10

15

20

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

An Effective Communication Topology for Performance
Optimization: A Case Study of the Finite Volume WAve Modeling
(FYWAM)

Renbo Pang!?, Fujiang Yu'!*?, Yuanyong Gao', Ye Yuan'!?, Liang Yuan®, and Zhiyi Gao'
1
2

National Marine Environmental Forecasting Center, 8 Dahuisi Road, Beijing, 100080, China,

Key Laboratory of Research on Marine Hazards Forecasting, Ministry of Natural Resources of China, 8 Dahuisi Road,
Beijing, 100080, China

3 Institute of Computing Technology, Chinese Academy of Sciences, 6 Kexueyuan Nanlu, Zhongguancun, Haidian, Beijing,
100190, China

Correspondence to: Renbo Pang (pangrb@nmefc.cn), Fujiang Yu (yvfujiang_2022@163.com), Yuanyong Gao
(gaoyy @nmefc.cn)

Abstract. High-resolution models are essential for simulating small-scale processes and topographical features, which play
a crucial role in understanding meteorological and oceanic events, as well as climatic patterns. High-resolution modeling
requires substantial improvement on the parallel scalability of the model to reduce runtime, while massive parallelism is asso-
ciated with intensive communications. Point-to-point communication is extensively utilized for neighborhood communication
in earth models due to its flexibility. The distributed graph topology, first introduced in the MPI version 2.2, provides a scal-
able and informative communication method. It has demonstrated significant speedups over the point-to-point communication
method based on a variety of synthetic and real-world communication graph datasets. But its application in earth models for
neighborhood communication is rarely studied. In this study, we implemented neighborhood communication using both the
traditional point-to-point communication method and the distributed graph communication topology. We then compared their
performance in a case study of the Finite Volume WAve Modeling (FVWAM). Across all tests with 512 to 32,768 processes,
the communication time speedup of the distributed graph communication topology ranged from 1.28 to 5.63 compared to the
point-to-point communication method. For operational global wave forecasts with 1,024 processes, the runtime of the FVWAM

reduced 40.2% when the point-to-point communication method was replaced by the distributed graph communication topol-

ogy.

1 Introduction

Numerical earth models with higher resolution are capable of more accurately representing small-scale processes and topo-
graphical features, which are essential for phenomena of weather and sea, and finer details of the climate (Palmer, 2019). For
instance, fine meshes with 1/10° resolution or better are needed to simulate emerging eddy dynamics (Koldunov et al., 2019).

Submesoscale eddies are believed to affect mixed layer restratification and vertical heat transport (Su et al., 2018). These

25

30

35

40

45

50

55

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

eddies may also contribute to shaping the circulation in major current systems (Chassignet and Xu, 2017). Additionally, A
high-resolution spectral wave model can deal with shallow water conditions and incorporate the interaction due to tide and
surge (Monbaliu et al., 2000).

The performance of top computing clusters has been increasingly improved with the development of semiconductors and the
emergence of hybrid computing systems accelerated by General-Purpose Graphics Processing Units (GPGPUs). For instance,
the first high performance computer (HPC) with over 1 exaflop/s computing performance was established at the Oak Ridge
National Laboratory of the United States in 2022 (Sukhija et al., 2022). These high performance computing systems provide the
necessary resources to run models with higher resolutions. Gu et al. (2022) developed the integrated Atmospheric Model Across
Scales (1IAMAS) with a global 3km spatial resolution. Wedi et al. (2020) evaluated a 4-month global atmospheric simulation
with ECMWF’s (European Centre for Medium-Range Weather Forecasts) hydrostatic Integrated Forecasting System (IFS) at
an average grid spacing of 1.4km. Zhang et al. (2023) used the coupled Earth system model (ESM) to simulate sea and ice with
a global 3km resolution.

However, there are many challenges to implement and apply these models with higher resolutions (Alizadeh, 2022). One
critical factor hampering the performance of these high-resolution models is their limited parallel scalability (Koldunov et al.,
2019). For instance, the barotropic solver is a major bottleneck in the Parallel Ocean Model (POP) within the high-resolution
CESM, which scales poorly at high process counts due to inherent communication limitations in the algorithm (Huang et al.,
2016). The existing models struggle to make full use of the new generation of massively parallel HPC systems (Koldunov
et al., 2019). In parallel computing, data exchange introduces additional costs compared to serial computing. As the number
of parallel processes increases, time of computation in each process theoretically decreases in proportion. However, time of
communication in each process is reduced at a slower rate compared to computation or even increases with more processes.
The most common communication in atmospheric and oceanic models is neighborhood communication to exchange data of
local grids in each process with data of neighboring grids in other processes (Wolters, 1992). How to reduce neighborhood
communication cost is a key factor in improving the parallel scalability of models (Ovcharenko et al., 2012).

The point-to-point communication interfaces implemented by send/receive routines in the Message-Passing Interface (MPI)
standard version 1.0 are basic and flexible methods for data exchange (Walker and Dongarra, 1996). They are extensively
utilized for neighborhood communication in atmospheric and oceanic models including the Weather Research and Forecasting
model (WRF) (Biswas et al., 2018), the Model for Prediction Across Scales (MPAS) (Sinkovits and Duda, 2016), Nucleus for
European Modelling of the Ocean (NEMO) (Irrmann et al., 2021), IFS (Mozdzynski et al., 2015), WAve Modeling (WAM)
(Katsafados et al., 2016), Atmospheric General Circulation Models (AGCMs) (Wang et al., 2017), etc. A newly scalable and
informative communication method of the distributed graph topology was provided in the MPI standard version 2.2 (Hoefler
et al., 2011). This topology is capable of generating a new communicator that reorders processes to better match the capabilities
of the underlying hardware (Mirsadeghi et al., 2017). Ghosh et al. (2019) demonstrated speedups of 1.4 to 6 times using the
distributed graph topology (employing up to 16,000 processes) compared to the point-to-point communication method. They

evaluated this approach using a variety of synthetic and real-world communication graph datasets, including random geometric

60

65

70

75

80

85

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

graphs, graph500 R-MAT, stochastic block partitioned graphs, protein k-mer, DNA, CFD, and social networks. To date, the
application of this topology in earth models for communication optimization has been infrequent.

Ocean wave modeling holds significant importance within numerical weather prediction systems, not only for its crucial
role in ship routing and offshore engineering but also due to its climate implications (Yuan et al., 2024). Recently, the National
Marine Environmental Forecasting Center of China (NMEFC) developed the Finite Volume WAve Modeling (FVWAM) based
on the WAM for national operational wave forecasting services. The FVWAM employs a neighboring communication pattern
based on spatially decomposed grid results among multiple processes, a common approach in oceanic and atmospheric models.

Consequently, we implemented neighborhood communication using both the point-to-point communication method and the
distributed graph communication topology in a case study of the FVWAM based on Spherical Centroidal Voronoi Tessellation
(SCVT) grids. The contribution of this paper includes: 1) to the best of the authors’ knowledge, the first application of the
distributed graph communication topology in a global wave model for neighborhood communication; 2) verifying that the
distributed graph topology achieves superior communication performance over the point-to-point communication method in
the case study of the FVWAM,; 3) providing a method for optimizing neighborhood communication in earth models based on
spatial decomposition including both unstructured grids and structured grids.

The remainder of this paper is organized as follows: Section 2 summarizes the related work, including descriptions of
the FVWAM and the distributed graph communication topology. Section 3 introduces the design of the distributed graph
communication topology and the point-to-point communication method. Section 4 presents experimental results, evaluations

of two communication methods, and products of the FVWAM. Finally, the paper concludes in Section 6.

2 Description
2.1 Description of the FVWAM

Ocean waves can be considered as a combination of wave components across a frequency and direction spectrum in geographic
space and time. Their generation, propagation, dissipation, and nonlinear interaction processes are described by a wave action
transport equation with wave propagation and source terms placed on both sides of the equation. A series of spectral wave
models have been developed by numerically solving this wave action transport equation, including the WAM (Group, 1988),
WaveWatchlII (Tolman et al., 2009), and the SWAN (Booij et al., 1999).

Based on the WAM model, the FVWAM developed by the NMEFC is a third-generation spectral wave model based on
the wave action equation 1. In this equation, N stands for wave action, ¢ denotes time, X stands for spatial coordinates,
represents direction and o denotes angular frequency. The left-hand side of Equation 1 accounts for the spatial and intra-spectral
propagation of spectral energy, respectively representing the change of wave action in time, the propagation of wave action in
spatial coordinates, the propagation velocities in spectral space. The source term (S¢,) on the right-hand side of Equation 1
includes wind input, dissipation due to whitecapping, bottom friction, depth-induced wave breaking, and the exchange of wave

action between spectral components due to nonlinear effects.

90

95

100

105

110

115

120

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

ON . 99, S
E‘FV}((XN)-F%(QN)—F%(O’N)— p

)

Compared to the WAM, the FVWAM replaces spherical latitude-longitude grids with SCVT grids to better accommodate
coastal topographic features. For advection in spectral and directional space, the FVWAM employs the same second-order
central differencing method as the WAM. Regarding the integration of source terms, the FVWAM implements the same semi-
implicit integration scheme as adopted in the WAM. The detailed description of the advection and source terms in the WAM
can be referred to the WAMDI GROUP publication (Group, 1988).

Spatial decomposition is employed to partition data in the FVWAM for parallelization. This approach involves dividing
computational tasks across multiple processors or nodes. Data exchange is necessary among neighboring processes for wave
action (N), water depth, and bathymetric gradient in the FVWAM. The most time-consuming communication in the FVWAM
occurs during the exchange of wave action for the integration of advection. N is the only 3D variable in the FVWAM, whose di-
mension size is the total grid count, number of angular frequencies and directions. It is exchanged once in each integration time
step. Therefore, the exchange of N is utilized as a benchmark for evaluating the performance of neighboring communication

in the case study of FVWAM.
2.2 Description of the distributed graph communication topology

The distributed graph communication topology in MPI supports optimizing communication by minimizing communication
costs and enhancing load balance (Mozdzynski et al., 2015) (Traff, 2002). This topology mechanism leverages user-provided
topology information to reorder processes within a new communicator, aligning them more effectively with the underlying
network to achieve higher communication performance (Mirsadeghi et al., 2017). The impact of process ordering on commu-
nication performance is illustrated in Figure 1 and Figure 2. Figure 1 depicts a simple neighborhood communication pattern
among computing processes. The squares represent the processes, the numerals within the squares indicate process IDs (rang-
ing from O to 5), and the dashed arrows signify the communication links between pairs of processes. For instance, Process 0 is
engaged in data exchange with its neighboring Process 1 and Process 3.

Based on the neighborhood communication pattern in Figure 1, assigning two processes to each node can lead to several pro-
cess mapping results among computing nodes, as shown in Figure 2. The squares represent computing nodes, and the numerals
within the squares denote the process IDs. There are four bi-directional communication links among three computing nodes in
Figure 2(a) and Figure 2(b), and seven bi-directional communication links among three computing nodes in Figure 2(c). The
process mapping topology in Figure 2(c) is the least efficient and most time-consuming among the presented mapping results. It
exists a communication hotspot with four communication links in the node housing Process 1 and Process 4 in Figure 2(b). The
node containing Process 3 and Process 4 in Figure 2(a) has a maximum of three communication links, thus the process mapping
result in Figure 2(a) is the most effective. These differing process mapping results can influence communication performance
and the parallel scalability of applications. The distributed graph communication topology in MPI is capable of optimizing the

mapping of computing processes in accordance with the underlying network and the communication pattern specified by users.

125

130

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

0 le——— > 1 |le—— > 2

3 |le———>» 4 |e——— > 5

Figure 1. An example of neighborhood communication pattern

0,1
l— — —
1,2 1,4
0,1 (— — — > 2,5 0,3 2,5 0,4 — = — 1,5
, 5
N < / X ¥ / X » /f
o\ \"» /o o\ \» /v /o o\ N /v /o
[N \ Vs e\ Ny ECEN Ny v
4« K 4 A V4 LYd
3,4 1,4 2,3
(a) The best mapping result (b) The second best mapping result (c) The worst mapping result

Figure 2. Process mapping results

This is the advantage for the distributed graph communication topology to achieve high performance. However, the trade-off
associated with the distributed graph communication topology is the necessity to create the graph communication topology and
allocate all communication data buffers before commencing communication. In contrast to the point-to-point communication
method, users can neither specify the order of neighboring processes to send/receive data, nor they can reuse the same data

buffer for multiple send/receive data with different neighboring processes in the distributed graph communication topology.

3 Design
3.1 Distributed graph communication topology

The workflow to create a distributed graph communication topology based on SCVT grids is delineated in Figure 3. Initially,
the global SCVT grids are decomposed by partitioning tools in accordance with the number of computing processes. A simple
partitioning result of the global SCVT sea grids into three partitions is shown in Figure 3(a). The three partitions are separately
colored in green, blue, and purple. The partitioning result includes the mapping relationship between each grid ID and its

corresponding process ID.

135

140

145

150

155

160

165

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

Subsequently, each process ascertains its receiving process IDs and grid IDs based on the partitioning result in Figure 3(a)
and neighboring grid and process information in Figure 3(b). The variable of CellsonCell in the SCVT grid file discloses neigh-
boring grid IDs for each grid. For instance, the neighboring grid IDs for the grid cell C; are the grid cells (C2 3,4.8,9,11). The
green grid cells (Cy 2 3,4) are assigned to Process Py, while the blue grid cells (Cg 9.11) are assigned to Process P;. The red line
denotes the boundary separating the grid cells allocated to Processes Py and Py, while the orange line delineates the communi-
cation boundary for Process Py. The grid cells situated between the red local grid boundary line and the orange communication
boundary line comprise the receiving grid cells for Process Py. We can derive all receiving grid IDs by identifying all neigh-
boring grid IDs of each process’s local grids and then excluding the local grid IDs from these neighboring grid IDs. Utilizing
the mapping relationship between each grid ID and its responding process ID, the receiving process IDs can be inferred from
the receiving grid IDs.

Thirdly, the sending process IDs and the sending grid IDs can be deduced from the receiving process IDs and the receiving
grid IDs conforming to the reciprocity inherent to paired sending and receiving operations. A distributed graph communication
topology can be established by calling the MPI interface with reference to the sending and receiving process IDs and their
associated degrees in Figure 3(c). The sending degree represents the total count of sending process IDs, and the receiving
degree denotes the total count of receiving process IDs. The sending and receiving grid IDs are used as indices for exchanging
data in the distributed graph communication topology.

The method to create a distributed graph communication topology and implement data exchange is delineated in Figure 4.
In step 1, a multilevel partitioning scheme provided by METIS (Karypis and Kumar, 1997) is employed for the partitioning of
the global SCVT grids. The METIS tool is compatible with both structured and unstructured grids and has been extensively
utilized in various models, including MPAS (Heinzeller et al., 2016), WAVE WATCH III (WW3) (Abdolali et al., 2020), Finite
Volume Coastal Ocean Model (FVCOM) (Cowles, 2008), etc. For the utilization of METIS, it is requisite to provide the total
number of grids, the total number of edges between two neighboring grids, and neighboring grid IDs for each grid as inputs.
The total number of grids is represented by the scalar variable of nCells, the total number of edges is represented by the scalar
variable of nEdges, and the neighboring grid IDs are denoted by the two-dimensional variable of cellsOnCell, excluding invalid
edges present in the SCVT grid file.

In step 2, the method to search receiving grid IDs is executed within a nested two-level loop structure. The external loop
is sequential to traverse all local grid IDs from the lowest to highest value. The internal loop executes a sequential search for
all neighboring grid IDs of each local grid ID using cellsOnCell(c, i). ¢ represents the current grid ID, i indicates the index of
edges for the grid ID c, and cellsOnCell(c, i) denotes the neighboring grid IDs of the grid ID c. If the neighboring process ID
differs from the current process ID, then cellsOnCell(c,i) is identified as one of receiving grid IDs for the current process ID.
Based on all receiving grid IDs, the receiving process IDs can be ascertained through the mapping relationship between each
grid ID and its corresponding process ID, which is determined in Step 1.

The order of receiving grids becomes disordered after Step 2. These grids are sorted in Step 3 to ensure the continuity of
data exchange with neighboring processes and to enhance the cache hit rate for improving performance. The sorting procedure

must fulfill two criteria. First, the receiving grid IDs from the same receiving process ID should be arranged continuously and

170

175

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

Po
Determine receiving processes and grids

v

Local grid boundary line

{a) Sea grid partitioning result (b) Neighboring grid and process information
Determine sending processes and grids | Create the distributed graph communication topology

COSIISCOSIINCO
SIS S SIS 0

Sending degree=1 Sending degree=2 Sending degree=1
Receiving degree=1 Receiving degree=2 Receiving degree=1

(c) A schematic diagram of the distributed graph communication topology

Figure 3. The workflow to create a distributed graph communication topology

sorted in ascending order based on the receiving process IDs. Second, the receiving grid IDs from the same process ID need
to be sequenced from the lowest to the highest value. The quicksort method is employed to sort the receiving grid IDs that are
located in the same receiving process ID.

In step 4, sending grid IDs and sending process IDs are ascertained by the primary process Pg. This is achieved by collecting
the receiving grid IDs and receiving process IDs from the other processes, and subsequently disseminating the results to all
processes. Initially, each process sends its receiving process IDs and receiving grid IDs to the process Py. Subsequently, the
process Py determines the sending process IDs using the rationale that the process which sends the receiving process ID to the
process Py is the sending process ID for this process. Because the receiving process IDs have been sorted in Step 3 and the
searching process is sequential, we only need to store the identified process IDs in sequence without the requirement for further

sorting. Third, the process Py scatters these sending process IDs to the corresponding processes. Finally, the sending grid IDs

180

185

190

195

200

205

210

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

within the sending process are identical to the receiving grid IDs in the receiving process. The procedure to collect and scatter
sending grid IDs is analogous to that used for sending process IDs.

In Step 5, based on the receiving process IDs in Step 2 and the sending process IDs in Step 4, the distributed graph communi-
cation topology is created by calling the MPI interface of MPI_DIST_GRAPH_CREATE_ADJACENT (sources, destinations,
reorder, comm_dist_graph, ...). sources represents the array of receiving process IDs, destinations denotes the array of sending
process IDs. The parameter of comm_dist_graph represents the new communicator endowed with the distributed graph topol-
ogy, which is subsequently used for neighboring communication. The parameter of reorder is of boolean type. When it is true,
this interface reorders the process IDs within comm_dist_graph for optimizing communication based on receiving process IDs,
sending process IDs, and network hardware structure. When it is false, the process IDs in comm_dist_graph preserve the same
process order before creating the distributed graph communication topology.

In step 6, neighboring data exchange is executed by calling the MPI distributed graph communication interface MPI_-
NEIGHBOR_ALLTOALLV (sendbuf, recvbuf, comm_dist_graph, ...). The parameter sendbuf denotes the data buffer corre-
sponding to the sending grid IDs in Step 4, and recvbuf represents the data buffer corresponding to the receiving grid IDs in
Step 3. The parameter comm_dist_graph is the communicator created in Step 5. This interface completes all the sending and
receiving operations in a single function call. Data sent to different processes are stored contiguously in sendbuf following
the order of sending processes as listed in destinations in Step 5. Similarly, data received from different processes are stored
contiguously in recvbuf according to the order of receiving processes as specified in sources in Step 5. Compared to sending
and receiving operations implemented by users through calling multiple send/receive MPI interfaces, the MPI distributed graph
communication topology is more user-friendly and efficient, significantly reducing the risk of deadlocks that could arise from

improper use of multiple send/receive operations.
3.2 Point-to-point communication method

A common approach to using the point-to-point communication method for neighboring communication is depicted in Figure 5.
The procedure to ascertain ordered arrays of receiving grid IDs, receiving process IDs, sending grid IDs, and sending process
IDs, is the same as Step 1-4 of the distributed graph communication topology presented in Figure 4.

To avoid communication deadlocks, the FVWAM initiates non-blocking receiving operations before commencing sending
operations in Step 5 as the MPAS (Heinzeller et al., 2016) and the NEMO (Epicoco et al., 2011). Each process executes
receiving operations to receive data from the corresponding receiving processes. These receiving operations are implemented
by repeatedly calling the MPI interface MPI_irecv (recvbuf, source,...). The parameter of recvbuf represents the data buffer
associated with the receiving grid IDs from a single receiving process, and the parameter of source denotes the single receiving
process ID. The frequency of calling the MPI_irecv interface is determined by the count of receiving process IDs for each
process. This interface returns immediately and does not necessitate waiting for the completion of the receiving operation.

In step 6, each process calls the MPI interface mpi_send (sendbuf, destination) to send data to the sending processes. The
parameter of sendbuf is designated for storing data corresponding to the sending grid IDs, and the parameter of destination

indicates a single sending process ID. The mpi_send is a blocking communication interface that concludes after the sending

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

Stepl: Grid partitioning with the METIS tool

Result 1: Mapping relationship between each
grid ID and its corresponding process 1D

Step2: Search receiving grid IDs and receiving
process IDs with the sequential search method

Result 2: The array of receiving grid IDs and
sending process 1Ds for each process

Step3: Sort receiving grid 1Ds with the quicksort
method

Result 3: The array of sorted receiving grid IDs

Step4: Ascertain sending grid IDs and sending
process IDs with collective communications

Result 4: The array of sorted sending grid IDs and
sending process IDs

Step5: Create a distributed graph communication
topology through the corresponding MPI interface

Result 5: A distributed graph communication
topology
|

Step6: Implement data exchange through the
distributed graph communication topology

Figure 4. Implement data exchange with the distributed graph communication topology

operation is completed. An alternative is to call the non-blocking communication interface MPI_Isend for sending data, but it

is infrequently utilized due to the increased complexity that introduces to the sending operation.

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U
© Author(s) 2024. CC BY 4.0 License. Sp here

Stepl-4: Same to Stepl-4 in Figure 4

Result 1-4: Arrays of ordered receiving grid IDs, receiving
process IDs, sending grid IDs, and sending process IDs

Loop 1: The loop size is
the count of receiving process IDs

Result 5: A receiving

Loop 1 is completed operation is launched

Loop 1 is continuing

Step5: Receiving data from a single process with the
MPI point-to-point receiving interface

Loop 2: The loop size is
the count of sending process 1Ds

Result 6: A sending

Loop 2 is completed operation is completed

Loop 2 is continuing

Step6: Sending data to a single process with the MPI
point-to-point sending interface

Figure 5. Implement data exchange with the point-to-point communication method

10

215

220

225

230

235

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

Table 1. Software and hardware environment

Name Version
CPU Intel(R) Xeon(R) Gold 6258R CPU 2.70GHz
Memory 196GB
Hardware Architecture X86_64
Operating System Linux 3.10.0
Compiler Mpiifort version 2021.6.0
Compiling Option -03
MPI Intel(R) MPI Library 2021.6.0

4 Experiment
4.1 Experiment environment and configuration

The experiments were conducted on the cluster of the National Supercomputing Center of China in Jinan. The software and
hardware environment in the test is presented in Table 1.

In the FVWAM configuration, the grid resolution is global 1/12°, the count of horizontal grids is 6160386, the count of
the directional spectrum is 36, and the count of the frequency spectrum is 35. The execution time was calculated by calling
the Fortran intrinsic function of system_clock. The parameter of system_clock is defined as a double-precision integer, and its
time-counting frequency is 10° per second.

We performed a series of tests on the FVWAM using different numbers of computing processes, ranging from 512 to
32,768, to evaluate and compare the efficiency between the point-to-point communication method and the distributed graph
communication topology. Regarding the distributed graph communication topology, two distinct modes were evaluated: one

with reordered processes and another without reordered processes.
4.2 Communication performance results

The time step of iterative computation in the test was 60 seconds, and the forecasting period was one hour. Each iteration
involved a single neighboring communication for a 3D variable of wave action (N). The total times of neighboring communi-
cation for N during the test was 60. For an equivalent number of processes, the exchanged data and the number of neighboring
processes for each process were consistent in both the point-to-point communication method and the distributed graph com-
munication topology. The time of neighboring communication using these two methods is illustrated in Figure 6. The color
bar represents the average communication time across all processes, the upper line of the error bar (I) indicates the maximum
communication time, and the lower line of the error bar (I) signifies the minimum communication time.

The maximum communication time is a critical factor influencing the performance of the FVWAM model. In comparison

to the maximum communication time, the distributed graph communication topology with reordered processes and without

11

240

245

250

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

400 ~
350
—— Maximum
1 Average
300 + —L Minimum

250

Time
(Seconds)
N
8

150 I

100

50

I I I a
I i I1I If Pom @aw
T T T T T T T
512 1024 2048 4096 8192 16384 32768
Number of processes
Point-to-point communication method
Distributed graph communication topoloty without reordered processes
Distributed graph communication topoloty with reordered processes

Figure 6. Time of neighborhood communication

reordered processes, achieved better performance than the point-to-point communication method, particularly when the count
of processes is low. For instance, at a scale of 512 processes, the point-to-point communication method required 348.37 seconds
for the maximum communication. In contrast, the distributed graph communication topology with reordered processes took
97.41 seconds, and the distributed graph communication topology without reordered processes exhibited 100.24 seconds.
Regarding the average communication time and the minimum communication time, the distributed graph communication
topology with reordered processes and without reordered processes also demonstrated higher communication bandwidth than
the point-to-point communication method. The test results indicate that the distributed graph communication topology can im-
prove communication performance, compared to the point-to-point communication method which is prevalent in earth models.
In comparison of the distributed graph communication topology with reordered processes and without reordered processes,
both modes exhibited similar performance levels. However, in the majority of test cases, the performance of the communication
topology with reordered processes was slightly better than the communication topology without reordered processes. For
instance, with 512, 1024, 8192, 16384, and 32768 processes, the distributed graph communication topology with reordered
processes required less average and maximum communication time than the topology without reordered processes. Conversely,
with 2048 and 4096 processes, the distributed graph communication topology with reordered processes took more average and
maximum communication time than the topology without reordered processes. The results demonstrate that the distributed
graph communication topology with reordered processes does not consistently improve communication performance compared

to the topology without reordered processes.

12

255

260

265

270

275

280

285

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

The maximum and average communication times are more critical factors than the minimum communication time for as-
sessing the performance of various communication methods. Based on the maximum and average communication times of
the point-to-point communication method, we calculated the speedup ratio for the distributed graph communication topology
in Figure 7. Regarding the average time speedup ratio, the performance gap between the distributed graph communication
topology and the point-to-point communication method narrows with an increasing number of processes. For instance, at 512
processes, the average time speedup between the distributed graph communication topology with reordered processes and the
point-to-point communication method is the highest recorded in the test, yielding a value of 5.63. Two key reasons contribute to
this result: First, as the number of processes increases, the volume of exchanged data decreases, thereby reducing the speedup
ratio achieved by the distributed graph communication topology. Second, received data are continuously searched and inserted
into wave action (N) at once in the distributed graph communication topology, which can improve cache hit rates. In contrast,
received data are processed separately at times of the point-to-point receiving operations in the point-to-point communication
method.

The trend for the maximum time speedup ratio is similar to that of the average time speedup ratio, except at 1024 processes,
where the maximum time speedup ratio is marginally higher than at 512 processes. The count of neighboring communication
processes on one process may expand as the number of processes rises. This potential increase in communication overhead
could explain the improved speedup ratio at 1024 processes compared to 512 processes.

Throughout all tests with 512 to 32,768 processes, compared to the point-to-point method, the time speedup observed with
ordered processes and without ordered processes ranged from 1.28 to 5.63. The results substantiate that the distributed graph
communication topology can significantly enhance communication efficiency. This improvement is particularly notable when

the volume of communication data is high and the number of computing processes is relatively small.
4.3 Performance evaluation of the FVWAM

The FVWAM was evaluated over a one-hour forecasting period, during which we measured the communication and computa-
tion time excluding the initialization operations and I/O costs. The maximum communication and computation time across all
processes is shown in Figure 8(a), and the average communication and computation time is depicted in Figure 8(b). A propor-
tional reduction in computation time was observed with the increase in the number of processes. The computation times using
both the distributed graph communication topology and the point-to-point method were nearly identical at the same number of
computing processes, indicating that the computing resources utilized in the tests remained stable.

The communication time with the point-to-point communication method decreased as the process count rose from 512 to
32,768, but it declined slower than the computation time. The communication time with the distributed graph communication
topology reduced from 512 to 4096 processes, but exhibited fluctuations from 4096 to 32,768 processes. These fluctuations
may be attributed to an imbalance in computing load, resulting in fluctuated waiting time during communication. The average
communication of the point-to-point communication method accounted for 52.17% to 79.3% of the runtime, with the number of

computing processes increasing from 512 to 32,768. In contrast, the distributed graph communication topology with reordered

13

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

Speedup Ratio

0 T T T T T T T
512 1024 2048 4096 8192 16384 32768

Number of Processes

—=— Maximum time speedup between the graph communication topology without reordered processes and the point-to-point communication
— = Maximum time speedup between the graph communication topology with reordered processes and the point-to-point communication

— 4 Average time speedup between the graph communication topology without reordered processes and the point-to-point communication
—v— Average time speedup between the graph communication topology with reordered processes and the point-to-point communication

Figure 7. Speedup ratio of neighborhood communication

B00 —{ oo 600 4[]

400 oo —~400 | |
Ol 2 m
es |0 2 £
F 2 F o
o ")
200 200 -
0 T T 0 T T
512 1024 2048 4096 8192 16384 32768 512 1024 2048 4096 8192 16384 32768
Number of computing processes Number of computing processes
Computation time with the point-to-point communication method
Communication time with the point-to-point communication method
Computation time with the distributed graph communication topology without reordered processes
Communication time with the distributed graph communication topology without reordered processes|
Computation time with the distributed graph communication topology with reordered processes
Communication time with the distributed graph communication topology with reordered processes
Figure 8. (a) Maximum communication and computation time (b) Average communication and computation time

processes consumed 15.23% to 72.47% of the runtime over the same range of computing processes. These results underscore

that minimizing communication costs is critical to enhancing the scalability of parallel computing models.

14

290

295

300

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

1.7 §

1.6 1

Speedup Ratio
P =
S (4]

=
w
1

1.2 1

11

T T T T T T T
512 1024 2048 4096 8192 16384 32768
Number of Processes

—a&— Maximum runtime speedup of the FVWAM between the graph communication topology without reordered processes and the point-to-point communication
~—e— Maximum runtime speedup of the FVWAM between the graph 1 topology with and the p to-p

—4— Average runtime speedup of the FVWAM between the graph communication topology without reordered pi and the p point

—v— Average runtime speedup of the FVWAM between the graph ion topology with reordered processes and the point-to-point communication

Figure 9. Speedup ratio of the FVWAM with various communication methods

We employed the runtime of the FVWAM with the point-to-point communication method as the baseline to calculate the
speedup of the model with the distributed graph communication topology, as illustrated in Figure 9. The maximum runtime
refers to the actual runtime of the FVWAM excluding I/O and initialization operations. Compared to the point-to-point com-
munication method, the speedup ratios for both the maximum and average runtimes of the FVWAM with the distributed graph
communication topology demonstrate a decreasing trend from 1.65 to 1.21. At 512 and 1,024 processes, the speedup ratio for
the maximum runtime was 1.65 when contrasting the distributed graph communication topology with reordered processes and
the point-to-point communication method. In comparison to the point-to-point method, the minimal speedup ratio for the max-
imum runtime of the distributed graph communication topology without reordered processes was 1.21 at 32,768 processes in
all tests. This indicates that the distributed graph communication topology both with reordered processes and without reordered
processes can improve the performance of the model compared to the point-to-point communication method.

In the daily operational context of the FVWAM, 1,024 processes are utilized as the standard computational scale by the
NMEEFC. By adopting the distributed graph communication topology with reordered processes at this operational computing
scale, there is a potential reduction in the iterative runtime of the FVWAM by 40.2% compared to the point-to-point method.
This constitutes a substantial enhancement for the operational global wave forecasting service provided by the FVWAM at the

NMEFC.

15

305

310

315

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

FVWAM: 2024-04-15 ¢ - FVWAM: 2024-04-16 00 . FVWAM: 2024-04-17_00

Figure 10. Significant wave height products of the FVWAM

4.4 Operational products of the FVWAM

The FVWAM with a global resolution of 1/12° is utilized to daily produce the 7-day forecasts for the significant wave height,
wave period, and wave direction at the NMEFC. Among these products, significant wave height is deemed the most crucial
for the mitigation of wave-related disasters. Figure 10 illustrates the actual operational forecast products for significant wave
height at 00:00 UTC+8 from April 15 to April 20, 2024. The measurement unit for significant wave height is meters. Fore-
casters disseminate these FVWAM products along with recommendations for wave disaster mitigation to the public, maritime

transporters, and personnel on ocean platforms to enhance their safety and preparedness.

5 Conclusions

In this study, we implemented and compared the point-to-point communication method and the distributed graph communi-
cation topology, utilizing the FVWAM as the case study. The test results led us to conclude that: 1) The distributed graph
communication topology is more efficient than the point-to-point communication method, which is extensively utilized in
earth models, particularly when the number of processes is relatively low. In most cases, the distributed graph communication
topology with reordered processes outperforms the communication topology without reordered processes, although the perfor-
mance gap is modest. 2) Communication cost is a critical factor for the scalability of parallel computing models. Applying the
distributed graph communication topology can significantly enhance the overall performance of the FVWAM, which is crucial

for operational early warning of waves and can be used for communication optimization of other earth models.

16

320

325

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

Code and data availability. The source codes of three versions of the FVWAM using in the case study of this paper are avail-
able at https://github.com/victor-888888/fvwam. The datasets and source codes related to this paper are available via ZENODO at
https://zenodo.org/doi/10.5281/zenodo.13325957.

Author contributions. FY, YY planned the project. RP, FY, YG and ZG developed the software design. RP, YG, YY and ZG implemented
the code. RP conducted all performance measurements. RP, YG and LY analyzed the performance measurements. RP, YG wrote the paper,

FY, YY LY and ZG reviewed and revised the paper.
Competing interests. The contact author has declared that none of the authors has any competing interests.

Acknowledgements. This research was supported by the National Key Research and Development Program of China (Grant No.
2023YFC3107801).

17

330

335

340

345

350

355

360

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

References

Abdolali, A., Roland, A., Van Der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T. J., Smith, J. M., and Sikiric, M. D.: Large-scale
hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model,
Coastal Engineering, 157, 103 656, 2020.

Alizadeh, O.: Advances and challenges in climate modeling, Climatic Change, 170, 18, 2022.

Biswas, M. K., Carson, L., Newman, K., Stark, D., Kalina, E., Grell, E., and Frimel, J.: Community HWRF users’ guide v4.0a, NCAR:
Boulder, CO, USA, 2018.

Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, Journal
of geophysical research: Oceans, 104, 7649-7666, 1999.

Chassignet, E. P. and Xu, X.: Impact of horizontal resolution (1/12 to 1/50) on Gulf Stream separation, penetration, and variability, Journal
of Physical Oceanography, 47, 1999-2021, 2017.

Cowles, G. W.: Parallelization of the FVCOM coastal ocean model, The International Journal of High Performance Computing Applications,
22, 177-193, 2008.

Epicoco, L., Mocavero, S., and Aloisio, G.: The nemo oceanic model: Computational performance analysis and optimization, in: 2011 IEEE
International Conference on High Performance Computing and Communications, pp. 382-388, IEEE, 2011.

Ghosh, S., Halappanavar, M., Kalyanaraman, A., Khan, A., and Gebremedhin, A. H.: Exploring MPI communication models for graph
applications using graph matching as a case study, in: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp.- 761-770, IEEE, 2019.

Group, T. W.: The WAM modelatA third generation ocean wave prediction model, Journal of physical oceanography, 18, 1775-1810, 1988.

Gu, J.,, Feng, J., Hao, X., Fang, T., Zhao, C., An, H., Chen, J., Xu, M., Li, J., Han, W, et al.: Establishing a non-hydrostatic global atmospheric
modeling system at 3-km horizontal resolution with aerosol feedbacks on the Sunway supercomputer of China, Science Bulletin, 67,
1170-1181, 2022.

Heinzeller, D., Duda, M. G., and Kunstmann, H.: Towards convection-resolving, global atmospheric simulations with the Model for Predic-
tion Across Scales (MPAS) v3. 1: An extreme scaling experiment, Geoscientific Model Development, 9, 77-110, 2016.

Hoefler, T., Rabenseifner, R., Ritzdorf, H., de Supinski, B. R., Thakur, R., and Tréff, J. L.: The scalable process topology interface of MPI
2.2, Concurrency and Computation: Practice and Experience, 23, 293-310, 2011.

Huang, X., Tang, Q., Tseng, Y., Hu, Y., Baker, A. H., Bryan, F. O., Dennis, J., Fu, H., and Yang, G.: P-CSI v1. 0, an accelerated barotropic
solver for the high-resolution ocean model component in the Community Earth System Model v2. 0, Geoscientific Model Development,
9, 4209-4225, 2016.

Irrmann, G., Masson, S., Maisonnave, E., Guibert, D., and Raffin, E.: Improve Ocean Modelling Software NEMO 4.0 benchmarking and
communication efficiency, Geosci. Model Dev. Discuss, 2021.

Karypis, G. and Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-
reducing orderings of sparse matrices, 1997.

Katsafados, P., Papadopoulos, A., Korres, G., and Varlas, G.: A fully coupled atmosphere—ocean wave modeling system for the Mediterranean
Sea: interactions and sensitivity to the resolved scales and mechanisms, Geoscientific Model Development, 9, 161-173, 2016.

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T.: Scalability and some optimization of the
Finite-volumE Sea ice—Ocean Model, Version 2.0 (FESOM2), Geoscientific Model Development, 12, 39914012, 2019.

18

365

370

375

380

385

390

395

https://doi.org/10.5194/egusphere-2024-2515
Preprint. Discussion started: 7 October 2024 EG U h
© Author(s) 2024. CC BY 4.0 License. spnere

Mirsadeghi, S. H., Traff, J. L., Balaji, P., and Afsahi, A.: Exploiting common neighborhoods to optimize MPI neighborhood collectives, in:
2017 IEEE 24th international conference on high performance computing (HiPC), pp. 348-357, IEEE, 2017.

Monbaliu, J., Padilla-Hernandez, R., Hargreaves, J. C., Albiach, J. C. C., Luo, W., Sclavo, M., and Guenther, H.: The spectral wave model,
WAM, adapted for applications with high spatial resolution, Coastal engineering, 41, 41-62, 2000.

Mozdzynski, G., Hamrud, M., and Wedi, N.: A partitioned global address space implementation of the European centre for medium range
weather forecasts integrated forecasting system, The International Journal of High Performance Computing Applications, 29, 261-273,
2015.

Ovcharenko, A., Ibanez, D., Delalondre, F., Sahni, O., Jansen, K. E., Carothers, C. D., and Shephard, M. S.: Neighborhood communication
paradigm to increase scalability in large-scale dynamic scientific applications, Parallel Computing, 38, 140-156, 2012.

Palmer, T.: Stochastic weather and climate models, Nature Reviews Physics, 1, 463—471, 2019.

Sinkovits, R. S. and Duda, M. G.: Optimization and parallel load balancing of the MPAS Atmosphere Weather and Climate Code, in:
Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale, pp. 1-6, 2016.

Su, Z., Wang, J., Klein, P., Thompson, A. F., and Menemenlis, D.: Ocean submesoscales as a key component of the global heat budget,
Nature communications, 9, 775, 2018.

Sukhija, N., Bautista, E., Butz, D., and Whitney, C.: Towards anomaly detection for monitoring power consumption in HPC facilities, in:
Proceedings of the 14th International Conference on Management of Digital EcoSystems, pp. 1-8, 2022.

Tolman, H. L. et al.: User manual and system documentation of WAVEWATCH III TM version 3.14, Technical note, MMAB contribution,
276, 2009.

Traff, J. L.: Implementing the MPI process topology mechanism, in: SC’02: Proceedings of the 2002 ACM/IEEE Conference on Supercom-
puting, pp. 28-28, IEEE, 2002.

Walker, D. W. and Dongarra, J. J.: MPI: a standard message passing interface, Supercomputer, 12, 56-68, 1996.

Wang, Y., Jiang, J., Zhang, H., Dong, X., Wang, L., Ranjan, R., and Zomaya, A. Y.: A scalable parallel algorithm for atmospheric general
circulation models on a multi-core cluster, Future Generation Computer Systems, 72, 1-10, 2017.

Wedi, N. P, Polichtchouk, I., Dueben, P., Anantharaj, V. G., Bauer, P., Boussetta, S., Browne, P., Deconinck, W., Gaudin, W., Hadade, I.,
et al.: A baseline for global weather and climate simulations at 1 km resolution, Journal of Advances in Modeling Earth Systems, 12,
€2020MS002 192, 2020.

Wolters, L.: Atmosphere and Ocean Circulation Simulation on Massively Parallel Computers, in: Proc of the Seventh International Workshop
on the Use of Supercomputers in Theoretical Science, 1992.

Yuan, Y., Yu, F, Chen, Z., Li, X., Hou, F,, Gao, Y., Gao, Z., and Pang, R.: Towards a real-time modeling of global ocean waves by the fully
GPU-accelerated spectral wave model WAM6-GPU, EGUsphere, 2024, 1-20, 2024.

Zhang, S., Xu, S., Fu, H., Wu, L., Liu, Z., Gao, Y., Zhao, C., Wan, W., Wan, L., Lu, H., et al.: Toward Earth system modeling with resolved

clouds and ocean submesoscales on heterogeneous many-core HPCs, National Science Review, 10, nwad069, 2023.

19

