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Abstract. In climate model development, tuning refers to the important process of adjusting uncertain free parameters of

subgrid-scale parameterizations to best match a set of Earth observations such as global radiation balance or global cloud

cover. This is traditionally a computationally expensive step as it requires a large number of climate model simulations, which

becomes more challenging with increasing spatial resolution and complexity of climate models. In addition, the manual tuning

relies strongly on expert knowledge and is thus not independently reproducible. To reduce subjectivity and computational5

demands, Machine Learning (ML)-based tuning methods have become an active research subject. Here we build on these

developments and apply ML-based tuning to the atmospheric component of the Icosahedral Nonhydrostatic Weather and

Climate Model (ICON) at 80 km resolution. Our approach follows a workflow similar to the
:::::
other proposed ML-based tuning

methods: (1) creating a Perturbed Parameter Ensemble (PPE) of limited size with randomly selected parameters, (2) fitting

an ML-based emulator to the PPE to generate a large emulated ensemble with the emulator, and (3) shrinking the parameter10

space to regions compatible with observations, using a method inspired by history matching. However, in contrast to previous

works, we apply a sequential approach: the selected set of tuning parameters is updated in successive phases depending on the

results of a sensitivity analysis with Sobol indices. We tune for global radiative, cloud properties, zonal wind velocities and

wind stresses on the ocean surface. With one iteration of this method, we achieve a model configuration yielding a global top-

of-atmosphere net radiation budget in the range of [0,1] W/m2, and global radiation metrics and water vapor path consistent15

with the reference observations. Furthermore, the resulting ML-based emulator allows
::
us to identify the parameters that most

impact the outputs that we target with tuning. The parameters that we identified as mostly influential for the physics output

metrics are the critical relative humidity in the upper troposphere and the coefficient conversion
::::::::
conversion

:::::::::
coefficient from

cloud water to rain, influencing the radiation metrics and global cloud cover, together with the coefficient of sedimentation

velocity of cloud ice, having a strong non-linear influence on all the physics metrics. The existence of non-linear effects further20

motivates the use of ML-based approaches for parameter tuning in climate models.
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1 Introduction

Climate and Earth system models are developed and continuously improved to understand the behaviour of the Earth system

and to project climate change (Tebaldi et al., 2021). Due to their complexity as well as constraints on computational resources,

the resolution of climate models is relatively coarse, so that a number of key processes occur on scales smaller than the model25

grid scale. These non-resolved processes, such as convection, radiation, turbulence, cloud microphysics, and gravity waves, are

described statistically for each grid cell through so-called parameterizations, which are a cause of biases and uncertainties in

climate projections (Gentine et al., 2021) due to uncertainties in their formulation and in the selection of the underlying free

parameters. To constrain the values of the free parameters involved in the parameterizations, tuning is an important step in the

development of climate models (Hourdin et al., 2017), where these parameters are adjusted such that the outputs of the climate30

model reproduces the observed states of the Earth system reasonably well.

Model tuning is typically a very time-consuming and computationally expensive step. It has to be conducted for all compo-

nents of a climate model (such as atmosphere, ocean and land) and for the coupled model (see for instance the tuning of the

coupled ICON Earth System Model by Jungclaus et al. (2022)).

Traditionally, tuning in climate models is done manually, i.e., the parameters are changed individually (or few at a time)35

in a sequential manner, with expert knowledge guiding the successive choices in the tuning of the parameters (Hourdin et al.,

2017; Mauritsen et al., 2012; Schmidt et al., 2017; Giorgetta et al., 2018; Mignot et al., 2021). Such manual approaches may

retain some form of subjectivity, and are therefore hard to replicate. There is also the risk of neglecting interactions among the

processes affected by the changed parameters, which may lead to compensating errors, e.g., a model’s low climate sensitivity

might be paired with weak aerosol cooling, resulting in an apparent match with historical data but potentially inaccurate future40

projections (see e.g. Fig. 3 of Hourdin et al. (2017)).

In this work we investigate how machine learning (ML) techniques can help addressing the aforementioned challenges

faced in model tuning, using the atmospheric component of the ICON model (Giorgetta et al., 2018) as an example. In recent

years, ML-based automatic tuning methods have been widely investigated. These methods intend to tune the climate models

in fewer manual steps for the user compared to fully manual approaches, and aim to improve the accuracy and reproducibility45

of parameter tuning by giving it a mathematical formulation amenable to numerical treatment. The goal is to find the regions

of parameter space for which the model outputs are consistent with observation-based reference datasets, where consistency is

defined on a suitably-defined distance between outputs and observations and accounts for a tolerance given by observational

uncertainties and model structural errors. A number of mathematical tools have been developed to tackle inverse problems

such as model tuning. The one we focus on in this work belongs to the family of Bayesian approaches (this is not the only50

possible choice, and refer to (Zhang et al., 2015) for more details on other possibilities). In a Bayesian setting, this is achieved

by an iterative and efficient exploration of the space of the parameters being tuned, which is enabled by the construction of an

ML-based surrogate or emulator of the climate model that aims at approximating the climate model outputs at much cheaper

computational costs. In its most general formulation, this procedure consists of iterating the following steps: (1) generate a

perturbed parameter ensemble (PPE), i.e., an ensemble of climate model simulations obtained by sampling configurations of55
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tuning parameters within the valid parameter ranges, (2) train a computationally cheap ML-based emulator on the PPE output

to approximate the parameter-to-output relationship, and (3) use the emulator for a denser sampling of the parameter space,

and shrink the space of allowed parameter configurations to the most promising one, i.e., the parameters most likely yielding a

tuned version of the climate model. A commonly adopted method for selecting promising parameter configurations is history

matching (Williamson et al., 2013, 2017). History matching aims at minimizing the number of required model simulations60

in the search of optimal parameters, by balancing the sampling of unexplored parameter regions with the sampling close to

configurations found potentially compatible with observations. This is achieved using a metric that weights both the distance of

the emulator predictions from the observational references (small
:::::::
meaning close to observationally-compatible configurations),

and the uncertainty of the emulator (high in unobserved parameter regions). The three steps described above are repeated until

the model outputs used as tuning metrics converge to the corresponding observational range, thus yielding one or multiple65

tuned parameter configurations, or a distribution thereof (Watson-Parris et al., 2021).

Several implementations of the ideas above have been proposed, for tuning models of different complexity. History match-

ing has been implemented to constrain parameters in the coupled climate model (HadCM3) (Williamson et al., 2013) and to

estimate parametric uncertainty in the NEMO ocean model (Williamson et al., 2017). It has also been used to tune parameters

of the turbulence scheme of a single column model version of ARPEGE-Climat 6.3, using large-eddy simulations as refer-70

ence (Couvreux et al., 2021). History matching in combination with single-column models was also employed to constrain

convective parameters for their subsequent use in the LMDZ atmospheric model of the IPSL Earth System Model (Hourdin

et al., 2021). Furthermore, Hourdin et al. (2023) showed another successful application to the IPSL model, finding an ensemble

of tuned parameter configurations as good as the manually tuned vesion IPSL-CM6A-LR used for CMIP6. Besides their use

in history matching, ML-based emulators find applications in parameter tuning also in combination with ensemble methods75

(Cleary et al., 2021) (with test applications on Lorenz ’63 and ’96 models (Cleary et al., 2021), convection schemes in idealized

global circulation model (Dunbar et al., 2021), gravity waves parameterizations (Mansfield and Sheshadri, 2022)), and with

approximate Bayesian computation (Watson-Parris et al., 2021).

Building on these previous tuning efforts, here we present an application of history matching to tuning
:::::
design

::
a
::::::
tuning

:::::::
approach

:::::::
assisted

:::
by

::::::
history

::::::::
matching

:::
for

:
the atmospheric component of the Icosahedral Nonhydrostatic Weather and Cli-80

mate Model (ICON-A version 2.6.4) (ICON, 2015; Zängl et al., 2014). The model’s icosahedral grid has a resolution of

approximately 80 km (
:::::
R2B5

:::
grid

:
), offering an improvement in spatial detail compared to previous applications of these tuning

approaches in global climate models. For instance, Williamson et al. (2013) used a resolution of 96 x 73 grid points in latitude

and longitude (approx.
::::::::::::
approximately 417 km x 278 km at the equator), while Hourdin et al. (2021, 2023) utilized 144 x 143

grid points (approx.
::::::::::::
approximately 160 km at the equator). From an algorithmic perspective, a further distinctive feature of85

our ICON-A tuning method is that we incorporate history matching in a sequential approach, where we separate tuning into

phases in which different sets of tuning parameters are sequentially constrained with history matching. This approach reduces

the number of parameters being tuned in each phase, and allows us to reduce the required size of the PPEs, and therefore the

computational costs, which is particularly relevant given the total number of tuning parameters and the relatively high resolu-

tion (approx. 80 km) we target here. In our sequential approach we first focus on global radiative and cloud properties, referred90
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to as physics outputs (Giorgetta et al., 2018), and then on outputs related to atmospheric circulation properties, referred to as

dynamics outputs (Giorgetta et al., 2018). For the physics tuning we apply history matching in the sequential manner explained

before, and show that the ICON-A physics outputs converge towards observational references in a few iterations. The ML-

based tuning of the physics outputs serves as the basis for the second step targeting the dynamics outputs. For this step we

follow the approach of Giorgetta et al. (2018) by generating a PPE and selecting the best performing model configurations,95

where our criterion for evaluating the model’s performance keep the highest priority on achieving a nearly balanced global

annual net radiation flux at top of the atmosphere (TOA) while aiming to achieve a high performance on the dynamics outputs.

Our results are compared to the manually tuned version of the ICON-A model that was presented in Giorgetta et al. (2018);

Crueger et al. (2018).
:
,
::::
with

:
a
::::
grid

:::
size

::
of
::::::::::::
approximately

::::
160

:::
km

:
(
::::
R2B4

::::
grid),

::::::
which

:
is
::::
two

:::::
times

::::::
coarser

::::
than

:::
the

::::::::
resolution

:::
we

::::
focus

:::
on

::
in

:::
this

:::::
paper

:::::
(grid

:::
size

:::
of

::::::::::::
approximately

::
80

::::
km,

:::::
R2B5

:::::
grid). In the remainder of the paper, we refer to this

::::::::
manually100

tuned ICON version as ICON-aes-1.3.

The article is organized as follows. We first introduce the ICON-A model, the ML-based tuning method and the reference

datasets used in this study in Section 2. We then present the results of the ML-based tuning approach for ICON-A in Section 3,

an evaluation of our selected runs in Section 4, and conclude in Section 5, where we also discuss the criticalities
:::::::
potential

:::::
issues of our proposed approach and an outlook on how to possibly overcome them.105

2 Methods

2.1 ICON-A modelling framework

The Icosahedral Nonhydrostatic Weather and Climate Model (ICON) is a modelling framework for Climate and Numerical

Weather prediction developed jointly by the German Weather Service (DWD) and the Max Planck Institute for Meteorology

(MPI-M) (ICON, 2015; Zängl et al., 2014). We use ICON’s atmospheric component (ICON-A) (Zängl et al., 2014; Giorgetta110

et al., 2018), version 2.6.4, and conduct AMIP experiments with the icosahedral grid R2B5 (≈ 80 km in the horizontal, for

details see Table 1 in Giorgetta et al. (2018)) with an implicitly coupled land model. The top height of the atmospheric model

is 83 km with 47 full vertical levels and numerical damping starting at 50 km. Subgrid-scale processes are described by

parameterizations and include radiative effects, moist convection, vertical diffusion, cloud microphysics, cloud cover, and

orographic and non-orographic gravity waves (Giorgetta et al., 2018). The time steps used in the model simulations are one115

hour for the radiation scheme and six minutes for the atmospheric scheme. For our PPEs we run ICON-A for one year spin up

(1979) and then for one year for tuning physics outputs (1980). We then run the model for one year spin up (1979) and then

for ten years (1980-1989) for the dynamics outputs, as described in the following sections.

2.2 Parameters and Outputs

The first step to ML-based tuning, as for manual tuning, is to select the tuning parameters and output metrics that are to be120

fitted. Our choice of the metrics is informed by the manual tuning of the ICON model by Giorgetta et al. (2018) and Crueger
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Physics outputs Spatial average Averaging period Ref.
::::::::
Reference datasets Target range

metrics

TOA net shortwave

(SW) radiation (rsdt-

rsut)

Global (references

and PPEs)

1980 Giorgetta et al. (2018) [240, 241] W/m2

TOA net longwave

(LW) radiation (rlut)

Global (references

and PPEs)

1980 Giorgetta et al. (2018) [-241, -240] W/m2

TOA radiation bal-

ance (rsdt-rsut-rlut)

Global (references

and PPEs)

1980 Giorgetta et al. (2018) [0, 1] W/m2

Cloud cover (clt) Global (references

and PPEs)

1982-1991 CLARA-AVHRR V002 62.7 %

1980-1989 ESACCI-Cloud AVHRR-AMPM-fv3.0 65.1 %

(1980 for PPEs)

Water vapor path

(prw)

Global (references

and PPEs)

1980-1989 (1980 for

PPEs)

ERA5 [24.1] kg/m2

Table 1. Physics outputs together with respective observational datasets (CERES-EBAF (NASA/LARC/SD/ASDC, 2019) and ERA5 (Dee

et al., 2011)) and target ranges used in this work. All the outputs in this table are globally averaged (for both the reference datasets and the

ICON-A simulations we conduct). The averaging period used for both reference datasets and our simulations (PPEs) is reported in the third

column. TOA stands for "top of the atmosphere".

Dynamics Output Spatial average Averaging period Ref.
:::::
erence datasets Target range

metrics

Zonal wind velocity (ua) 60° North at 10 hPa 1980-1989 ERA5, MERRA2, (10.94, 11.15,

(references and PPEs) (references and PPEs) ERA-Interim 10.94) m/s

Zonal wind velocity (ua) 60° South at 10 hPa 1980-1989 ERA5, MERRA2, (32.77, 34.03,

(references and PPEs) (references and PPEs) ERA-Interim 33.15) m/s

Surface downward North-Atlantic Ocean (NAO) 1980-1989 ERA5, MERRA2, (2.947e-3, 5.395e-3,

eastward wind stress (tauu) (references and PPEs) (references and PPEs) ERA-Interim 3.645e-3) N/m2

Surface downward Southern Ocean (SOO) 1980-1989 ERA5, MERRA2, (0.1367, 0.1413,

eastward wind stress (tauu) (references and PPEs) (references and PPEs) ERA-Interim 0.1359) N/m2

Table 2. Dynamics outputs together with respective observational datasets (ERA5 (Hersbach et al., 2020)) used in this work. The North

Atlantic Ocean (NAO) region and the Southern Ocean (SOO) region are those defined in the AR6 database (Iturbide et al., 2020).

et al. (2018). There, the authors worked on model versions preceding ICON-aes-1.3.00, which resulted from their work, with
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a coarser resolution R2B4 of ≈ 160 km, 47 vertical layers resolving the atmosphere up to a height of 83 km, and time steps of

two hours for the radiation scheme and ten minutes for the atmospheric scheme.

Table 1 reports the output metrics,
::::
and

::
the

::::::::::::
corresponding

::::::::
reference

:::::::
datasets

:::
and

::::::
values,

:
that we focus on in this study, which125

represent global radiative and cloud properties and are referred to as the physics outputs. These physics output metrics are all

global and multi-year averages. In particular, as shown in Table 1, we use the annual average over 1980 in our PPEs (apart

from our last PPE, as discussed later), and compare it with the multi-year averages of the reference datasetsreported in Table 1.

The output metrics related to atmospheric circulation properties, the dynamics outputs, are given in Table 2. There, the

zonal mean velocity at 60° North and South at 10 hPa serves as proxy for the representation of high latitude jets.
:::
This

::
is
::
a130

:::::
widely

:::::
used

:::::
target

:::
for

::::::::
evaluating

::::::::::
simulations

::
of
:::

the
:::::

polar
::::
jets

::
in

::::::
models

::::::::
resolving

:::
the

::::::::::
stratosphere

::::
(e.g.

:::
as

:::::::
seasonal

::::::
means

::
in

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Tripathi et al. (2014); Domeisen et al. (2020a, b); Rao et al. (2020); Baldwin et al. (2021)

:
)
:
. The surface downward, eastward

wind stress mean over the North Atlantic Ocean and the Southern Ocean (defined in the AR6 database (Iturbide et al., 2020)

:::::::::::::::::
Iturbide et al. (2020)) are proxies for the forcing on the ocean surface. These dynamics output metrics are multi-year averages.

In particular, as shown in Table 2, we use the average over the period 1980-1989 in our PPEs, and compare it to the multi-year135

averages of the reference datasets reported in Table 2. We use different averaging periods for physics and dynamics outputs

because of the different year-to-year variability and equilibration times of the associated variables. As substantiated in Section

3.3.1, the physics outputs have lower year-to-year variability compared to the dynamics ones, meaning that one simulated year

is sufficient to obtain a representative value for the annual averages. Conversely, for dynamics metrics the annual averages need

to be estimated from multi-year simulations due to their larger variability and sensitivity to geographic patterns.140

Following Giorgetta et al. (2018), the parameterizations we select for tuning for the physics outputs are moist convection,

vertical diffusion, cloud microphysics and cloud cover. In Table 3 we report the parameters from these parameterizations

(which we therefore refer to as physics parameters) which we select for our tuning experiment. The parameterizations we

select for tuning for the dynamics outputs are the orographic and non-orographic gravity waves schemes. In Table 4 we report

the parameters from these parameterizations (referred to as dynamics parameters) which we select for our tuning experiment.145

2.3 Reference datasets

To tune ICON-A we use reference values for the output metrics from Earth observations and reanalysis data. As in Giorgetta

et al. (2018), the main goal here is to obtain a slightly positive global annual mean downward net radiation flux at the top

of the atmosphere (TOA), between 0 and 1 W/m2, based on a net shortwave flux and an outgoing longwave radiation close

to observational estimates. For the two radiation fields (rsdt-rsut) and rlut (see Tab. 1 for definitions), the typical interval150

[240 W/m2, 241 W/m2] is used as a reference value, as estimated in (Giorgetta et al., 2018), following observational datasets

(CERES-EBAF-Ed4.0, 2000-2016) and Kato et al. (2013); Loeb et al. (2009). For cloud cover, we use CLARA-AVHRR

(Karlsson et al., 2020) and ESACCI-CLOUD (Stengel et al., 2017), and for the water vapour path, we use ERA5 (Hersbach

et al., 2020) (see Section A for time series of these observational datasets). For the dynamics outputs, we use ERA5, ERA-

Interim (Dee et al., 2011) and MERRA2 (Gelaro et al., 2017). We refer the reader to Appendix A for the time series of some155

of the observational products used in this work.
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Physics parameters with corresponding ranges Parameterization

Average entrainment rate for midlevel convection entrmid [2e-5, 3e-4] Moist convection

Average entrainment rate for penetrative convection entrpen [2e-5, 6e-4] Moist convection

Average entrainment rate for cumulus downdrafts entrdd [5e-5, 6e-4] Moist convection

Characteristic adjustment time scale [s] cmftau [2e2, 1e4] Moist convection

Neutral limit Prandtl number pr0 [5e-1, 1.2] Vertical diffusion

Critical relative humidity parameter at the upper troposphere crt [5e-1, 9e-1] Cloud cover

Fractional convective mass flux across the top of cloud cmfctop [1e-2 , 2e-1] Moist convection

Coefficient for determining conversion from cloud water to rain cprcon [1.5e-5, 3.5e-4] Moist convection

Coefficient of autoconversion of cloud ice to snow ccsaut [0.2 , 4] Cloud microphysics

Minimum in-cloud water mass mixing ratio in mixed phase clouds csecfrl [1.0e-5 , 1.0e-4] Cloud microphysics

Coefficient of sedimentation velocity of cloud ice cvtfall [0.2 , 4] Cloud microphysics

Critical relative humidity at surface crs [7.26e-1, 9.9e-1] Cloud cover

Lower limit of scaling factor for saturation mixing ratio in layer below inversion csatsc [0.35, 1,05] Cloud cover

Table 3. Tuning parameters related to physics parameterizations alongside the corresponding name in the ICON source code (second column

from left), the range of values tested (third column from left), and the corresponding parameterization scheme they belong to (right column).

The range of the parameters was inferred from the default value of the parameters given in the source code of ICON-A version 2.6.4.

Dynamics parameters with associated ranges Parameterization

Coefficient for orographic gravity wave drag gkdrag [0.002, 0.28] Sub-grid scale orographic effects

Coefficient for low level blocking gkwake [0.001, 0.09] Sub-grid scale orographic effects

Root mean square gravity wave wind at the emission level rmscon [0.647, 1.079] Atmospheric gravity wave effects

Minimum difference "SSO peak height - SSO mean height" [m] gpicmea [20,60] Sub-grid scale orographic effects

Minimum standard deviation of SSO height [m] gstd [5,15] Sub-grid scale orographic effects

Table 4. Tuning parameters related to dynamics parameterizations alongside the corresponding name in the ICON source code (second

column from left), the range of values tested (third column from left), and the corresponding parameterization scheme they belong to (right

column). SSO stands for "subgrid-scale orography".

2.4 ML-based tuning approach

Our ML-based tuning method is built on the history matching technique (Williamson et al., 2013, 2017), and follows a similar

workflow as in (Couvreux et al., 2021; Hourdin et al., 2021, 2023). The goal is to find a region in the parameter space where the

model outputs are compatible (within the observational uncertainty) with the observational data (observationally-compatible).160

In performing this exploration, history matching aims at finding a balance between exhaustively exploring, or sampling, the

parameter space, and minimizing the number of samples required for it. Since in our case each sample corresponds to an
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Figure 1. Schematic of the method used for the ML-based tuning of the physics parameters of ICON-A: history matching technique combined

with a sensitivity analysis and a sequential parameter selection. The first set of tuning parameters is chosen (A), and history matching is

employed to shrink the associated parameter space to an observationally-compatible region (B). When a compatible region is found, or if
:

If

the PPEs are far from observational references, a new parameter set is chosen with the help of sensitivity analysis (C). The new parameter set

(D) is used for a new phase of the tuning experiment.
::::
When

:::
one

::
or
::::
more

::
of
:::
the

:::::
model

:::::::::::
configurations

:::::::
generated

::
in

::
the

:::
last

::::
PPE

::
are

:::::::::
compatible

:::
with

::::::::::
observations,

:::
the

:::::::
iterations

::
of

:::
this

:::::
tuning

:::::::
approach

::::
stop.

:::
The

:::::
model

:::::::::::
configurations

::::::::
compatible

::::
with

::::::::::
observations

::
are

::::
then

:::::::
evaluated.

expensive climate model simulation, we consider this method particularly well suited for our tuning task. In tuning ICON-A we

embed history matching in a sequential protocol, where at each step we add or remove tuning parameters based on the outcomes

of the history matching iterations. We now start by outlining the steps of history matching, the
::::::
history-

::::::::
matching

:::::::
-inspired165

::::::
method

::::
that

::::::::::
constitutes

::
the

:
basis of our protocol (see also steps 1. to 4. in Fig. 1):

1. For a given set of tuning parameters P with K elements draw an initial Latin Hypercube (LHC) sampling of size n
::
N .

Using LHC sampling, all parameters are simultaneously changed and the different samples fill the K-dimensional pa-

rameter space (within the allowed ranges specified in Tables 3 and 4) approximately uniformly. Typically, n
::
N is chosen

as n≈ 10K
::::::::
N ≈ 10K (Loeppky et al., 2009). Using these selected parameters, generate a PPE of ICON-A runs. The170

PPE consists of n
::
N members, or runs, one for each sampled parameter configuration xi (with i= 1, ...,n

::::::::::
i= 1, ...,N ).

For each run, we calculate all the output metrics described before. This results in sets of input-output training pairs

TY = {xi,Ymodel(xi)}i=1,...,n :::::::::::::::::::::::::
TY = {xi,Ymodel(xi)}i=1,...,N , one set per output metric Y (e.g., annual average of

global TOA radiation balance).

2. Fit an emulator to the generated PPE, i.e., to the training sets TY for all the output metrics Y of interest. For a given175

metric Y , the emulator evaluated on a configuration of tuning parameters x returns Yemul(x), the approximation to the
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true model output metric Ymodel(x). Our choice for the model emulator is Gaussian process (GP) regression (Rasmussen

and Williams, 2005). GPs are models typically used in Bayesian regression tasks, and are very well suited for our case

since (i) they have only few parameters, hence require relatively little training data for fitting, and (ii) they by construction

return the uncertainty associated to their prediction, which is measured by the variance Var(Yemul(x)). This is a central180

quantity used in the steps below. Further details on the choice of the GP are given in Appendix B. In our implementation,

we train one GP per model output.

3. Generate a large emulated metrics ensemble of size N
::
of

:::
size

:::
M (typically ranging from 105 to 106, here N = 3× 105

:::::::::::
M = 3× 105)

using the trained GP emulator. For each emulator run, calculate the implausibility measure ρ for each metric Y , with

reference value Y 0 (from observations or re-analysis data) as:185

ρ(Yemul(x),Y
0) =

|Y 0 −Yemul(x)|√
Var(Yemul(x))

. (1)

The idea behind this definition is that
:
a small distance |Y 0 −Yemul(x)| or a large emulator variance

√
Var(Yemul(x))

(typically true when x is far from already sampled points) will lead to a small value of ρ, hence balancing exploitation

with exploration of the parameter space. In the above definition,
::::
Note

::::
that

::::::::
typically a measure of the observational

uncertainty Var(Y 0) is typically included in the denominator
::
of

:::
the

:::::::::::
implausibility

::::::::
measure, and defines a tolerance for190

assessing the convergence of history matching.
:::
This

::
is
::
an

:::::::::
important

:::::::::
distinction

:::::::
between

::::::::
traditional

::::::
history

::::::::
matching

::::
and

:::
our

:::::::::::::
implementation,

:::::
which

:::
we

:::::::
motivate

::
in
:::
the

::::
next

:::::
point. In our case, the observational uncertainty is accounted for in the

evaluation of the tuned model configurations, as
:::::
where

:::
we

::::::
assess

:::::::
whether

:::
the

::::::
outputs

::
of

:::
the

::::::::::
parameters

::::::::::::
configurations

:::::::
sampled

::::
with

:::
our

::::::::
procedure

::::
(see

::::
next

::::::
points)

:::
are

::::::
within

:::
the

::::::
spread

::
of

:::
the

:::::::::::
observational

:::::::
datasets

::::
used

::
as

:::::::::
reference.

::::
This

:
is explained in Section 4.195

4. Select n
::
N

:
parameter configurations that satisfy the following constraints on the outputs (see Table 1 and Table 2 for

outputs definitions):

– ρ(Yemul(x),Y
0)< ρ1: for the three physics metrics TOA shortwave radiation, TOA longwave radiation, and TOA

net incoming radiation,

– ρ(Yemul(x),Y
0)< ρ2: for the two other physics metrics cloud cover and liquid water path, and the five dynamics200

metrics.

The choice of a smaller threshold for the three radiation metrics is necessary in order to give a higher weight to the

constraint on a balanced TOA radiation than on the other metrics. We use ρ2 = 2ρ1. The value of ρ1 is automatically

adjusted in order to select only n
::
N

:
parameter sets out of the ensemble of size N .

::
M .

::::::
Given

:::
that

:::
we

:::
are

:::::::::
interested

::
in

:::::::
drawing

::::::::
parameter

::::::::::::
configurations

::::
that

:::
are

::::::::::::
representative

::
of

:::
the

:::::
space

:::
of

::::::::
plausible

:::::
tuned

:::::::::
parameters

::
in
::::

few
:::::::::
iterations,205

:::
our

:::::
choice

:::
of

:::
the

:::::::::::
implausibility

::::::::
measure

::
as

::
in

:::
Eq.

:::
(1)

::::::::
provides

::::::
stricter

:::::::::
constraints

:::
on

:::
the

:::::::
selected

::::::::::
parameters,

::::
with

:::
the

:::::::::::
observational

:::::
means

:::
Y 0

:::::
being

:::
the

:::::
target

::::::
values

:::
for

:::
the

::::::::::::
corresponding

::::::
metrics.

9



5. Back to step 1. : Generate a new PPE of size n
::
N

:
with ICON-A for the parameter ensemble defined in the previous step,

and repeat steps from 2. to 4.

The iterations stop when one of the model configurations generated in the PPEs is compatible with observations, or when210

a new set P of tuning parameters is used. Compatibility with observations is defined based on a weighted distance of the

model output metrics from their reference value, with a tolerance given by the corresponding observational uncertainty. The

highest weight is given to the global TOA net radiation balance, our main tuning goal. The
::
In

:::::::
general,

::
in

:::
the

::::::
earlier

::::::::
iterations

::
of

::::::
history

::::::::
matching,

::::
not

::
all

:::
the

::::::::
members

::
of
::::

the
::::
next

:::::
round

:::
are

::::::::
expected

::
to

::
be

::::::::::
compatible

::::
with

:::
the

:::::::::::
observational

::::::::::
references.

:::
The

::::::::::::
configurations

::::
that

:::
are

:::::
found

:::::::::
compatible

:::::
with

::::::::::
observations

:::
are

::::::::::
considered

:::::::::::
representative

:::
of

:::
the

:::::
space

::
of

::::::::
plausible

:::::
tuned215

:::::::::
parameters,

::::
and

:::
are

::::::::::
subsequently

::::::::
evaluated

:::
on

::::::::
additional

:::::::::
evaluation

:::::::
metrics

::
to

:::::
assess

::::
their

::::::
quality

::
as

:::::
tuned

::::::::::::
configurations

::::
(see

::::::
Section

::
4)

:
.
:::
The

:
parameter set P is changed when the spread of the PPE generated in the last history matching iteration is too

far from the observational range. The new parameter set consists of new tuning parameters together with the most influential

parameters from the previous P , for better steering the model outputs towards the observational references. The influence of

the parameters on the model outputs is estimated performing an emulator-based sensitivity analysis with Sobol indices, the220

details of which are provided in Section 3.2.2. This results in a sequential tuning approach, integrating history matching as its

core component for constraining the parameters in the sets P selected in the different phases. This is schematically shown in

Fig. 1.

This sequential approach incorporating history matching
::
the

:::::::::
previously

::::::::
explained

:::::
history

:
-
:::::::
matching

:::::::
-inspired

::::::
method is used

for the tuning of the physics outputs. The resulting model configuration serves then as basis for the next step which is the225

simultaneous tuning of physics and dynamics parameters and metrics. Also in this case we use a sensitivity analysis to select

which physics parameters to keep in this next tuning step. In this step for the tuning of physics and dynamics parameters and

metrics, we follow the manual tuning approach of (Giorgetta et al., 2018). We generate a PPE and select the best performing

model configurations, where our criterion for evaluating the model’s performance keeps the highest priority on achieving a

nearly balanced global annual net radiation flux at top of the atmosphere (TOA). Separating the tuning of physics-only metrics230

from that involving also dynamics outputs allows us to use different durations of the ICON-A simulations for the two steps,

and to further reduce the computational costs. Specifically, as substantiated in Section 3.3.1, the physics outputs have lower

year-to-year variability and shorter equilibration timescales compared to the dynamics outputs. This means that for physics

outputs shorter simulations are needed for obtaining a representative value for the annually averaged variables used as metrics.

Finally, before moving on to the results section, a technical note on the construction and evaluation of the GP emulators:235

we implement the GP emulator in Python using scikit-learn (https://scikit-learn.org/stable/), and used the built-in routines to

optimize the GP parameters at each iteration of the above procedure (see details in Appendix B). In this work, we measure the

performance of the GP regression model via the R2 value, which for a given output Y is defined as:

R2(Y ) = 1− (Yemul −Ymodel)2

Var(Ymodel)
, (2)

where (Yemul −Ymodel)2 denotes the mean squared error of the emulator over a set of testing parameters, and Var(Ymodel) the240

variance of the true model output over the same test set.

10
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3 Results

3.1 Summary of the generated PPEs

The PPEs generated in this work are summarized in Table 5. PPE1 to PPE4 are generated for the tuning of the physics output

metrics from single-year ICON-A runs (1980) after a one year spin-up. PPE1 is generated from an LHC sampling of size 30245

on the (physics) parameter set:

Pp1 = {entrpen, entrmid, entrdd, cmftau, crt, pr0} , (3)

which are the physics parameters used in (Giorgetta et al., 2018). PPE2 is produced by applying history matching on the

results of PPE1. After PPE2 a new phase of our sequential approach starts: for PPE3 we perform a new LHC sampling on a

modified parameter set:250

Pp2 = {cmfctop, cprcon, ccsaut, csecfrl, cvtfall, crt, pr0} , (4)

in order to increase the globally averaged cloud cover, which is consistently lower than the observational references in PPE1

and PPE2. The parameters in Pp2 were selected among those that in the ICON-A manual tuning history (unpublished) were

deemed most influential for cloud cover. Our criterion to decide which parameters to keep from Pp1 to Pp2 follows from the

sensitivity analysis based on Sobol indices, which we present later in Section 3.2.2. Specifically, the parameters crt and pr0255

associated to higher first and total Sobol indices for the cloud and water vapour metrics have been kept from Pp1 to Pp2.

For generating PPE3 and PPE4, the values of the parameters in Pp1 that are not present in Pp2 are fixed to their best value

from PPE2 (see the right column of Table 5 and the magenta star in Fig. 2 and Fig. 3).
:::
The

:::
set

:::
Pp2::

is
::::
used

::
to
::::::::
generate

::::::
PPE3,

::::::::
consisting

::
of

:::
30

::::::
samples

::::::::
sampled

::::
with

::::
LHC

::::::::
sampling. PPE4 is produced by applying history matching on the results of PPE3.

:::
The

:::::
sizes

::
of

:::
the

:::::
PPEs

:::
are

::::::
chosen

:::
to

::
be

::::::
smaller

::::
than

:::
the

:::::::
typical

::::
value

:::
of

:::
ten

:::::
times

:::
the

::::::
number

::
of

::::::::::
parameters

:::
(six

::::::::::
parameters260

::
in

:::
Pp1::::

and
:::::
seven

::::::::::
parameters

::
in

::::
Pp2)

:::::::::::::::::::
(Loeppky et al., 2009).

::::
This

::::
size

::::::
allows

::
a

:::::
lower

::::::::::::
computational

::::
cost

:::::
while

:::::
being

:::::
large

::::::
enough

::
to

::::
train

:::
an

::::::::
emulator

::::
that

:::::
allows

:::::::::::
convergence

::
of

::::
the

:::::
PPEs

:::::::
towards

::::::::
reference

:::::::::::
observations,

:::
as

::::::::
explained

::
in
::::

the
::::
next

::::::
section

:::::
3.2.1.

In PPE5 we then address also the tuning of dynamics outputs by varying physics and dynamics parameters simultaneously

in the parameter set:265

Ppd = {entrmid, cvtfall, crt, crs, csatsc, rmscon, gkdrag, gkwake, gpicmea, gstd} , (5)

and keeping the other parameters fixed to their best values in PPE2 (see the right column of Table 5 and the magenta star

in Fig. 2 and Fig. 3). Also for Ppd we follow the same strategy and keep the parameters having the highest influence on the

radiation and water metrics, as can be seen from the Sobol analysis in Section 3.2.2, with the addition of crs and csatsc after

further advice from ICON experts. The parameters rmscon, gkdrag and gkwake are the same dynamics parameters used in270

(Giorgetta et al., 2018), and we added gpicmea and gstd following advice from ICON expert knowledge. PPE5 consists of

ten-year ICON-A simulations from 1980 to 1989 (after a one year spin-up).
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PPE Parameters changed Size Description Outputs Fixed parameters

PPE1 Pp1 = {entrpen, entrmid, 30 LHC sampling of Pp1 physics cmfctop (0.1), cprcon (2.5e-4),

entrdd, cmftau, ccsaut (2.0), csecfrl (1.5e-5),

crt, pr0} cvtfall (2.5), csatsc (0.7), crs (0.968)

(fixed from default configuration)

PPE2 Pp1 29 History matching physics

from PPE1

PPE3 Pp2 = {cmfctop, cprcon, 30 LHC sampling of Pp2 physics entrpen (9.295e-5), entrmid (2.2504e-4),

ccsaut, csecfrl, entrdd (1.766e-4), cmftau (2114.6),

cvtfall, crt, pr0} csatsc (0.7), crs (0.968)

(fixed from best conf. in PPE2)

PPE4 Pp2 30 History matching physics

from PPE3

PPE5 Ppd = {entrmid, cvtfall, crt, 80 LHC sampling of Ppd physics and entrpen (9.295e-5), entrdd (1.766e-4),

crs, csatsc, rmscon, dynamics cmftau (2114.6), pr0 (0.93168),

gkdrag, gkwake, ccsaut (2.0), csecfrl (1.5e-5)

gpicmea, gstd} (fixed from best conf. in PPE2)

Table 5. Summary of perturbed parameters ensembles (PPEs) generated in this work. The PPEs have been sequentially generated from 1 to

5. PPE3 is obtained from an LHC sampling of parameter set Pp2, where the parameters in Pp1 not included in Pp2 are kept fixed to their

best values from PPE2 (and listed in the right column), which are then used further in PPE4 and PPE5.

3.2 ML-based tuning of physics outputs with history matching

In this section we present the results of the tuning of the physics parameters. We start by considering PPE1 and PPE2. As

explained before, PPE2 is generated by applying history matching after having trained a GP emulator on the outputs of PPE1.275

The constructed GP emulator in this case has a good predictive performance (measured by an average R2 score of 0.81, as

discussed in more details
::::
detail in Section 3.2.1 below), and can therefore accurately guide the parameter choices for PPE2.

Thanks to this, the application of only one iteration of history matching to PPE1 is already sufficient to generate configurations

in PPE2 that achieve a balanced TOA radiation. This is demonstrated in panel (a) of Fig. 2, which shows the net short-wave

(SW) versus the net long-wave (LW) TOA radiation for PPE1 and PPE2. There, we can clearly see that after history matching280

on PPE1, PPE2 can achieve configurations that match or get close to the observational ranges denoted by the green triangle

(and to ICON-aes-1.3). The convergence of the output metrics towards their reference values can also be observed in panel (b)

of Fig. 2, for the other two physics output metrics (global cloud cover versus water vapor path) for PPE1 and PPE2. There,

the distribution of the PPE2 outputs is converging towards the observational references (green markers).
:::
The

:::::::::::
convergence

::
of

::::::
history

::::::::
matching

::::::
towards

::::
the

:::::::::::
observational

:::::::::
references

:::
can

::::
also

::
be

:::::
seen

::
in

:::
the

::::::::::
distribution

::
of

:::
the

:::::::
sampled

::::::::::
parameters

:::
for

:::
the285
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Figure 2. Physics output variables for PPE1 (blue stars) and PPE2 (black squares) compared to ICON-aes-1.3 (orange triangle) and

observational datasets (green). Signs of convergence of history matching are visible already after one iteration (the distribution of the members

of PPE2 is slightly shifted towards higher cloud cover values and narrower). The magenta star marks the best performing configuration from

PPE2 (see right column of Table 5), used in the generation of the subsequent PPEs.

:::
two

:::::
PPEs

::::
(Fig.

:::
3). However, Fig. 2 panel (b) shows that global cloud cover still remains lower than the observational data (of

approximately 1% compared to CLARA-AVHRR, and 3% compared to ESACCI), despite PPE2 yielding a slightly higher

cloud cover (closer to the observed range) than PPE1. In Fig. 2, the magenta star marks the selected best performing model

configuration in PPE2. Following Giorgetta et al. (2018), our criterion for evaluating the model performance prioritizes the

global radiation metrics, in particular the net TOA radiation budget, over cloud cover and water vapor path. The selected run290

is the only one falling within the observational range for both radiation metrics (green triangle in panel (a)). The convergence

of history matching towards the observational references can also be seen in the distribution of the sampled parameters for the

two PPEs (Fig. 3).

Therefore, in the
:::::::::::
ICON-aes-1.3

:::::::
exhibits

:
a
::::::
higher

::::
value

::
of
::::::
global

:::::
cloud

:::::
cover

::::::
(orange

:::::::
triangle

::
in

:::
Fig.

::::
2.b)

::::
than

:::
our

:::::
PPE1::::

and

:::::
PPE2.

::::
The

:::::::::
resolutions

::
of

::::::::::::
ICON-aes-1.3

:::::::::::::
(approximately

:::
160

::::
km)

::
is

::::::
coarser

::::
than

:::::
PPE1:::

and
::::::
PPE2:::::::::::::

(approximately
::
80

::::
km).

::::
The295

::::::
authors

::
of

:::::::::::::::::::
(Giorgetta et al., 2018)

::::
have

::::::::::
investigated

:::
the

:::
six

:::::
tuning

::::::::::
parameters

::::
used

::
in

::::
Pp1.

:::::
Here,

::::
with

::::
these

:::
six

::::::::::
parameters,

:::
we

::
are

::::
not

:::
able

::
to
:::::
reach

::
a

::::::
similar

::::::::::
performance

:::
for

:::
the

:::::
cloud

:::::
cover

::::::
metric.

::::
This

::::::::
supports

::
the

::::
fact

:::
that

::::
one

::::::
should

:::::
repeat

:::
the

::::::
tuning

::::::
process

:::::
when

:::
the

:::::
model

::::::::
resolution

::
is

:::::::
changed

::::::::::::::::::
(Crueger et al., 2018).

:::::::::
Moreover,

::
in

:::::::
addition

::
to

::
the

::::::::::
parameters

::
in

::::
Pp1,

::
the

:::::::
authors

::
of

:::::::::::::::::::
(Giorgetta et al., 2018)

:::::::
explored

:::::
other

:::::
tuning

::::::::::
parameters,

::::
and

::::
these

::::::
results

::::
were

::::
not

::::::::
published

:::::::
because

::::::
having

:
a
:::::::::
negligible

:::::::
influence

:::
on

::::
their

::::::
tuning

:::::::
process

:::
(as

::::::::
explained

::
in

:::::
their

::::::
Section

:::
5).

::
In

::::
the next generation of PPEs (the second phase of our300
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Figure 3. Sampled parameter values for PPE1 (blue stars) and PPE2 (black squares) compared to ICON-aes-1.3 (orange triangle). For

each panel, two parameters are plotted on the two axes (see Table 3). Signs of convergence of history matching are visible already after

one iteration (in the distribution of the members of PPE2 being slightly shifted and narrower). The magenta star marks the best performing

configuration from PPE2 (see also right column of Table 5 for values), used in the generation of the subsequent PPEs.

sequential approach), we selectthe
:
,
:::
we

:::::::::
investigate

:::
the

::::::
impact

::
of

:::::
some

::
of

:::::
these

::::::::::
parameters.

:::::::::
Therefore,

:::
the parameter set Pp2

to contain parameters to which cloud cover is more sensitive, following the criteria explained in the previous section.
:::::::
contains

:::::::::
parameters

:::::::::
potentially

::::::
having

:
a
:::::::
stronger

:::::
effect

:::
on

:::::
cloud

:::::
cover

:
at
:::
the

:::::::
present

:::::::::
resolution.

Parameter set Pp2 is used to generate PPE3 with LHC sampling. A GP emulator is then trained on the outputs of PPE3.

The constructed GP emulator in this case also has a good predictive performance (measured by an average R2 score of 0.75,305

as discussed in more details in Section 3.2.1 below), and we therefore use it for performing history matching and generating

PPE4. Also in this case history matching is shrinking the space of promising parameter configurations and the related output

distribution. This can be seen in Fig. 4, where we show the distribution of the radiation metrics (in panel (a)), and the of global

cloud cover versus water vapor path (in panel (b)) for both PPE3 and PPE4 (we refer the reader to Appendix C for plots of

the related parameter distributions). While the new parameter set Pp2 allows us to reach a global cloud cover consistent with310

observations, we also see that the spread of the PPE outputs is more than doubled compared to that of the previous PPEs (see

yellow shaded rectangles in Fig. 4 showing the extent of Fig. 2). This increased spread also potentially increases the number of

history matching iterations to converge towards the observational references. Given the high computational costs of generating

these PPEs, we therefore use the best performing model configuration sampled so far, which belongs to PPE2.

3.2.1 Performance of the GP emulator315

We now analyze the performance of the GP emulator for the physics outputs considered. We refer the reader to Appendix B for

details on Gaussian processes and the choice of the underlying hyperparameters. In Table 6, we show the average performance

(R2 score) of the GP emulators trained on the PPEs used for the tuning of the physics parameters (corresponding to PPE1,

14



Figure 4. Physics output variables for PPE3 (red circles) and PPE4 (grey triangles) compared to ICON-aes-1.3 (orange triangle) and

observational datasets. Also here, signs of convergence of the outputs to their observational values can be seen (in the distribution of the

members of PPE4 being slightly shifted and narrower).

PPE used for training GP-emulator R2-score

PPE1 0.82

PPE1 + PPE2 0.79

PPE3 0.75

PPE3 + PPE4 0.81

Table 6. Performance of the GP-emulator on PPE1 to PPE4. The R2 value reported here is the average R2 of the emulators for all physics

variables (see Table 1). For each emulator, the R2 is calculated via 5-fold cross validation on the training set (PPE points).

PPE2, PPE3, PPE4). The value reported in Table 6 is the average R2 over all the five physics output metrics (defined in

Table 1), and is computed using a 5-fold cross validation (https://scikit-learn.org/stable/). From these values, we conclude that320

the constructed emulators are indeed able to approximate the ICON-A physics outputs, which is also reflected in the fact that

history matching shows signs of convergence already after the first iteration, as shown in the previous section. The number of

PPE samples required for the GP regression to achieve the reported R2 score is shown in Fig. 5.
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Figure 5. Average R2 score of the physics outputs emulators, as a function of the size N of PPE used for training. For each N tested, fifty

randomly drawn samples of size N were drawn from the entire set of ICON PPEs of size 60. The R2 score is calculated for each size-N

sample, and the mean (solid lines) and standard deviation (shaded areas) are estimated from these scores on the fifty samples. The red curve

shows the R2 for emulators trained on PPE1 and PPE2, the blue curve the R2 for emulators trained on PPE3 and PPE4.

3.2.2 Sensitivity analysis for the physics parameters and outputs

In this section we show the sensitivity analysis for the physics parameters and outputs, which supports our selection of pa-325

rameters in the subsequent steps of our sequential approach, presented in Section 3.1. The analysis presented here is based on

the calculation of Sobol indices, which in turn are calculated using the emulator constructed in the previous section. Generally

speaking, Sobol indices quantify the impact of one specific feature (tuning parameter, in our case) on the overall variance of

the model output (the output metrics, in our case). Specifically, we focus on the first order Sobol index and on the total Sobol

index. Given an emulator Yemul for metric Y , the first order and total Sobol indices for the i-th parameter xi are defined as330

follows (Saltelli et al., 2010):

S1,(i,Y ) =
1

Varx(Yemul)
Varxi

(
Ex∼i(Yemul |xi)

)
, (6)

Stot,(i,Y ) =
1

Varx(Yemul)
Ex∼i

(
Varxi(Yemul |x∼i)

)
, (7)

where Varx(Yemul) denotes the sample variance of the emulator over the distribution of all parameters x, Varxi
(·) the sample

variance the distribution of parameter xi, Ex∼i
the expected value over all parameters but xi, and Yemul |xi denotes the emulator335

function with input parameter xi kept fixed. The first order Sobol index S1,(i,Y ) corresponds to the effect of varying xi alone,

averaged over all other inputs (parameters) variations, while Stot,(i,Y ) measures the total effect of varying xi, which includes

the variance coming from interactions of xi with other parameters. In Figure 6 we show the S1,(i,Y ) (on the x axis) and

Stot,(i,Y ) (on the y axis) for the physics parameters and outputs. We use the GP emulator trained on PPE1 for panels (a) to

(e), and the one trained on PPE3 for panels (f) to (j). The higher the values of the first and total Sobol indices for a parameter340
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Figure 6. First order Sobol index S1 (x-axis) and total Sobol index Stot (y-axis) for the physics parameters (in legend) and outputs, net SW

radiation at TOA (panels (a) and (f)), net LW radiation at TOA (panels (b) and (g)), net radiative bugdet at TOA (panels (c) and (h)), cloud

cover (panels (d) and (i)), water vapour path (panels (e) and (j)). We use the GP trained on PPE1 for panels (a) to (e) and trained on PPE3

for panels (f) to (j). To calculate the Sobol indices, the sampling method of Saltelli et al. (2010) was used, with 70000 samples, allowing a

converged value of the indices.

and corresponding output, the higher the influence of that parameter on that output. Looking at panels (d) and (e) we see that

the two most influential parameters in Pp1 on cloud cover and water vapour metrics are crt and pr0, which are the ones we

keep among the tuning parameters in Pp2. Looking at panels (d) and (e) we see that the two most influential parameters in

Pp1 on cloud cover and water vapour metrics are crt and pr0, which are the ones we keep among the tuning parameters in

Pp2. In panels from (f) to (j), obtained from the emulator trained on PPE3, we see that cvtfall has overall a large effect on345

all physics metrics, and the largest on cloud cover, while crt has the largest effect on the TOA net radiative budget, and we

therefore decide to keep these tuning parameters in Ppd for PPE5.
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3.2.3 Visualization of the parameter-to-output maps350

The previously trained emulator can also be used for the visualization of the parameter-to-output dependencies. These visu-

alizations complement the sensitivity analysis presented in the previous section, and further helped us in the selection of the

tuning parameters to be kept across the phases of our sequential tuning approach. Generally, such visualizations are very useful

for informing the user of the effect of a parameter on the outputs: they can help selecting the most influential parameters and

the corresponding plausible ranges, potentially reducing the computational costs of tuning exercises.355

Here we construct these parameter-to-output maps, similarly to what has been done by Mauritsen et al. (2012), with the

important difference that the use of GP emulators in our case allows for a more extensive, or denser, exploration of the selected

parameter space. We exemplify such visualizations in Fig. 7, constructed from GP emulators for physics outputs trained on

PPE1 and PPE2 in the first two lines (Fig. 7 a-h) and on PPE3 and PPE4 in the last two lines (Fig. 7 i-p). The parameters that

are not being changed are kept fixed to their best performing value from PPE2 (marked with the magenta star in Figures 2 and360

3 — although we emphasize that with the trained emulators one can very quickly generate new maps for different parameters).

The red shaded areas in each plot denote the allowed output ranges from the observational data. For the parameters from Pp1

varied, the value of global cloud cover (second row of Fig. 7) remains below the lower bound given by the observational data

(at 62.7%), which is consistent with our observations in Fig. 2. This is the reason why we selected an increased parameter

set Pp2 for the next PPEs, which indeed had a higher influence on the global cloud cover (forth row of Fig. 7). We refer the365

reader to Appendix E for the parameter-to-output map constructed from PPE1 and PPE2 and showing the effect of the six

parameters in Pp1 on all physics metrics (Fig. E1). Likewise, the parameter-to-output map constructed from PPE3 and PPE4

and showing the effect of all parameters in Pp2 is shown in Fig. E1.

Together with the previous Section 3.2.2, these maps allow us to identify which parameters are likely to be the most influen-

tial for our physics tuning metrics. The parameters that we identified as mostly
::::
most influential for the physics output metrics370

are the critical relative humidity in the upper troposphere (crt) and the coefficient conversion from cloud water to rain (cprcon),

influencing the radiation metrics and global cloud cover, together with the coefficient of sedimentation velocity of cloud ice

(cvtfall). These parameters have a strong linear influence (crt in Fig. 7 d. and h.) and non-linear influence (cprcon and cvtfall

in Fig. 7 j., n., and l., p., respectively) on the physics metrics. Note that parameters governing cloud microphysical processes

(e.g. fall velocities such as cvtfall) were identified as tuning parameters widely shared among climate models in Hourdin et al.375

(2017) synthesis paper (see Table ES4 therein).

3.3 Tuning of the dynamics outputs

We now discuss the simultaneous tuning of the physics and dynamics outputs. Due to the expected large variability of dynamics

outputs (see next Section 3.3.1) which can potentially hinder the training of regression models,
:
,
:::
we

::::::
expect

::::::
history

::::::::
matching

::
to

::::::
require

:
a
:::::
large

::::::
number

::
of

::::::::
iterations

::::
and

:::::
costly

:::::
ICON

::::::::::
simulations.

:::::::::
Therefore, we adopt a similar approach to Giorgetta et al.380

(2018), in that we generate a PPE (PPE5) and select the best performing model configurations. Also in this case, our criterion
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Figure 7. Parameter-to-output maps predicted with GP-emulators trained on PPE1 and PPE2 (a-h) and GP-emulators trained on PPE3 and

PPE4 (i-p). In the first and third row (a-d and i-l) the net SW and LW radiation at the TOA are shown. In the second and forth row (e-h and

m-p) the global cloud cover is shown. Figures a. and e. show the effect of entrmid, b. and f. that of entrpen, c. and g. of pr0, d. and h. of

crt, i. and m. of cmfctop, j. and n. of cprcon, k. and o. of ccsaut, and l. and p. of cvtfall.

for evaluating the model performance gives a higher importance to the global radiation metrics, which are our primary tuning

goals, and puts less stringent requirements on the other tuning metrics.

The ML-based tuning of the physics output metrics discussed in the previous section serves as a basis for the second tuning

step addressing the dynamics outputs. PPE5 is generated by simultaneously varying the parameters in the set Ppd (with LHC385

sampling), while keeping the other parameters fixed to their best configuration obtained with history matching, from PPE2

(see Table 5 and the magenta star in Fig. 2 and Fig. 3). The physics parameters in Ppd are selected based on a sensitivity
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analysis with Sobol indices, as explained in Section 3.2.2. The choice of the dynamics parameters follows Giorgetta et al.

(2018), with gkdrag and gkwake chosen for tuning the zonal wind stresses on the ocean surface, and rmscon affecting the

zonal mean winds. In Fig. 8 we show the physics (panels (a) and (b)) and the dynamics (panels (c) and (d)) outputs from PPE5,390

and highlight the two model configurations (the cyan and the red dot) which achieve the best model performance within PPE5.

The selected configurations are those closest to the observational range in panel (a) of Fig. 8, given that achieving a balanced

TOA radiation has a higher importance in our tuning experiment (Giorgetta et al., 2018). The values of the parameters for these

two selected simulations are given in Table 7. These also achieve results comparable with the tuned ICON-aes-1.3, with the

TOA radiation balance within the interval [0,1] W/m2, the TOA long- and short-wave radiation metrics within 1 W/m2 from395

the observational range. Also for the other two physics output metrics the performance of the two selected configurations is

comparable to ICON-aes-1.3, as they show less than 1% difference in global cloud cover compared to the observational range,

and less than 0.5 kg/m2 difference in the water vapor path. The differences with respect to reference data and ICON-aes-1.3

become more apparent when looking at the dynamics metrics. In panel (c) and (d) it can indeed be seen that the values of these

metrics from the reference dataset are not covered by the generated PPE. For most of the metrics the differences of the selected400

configurations from the reference dataset remain comparable to those of ICON-aes-1.3, except for the mean zonal wind stress

over the Southern Ocean (tauu SOO - see panel (c)), where the difference increased from roughly 0.005 N/m2 to roughly

0.02 N/m2. The values of the parameters for these two selected runs are given in Table 7. Given the different settings used in

the manual tuning for ICON-aes-1.3 (160 km instead of the 80 km resolution used here, and the different time steps used),

the differences in the optimal model configurations are not surprising. For instance, the model resolution strongly affects the405

parameters describing the unresolved orography, and thus the values of the corresponding parameters (Giorgetta et al., 2018).

In the next section we analyze the variability of the dynamics outputs, and we identify in it a possible explanation for the

difficulty of matching them in our tuning. Afterwards, in Section 4, we evaluate the results from PPE5 on model outputs not

targeted during the tuning experiment, for a better assessment of the results and a better comparison with the previously tuned

ICON-aes-1.3.410

3.3.1 Analysis of output variability

We now use PPE5 to analyze the internal variability of the investigated output metrics and compare them to the parameters’

effects. The year-to-year variability of the output metrics is shown in Fig. 9 where we plot the long- vs. short-time averages

of the considered outputs, for 30 runs of PPE5. Additional data complementing the information of Fig. 9 can be found in

Appendix D. In Fig. 9 it can be clearly seen that the dynamics outputs (panels in the lower row) have a larger variability across415

years compared to the physics ones (upper row), which is apparent from the larger spread around the diagonal (no spread would

signify no variance), and the larger error bar (which represents the standard deviation over the yearly averages). In each panel

we also report the ratio between the mean spread across years Syrs and the PPE spread SPPE, which for each output metric Y
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Figure 8. Physics (top row) and dynamics (bottom row) output variables for PPE5 (blue triangles), compared to ICON-aes-1.3 (orange

triangle) and observational datasets. Two selected PPE members corresponding to the best performing configurations are highlighted (cyan

square and red triangle). For comparison, two other runs are also highlighted (black circles).

are defined as:

Syrs =
√

1
n

∑n
i=1Varyears,i(Y ) , (8)420

SPPE =

√
1
n

∑n
i=1

(
Yi −Y

)2
, (9)

where n denotes the size of the PPE, Varyears,i(Y ) the variance of output Y over the simulated years for the i-th PPE member,

Yi the ten-year mean of output Y for the i-th PPE member, and Y the average of the Yi over all PPE members. The ratio

Syears/SPPE gives a quantitative measure of the comparison between the yearly output variability and the effects of changing
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Physics Parameters 1st selected run 2nd selected run Giorgetta et al. (2018)

entrmid 2.8526e-4 2.6751e-4 2e-4

entrpen 9.2951e-5 9.2951e-5 2e-4

entrdd 1.7662e-4 1.7662e-4 4e-4

cmftau 2114.6 2114.6 3600

pr0 0.93168 0.93168 1

crt 0.81681 0.80417 0.8

cmfctop default value: 0.1 default value: 0.1

cprcon default value: 2.5e-4 default value: 2.5e-4

ccsaut default value: 2.0 default value: 2.0

csecfrl default value: 1.5e-5 default value: 1.5e-5

cvtfall 1.7479 2.00239

crs 0.88400 0.80222

csatsc 0.8700 0.64369

Dynamics Parameters

gkdrag 0.17404 0.20595 0.1

gkwake 0.08262 0.087592 0.01

rmscon 0.91864 0.82209 0.87

gpicmea 28.375 53.976

gstd 8.40780 13.025

Table 7. Values of the parameters for the two members of PPE5 yielding the best output metrics, shown as cyan square and red triangle in

Fig. 8. For comparison, the values of the parameters tuned by Giorgetta et al. (2018) are given as well.

parameters in the PPE. It is clear that for the dynamics outputs, especially the zonal wind stresses on the ocean surface, this425

ratio is almost one order of magnitude larger than for the physics ones.

An additional source of uncertainty in the dynamics output metrics is their restricted geographical location, which exposes

them to biases in spatial patterns. The low variability in the physics variables, which are global means, is consistent with the

common observation that already simulations as short as one year can give good tuning results, though using more years, as

for instance a full decade used in (Giorgetta et al., 2018), has the benefit to include a larger variation of prescribed boundary430

conditions as for example El Niño, La Niña or neutral years.

The analysis shown in Fig. 9 shows that for dynamics outputs, the internal variability is almost of the same order of magnitude

of the PPE variance, and can therefore partly hide the effects of changing parameters, as discussed above.
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Figure 9. Ten-year mean (1980-1989, y axis) against the mean of one particular year (here 1980, x axis), for the physics (top row, panels

(a) to (d)) and dynamics (bottom row, panels (e) to (h)) output variables for 30 runs of PPE5, represented by different colors. For each

data point, the dotted vertical line shows the spread of the annual mean across the ten years (maximum and minimum values), and the solid

vertical line denotes one standard deviation, calculated on the 1980-1989 period.

4 Evaluation of the selected runs

Now we test our selected model configurations on different variables that were not targeted during the tuning. We call these435

”evaluation metrics”.
::::::::::
Specifically,

:::
we

:::::
assess

:::::::
whether

:::
the

:::::::
outputs

::
of

:::
our

:::::::
selected

:::::::::
parameter

::::::::::::
configurations

:::
are

:::
also

::::::::::
compatible

::::
with

::
the

:::::::::
evaluation

:::::::
metrics,

:::
i.e.,

::::::
within

:::
the

:::::
spread

::
of

:::
the

::::::::
reanalysis

::::
and

:::::::::::
observational

:::::::
datasets

::::
used

::
as

::::::::
reference. This evaluation

step allows us to check whether the tuning process has induced significant biases on metrics not targeted during the tuning (i.e.,

overtuning to the target metrics). The evaluation metrics that we inspect are the global multi-annual averages (from 1980 to

1989 included) of the surface temperature (ts), the total precipitation (pr), the pressure at sea level (psl), the vertically integrated440

cloud ice (clivi), and the vertically integrated cloud condensed water content (clwvi). The results of this evaluation step are

shown in Fig. 10. For most of the computed evaluation metrics, our selected model configurations are within the observational

range given by the spread of the reanalysis and observational datasets used as reference (green symbols and lines in Fig. 10),

thus indicating that our tuning experiment had a beneficial effect on the evaluation metrics that were not targeted by the

tuning. This is the case for the two selected runs and the two highlighted runs from the ICON-A PPE5. These selected model445

configurations show a slight positive bias < 0.1°C on the global average of the surface temperature compare to the reference

values. We conclude that our tuning experiment successfully produced configurations largely comparable to ICON-aes-1.3.
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While it did not show substantial improvement over the manually tuned version, which is difficult to improve upon, we discuss

the limitations of our approach and propose potential improvements in the next section.

Figure 10. Five evaluation metrics averaged on the 1980-1989 (included) period for the PPE5 (blue, cyan, red, black, gray), the icon-aes

::::::::::
ICON-aes-1.3 (orange triangle), and reanalysis datasets and observational datasets (green). For the datasets starting after 1980, the time period

considered is the earliest available 10 years: for CLARA (AVHRR) and ESACCI CLOUD (AVHRR-fv3.0) it is 1982-1991, for MODIS it is

2002-2011.

5 Discussions and Conclusions450

In this work, we develop an ML-based tuning approach and apply it to the atmospheric component of the ICON climate

model (ICON-A). The approach is based on
:::
Our

::::::::
approach

::
is

:::::::
inspired

:::
by history matching (Williamson et al., 2013, 2017),

which balances an extensive exploration of the tuning parameter space with the need of minimizing the number of required

ICON-A model simulations. This exploration is aided by building and using emulators, here Gaussian processes (GPs), for

each of the considered output metrics. The emulator approximates the climate model simulation outputs for arbitrary values455

of the tuning parameters, and can be used to create large emulated metrics ensembles at a much cheaper computational cost.

:::
We

:::::::
integrate

::
a

:::::::::::::::::::::
history-matching-inspired

::::::
method We integrate history matchingin a sequential approach, where at each phase

different parameter sets are sequentially constrained. We first apply our approach to the tuning of physics output metrics

(globally averaged radiation and cloud properties), and in a second step we tune also for dynamics output metrics (related

to geographically specific atmospheric circulation properties) using a PPE consisting of 80 ten-year ICON-A runs. The ML-460

based tuning of physics parameterizations, with just one iteration of history matching and a total of 60 model simulations, is

already sufficient to achieve a model configuration yielding a global TOA net radiation budget in the range of [0,1] W/m2,

global radiation metrics and water vapor path consistent with the reference observations, and a globally averaged cloud cover

differing by only 2% with respect to the observations. We remark
::::
Note that these results, in particular the speed of convergence

of history matching
::::::
number

::
of
:::::::::

iterations
::::::::
necessary

::
to

::::::::
converge

::
to
::::

the
:::::::::::
observational

:::::
range, generally depend on the specific465

setup.
:::::::::::
Furthermore,

:::
we

::::::
remark

::::
that

:::
our

::::::::
approach

:::::::
presents

:::::
some

:::::::::
differences

::
to

:::::::::
traditional

::::::
history

::::::::
matching

:::::::::::::::
implementations.

:::::
While

::
it

:::::::
allowed

::
us

:::
to

::::
draw

:::::
some

::::::::::::
configurations

:::::
with

::::::
outputs

::::::::::
compatible

::::
with

:::::::::::
observations

:::
for

:::::
some

:::::::
metrics,

::
a
::::::::
thorough
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:::::::::::::
characterization

::
of

:::
the

::::::
space

::
of

::::::::
plausible

::::::::::
parameters

::::
(the

::::::::::::::
not-ruled-out-yet

:::::
space

:::::::::::::::::::::
(Williamson et al., 2013)

:
)
::
is

::::::
beyond

::::
the

:::::
scope

::
of

:::
our

:::::
work,

:::
and

::::::
would

::::::
require

::::::
several

::::::::
iterations

::
of

:::::::
standard

:::::::
history

::::::::
matching.

In the simultaneous PPE-based tuning of physics and dynamics parameterizations, we achieve a TOA radiation balance470

within the interval [0,1] W/m2, TOA long- and short-wave radiation metrics to within 1 W/m2 from the targeted range, but are

not able to reduce the biases in the dynamics output metrics with respect to the previously manually tuned ICON-aes-1.3. The

PPE for this tuning step allows us to perform an analysis of the physics and dynamics outputs variability and its comparison

with the parameters’ effects. This analysis reveals a larger year-to-year variability of the dynamics compared to the physics

output metrics. This, combined with the sensitivity of the dynamics metrics to geographic patternbiases, highlights potential475

limitations that emulator-based approaches may face when tuning for these dynamics metrics.
::::
This

:::::::
suggests

::
at

:::
the

:::::
same

::::
time

:::
that

::::::
metrics

::::::::
averaged

::::
over

:::::::
broader

::::::
spatial

::::::
regions

::::
may

:::::
suffer

::::
less

::::
from

:::::
these

:::::
issues

::::
and

:::
be

:::::
more

::::::::
amenable

::
to

:::::::::::::
emulator-based

:::::::::
approaches,

::::::::
although

:::
too

:::::
much

::::::::
averaging

::
in

:::::
space

:::::
would

:::::
make

:::
the

:::::
tuning

:::::
target

:::
less

::::::::::::
characteristic.

:::
For

:::
the

::::
case

::
of

:::
the

::::::::
dynamics

::::::
variable

::::::
which

:::
are

:::::::
proxies

::
for

:::::
polar

:::::::::::
stratospheric

:::::::
vortices

::::::
(zonal

:::::
mean

:::::
zonal

:::::
wind,

::::::::
averaged

::
at

:::
60°

:::::
North

::::
and

:::
60°

::::::
South

::
at

::
10

::::
hPa,

:::::::
10-year

::::::::
average),

:
a
:::::::
possible

::::
way

::
to

::::::
reduce

:::
the

:::::
noise

:::::
would

:::
be

::
to

:::::::
increase

:::
the

:::::::::
simulation

:::::::
duration

::::
and

::
to

:::::::
average

:::
the480

::::
field

::::
over

::::
only

:::::
winter

:::
or

:::::::
summer

:::::::
months. A further evaluation of the selected model configurations on metrics that were not

targeted during tuning suggests that our approach does not cause overtuning to the tuning targets, and for our use case results

in a model configuration that can be considered of a similar performance as the previously tuned ICON-aes-1.3.

Our sequential approach, where at each phase only a small subset of parameters is varied, allows to keep the costs of the

PPEs relatively low (with 30 members we could reach good emulator accuracies), and to obtain ICON-A model configurations485

showing an overall performance comparable to ICON-aes-1.3 on most of the selected tuning metrics. However, such an ap-

proach may face the problem of neglecting some of the (non-linear) parameter interdependencies and the possible feedbacks.

In situations where such parameter interactions and their hierarchy of importance are largely unknown, we would recommend

simultaneously tuning all parameters, when computationally feasible. Indeed, while with our analysis we are able to identify

which parameters are influential for the chosen metrics (see Section 3.2.3), we cannot establish a clear hierarchy of which of490

these should be tuned in a sequential manner. This is exemplified by Figures 4 and 8, with the PPEs showing a large spread in

the global radiative metrics despite some of the physics parameters being kept fixed. Furthermore, accounting for all parameter

dependencies and feedbacks could be particularly important for tuning coupled models, e.g., for properly accounting for the

interactions between atmosphere and ocean. The number of parameters that can be tuned simultaneously is ultimately limited

by the available computational resources, since the required size of the PPEs scales with the size of the tuning parameter space.495

Therefore, sensitivity analysis as presented here becomes a crucial tool to identify and keep only the most important parameters

in each model component.

We also note that even though history matching is constructed to minimize the number of climate model simulations for the

PPEs, this number is still the major computational bottleneck in tuning, which gets worse when tuning models at resolutions

higher than the one considered here. Again, including as much prior knowledge as possible in the choice of the parameters,500

which in a Bayesian setting amounts to the selection of a prior distribution for the optimal parameter values, will be important.

Such knowledge of a prior distribution may for instance be obtained by the computationally cheaper tuning of the same model
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at lower resolutions, provided the same parameterization schemes are used. Incorporating such prior knowledge could reduce

the size of the PPEs and the number of history matching iterations required to converge to an optimal model configuration

(Fletcher et al., 2022), compared to starting from general uninformative priors as we did here (with LHC sampling).505

Finally, while here we explored the feasibility of ML-based tuning approaches to improve the tuning of climate models,

the seamless integration of such methods within the specific climate modeling framework - to practically enable an automatic

application - is an aspect that needs to be addressed in further studies. Some aspects of model tuning, such as the choice

of tuning metrics, will remain subjective, as highly dependent on the details and complexity of the model as well as on its

intended uses. Other steps however, such as sensitivity analysis and selection of tuning parameters, their exploration and510

the evaluation of the outcomes could be incorporated, at least partly, in an automated approach. It is therefore important to

understand which design choices are best suited for such automatic approaches, as we foresee that these will lead to more

accurate and potentially computationally cheaper model tuning, also making this important step in climate model development

more objective and reproducible.

Code availability. The code is published under https://github.com/EyringMLClimateGroup/bonnet24gmd_automatic_tuning_atm. The soft-515

ware code for the ICON model is available from https://icon-model.org.

Appendix A: Times series of the observational products used

Figure A1 shows the time series of the observational products used for the cloud cover and the water vapour path. The ten

year period 1980-1989 was used for the tuning of the dynamic outputs of ICON-A. For the cloud cover observational datasets,

the earliest year available is 1982, therefore we added the years 1990-1991 in our tuning analysis. The variability in the years520

illustrates the internal climate variability. We remark that other observational products exist for these outputs but do not include

the studied years. For example, ESACCI-WATERVAPOUR starts from year 2002, MODIS starts from year 2002, or Cloudsat

starts from year 2006.

Appendix B: Details on GP emulators and choice of the underlying hyperparameters

In this appendix we give a brief description of the Gaussian process (GP) regression framework used to construct emulators in525

this work, and provide the relevant details regarding the hyperparameters used in their implementation. Gaussian processes are

widely used in the context of Bayesian optimization, as they are a method for describing distributions over unknown functions,

and can be efficiently updated, or trained, using samples from the ground-truth distribution (Rasmussen and Williams, 2005).

In our case, the function we want to approximate with GP regression is that describing the dependence of a specific output Y

of the climate model, on a set of tuning parameters x, which we call Ymodel(x). The output of a Gaussian process trained on530
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Figure A1. Time series of the observational products used for the cloud cover and the water vapour path

set T = {xi,Ymodel(xi)}i of ground-truth samples (ICON-A model runs in our case) can be written as:

f(x) |T ∼ GP(µ(·),KC
: ·,·

) , (B1)

where GP denotes the GP function distribution with µ(x) and K
::
C respectively being the mean function and the covariance

matrix that implicitly depend on T , i.e., have been updated with the knowledge of the training data T using Bayes’ rule. Closed

form expressions for these functions are available and can be found in Rasmussen and Williams (2005). That is to say, given535

a new configuration x of tuning parameters, a GP trained on an ICON-A PPE for a given variable Y would output a normally

distributed random variable with mean µ(x) and variance σ2(x) (which can also be explicitly calculated from the knowledge

of the covariance matrix K
:
C

:
(Rasmussen and Williams, 2005)). We therefore interpret µ(x) as our GP emulator prediction

for Y , and σ2(x) as the associated uncertainty, and write:

Yemul(x)≡ µ(x) , (B2)540

Var(Yemul(x))≡ σ2(x) , (B3)

which we use in Eq. (1) in the main text.

Importantly, the properties of the GP, in particular of the covariance matrix K
:
C, depend on the choice of a kernel function

k(x,x′), which describes how the predictions at two points x and x′ are correlated. Kernel functions may also contain trainable

hyperparameters, which are typically optimized by maximizing the log marginal likelihood with respect to the training dataset545

(Rasmussen and Williams, 2005).

For our implementations we used the GP regression library implemented in scikit-learn package (https://scikit-learn.org/

stable/). We found Matèrn kernels to yield the highest prediction accuracy (which we measure via R2 coefficient). Matèrn

kernels have two hyperparameters: a lengthscale l and a smoothness parameter ν. The length scale is typically the distance by

which one can extrapolate outside the training data points: smaller values of l correspond to more rapidly varying functions that550
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Figure B1. Performance (R2 coefficient, calculated with 5-fold cross-validation) of the GP emulator with Matèrn kernel trained on PPE1

and PPE2, for different choices of hyperparameters: (a) for different values of ν, (b) for different values of α, and (c) for different values of

n_restart.

the GP can fit. This hyperparameter, together with the overall scale of the kernel, is optimized using the L-BFGS-B optimization

(Jorge Nocedal, 2006) pre-implemented in scikit-learn. For the smoothness parameter ν, four values were tested: ν = 0.5

corresponds to the absolute exponential kernel, ν = 1.5 to a one-time differentiable function, ν = 2.5 to a twice differentiable

function and ν →∞ to a radial basis function (RBF) kernel. These four values of ν allow a computational cost around ten

times smaller than other values, since they do not require to evaluate the modified Bessel function (Rasmussen, 2006). The555

values of ν = 2.5 and ν →∞ yield large negative R2-scores, so are not represented here. In panel (a) of Fig. B1 we observe a

comparable performance of the GP emulator for ν = 0.5 (absolute exponential kernel) and ν = 1.5.

Other hyperparameters in the GP optimization are the noise level α (which can be interpreted as the variance of Gaussian

noise added to the training data, with the aim of increasing the numerical stability of GP evaluations) and the number of

random hyperparameter initializations for the log marginal likelihood optimization (denoted with n_restart). Several values560

of α between 10−15 and 10−5 were tested. We show these tests in panel (b) Fig. B1. The values of α < 10−10 yield large

negative R2 scores. A change of α for 10−10 < α < 10−5 does not have a significant effect on the performance of the GP

emulator. Finally, we also tested several values of the n_restart, between 0 and 100, as shown in panel (c) of Fig. B1. From

the tests presented in Fig. B1, the following values of the three hyperparameters are chosen (which are also default values in

scikit-learn): ν = 1.5, α= 10−10 and n_restart= 0.565

Appendix C: Additional information on the generated PPEs

In this appendix we show additional data for the PPEs we generated in this work. Specifically, in Fig. C1 we show the sampled

parameter values for PPE3 (red circles) and PPE4 (grey triangles), where signs of (slow) convergence of history matching

are visible already after one iteration (in the distribution of the members of PPE4 being slightly shifted and narrower). Figure

C2 shows the sampled parameter values for PPE5 (blue triangles), with the cyan square and red triangle marking the best570

performing configurations reported in Table 7 in the main text.
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Figure C1. Sampled parameter values for PPE3 (red circles) and PPE4 (grey triangles). For each panel, two parameters are plotted on the

two axes (see Table 3). The two PPEs are generated with parameter set Pp2. Signs of (slow) convergence of history matching are visible

already after one iteration (in the distribution of the members of PPE4 being slightly shifted and narrower). The extents of the plots includes

all the PPE4, but not all of the PPE3.
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Appendix D: Times series of the physics and dynamic metrics

In this appendix we show additional information complementing Fig. 9 in Section 3.2.1 in the main text. In Fig. D1 we show

the yearly averages of the physics (top row, panels (a) to (d)) and dynamics (bottom row, panels (e) to (h)) output variables

for the 30 runs of PPE5 corresponding to Fig. 9. Also in these time series the higher year-to-year variability of the dynamics575

outputs compared to the physics ones can be clearly seen.

Appendix E: Additional information on parameter-to-output maps

In this appendix we show additional information on the parameter-to-output maps discussed in Section 3.2.3. In Fig.E1 (resp.

Fig. E2) we show the parameter-to-output map predicted with the GP-emulators trained on PPE1 and PPE2, (resp. PPE3 and

PPE4), on parameter set Pp1. (resp. Pp2). In Fig. E2 o-u we can see that parameter set Pp2 does indeed allow for a higher (and580

closer to the observational values) global cloud cover compared to Pp1 (Fig. E1).
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Figure C2. Sampled parameter values for PPE5 (blue triangles). For each panel, two parameters are plotted on the two axes (see Tables 3

and 4). The PPE is generated with parameter set Ppd. Two selected PPE members corresponding to the best performing configurations are

highlighted (cyan square and red triangle).
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Figure D1. Time series (yearly averages) of the physics (top row, panels (a) to (d)) and dynamics (bottom row, panels (e) to (h)) output

variables for 30 runs of PPE5 (each color corresponds to one run). The values at year 1980 and 1989 are connected with a dashed line to

help the reader identify the runs.
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Figure E1. Parameter-to-output maps predicted with the GP-emulators trained on PPE1 and PPE2. Every column corresponds to one tuning

parameter being changed (see the list in Table 3), and every row to an output metric. The parameters that are not being changed are kept

fixed to their best performing value from PPE2 (marked with the magenta star in Figures 2 and 3). The red shaded areas in each plot denote

the allowed output ranges from the observational data. The other colored lines in each plot denote the emulator predictions (for the first row,

dark and light blue denote the net long- and short-wave radiation at TOA, respectively), with the corresponding uncertainty (one standard

deviation) represented as the shaded area.
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Figure E2. Parameter-to-output map predicted with the GP-emulators trained on PPE3 and PPE4. Every column corresponds to one tuning

parameter being changed (see the list in Table 3), and every row to to an output variable. The parameters that are not being changed are kept

fixed to their best performing value from PPE2 (marked with the magenta star in Figures 2 and 3). The red shaded areas in each plot denote

the allowed output ranges from the observational data. The other colored lines in each plot denote the emulator predictions (for the first row,

dark and light blue denote the net long- and short-wave radiation at TOA, respectively), with the corresponding uncertainty (one standard

deviation) represented as the shaded area.
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