)

presents the excess density and sinking speed for a given (x,y) state space. The mapping in Eq. (9) essentially seeks to

efficiently cover the range of observations populating Fig (2b).160

Key variables in the model are the matrices N and M representing the number of aggregates and their total dry mass respec-

tively within bins in discretized (x,z) state space. Suitable range choices for x ∈ [0,X] and z ∈ [0,Z], scaling factors ro [µm]

and ρo [kg m−1], and logarithmic intervals δ and λ allow for a relatively complete representation of the aggregate community

within computationally convenient dimensions of N and M. Total aggregate dry mass M and number density N are related by

M = m′ ◦N where ◦ represents piece-wise matrix product and m′ is the mean dry mass of an aggregate within each bin.165

Aggregation is computationally the most complex aspect of the model as it involves an off-set binary convolution of N in

state space. Performing binary convolution calculations is greatly facilitated by self-similarity. Specifically, the ordinates of an

aggregate produced from the combination of (xi,zi) and (xj ,zj) is given by:

xi◦j =
1

a lnδ
ln(δaxi + δaxj )

zi◦j =
1

lnλ
ln

(
λziδa(xi−xi◦j) +λzjδa(xj−xi◦j)

)
(10)170

It follows that the combination of aggregates from any two domains of identical shape in (x,z) state space will be confined to a

third identically shaped domain. The model utilizes this feature on a regular (x,z) grid in optimizing the algorithm architecture

(Appendix A).

Aggregation is governed by encounter kernels β and stickiness α and follows standard formulations (Burd and Jackson,

2009; Jokulsdottir and Archer, 2016) with three specific processes (Brownian motion, differential settling and turbulent shear)175

contributing to the encounters. We use the rectilinear formulations (Burd and Jackson, 2009) which are mainly functions

of particle size and sinking speed. The most important environmental variable is turbulent dissipation rate (denoted ε, units

m3s−2) which can vary over several orders of magnitude for natural marine systems (Visser et al., 2001).
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Figure 3. (a) Aggregate excess density ρ− ρw [kg m−3] and sinking speed w [m day−1] for a (X,Z) = (30,15) aggregate state-space.

Ordinate convention: the full range of x spans the interval [0,X] in X − 1 bins, and similar for z. The ordinate convention we choose here

is that the ordinates (x,z) implies the bin spanning ([x,x+1], [z,z+1]). Actual scale r0, δ so that r ∈ [10−6,1] m and ρ

We assign the productivity P of primary particles to be consistent with a typical plankton community. The total productivity

of primary particles in terms of carbon is P =
∫
S
Pds. We relate this to the rate at which dry mass is being produced through180

the parameter qm:c, dry mass to carbon mass ratio. For this work we use qm:c = 2.5 (Parsons et al., 1961) although it can be as

high as 8 for diatom cells (Sicko-Goad et al., 1984) and likely higher still for copepod fecal pellets.

We simulate degradation as a drift of particle numbers to lower density bins, implemented as:

∂N

∂t

∣∣∣∣
deg

=
∂ρ′

∂t

∂N

∂ρ′
=− γ

lnλ
∂N

∂z
(11)

Here, γ is the degradation rate, and it can be shown (Appendix B) that the z ordinate of an aggregate follows dz/dt=−γ/ lnλ.185

In this, degradation acts only on excess density. We set γ = 0.1 day−1 consistent with a range of studies (Kiørboe, 2001; Cavan

and Boyd, 2018; Bach et al., 2019) although more recent direct observations suggest a lower value (γ < 0.03) (Belcher et al.,

2016). It should also be noted that there is considerable variation due to for instance, temperature effects, lability of organic

material and/or dissolution of mineral ballast. This formulation conserves total aggregate number N =
∫
S
Nds, but not total

mass M =
∫
S
Mds. Indeed,190

∂M

∂t

∣∣∣∣
deg

=−γM (12)

Finally fragmentation is simulated simply as a rate at which aggregate mass is transported to smaller sizes classes. We im-

plement this as an increasing function of aggregate size. Further, it is intuitively understood that fragmentation increases as
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Figure 4. Distribution of (a) total dry mass M(x,z) [µg m−3] and (b) flux F(x,z) [µg C m−2 day−1] over aggregate state-space. Steady

state solution for self similarity a = 2, stickiness α = 0.1, turbulent dissipation rate ε = 10−6 [m−2 s−3] and total productivity P = 2× 106

[µg C m−2 day−1]. The total productivity is spread evenly over all densities in the three smallest size classes. That is P(0,z) =P/(3Z) for

all z, and 0 otherwise.

turbulent stresses increase. Of the processes considered, fragmentation remains the least well constrained; aggregates appear

resistant to mechanical shear (Alldredge et al., 1990), and fragmentation appears to be chiefly mediated by metazooans through195

handling and feeding appears to be important (Dilling and Alldredge, 2000) and by microbial "mining" and dissolution of adhe-

sive material. We set the fragmentation rate at ψ0 = 0.5 day−1 for large porous aggregates, a value consistent with observations

(Briggs et al., 2020). Specifically, we set

ψ(s) = ψ0
ε

εc

(
r

rc

)3 1−ϕ
1−ϕc

(13)

where (εc, rc,ϕc) are reference turbulence, size and porosity respectively where fragmentation rate is ψ0. Given the uncertainty200

in fragmentation processes, we choose a simple redistribution rule where the mass from fragmented aggregates is simply

distributed evenly across all smaller size classes. Specifically, the mass of fragments dM(x,z) = ψ(x)M(x,z) from s = (x,z)

is distributed evenly across all bins s = (x′,z) for 0> x′ > x.

9

https://doi.org/10.5194/egusphere-2024-2520
Preprint. Discussion started: 4 November 2024
c© Author(s) 2024. CC BY 4.0 License.



4 Results and sensitivity

We present a series of simulations for a fixed rate of primary particle production (size range 1 to 30 µm in radius, excess205

density range 1 to 200 kg m−3) that corresponds to a mixed community of unicellular auto- and heterotrophic plankton ranging

from cyanobacteria to diatoms. Table 2 contains relevant nomenclature, parameter settings and ranges. Simulations were run to

quasi-steady state (i.e. relative differences between successive daily estimates (normalized root-mean-square deviation) were

< 10−6) using a MATLAB ode solver. Four sets of parameters (self-similarity, stickiness, turbulent dissipation rate, and total

production rate) were varied between runs and the emerging aggregate community was characterized by its size spectrum and210

size resolved export flux. All simulations assumed a mixed layer depth of h= 50 m. The results of one such run is presented in

Fig (4) for the same state space as shown in Fig. (3). The steady-state dry mass distribution (Fig 4a) is dominated by aggregates

in the∼ 10 µm size range and and excess density of∼ 100 g m−3 (Fig. 3). These aggregates have slow sinking speeds of about

∼ 1 cm day−1. The export flux in contrast is dominated by cm scale aggregates (Fig. 4.b). While these aggregates have much

lower excess density ∼ 1 g m−3 because of their increased porosity, they still have sinking speeds of the order ∼ 10 m day−1215

(Fig. 3).

Results for the sensitivity analysis are presented in Fig (5), and the numerical code that produced it can be found in the

supplementary material. Particle size spectra

n(r) =
1

dr(x)

∑

z

N(x,z) (14)

were estimated in the normal manner (Burd and Jackson, 2009) as per size bin width dr(x) and provide a macroscopic measure220

of the underlying dynamics of production, transformation and sinking. Measurements of such spectra are routinely made and

often conform to a power law of the form n(r)∼ rp. Observations (Stemmann et al., 2008; Guidi et al., 2009; Reynolds and

Stramski, 2021) from different oceanic regions and spanning aggregate sizes from microns to centimeters, show that p ranges

from −2 to −6 and cluster around −3 to −4 in the surface ocean. For our model simulations (Fig. 5:b,d,f), all runs exhibited

particle size spectra slopes of about −4 for aggregates from 1 to several 100s of µm in size.225

The flux distributions

f(r) =
1
hP

∑

z

M(x,z) ◦w(x,z) (15)

are the flux contributions summed over different excess density bins, reported within aggregate size bins and normalized with

regards total primary particle production P. The shape of f(r) is universally dome-shaped with very little flux at either small

(low sinking speed) or large (low total mass) aggregate sizes. The peak of the flux distribution, and to some extent its width,230

varies with self-similarity, stickiness and turbulent dissipation rate. Low self-similarity indices for instance, push the flux

distribution towards larger aggregate sizes, as do high turbulent dissipation rates. Stickiness by contrast has a relatively minor

influence on the flux distribution. Maximum flux appears to be associated with a steepening of the particle size spectrum n(r).

The total export flux, defined as

F =
1
hP

∑

x,z

M(x,z) ◦w(x,z) (16)235
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Figure 5. Aggregate community structure at steady state; f(r) size resolved normalized export flux (a,c,e,g) and n(r) particle size spectra

(b,d,f,h) for a range of different a self-similarity parameters (a,b), α stickiness coefficients (c,d), ε turbulent dissipation rates [m2 s−3]

(e,f), and P total productivity [µgC m−2 day−1]. The insets in (a,c,e,g) show the total flux F [µgC m−2 day−1] with respect to the various

parameter settings. Dissipation rates are related to encounter rate β as given in Burd and Jackson (2009). Dashed lines in (b,d,f,h) indicate

log-log slopes of −3 and −4.

is shown in the inset on the size-flux plots as a function of the sensitivity parameters (Fig. 3.a,c,e,g). Total export exhibits a

strong nonlinear dependence on total productivity, dissipation rate, and to a slightly lesser degree on stickiness. This type of a

nonlinear relationship is consistent with the idea of “critical cell concentration” (Jackson, 1990), with the rate of aggregation

being roughly proportional to the square of the cell concentration. That is, for low primary particle concentration, the rate of
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aggregate formation is slow, so most POC mass sinks slowly with a high degree of remineralization before it is exported. As240

concentration increases, more mass is shunted to larger fast sinking particles with a smaller faction being remineralized in the

surface ocean, resulting in a larger overall proportion of the production being exported. The same holds true for increasing

turbulence and stickiness, both of which increase the rate of large, fast-sinking aggregate formation.

We have argued that a universal self-similarity index a, if it exists, is relatively well constrained within the range [1.8,2.1].

While the form of the exported flux f(r) varies significantly within this range (Fig. 3.a), the total flux appears is to be relatively245

insensitive (Fig. 3.a inset). With regards variation in the characteristics of the export flux, the peak of the flux distribution

(Fig. 3.a) ranges over an order of magnitude in aggregate size, from 300 to 3000 µm. Further, the flux distribution range is

much narrower for high self-similarity indices, a feature that is exacerbated given the logarithmic scaling of the size bins. In

contrast, total flux F, remains virtually the same across all these self similarity values. Indeed, the self similarity parameter

has counteracting effects on sinking speed in terms of aggregate size and excess density (large a produce small but low porous250

aggregates and vice versa). The sinking speeds for aggregates in the flux maxima (Fig. 3.a) vary only modestly, from 10 to

20 m day−1 across all values of the self-similarity parameter. It should be noted that the export flux distribution in terms of

aggregate size, excess density and sinking speed sets many of the key characteristics of the subsequent flux attenuation curve

within the mesopelagic (e.g. remineralization length scale Cavan et al. (2017) and subsequent sequestration time scales Boyd

et al. (2019)). While we cannot at this time provide argumentation to further constrain of the self-similarity parameter, we have255

put in place a mechanistic model that can guide empirical studies to improve resolution.

5 Discussion

The modelling framework we propose is designed specifically to track both size and excess density throughout an emerging

aggregate community. We purposefully present the model itself in its simplest form. In this we are mindful that overly com-

plex models become increasingly inscrutable, and unattractive for integration into higher level computational products. There260

are, however, aspects that should be further explored. For instance, a more rigorous approach would include porosity as an

independent state variable (i.e. moving to a 3 dimensional state space) for which combination rules similar to Eqs. (1) and (3)

can be derived. This would allow a more robust implementation of degradation and fragmentation. Degradation for instance is

characterized here as a single parameter controlling the dissolution of the both organic and mineral components of the aggre-

gate. Clearly this simplification could be improved on but would require a distinction between organic and inorganic aggregate265

components (i.e. and extra dimension). The organic components itself is a mixture of compounds with variable lability. These

characteristics of the aggregate could also be simulated, but with the cost of extra dimensions. Further we simulate a single

surface layer, where we assume uniform dynamics throughout, an obvious simplification that could be improved on. Concep-

tually at least, it is relatively straightforward to provide depth resolution for different production and turbulence regimes by

stacking layers with aggregate exchange being provided by vertical fluxes and mixing.270

While still complex in many aspects, the model hints at certain features that could be leveraged to provide a simpler, more

computationally attractive model descriptions. It is worth noting for instance, that both dry mass distribution and export flux
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converge at large aggregate sizes (x ordinate) to a relatively uniform z value (Fig. 4). This is a feature that is repeated for

most parameter settings. A constant z ≈ zc indicates that particle dynamics are dominated by aggregation / fragmentation, and

where excess density is primary controlled by increased porosity. The value of zc appears to be set within a few logarithmic size275

increments of the primary particle production range, indicating a convergence of primary particles to a characteristic "proto"

aggregate confined to a sub-range of size and excess density, after which aggregation serves primarily to grow aggregates until

they sink out of the surface mixed layer. That is, between primary particle and proto-aggregate, dynamics are dominated by

production, degradation and aggregation, while from proto-aggregate on it is primarily aggregation, fragmentation and export

that drive the dynamics. Indeed, if a systematic relationship can be found between production, aggregation and degradation280

and the characteristic of the proto-aggregate, then much of the modelling effort can be reduced.

More than anything, the poor ability to estimate the sinking speed of marine aggregates stems from the high variability of

their excess density. Other factors, like shape, surface roughness and the through flow of interstitial fluid have been suggested,

but these contribute at most a factor of 2 to sinking speed corrections. This is negligible compared to the orders of magnitude

variance (yet alone a potential change in sign) exhibited in the excess density. All manners of primary particles are introduced285

into the surface ocean by primary producers, sloppy feeding, fecal matter and aeolian dust deposits. Further, the constituent

components of detritus vary significantly in excess density (relative to seawater, 1027 kg m−3) ranging from positively buoyant

e.g. TEP in the range -200 to -300 kg m−3 (Azetsu-Scott and Passow, 2004) and lipids around -100 kg m−3 (Visser and

Jónasdóttir, 1999) to near neutrally buoyant e.g. cytoplasm 3 to 70 kg m−3 (Tappan and Loeblich Jr, 1973), to very much

negatively buoyant, e.g. coccoliths 1700 to 1900 kg m−3 (Toktamış et al., 2016), diatom frustules 1600 kg m−3 (Miklasz and290

Denny, 2010) and atmospheric dust (quartz, feldspar, calcite) approximately 1700 kg m−3. It is a unique feature of SISSOMA

that in can incorporate primary particles of any density and track their influence on the emerging aggregate community.

Stickiness is also a parameter that shows large variability in primary material. In SISSOMA, we assign a constant stickiness

value to all aggregates from production to export. However, it has been shown that stickiness depends on the source of the

primary particles ranging from 0.07 for dust mineral particles to 0.19 for TEP particles (Maerz et al., 2020). Furthermore,295

(Kiorboe et al., 1990) studying the growth of three diatom species, showed that the stickiness of their cells fluctuates following

different patterns which are related to the nutrient availability and hence their growth phase. Hence, tracking the stickiness of

the primary material throughout the aggregation process could provide a more robust prediction of the size distribution of the

flux.

Of the processes specifically modelled, that with the greatest degree of uncertainty is fragmentation. This relates not just300

to the conditions that bring about the break-up of aggregates, but also how mass is redistributed into smaller aggregates.

While promising techniques (Song and Rau, 2022; Hayashi et al., 2023) and algorithms (Gremion et al., 2021; Zahnow et al.,

2011) are being developed to resolve this issue, it is hoped that SISSOMA can prove a useful platform for development and

implementation.

Further, temporal aspects such as annual cycles of productivity, turbulence and mixed layer depth are yet to be explored.305

The presented sensitivity analyses are based on a marine aggregate community at a steady state. However, marine ecosystems,

especially in high latitudes, are characterized by strong seasonal cycles of not only net primary productivity but also turbu-
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lence, plankton community structure (both primary producers and grazers), which individually and in concert,influence pro-

duction of POM and its export to the ocean’s interior. We are currently coupling SISSOMA with NUM (Nutrient-Unicellular-

Multicellular), a global, trait-based model of plankton dynamics (Andersen and Visser, 2023), to provide better insight into the310

connection between the plankton community structure and the carbon export flux in time and space.

Much of the literature concerning the fractal dimensions of aggregates has been built on the restrictive assumptions of

irreversibility and uniform primary particles (Meakin, 1987; Lin et al., 1989) which leads to the rather handy definition that the

fractal dimension of aggregates a′ can be found from their mass-size relationship m∼ ra′ (Meakin, 1987; Burd and Jackson,

2009). At the same time, aggregates found in the marine environment have been deemed to be fractal objects in that they display315

fractal type properties (Alldredge and Gotschalk, 1989; Logan and Wilkinson, 1990); an increase in porosity and a decrease

in excess density as a function of size for instance. There is, however, a disconnection between these two concepts, namely

that aggregation in the marine environment is not irreversible; aggregates degrade and fragment, and they are not composed of

identical primary particles, either in size or excess density. Confining the concept of self-similarity to the aggregation process,

rather than as a property of the aggregates provides a platform where not only aggregation can be modelled, but also other320

important transformative processes including degradation and fragmentation.

Finally, our concept of self-similarity of aggregation, and a governing parameter constrained to the range 1.8 to 2.1 is

certainly open to scrutiny, particularly given its impact on the emerging flux-size distribution. That there is some systematic

control on aggregate size and density is evident in Fig. (2.b). How this is manifested in a particular setting is, however, highly

variable. We argue that in part, this variability can be accounted for through the aggregation process for which we provide325

a mechanistic description. A large part of the variance remains, however, and reflects the vastly different excess densities of

the primary material from which the aggregates derive. Failure to recognize the variability in the density of primary material

and how this propagates through an aggregate community confounds efforts to estimate fluxes and attenuation length scales of

particulate matter in the oceans.

6 Conclusions330

Herein, we introduce a relatively simple algorithm, from which the evolving aggregate community can be modelled within a 2-

dimensional state space, specifically the size, and excess density of aggregates. Most importantly, the algorithm depends only on

a few fundamental parameters; the self-similarity parameter, stickiness, degradation and fragmentation rates. All other variables

are fixed by the physical environment (e.g. turbulence, mixed-layer depth, viscosity, external ballasting material) and the

plankton community (e.g cell size, density, production rate, grazers, TEP production) for which models of varying complexity335

exist. Given a production rate of primary particles, the algorithm yields estimates of the flux of POM aggregates from the

surface ocean resolved in terms of size and density (and hence sinking speed). Conceptually, this provides a mechanistic link

between models of marine ecosystem productivity and biogeochemical models of the world’s oceans.

14

https://doi.org/10.5194/egusphere-2024-2520
Preprint. Discussion started: 4 November 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure A1. State-space aggregation. Aggregates formed by interactions between bins si and sj will be found in the region sioj which will

span, at most 4 bins in discretized state space.

Code and data availability. The model code and associated documentation for the simulations presented here is open source, and freely

available on GitHub github.com/AndyWVisser/Aggregation and zenodo.org/records/12516012. All data used in estimating the excess density340

from size - sinking speed observations is vaialable at https://zenodo.org/records/6731389

Appendix A: Aggregation algorithm

Without loss of generality, aggregate state space can be defined in terms of transformed coordinates as

s =


x
z


 (A1)

from which it follows that the binary combination of aggregates can be written as345

sioj = c◦(si,sj) = c◦





xi

z1


 ,


xj

zj





 =


xioj

zioj


 (A2)

From Eq (10), it can be easily shown that

s′ioj = c◦(si + s′,sj + s′) = sioj + s′ (A3)

where s′ is an offset in state space. This means that any bounded region in state space convolved with another bounded region of

the same shape will map to a third bounded region again of the same shape. Notably, within discretized state space, aggregation350

from two 1×1 bins maps to a third 1×1 bin (Fig A1). For the binary aggregation sioj ← c◦(si,sj), the time rate of change of
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particle numbers in appropriate state space bins are given by

dN(si) =−αβ(si,sj)N(si)

dN(sj) =−αβ(si,sj)N(sj)

dN(s00ioj) = αβ(si,sj)N(si)N(sj)ξ00355

dN(s01ioj) = αβ(si,sj)N(si)N(sj)ξ01

dN(s10ioj) = αβ(si,sj)N(si)N(sj)ξ10

dN(s11ioj) = αβ(si,sj)N(si)N(sj)ξ11 (A1)

where

s00ioj =


x

00
ioj

z00
ioj


 =


floor(xioj)

floor(zioj)


360

s10ioj = s00ioj +


1

0




s01ioj = s00ioj +


0

1




s11ioj = s00ioj +


1

1


 (A2)

and

ξ00 = (xioj −x00
ioj)(zioj − z00

ioj)365

ξ10 = (1−xioj +x00
ioj)(zioj − z00

ioj)

ξ01 = (xioj −x00
ioj)(1− zioj + z00

ioj)

ξ11 = (1−xioj +x00
ioj)(1− zioj + z00

ioj) (A3)

The total number of states s in discretized state space is L=XZ, from which it follows that the number of unique binary

combinations is K = (L+1)L/2. For a moderate 10×8 state space resolution, K = 3240. Defining k = 0,1,2, . . .K−1 as an370

ordinate counting combinations, ℓ= 0,1,2, . . .L− 1 as an ordinate counting discrete states s, and

κ(k) =
1
2

(
2L+ 1−

√
(2L+ 1)2− 8k

)
(A4)

it follows that

ℓi = floor(κ(k))

ℓj = k− ℓiL+ ℓi(ℓi + 1)/2 (A5)375
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Further, each ℓ can be decomposed into x,z ordinates as:

x= floor(ℓ/Z); z = ℓ−xZ (A6)

That is, each k is associated with a unique combination (ℓi, ℓj)↔ (xi,zi,xj ,zj) from which the offset ordinates (ℓ00ioj , ℓ
01
ioj , ℓ

10
ioj , ℓ

11
ioj)

for binary aggregation can be defined as in Eq. (A2). These provide a means of mapping indices for binary combinations, to

state space and back. A consequence of the model architecture is that once a state space is defined, all coefficients determining380

the convolution process (encounter kernels β, offset indices ℓ00ioj , ℓ
01
ioj , ℓ

10
ioj , ℓ

11
ioj , and partitioning functions ξ00ioj , ξ

00
ioj , ξ

00
ioj , ξ

00
ioj )

are fixed. That is, these need only be calculated once, stored in vectors of length K, and referenced via a lookup map.

Appendix B: Remineralization

For any aggregate we can express its density ρ as

ρ=
m

v
=
md +mw

v
= (1− p)ρd + pρw (B1)385

where p is the porosity, ρd is the density of the solid phase of the aggregate and ρw is the density of water. This leads to the

expression for excess density ρ′

ρ′ = ρ− ρw = ϕ(ρd− ρw) (B2)

where we have used ϕ= 1−p. The simplifying assumption we make in this work is that within a short time step, reminealization

removes dry mass from the aggregate, while the overall volume of the aggregate remains invariant. The volume of dry mass390

that is lost, is replaced by water thus increasing aggregate porosity p. The fundamental degradation process can be written as

dmd

dt
=−γmd (B3)

Writing md = vϕρd and assuming that the density of the dry mass phase remains invariant it follows that

dϕ

dt
vρd =−γϕvρd (B4)

or more succinctly395

dρ′

dt
=−γρ′ (B5)

Thus, from the expression for ρ′ in terms of ordinates xz (Eq. 9)

dρ′

dt
= ρ′ ln(λ)

dz

dt
=−γρ′ (B6)

That is

dz

dt
=− γ

ln(λ)
(B7)400
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Table 1. Estimated exponent b± s for excess density vrs aggregate size power law where s is the 95% confidence interval. ∆r is the log10 r

range of aggregate size, and n the number of observations. References as given, and indicate field or lab studies.

b ±s ∆r n reference

-0.38 1.21 0.5 14 Alldredge and Gotschalk (1989) Field

-1.49 0.15 1.9 76 Alldredge and Gotschalk (1988) Field

-2.09 1.22 0.5 13 i Azetsu-Scott and Johnson (1992) Field

-1.09 1.88 0.4 15 ii –´´– Lab

-0.72 0.20 0.8 37 Iversen et al. (2010) Field

-0.83 0.55 0.9 104 Belcher et al. (2016) Field

-1.11 0.94 0.8 10 Carder et al. (1982) Field

-2.18 0.28 1.0 332 Diercks and Asper (1997) Field

-1.07 0.09 1.2 294 Engel and Schartau (1999) Lab

-1.21 0.05 1.1 20 Gibbs (1985) Field

-1.46 0.05 1.6 1224 Chase 1979 Field

-1.13 0.14 1.1 63 i Iversen and Ploug (2010) Lab

-1.20 0.12 0.8 26 ii –´´– Lab

-1.01 0.20 0.5 97 iii –´´– Lab

-0.46 0.30 0.5 99 Hill et al. (1998) Field

-0.51 0.23 0.9 187 Iversen and Ploug (2013) Lab

-1.34 0.26 1.1 153 Iversen and Robert (2015) Lab

-1.37 0.20 1.4 54 Kajihara (1971) Field

-2.12 0.59 0.8 61 i Laurenceau-Cornec et al. (2015) Field

-1.24 0.21 0.8 59 ii –´´– Lab

-1.24 0.21 0.8 72 i Laurenceau-Cornec et al. (2020) Lab

-0.35 0.19 0.7 131 ii –´´– Lab

-1.53 0.12 1.2 274 i Engel et al. (2009) Lab

-1.07 0.09 1.2 249 ii –´´– Lab

-0.74 0.14 1.2 296 iii –´´– Field

-1.53 0.70 0.9 49 Nowald et al. (2009) Field

-1.22 0.12 1.7 149 Syvitski et al. (1995) Field

-0.95 0.37 1.3 57 i Van der Jagt et al. (2018) Field

-2.01 0.30 1.2 85 ii –´´– Field

-0.88 0.23 1.9 36 Guidi et al. (2008) Field

-1.65 0.26 1.7 41 McDonnell and Buesseler (2010) Field

-2.24 0.78 1.0 28 Jouandet et al. (2011) Field

-1.59 0.02 1.2 1654 Bach et al. (2019) Field

-0.11 0.25 0.7 36 Gärdes et al. (2011) Lab

-1.74 0.27 1.4 154 Iversen and Lampitt (2020) Field

-1.38 0.02 4.0 6332 All data points -
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Table 2. Glossary of variables, parameter settings for simulations and units.

variable description Value Range Units

a self similarity parameter 2 (1.8 – 2.1) –

α stickiness 0.1 (0.02 – 0.3) –

ε Turbulent dissipation rate 10−6 (10−2 – 10−8) m3s−2

P Total productivity 106 (105 – 107) µgC m2 day−1

qm:c Dry mass to carbon mass ratio 2.5 –

h Depth of simulated surface layer 20 m

r Aggregate raduis r = roδ
x – ro=1 to rmax=106 µm Eq. (9)

ρ Aggregate density – (1000 to 1200) kg m−3

ρ′ Aggregate excess density ρ′ = ρ− ρw = ρoλ
zδ(a−3)x – ρo=1 to ρmax=200 kg m−3 Eq. (9)

ρw Density of seawater 1027 kg m−3

p Agregate porosity – –

ϕ Aggregate solid mass volume fraction ϕ= 1− p – –

m Aggregate total mass m= vρ – µg

m′ Aggregate dry mass m′ = vρ′+ϕvρw – µg

w Aggregate sinking speed – m day−1 Eq. (4)

x Radius bin ordinate – 0 to X=30 –

z Density bin ordinate – 0 to Z=15 –

δ Radius logarithmic interval δ = (rmax/ro)
1/X 1.58 –

λ Excess density logarithmic interval λ= (ρmax/ρo)
1/Z 1.42 –

ξij Aggregation transfer parameters (i, j) ∈ [0,1] – Eq. (A3)

N(x,z) Aggregate number density in state space – m−3

M(x,z) Total dry mass of aggregates M = Nm′ – µg m−3

F(x,z) Aggregate sinking flux F = Nm′w/qm:c – µgC m−2 day−1

P(x,z) Size and density resolved productivity – µgC m−2 day−1

ψ(x,z) State dependent fragmentation rate day−1

β Coaggulation Encounter kernal m3 day−1

γ Remineralization rate 0.1 day−1

ψ0 Fragmentation rate 0.5 day−1

g Acceleration due to gravity 9.8 m s−2

C Drag coefficient day−1 Eq. (5)

R Reynolds number < 100 –

η Kinematic viscosity of seawater 10−6 m2s−1

v Aggregate volume, v = 4πr3/3 µm3
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