
Dear Reviewer,

We would like to sincerely thank you for your thorough and constructive

review of our manuscript (An Effective Communication Topology for

Performance Optimization: A Case Study of the Finite Volume WAve

Modeling (FVWAM)). Your insightful comments have been invaluable

in improving the quality of our work. Please find below our detailed

responses to each of the comments you raised.

Sincerely,

Renbo PANG, on behalf of the co-authors

This paper describes implementation and performance benchmarks of

neighborhood exchanges in the FVWAM model. It compares the

performance of a standard implementation of halo exchanges based on

point-to-point communication with the performance of an implementation

based on MPI distributed graph topology interface and neighborhood

collectives. Using the distributed graph topology interface, the authors

obtained a maximum communication time speed-up of 5.63 and 40.2%

reduction in the total FVWAM run time with 1,024 processes. This is an

interesting and significant result, especially because the use of the

https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2515/
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2515/
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2515/


distributed graph topology interface and neighborhood collectives is not

common in earth system models. I believe the article is suitable for GMD

after my comments are addressed.

Reply：Thank you very much for your positive comments!

Specific comments 1: In section 2.2 the authors describe potential

benefits of using the MPI distributed topology interface and present its

ability to optimize process mappings as its main advantage. However, the

benchmark results of FVWAM show that, while using this interface

provides consistent speedups over the point-to-point implementation,

setting the reorder flag has only minor performance impacts. What is

then the main reason for the observed speedups? Can section 2.2 be

expanded to discuss other potential performance benefits ?

Reply： The original process order is determined by the partitioning

scheme of METIS, as described in Lines 150-157. METIS optimizes the

process ordering by placing neighboring process IDs together. The MPI

implementation then allocates processes across computing nodes

according to the ascending order of these process IDs. As a result, the

communication performance shows only minor improvements when the

reorder flag is set. However, if we were to manually or randomly arrange



the process order instead of using the METIS partitioning result, we

believe that the communication performance would improve significantly

when the reorder flag is set.

Multiple calls to the point-to-point interface for exchanging data among

different processes can lead to unfavorable side effects, such as load

imbalance and unpredictable wait times during connection establishment

(Torsten et al., 2002). The MPI distributed topology interface optimizes

connection management (Torsten et al., 2002). This optimization is

independent of whether the reorder flag is set to true or false. We have

included this additional information in Section 2.2 to further clarify the

benefits of using the MPI distributed topology interface.

Specific comments 2: The presentation of the distributed graph topology

workflow in section 3.1 could be improved. The first three paragraphs,

related to Figure 3, describe the process of creating MPI graph topology

starting from domain partitioning. Most of this material is then repeated

in subsequent paragraphs, which pertain to Figure 4. If the authors’

intention was to first present the workflow at a high level and then go into

details specific to FVWAM this needs to be clearly stated and better

organized to remove some of the repetition.



Reply：Thank you for your valuable recommendation to improve Section

3.1! The first three paragraphs (Lines 128-148), which relate to Figure 3,

have been summarized at a higher level as follows:

The workflow to create a distributed graph communication topology

based on SCVT cells is shown in Figure 3. Initially, the global SCVT

cells are partitioned according to the number of computing processes. A

simple partitioning result of the global SCVT sea cells into three

partitions is illustrated in Figure 3(a), with each partition colored green,

blue, and purple, respectively.

Next, each process determines its receiving processes and cells based on

the partitioning result in Figure 3(a) and the neighboring cell and process

information in Figure 3(b). The red line denotes the boundary separating

the cells allocated to Processes P0 and P1, while the orange line delineates

the communication boundary for Process P0. The cells situated between

the red local cell boundary line and the orange communication boundary

line comprise the receiving cells for Process P0.

Finally, a distributed graph communication topology is created by calling

the MPI interface with the sending and receiving process IDs and their

respective degrees, as shown in Figure 3(c). The sending degree



corresponds to the total number of sending processes, and the receiving

degree represents the total number of receiving processes.

Figure 3. The workflow to create a distributed graph communication

topology

Specific comments 3: Are the results of both communication mechanisms

bit-for-bit identical ? How was the correctness of the implementation

verified ?

Reply：Yes, the results of both communication mechanisms are bit-for-bit

identical. To verify this, we compared key variables of significant wave



height, wave period, and wave direction in the output files generated by

both mechanisms. No differences were observed, confirming the

correctness of the implementation. We have included this verification of

correctness between the point-to-point communication interface and the

distributed graph topology interface in “Section 4.4 the operational

products of FVWAM”.

Specific comments 4: All of the paper performance results were obtained

using Intel MPI on one computing system. I imagine that the performance

of a high-level interface like the distributed graph topology can strongly

depend on the quality of implementation of the underlying MPI library. At

minimum, this should be discussed, but showing results using a different

MPI implementation would be a great addition to the paper. Do the

authors expect that their results would generalize to other platforms ?

Reply ： Thank you for your valuable recommendation to compare

different communication methods across multiple MPI libraries. Due to

the expiration of our rental contract for the high-performance computing

system at the National Supercomputing Center of China in Jinan, we are

currently unable to conduct additional experiments at the same scale

(32,678 CPU cores) with different MPI implementations. However, we

conducted smaller-scale tests in the West Pacific region using both Intel



MPI Library and Open MPI Library on a different platform. The results

indicate that the performance of the distributed graph topology is indeed

strongly dependent on the quality of the underlying MPI library

implementation.

The software and hardware environment for the first set of tests is

presented in Table 1.

Tab.1 Software and hardware environment

The cell resolution is 6-12 km, covering the region from 95° E to 145° E

and 0° N to 40° N. The number of horizontal cells is 283,517, the count

of the directional spectrum is 36, and the count of the frequency spectrum

is 35. The time step of iterative computation in the test was 60 seconds,

and the forecasting period was one hour. Each iteration involved a single

neighboring communication for a 3D variable of wave action N. The total

times of neighboring communication for N during the test was 60.

Name Version
CPU Intel(R) Xeon(R) E5-2680 v4 @ 2.40GHz (28 cores per node)

Memory 128GB
Hardware Architecture X86_64

Network Infiniband (100Gb/s)
Operating System Red Hat Enterprise 7.6

Compiler Ifort 17.0.3
Compilation Options -O3

MPI Intel(R) MPI Library 2017.3.191
NetCDF NetCDF-Fortran 4.5.3



We performed a series of tests on the FVWAM using different numbers of

computing processes, ranging from 8 to 512 (28 processes per node), to

evaluate and compare the efficiency of the point-to-point communication

method versus the distributed graph communication topology in the Intel

MPI Library, as shown in Figure 10. For intra-node communication with

8 and 16 processes, the performance of both communication methods was

similar. However, for inter-node communication, the distributed graph

communication topology significantly outperformed the point-to-point

method.

Figure 10. Time of neighborhood communication in the Intel MPI Library



The software and hardware environment for the second set of tests is

presented in Table 2.

Tab.2 Software and hardware environment

The model configuration in this test is the same as the first test. The

results of the FVWAM using different numbers of computing processes,

ranging from 8 to 512 (28 processes per node), are shown in Figure 11 to

evaluate and compare the efficiency of the point-to-point communication

method versus the distributed graph communication topology in the Open

MPI Library. The performance gap between the two methods was smaller,

and there was no noticeable performance improvement in intra-node

communication (with 8 or 16 processes) when using the Open MPI

Library, compared to the Intel MPI Library.

Name Version
CPU Intel(R) Xeon(R) E5-2680 v4 @ 2.40GHz (28 cores per node)

Memory 128GB
Hardware Architecture X86_64

Network Infiniband (100Gb/s)
Operating System Red Hat Enterprise 7.6

Compiler GNU Fortran 10.2.0
Compilation Options -O3

MPI Open MPI 4.0.5
NetCDF NetCDF-Fortran 4.5.3



Figure 11. Time of neighborhood communication in the Open MPI

Library

Minor comments 1: Throughout the paper, the authors refer to cells and

cell indices as grids and grid IDs. This terminology is very non-standard

and can be confusing. I strongly suggest replacing “grids” with “cells”

and either replacing “grid IDs” with “cell IDs” or adding a sentence

that in this paper “grid IDs” mean cell IDs.

Reply:We have replaced "grid" with "cell" which can be confusing , and

"grid IDs" have been changed to "cell IDs" throughout the paper.



Minor comments 2: Line 156: the variable “cellsOnCell” has already

been introduced on line 134, where it is spelled “CellsonCell”.

Reply: The introduction of the variable "cellsOnCell" on line 156 has

been removed.

Minor comments 3: Line 181:

“MPI_DIST_GRAPH_CREATE_ADJACENT” - why are some MPI

function names written in all-caps and some are not ? I suggest using the

C interface names consistently throughout the paper.

Reply: We have replaced

"MPI_DIST_GRAPH_CREATE_ADJACENT" with

"MPI_Dist_graph_create_adjacent" to ensure consistency with the C

interface naming convention. All MPI function names in the paper have

been updated to use the correct C interface names.

Minor comments 4: Lines 212-213: “MPI_Isend (. . . ) is infrequently

utilized . . . ”. Can the authors back-up this claim ? All of the models I

worked on used “MPI_Isend”.



Reply: “MPI_Isend (. . . ) is infrequently utilized . . . ” on Lines

212-213 has been removed.

Minor comments 5:Table 1: Change “Compiling Option” to

“Compilation Options”.

Reply: The term "Compiling Option" has been changed to "Compilation

Options" in the paper.

Reference:

Hoefler T, Rabenseifner R, Ritzdorf H, et al. The scalable process

topology interface of MPI 2.2[J]. Concurrency and Computation: Practice

and Experience, 2011, 23(4): 293-310.


	We would like to sincerely thank you for your thor

