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Abstract. In climate model development, runing refers to the important process of adjusting uncertain free parameters of
subgrid-scale parameterizations to best match a set of Earth observations such as global radiation balance or global cloud
cover. This is traditionally a computationally expensive step as it requires a large number of climate model simulations, which
becomes more challenging with increasing spatial resolution and complexity of climate models. In addition, the manual tuning
relies strongly on expert knowledge and is thus not independently reproducible. To reduce subjectivity and computational
demands, Machine Learning (ML)-based tuning methods have become an active research subject. Here we build on these
developments and apply ML-based tuning to the atmospheric component of the Icosahedral Nonhydrostatic Weather and
Climate Model (ICON) at 80 km resolution. Our approach follows a workflow similar to the-other proposed ML-based tuning
methods: (1) creating a Perturbed Parameter Ensemble (PPE) of limited size with randomly selected parameters, (2) fitting
an ML-based emulator to the PPE to generate a large emulated ensemble with the emulator, and (3) shrinking the parameter
space to regions compatible with observations, using a method inspired by history matching. However, in contrast to previous
works, we apply a sequential approach: the selected set of tuning parameters is updated in successive phases depending on the
results of a sensitivity analysis with Sobol indices. We tune for global radiative, cloud properties, zonal wind velocities and
wind stresses on the ocean surface. With one iteration of this method, we achieve a model configuration yielding a global top-
of-atmosphere net radiation budget in the range of [0,1] W/m?, and global radiation metrics and water vapor path consistent
with the reference observations. Furthermore, the resulting ML-based emulator allows us to identify the parameters that most
impact the outputs that we target with tuning. The parameters that we identified as mostly influential for the physics output
metrics are the critical relative humidity in the upper troposphere and the eoefficient-conversion-conversion coefficient from
cloud water to rain, influencing the radiation metrics and global cloud cover, together with the coefficient of sedimentation
velocity of cloud ice, having a strong non-linear influence on all the physics metrics. The existence of non-linear effects further

motivates the use of ML-based approaches for parameter tuning in climate models.
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1 Introduction

Climate and Earth system models are developed and continuously improved to understand the behaviour of the Earth system
and to project climate change (Tebaldi et al., 2021). Due to their complexity as well as constraints on computational resources,
the resolution of climate models is relatively coarse, so that a number of key processes occur on scales smaller than the model
grid scale. These non-resolved processes, such as convection, radiation, turbulence, cloud microphysics, and gravity waves, are
described statistically for each grid cell through so-called parameterizations, which are a cause of biases and uncertainties in
climate projections (Gentine et al., 2021) due to uncertainties in their formulation and in the selection of the underlying free
parameters. To constrain the values of the free parameters involved in the parameterizations, tuning is an important step in the
development of climate models (Hourdin et al., 2017), where these parameters are adjusted such that the outputs of the climate
model reproduces the observed states of the Earth system reasonably well.

Model tuning is typically a very time-consuming and computationally expensive step. It has to be conducted for all compo-
nents of a climate model (such as atmosphere, ocean and land) and for the coupled model (see for instance the tuning of the
coupled ICON Earth System Model by Jungclaus et al. (2022)).

Traditionally, tuning in climate models is done manually, i.e., the parameters are changed individually (or few at a time)
in a sequential manner, with expert knowledge guiding the successive choices in the tuning of the parameters (Hourdin et al.,
2017; Mauritsen et al., 2012; Schmidt et al., 2017; Giorgetta et al., 2018; Mignot et al., 2021). Such manual approaches may
retain some form of subjectivity, and are therefore hard to replicate. There is also the risk of neglecting interactions among the
processes affected by the changed parameters, which may lead to compensating errors, e.g., a model’s low climate sensitivity
might be paired with weak aerosol cooling, resulting in an apparent match with historical data but potentially inaccurate future
projections (see e.g. Fig. 3 of Hourdin et al. (2017)).

In this work we investigate how machine learning (ML) techniques can help addressing the aforementioned challenges
faced in model tuning, using the atmospheric component of the ICON model (Giorgetta et al., 2018) as an example. In recent
years, ML-based automatic tuning methods have been widely investigated. These methods intend to tune the climate models
in fewer manual steps for the user compared to fully manual approaches, and aim to improve the accuracy and reproducibility
of parameter tuning by giving it a mathematical formulation amenable to numerical treatment. The goal is to find the regions
of parameter space for which the model outputs are consistent with observation-based reference datasets, where consistency is
defined on a suitably-defined distance between outputs and observations and accounts for a tolerance given by observational
uncertainties and model structural errors. A number of mathematical tools have been developed to tackle inverse problems
such as model tuning. The one we focus on in this work belongs to the family of Bayesian approaches (this is not the only
possible choice, and refer to (Zhang et al., 2015) for more details on other possibilities). In a Bayesian setting, this is achieved
by an iterative and efficient exploration of the space of the parameters being tuned, which is enabled by the construction of an
ML-based surrogate or emulator of the climate model that aims at approximating the climate model outputs at much cheaper
computational costs. In its most general formulation, this procedure consists of iterating the following steps: (1) generate a

perturbed parameter ensemble (PPE), i.e., an ensemble of climate model simulations obtained by sampling configurations of
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tuning parameters within the valid parameter ranges, (2) train a computationally cheap ML-based emulator on the PPE output
to approximate the parameter-to-output relationship, and (3) use the emulator for a denser sampling of the parameter space,
and shrink the space of allowed parameter configurations to the most promising one, i.e., the parameters most likely yielding a
tuned version of the climate model. A commonly adopted method for selecting promising parameter configurations is history
matching (Williamson et al., 2013, 2017). History matching aims at minimizing the number of required model simulations
in the search of optimal parameters, by balancing the sampling of unexplored parameter regions with the sampling close to
configurations found potentially compatible with observations. This is achieved using a metric that weights both the distance of
the emulator predictions from the observational references (small meaning close to observationally-compatible configurations),
and the uncertainty of the emulator (high in unobserved parameter regions). The three steps described above are repeated until
the model outputs used as tuning metrics converge to the corresponding observational range, thus yielding one or multiple
tuned parameter configurations, or a distribution thereof (Watson-Parris et al., 2021).

Several implementations of the ideas above have been proposed, for tuning models of different complexity. History match-
ing has been implemented to constrain parameters in the coupled climate model (HadCM3) (Williamson et al., 2013) and to
estimate parametric uncertainty in the NEMO ocean model (Williamson et al., 2017). It has also been used to tune parameters
of the turbulence scheme of a single column model version of ARPEGE-Climat 6.3, using large-eddy simulations as refer-
ence (Couvreux et al., 2021). History matching in combination with single-column models was also employed to constrain
convective parameters for their subsequent use in the LMDZ atmospheric model of the IPSL Earth System Model (Hourdin
et al., 2021). Furthermore, Hourdin et al. (2023) showed another successful application to the IPSL model, finding an ensemble
of tuned parameter configurations as good as the manually tuned vesion IPSL-CM6A-LR used for CMIP6. Besides their use
in history matching, ML-based emulators find applications in parameter tuning also in combination with ensemble methods
(Cleary et al., 2021) (with test applications on Lorenz *63 and ’96 models (Cleary et al., 2021), convection schemes in idealized
global circulation model (Dunbar et al., 2021), gravity waves parameterizations (Mansfield and Sheshadri, 2022)), and with
approximate Bayesian computation (Watson-Parris et al., 2021).

Building on these previous tuning efforts, here we

design a tuning
approach assisted by history matching for the atmospheric component of the Icosahedral Nonhydrostatic Weather and Cli-

mate Model (ICON-A version 2.6.4) (ICON, 2015; Zingl et al., 2014). The model’s icosahedral grid has a resolution of
approximately 80 km (R2B)5 grid), offering an improvement in spatial detail compared to previous applications of these tuning
approaches in global climate models. For instance, Williamson et al. (2013) used a resolution of 96 x 73 grid points in latitude
and longitude (apprex:approximately 417 km x 278 km at the equator), while Hourdin et al. (2021, 2023) utilized 144 x 143
grid points (apprex:approximately 160 km at the equator). From an algorithmic perspective, a further distinctive feature of
our ICON-A tuning method is that we incorporate history matching in a sequential approach, where we separate tuning into
phases in which different sets of tuning parameters are sequentially constrained with history matching. This approach reduces
the number of parameters being tuned in each phase, and allows us to reduce the required size of the PPEs, and therefore the
computational costs, which is particularly relevant given the total number of tuning parameters and the relatively high resolu-

tion (approx. 80 km) we target here. In our sequential approach we first focus on global radiative and cloud properties, referred
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to as physics outputs (Giorgetta et al., 2018), and then on outputs related to atmospheric circulation properties, referred to as
dynamics outputs (Giorgetta et al., 2018). For the physics tuning we apply history matching in the sequential manner explained
before, and show that the ICON-A physics outputs converge towards observational references in a few iterations. The ML-
based tuning of the physics outputs serves as the basis for the second step targeting the dynamics outputs. For this step we
follow the approach of Giorgetta et al. (2018) by generating a PPE and selecting the best performing model configurations,
where our criterion for evaluating the model’s performance keep the highest priority on achieving a nearly balanced global
annual net radiation flux at top of the atmosphere (TOA) while aiming to achieve a high performance on the dynamics outputs.

Our results are compared to the manually tuned version of the ICON-A model that was presented in Giorgetta et al. (2018);

Crueger et al. (2018)-, with a grid size of approximately 160 km (R2B4 grid), which is two times coarser than the resolution we

focus on in this paper (grid size of approximately 80 km, R2B5 grid). In the remainder of the paper, we refer to this manually
tuned ICON version as ICON-aes-1.3.

The article is organized as follows. We first introduce the ICON-A model, the ML-based tuning method and the reference
datasets used in this study in Section 2. We then present the results of the ML-based tuning approach for ICON-A in Section 3,
an evaluation of our selected runs in Section 4, and conclude in Section 5, where we also discuss the eritieatities-potential

issues of our proposed approach and an outlook on how to possibly overcome them.

2  Methods
2.1 ICON-A modelling framework

The Icosahedral Nonhydrostatic Weather and Climate Model (ICON) is a modelling framework for Climate and Numerical
Weather prediction developed jointly by the German Weather Service (DWD) and the Max Planck Institute for Meteorology
(MPI-M) (ICON, 2015; Zangl et al., 2014). We use ICON’s atmospheric component (ICON-A) (Zingl et al., 2014; Giorgetta
et al., 2018), version 2.6.4, and conduct AMIP experiments with the icosahedral grid R2B5 (=~ 80 km in the horizontal, for
details see Table 1 in Giorgetta et al. (2018)) with an implicitly coupled land model. The top height of the atmospheric model
is 83 km with 47 full vertical levels and numerical damping starting at 50 km. Subgrid-scale processes are described by
parameterizations and include radiative effects, moist convection, vertical diffusion, cloud microphysics, cloud cover, and
orographic and non-orographic gravity waves (Giorgetta et al., 2018). The time steps used in the model simulations are one
hour for the radiation scheme and six minutes for the atmospheric scheme. For our PPEs we run ICON-A for one year spin up
(1979) and then for one year for tuning physics outputs (1980). We then run the model for one year spin up (1979) and then

for ten years (1980-1989) for the dynamics outputs, as described in the following sections.
2.2 Parameters and Outputs

The first step to ML-based tuning, as for manual tuning, is to select the tuning parameters and output metrics that are to be

fitted. Our choice of the metrics is informed by the manual tuning of the ICON model by Giorgetta et al. (2018) and Crueger



Physics outputs Spatial average Averaging period RefReference datasets Target range
metrics
TOA net shortwave | Global (references | 1980 Giorgetta et al. (2018) [240, 241] W/m?
(SW) radiation (rsdt- | and PPEs)
rsut)
TOA net longwave | Global (references | 1980 Giorgetta et al. (2018) [-241, -240] W/m?
(LW) radiation (rlut) and PPEs)
TOA radiation bal- | Global (references | 1980 Giorgetta et al. (2018) [0, 1] W/m?
ance (rsdt-rsut-rlut) and PPEs)
Cloud cover (clt) Global  (references | 1982-1991 CLARA-AVHRR V002 62.7 %
and PPEs)

1980-1989 ESACCI-Cloud AVHRR-AMPM-{v3.0 | 65.1 %

(1980 for PPEs)
Water vapor path | Global (references | 1980-1989 (1980 for | ERAS [24.1] kg/m?
(prw) and PPEs) PPEs)

Table 1. Physics outputs together with respective observational datasets (CERES-EBAF (NASA/LARC/SD/ASDC, 2019) and ERAS (Dee
et al., 2011)) and target ranges used in this work. All the outputs in this table are globally averaged (for both the reference datasets and the
ICON-A simulations we conduct). The averaging period used for both reference datasets and our simulations (PPEs) is reported in the third

column. TOA stands for "top of the atmosphere".

Dynamics Output Spatial average Averaging period Refierence datasets | Target range

metrics

Zonal wind velocity (ua) 60° North at 10 hPa 1980-1989 ERAS5, MERRA2, (10.94, 11.15,
(references and PPEs) (references and PPEs) | ERA-Interim 10.94) m/s

Zonal wind velocity (ua) 60° South at 10 hPa 1980-1989 ERAS, MERRA2, (32.77, 34.03,
(references and PPEs) (references and PPEs) | ERA-Interim 33.15) m/s

Surface downward North-Atlantic Ocean (NAO) | 1980-1989 ERAS, MERRA2, (2.947e-3, 5.395e-3,

eastward wind stress (tauu)

(references and PPEs)

(references and PPEs)

ERA-Interim

3.645¢-3) N/m?

Surface downward

eastward wind stress (tauu)

Southern Ocean (SOO)
(references and PPEs)

1980-1989
(references and PPEs)

ERAS5, MERRA2,
ERA-Interim

(0.1367, 0.1413,
0.1359) N/m*

Table 2. Dynamics outputs together with respective observational datasets (ERAS (Hersbach et al., 2020)) used in this work. The North
Atlantic Ocean (NAO) region and the Southern Ocean (SOO) region are those defined in the AR6 database (Iturbide et al., 2020).

et al. (2018). There, the authors worked on model versions preceding ICON-aes-1.3.00, which resulted from their work, with
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a coarser resolution R2B4 of ~ 160 km, 47 vertical layers resolving the atmosphere up to a height of 83 km, and time steps of
two hours for the radiation scheme and ten minutes for the atmospheric scheme.

Table 1 reports the output metrics, and the corresponding reference datasets and values, that we focus on in this study, which
represent global radiative and cloud properties and are referred to as the physics outputs. These physics output metrics are all
global and multi-year averages. In particular, as shown in Table 1, we use the annual average over 1980 in our PPEs (apart
from our last PPE, as discussed later), and compare it with the multi-year averages of the reference datasetsreperted-in—Table—t.

The output metrics related to atmospheric circulation properties, the dynamics outputs, are given in Table 2. There, the
zonal mean velocity at 60° North and South at 10 hPa serves as proxy for the representation of high latitude jets. This is a

widely used target for evaluating simulations of the polar jets in models resolving the stratosphere (e.g. as seasonal means in
Tripathi et al. (2014 2020a, b); Rao et al. (2020);

2

wind stress mean over the North Atlantic Ocean and the Southern Ocean (defined in the AR6 database (fturbide-et-al;2020)

; Domeisen et al. Baldwin et al. (2021)). The surface downward, eastward

Iturbide et al. (2020)) are proxies for the forcing on the ocean surface. These dynamics output metrics are multi-year averages.
In particular, as shown in Table 2, we use the average over the period 1980-1989 in our PPEs, and compare it to the multi-year
averages of the reference datasets reported in Table 2. We use different averaging periods for physics and dynamics outputs
because of the different year-to-year variability and equilibration times of the associated variables. As substantiated in Section
3.3.1, the physics outputs have lower year-to-year variability compared to the dynamics ones, meaning that one simulated year
is sufficient to obtain a representative value for the annual averages. Conversely, for dynamics metrics the annual averages need
to be estimated from multi-year simulations due to their larger variability and sensitivity to geographic patterns.

Following Giorgetta et al. (2018), the parameterizations we select for tuning for the physics outputs are moist convection,
vertical diffusion, cloud microphysics and cloud cover. In Table 3 we report the parameters from these parameterizations
(which we therefore refer to as physics parameters) which we select for our tuning experiment. The parameterizations we
select for tuning for the dynamics outputs are the orographic and non-orographic gravity waves schemes. In Table 4 we report

the parameters from these parameterizations (referred to as dynamics parameters) which we select for our tuning experiment.
2.3 Reference datasets

To tune ICON-A we use reference values for the output metrics from Earth observations and reanalysis data. As in Giorgetta
et al. (2018), the main goal here is to obtain a slightly positive global annual mean downward net radiation flux at the top
of the atmosphere (TOA), between 0 and 1 W/m?, based on a net shortwave flux and an outgoing longwave radiation close
to observational estimates. For the two radiation fields (rsdt-rsut) and rlut (see Tab. 1 for definitions), the typical interval
[240 W/m?2, 241 W/m?] is used as a reference value, as estimated in (Giorgetta et al., 2018), following observational datasets
(CERES-EBAF-Ed4.0, 2000-2016) and Kato et al. (2013); Loeb et al. (2009). For cloud cover, we use CLARA-AVHRR
(Karlsson et al., 2020) and ESACCI-CLOUD (Stengel et al., 2017), and for the water vapour path, we use ERAS (Hersbach
et al., 2020) (see Section A for time series of these observational datasets). For the dynamics outputs, we use ERAS, ERA-
Interim (Dee et al., 2011) and MERRAZ2 (Gelaro et al., 2017). We refer the reader to Appendix A for the time series of some

of the observational products used in this work.
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Physics parameters with corresponding ranges

Parameterization

Average entrainment rate for midlevel convection

Average entrainment rate for penetrative convection

Average entrainment rate for cuamulus downdrafts
Characteristic adjustment time scale [s]

Neutral limit Prandtl number

Critical relative humidity parameter at the upper troposphere
Fractional convective mass flux across the top of cloud
Coefficient for determining conversion from cloud water to rain
Coefficient of autoconversion of cloud ice to snow

Minimum in-cloud water mass mixing ratio in mixed phase clouds
Coefficient of sedimentation velocity of cloud ice

Critical relative humidity at surface

Lower limit of scaling factor for saturation mixing ratio in layer below inversion

entrmid
entrpen
entrdd
cmftau
pr0

crt
cmfctop
cprcon
ccsaut
csecfrl
cvtfall
crs

csatsc

[2e-5, 3e-4]
[2e-5, 6e-4]
[5e-5, 6e-4]
[2e2, 1ed]
[Se-1,1.2]
[Se-1, 9e-1]
[le-2, 2e-1]
[1.5e-5, 3.5e-4]
[0.2,4]

[1.0e-5 , 1.0e-4]
[0.2,4]
[7.26e-1, 9.9e-1]
[0.35, 1,05]

Moist convection
Moist convection
Moist convection
Moist convection
Vertical diffusion
Cloud cover

Moist convection
Moist convection
Cloud microphysics
Cloud microphysics
Cloud microphysics
Cloud cover

Cloud cover

Table 3. Tuning parameters related to physics parameterizations alongside the corresponding name in the ICON source code (second column

from left), the range of values tested (third column from left), and the corresponding parameterization scheme they belong to (right column).

The range of the parameters was inferred from the default value of the parameters given in the source code of ICON-A version 2.6.4.

Dynamics parameters with associated ranges

Parameterization

Coefficient for orographic gravity wave drag gkdrag
Coefficient for low level blocking gkwake
Root mean square gravity wave wind at the emission level rmscon
Minimum difference "SSO peak height - SSO mean height" [m] | gpicmea
Minimum standard deviation of SSO height [m] gstd

[0.002, 0.28]
[0.001, 0.09]
[0.647, 1.079]

[20,60]
[5,15]

Sub-grid scale orographic effects
Sub-grid scale orographic effects
Atmospheric gravity wave effects
Sub-grid scale orographic effects

Sub-grid scale orographic effects

Table 4. Tuning parameters related to dynamics parameterizations alongside the corresponding name in the ICON source code (second

column from left), the range of values tested (third column from left), and the corresponding parameterization scheme they belong to (right

column). SSO stands for "subgrid-scale orography".

2.4 ML-based tuning approach

Our ML-based tuning method is built on the history matching technique (Williamson et al., 2013, 2017), and follows a similar

workflow as in (Couvreux et al., 2021; Hourdin et al., 2021, 2023). The goal is to find a region in the parameter space where the

model outputs are compatible (within the observational uncertainty) with the observational data (observationally-compatible).

In performing this exploration, history matching aims at finding a balance between exhaustively exploring, or sampling, the

parameter space, and minimizing the number of samples required for it. Since in our case each sample corresponds to an
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/ B. History Matching iterations \

2. Train ML-based
emulator (Gaussian
Process) on PPE

x = GP = Yemu (%)

3. Generate emulated
metrics ensemble of size
M, compute implausibility
p for all metrics

1. PPE of ICON-A
simulations for N

sampled parameter

configurations

emulator m
ICON-A m \ ensemble
4. Select region of
parameter space

satisfying constraint on
implausibility

Stop iterations when PPE in step 1. is compatible with observations /

A. Initialisation: select
a set Pof K parameters x
and output metrics Y

C. Parameter sensitivity analysis
with Sobol indices estimated
using the ML-based emulator

$1(LY)
stol(i' y)

D. adjust the
set Pof K parameters x

Figure 1. Schematic of the method used for the ML-based tuning of the physics parameters of [ICON-A: history matching technique combined
with a sensitivity analysis and a sequential parameter selection. The first set of tuning parameters is chosen (A), and history matching is
employed to shrink the associated parameter space to an observationally-compatible region (B). When-a-compatible regton-is-found;or-If
the PPEs are far from observational references, a new parameter set is chosen with the help of sensitivity analysis (C). The new parameter set

(D) is used for a new phase of the tuning experiment. When one or more of the model configurations generated in the last PPE are compatible

with observations, the iterations of this tuning approach stop. The model configurations compatible with observations are then evaluated.

expensive climate model simulation, we consider this method particularly well suited for our tuning task. In tuning ICON-A we

embed history matching in a sequential protocol, where at each step we add or remove tuning parameters based on the outcomes

of the history matching iterations. We now start by outlining the steps of histery—matehing;—the history-matching-inspired

method that constitutes the basis of our protocol (see also steps 1. to 4. in Fig. 1):

1. For a given set of tuning parameters P with K elements draw an initial Latin Hypercube (LHC) sampling of size #IN.
Using LHC sampling, all parameters are simultaneously changed and the different samples fill the K-dimensional pa-
rameter space (within the allowed ranges specified in Tables 3 and 4) approximately uniformly. Typically, #-/N is chosen
as n~104—N ~ 10 K (Loeppky et al., 2009). Using these selected parameters, generate a PPE of ICON-A runs. The
PPE consists of #N_members, or runs, one for each sampled parameter configuration x; (with ¢=-1t-=ni =1,..., V).

For each run, we calculate all the output metrics described before. This results in sets of input-output training pairs

, one set per output metric Y (e.g., annual average of

global TOA radiation balance).

2. Fit an emulator to the generated PPE, i.e., to the training sets 7y for all the output metrics Y of interest. For a given

metric Y, the emulator evaluated on a configuration of tuning parameters « returns Yo, (), the approximation to the



true model output metric Yode1 (). Our choice for the model emulator is Gaussian process (GP) regression (Rasmussen
and Williams, 2005). GPs are models typically used in Bayesian regression tasks, and are very well suited for our case
since (i) they have only few parameters, hence require relatively little training data for fitting, and (ii) they by construction
180 return the uncertainty associated to their prediction, which is measured by the variance Var(Yemui()). This is a central
quantity used in the steps below. Further details on the choice of the GP are given in Appendix B. In our implementation,

we train one GP per model output.

3. Generate a large emulated metrics ensemble of size-N-0f size M (typically ranging from 10° to 10%, here -=-3-<10>M = 3 x 10°)

using the trained GP emulator. For each emulator run, calculate the implausibility measure p for each metric Y, with

185 reference value Y0 (from observations or re-analysis data) as:
YO Y.l
PVemmat(), 10) = LY@ M)
Var (Yemu ()

The idea behind this definition is that a small distance |Y° — Yepu ()| or a large emulator variance /Var(Yomu ())
(typically true when x is far from already sampled points) will lead to a small value of p, hence balancing exploitation
with exploration of the parameter space. In-the-above-definition;-Note that typically a measure of the observational
190 uncertainty Var(Y?) is typicalty-included in the denominator of the implausibility measure, and defines a tolerance for
assessing the convergence of history matching. This is an important distinction between traditional history matching and
our implementation, which we motivate in the next point. In our case, the observational uncertainty is accounted for in the
evaluation of the tuned model configurations, as-where we assess whether the outputs of the parameters configurations
sampled with our procedure (see next points) are within the spread of the observational datasets used as reference. This

195 is explained in Section 4.

4. Select #-IN_parameter configurations that satisfy the following constraints on the outputs (see Table 1 and Table 2 for

outputs definitions):

- p(Yomu(x),Y?) < py: for the three physics metrics TOA shortwave radiation, TOA longwave radiation, and TOA

net incoming radiation,

200 — p(Yemul(),Y?) < po: for the two other physics metrics cloud cover and liquid water path, and the five dynamics

metrics.

The choice of a smaller threshold for the three radiation metrics is necessary in order to give a higher weight to the
constraint on a balanced TOA radiation than on the other metrics. We use ps = 2p;. The value of p; is automatically
adjusted in order to select only #-/N_parameter sets out of the ensemble of size M. Given that we are interested in
205 drawing parameter configurations that are representative of the space of plausible tuned parameters in few iterations,

our choice of the implausibility measure as in Eq. (1) provides stricter constraints on the selected parameters, with the
observational means Y'° being the target values for the corresponding metrics.
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5. Back to step 1. : Generate a new PPE of size #-[N with ICON-A for the parameter ensemble defined in the previous step,

and repeat steps from 2. to 4.

The iterations stop when one of the model configurations generated in the PPEs is compatible with observations, or when
a new set P of tuning parameters is used. Compatibility with observations is defined based on a weighted distance of the
model output metrics from their reference value, with a tolerance given by the corresponding observational uncertainty. The

highest weight is given to the global TOA net radiation balance, our main tuning goal. Fhe-In general, in the earlier iterations

of history matching, not all the members of the next round are expected to be compatible with the observational references.
The configurations that are found compatible with observations are considered representative of the space of plausible tuned

arameters, and are subsequently evaluated on additional evaluation metrics to assess their quality as tuned configurations (see
Section 4). The parameter set P is changed when the spread of the PPE generated in the last history matching iteration is too

far from the observational range. The new parameter set consists of new tuning parameters together with the most influential
parameters from the previous P, for better steering the model outputs towards the observational references. The influence of
the parameters on the model outputs is estimated performing an emulator-based sensitivity analysis with Sobol indices, the
details of which are provided in Section 3.2.2. This results in a sequential tuning approach, integrating history matching as its
core component for constraining the parameters in the sets P selected in the different phases. This is schematically shown in
Fig. 1.

This sequential approach incorporating histery-matehing-the previously explained history-matching-inspired method is used
for the tuning of the physics outputs. The resulting model configuration serves then as basis for the next step which is the
simultaneous tuning of physics and dynamics parameters and metrics. Also in this case we use a sensitivity analysis to select
which physics parameters to keep in this next tuning step. In this step for the tuning of physics and dynamics parameters and
metrics, we follow the manual tuning approach of (Giorgetta et al., 2018). We generate a PPE and select the best performing
model configurations, where our criterion for evaluating the model’s performance keeps the highest priority on achieving a
nearly balanced global annual net radiation flux at top of the atmosphere (TOA). Separating the tuning of physics-only metrics
from that involving also dynamics outputs allows us to use different durations of the ICON-A simulations for the two steps,
and to further reduce the computational costs. Specifically, as substantiated in Section 3.3.1, the physics outputs have lower
year-to-year variability and shorter equilibration timescales compared to the dynamics outputs. This means that for physics
outputs shorter simulations are needed for obtaining a representative value for the annually averaged variables used as metrics.

Finally, before moving on to the results section, a technical note on the construction and evaluation of the GP emulators:
we implement the GP emulator in Python using scikit-learn (https://scikit-learn.org/stable/), and used the built-in routines to
optimize the GP parameters at each iteration of the above procedure (see details in Appendix B). In this work, we measure the

performance of the GP regression model via the R? value, which for a given output Y is defined as:

}/emul - Ymodel)2
R} (Y)=1- ( 2
) Var(Yimodel) (2)

where (Yomul — Yimodel )2 denotes the mean squared error of the emulator over a set of testing parameters, and Var(Yi,0d01) the

variance of the true model output over the same test set.
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3 Results
3.1 Summary of the generated PPEs

The PPEs generated in this work are summarized in Table 5. PPE; to PPE, are generated for the tuning of the physics output
metrics from single-year ICON-A runs (1980) after a one year spin-up. PPE; is generated from an LHC sampling of size 30

on the (physics) parameter set:
Pp1 = { entrpen, entrmid, entrdd, cmftau, crt, prO} , 3)

which are the physics parameters used in (Giorgetta et al., 2018). PPE, is produced by applying history matching on the
results of PPE;. After PPEs a new phase of our sequential approach starts: for PPE3s we perform a new LHC sampling on a

modified parameter set:
Pp2 = { cmfctop, cprecon, cesaut, csecfrl, evtfall, crt, pr0} 4)

in order to increase the globally averaged cloud cover, which is consistently lower than the observational references in PPE;
and PPE,. The parameters in Py, were selected among those that in the ICON-A manual tuning history (unpublished) were
deemed most influential for cloud cover. Our criterion to decide which parameters to keep from Pp; to Ppa follows from the
sensitivity analysis based on Sobol indices, which we present later in Section 3.2.2. Specifically, the parameters crt and pr0
associated to higher first and total Sobol indices for the cloud and water vapour metrics have been kept from Pp; to Ppo.
For generating PPE3 and PPEy, the values of the parameters in Py that are not present in Py are fixed to their best value
from PPE, (see the right column of Table 5 and the magenta star in Fig. 2 and Fig. 3). The set P, is used to generate PPE3,
consisting of 30 samples sampled with LHC sampling. PPE, is produced by applying history matching on the results of PPE3.

The sizes of the PPEs are chosen to be smaller than the typical value of ten times the number of parameters (six parameters
in P, and seven parameters in P,o) (Loeppky et al., 2009). This size allows a lower computational cost while being large

enough to train an emulator that allows convergence of the PPEs towards reference observations, as explained in the next

In PPE; we then address also the tuning of dynamics outputs by varying physics and dynamics parameters simultaneously

in the parameter set:
Ppa = {entrmid, cvtfall, crt, crs, csatsc, rmscon, gkdrag, gkwake, gpicmea, gstd } , %)

and keeping the other parameters fixed to their best values in PPE, (see the right column of Table 5 and the magenta star
in Fig. 2 and Fig. 3). Also for P,q we follow the same strategy and keep the parameters having the highest influence on the
radiation and water metrics, as can be seen from the Sobol analysis in Section 3.2.2, with the addition of crs and csatsc after
further advice from ICON experts. The parameters rmscon, gkdrag and gkwake are the same dynamics parameters used in
(Giorgetta et al., 2018), and we added gpicmea and gstd following advice from ICON expert knowledge. PPE5 consists of
ten-year ICON-A simulations from 1980 to 1989 (after a one year spin-up).

11
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PPE ‘ Parameters changed ‘ Size ‘ Description Outputs Fixed parameters

PPE; | Pp1 = {entrpen, entrmid, 30 LHC sampling of Pp1 | physics cmfctop (0.1), cprcon (2.5e-4),
entrdd, cmftau, ccsaut (2.0), csecfrl (1.5e-5),
crt, prO} cvtfall (2.5), csatsc (0.7), crs (0.968)
(fixed from default configuration)
PPE> | Pp1 29 History matching physics
from PPE1
PPE3 | Pp2 = {cmfctop, cpreon, 30 LHC sampling of P2 | physics entrpen (9.295e-5), entrmid (2.2504e-4),
ccsaut, csecfrl, entrdd (1.766e-4), cmftau (2114.6),
cvtfall, crt, prO} csatsc (0.7), crs (0.968)
(fixed from best conf. in PPE>)
PPEs | Ppo 30 History matching physics
from PPE3
PPE5 | Ppa = {entrmid, cvtfall, crt, | 80 LHC sampling of Ppq | physicsand | entrpen (9.295e-5), entrdd (1.766e-4),
crs, csatsc, rmscon, dynamics cmftau (2114.6), pr0 (0.93168),
gkdrag, gkwake, ccsaut (2.0), csecfrl (1.5e-5)
gpicmea, gstd} (fixed from best conf. in PPE2)

Table S. Summary of perturbed parameters ensembles (PPEs) generated in this work. The PPEs have been sequentially generated from 1 to
5. PPEs3; is obtained from an LHC sampling of parameter set Pp2, where the parameters in Pp1 not included in Ppo are kept fixed to their

best values from PPE, (and listed in the right column), which are then used further in PPE4 and PPEs.

3.2 ML-based tuning of physics outputs with history matching

In this section we present the results of the tuning of the physics parameters. We start by considering PPE; and PPEs. As
explained before, PPEs is generated by applying history matching after having trained a GP emulator on the outputs of PPE; .
The constructed GP emulator in this case has a good predictive performance (measured by an average R? score of 0.81, as
discussed in more detaits-detail in Section 3.2.1 below), and can therefore accurately guide the parameter choices for PPEs.
Thanks to this, the application of only one iteration of history matching to PPE; is already sufficient to generate configurations
in PPE, that achieve a balanced TOA radiation. This is demonstrated in panel (a) of Fig. 2, which shows the net short-wave
(SW) versus the net long-wave (LW) TOA radiation for PPE; and PPE,. There, we can clearly see that after history matching
on PPE;, PPE, can achieve configurations that match or get close to the observational ranges denoted by the green triangle
(and to ICON-aes-1.3). The convergence of the output metrics towards their reference values can also be observed in panel (b)
of Fig. 2, for the other two physics output metrics (global cloud cover versus water vapor path) for PPE; and PPE,. There,
the distribution of the PPE; outputs is converging towards the observational references (green markers). The convergence of

history matching towards the observational references can also be seen in the distribution of the sampled parameters for the
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Figure 2. Physics output variables for PPE; (blue stars) and PPE, (black squares) compared to ICON-aes-1.3 (orange triangle) and
observational datasets (green). Signs of convergence of history matching are visible already after one iteration (the distribution of the members
of PPEs; is slightly shifted towards higher cloud cover values and narrower). The magenta star marks the best performing configuration from

PPE> (see right column of Table 5), used in the generation of the subsequent PPEs.

two PPEs (Fig. 3). However, Fig. 2 panel (b) shows that global cloud cover still remains lower than the observational data (of
approximately 1% compared to CLARA-AVHRR, and 3% compared to ESACCI), despite PPE; yielding a slightly higher
cloud cover (closer to the observed range) than PPE;. In Fig. 2, the magenta star marks the selected best performing model
configuration in PPE,. Following Giorgetta et al. (2018), our criterion for evaluating the model performance prioritizes the
global radiation metrics, in particular the net TOA radiation budget, over cloud cover and water vapor path. The selected run

is the only one falling within the observational range for both radiation metrics (green triangle in panel (a)). The-convergence

Thereforein-the- ICON-aes-1.3 exhibits a higher value of global cloud cover (orange triangle in Fig. 2.b) than our PPE; and
PPEs. The resolutions of ICON-aes-1.3 (approximately 160 km) is coarser than PPE; and PPE, (approximately 80 km). The

authors of (Giorgetta et al., 2018) have investigated the six tunin

arameters used in P,;. Here, with these six parameters, we

are not able to reach a similar performance for the cloud cover metric. This supports the fact that one should repeat the tuning
process when the model resolution is changed (Crueger et al., 2018). Moreover, in addition to the parameters in Py, the authors
of (Giorgetta et al., 2018) explored other tuning parameters, and these results were not published because having a negligible
influence on their tuning process (as explained in their Section 5). In the next generation of PPEs (the second phase of our
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Figure 3. Sampled parameter values for PPE; (blue stars) and PPE; (black squares) compared to ICON-aes-1.3 (orange triangle). For
each panel, two parameters are plotted on the two axes (see Table 3). Signs of convergence of history matching are visible already after
one iteration (in the distribution of the members of PPE; being slightly shifted and narrower). The magenta star marks the best performing

configuration from PPE; (see also right column of Table 5 for values), used in the generation of the subsequent PPEs.

sequential approach);—we-seleetthe-, we investigate the impact of some of these parameters. Therefore, the parameter set P

e ek oud-cover-is-more-sensitive followine the eria-explained-in-the-previous-seetion-contains
parameters potentially having a stronger effect on cloud cover at the present resolution.

Parameter set Pp is used to generate PPEs; with LHC sampling. A GP emulator is then trained on the outputs of PPEs.
The constructed GP emulator in this case also has a good predictive performance (measured by an average R? score of 0.75,
as discussed in more details in Section 3.2.1 below), and we therefore use it for performing history matching and generating
PPE,. Also in this case history matching is shrinking the space of promising parameter configurations and the related output
distribution. This can be seen in Fig. 4, where we show the distribution of the radiation metrics (in panel (a)), and the of global
cloud cover versus water vapor path (in panel (b)) for both PPE3 and PPE, (we refer the reader to Appendix C for plots of
the related parameter distributions). While the new parameter set P},» allows us to reach a global cloud cover consistent with
observations, we also see that the spread of the PPE outputs is more than doubled compared to that of the previous PPEs (see
yellow shaded rectangles in Fig. 4 showing the extent of Fig. 2). This increased spread also potentially increases the number of
history matching iterations to converge towards the observational references. Given the high computational costs of generating

these PPEs, we therefore use the best performing model configuration sampled so far, which belongs to PPEs.

3.2.1 Performance of the GP emulator

We now analyze the performance of the GP emulator for the physics outputs considered. We refer the reader to Appendix B for
details on Gaussian processes and the choice of the underlying hyperparameters. In Table 6, we show the average performance

(R? score) of the GP emulators trained on the PPEs used for the tuning of the physics parameters (corresponding to PPEy,
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Figure 4. Physics output variables for PPE3 (red circles) and PPE, (grey triangles) compared to ICON-aes-1.3 (orange triangle) and
observational datasets. Also here, signs of convergence of the outputs to their observational values can be seen (in the distribution of the

members of PPE, being slightly shifted and narrower).

PPE used for training | GP-emulator R*-score

PPE; 0.82
PPE; + PPE; 0.79
PPE3 0.75
PPEs + PPE4 0.81

Table 6. Performance of the GP-emulator on PPE; to PPE,. The R? value reported here is the average R? of the emulators for all physics

variables (see Table 1). For each emulator, the R? is calculated via 5-fold cross validation on the training set (PPE points).

PPE,, PPE3, PPE,). The value reported in Table 6 is the average R? over all the five physics output metrics (defined in
Table 1), and is computed using a 5-fold cross validation (https://scikit-learn.org/stable/). From these values, we conclude that
the constructed emulators are indeed able to approximate the ICON-A physics outputs, which is also reflected in the fact that
history matching shows signs of convergence already after the first iteration, as shown in the previous section. The number of

PPE samples required for the GP regression to achieve the reported R? score is shown in Fig. 5.
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Figure 5. Average R* score of the physics outputs emulators, as a function of the size N of PPE used for training. For each N tested, fifty
randomly drawn samples of size N were drawn from the entire set of ICON PPEs of size 60. The R? score is calculated for each size-N
sample, and the mean (solid lines) and standard deviation (shaded areas) are estimated from these scores on the fifty samples. The red curve

shows the R? for emulators trained on PPE; and PPEo, the blue curve the R? for emulators trained on PPE3 and PPEy,.

3.2.2 Sensitivity analysis for the physics parameters and outputs

In this section we show the sensitivity analysis for the physics parameters and outputs, which supports our selection of pa-
rameters in the subsequent steps of our sequential approach, presented in Section 3.1. The analysis presented here is based on
the calculation of Sobol indices, which in turn are calculated using the emulator constructed in the previous section. Generally
speaking, Sobol indices quantify the impact of one specific feature (tuning parameter, in our case) on the overall variance of
the model output (the output metrics, in our case). Specifically, we focus on the first order Sobol index and on the total Sobol
index. Given an emulator Yo, for metric Y, the first order and total Sobol indices for the i-th parameter x; are defined as

follows (Saltelli et al., 2010):

Sl,(i,Y) = m Varzi (EmNI (}/;mul |x1)) ) (6)

Stot,(i,y) = mﬂzmw (Varzi (Yemul|w~i)) ) @)

where Varg (Yemul) denotes the sample variance of the emulator over the distribution of all parameters x, Var,, (-) the sample
variance the distribution of parameter z;, E,,_, the expected value over all parameters but z;, and Yoy, | 2; denotes the emulator
function with input parameter x; kept fixed. The first order Sobol index S} (; y) corresponds to the effect of varying x; alone,
averaged over all other inputs (parameters) variations, while S; (;,y') measures the total effect of varying x;, which includes
the variance coming from interactions of x; with other parameters. In Figure 6 we show the S; (; y) (on the x axis) and
Stot,(i,v) (on the y axis) for the physics parameters and outputs. We use the GP emulator trained on PPE; for panels (a) to

(e), and the one trained on PPE3 for panels (f) to (j). The higher the values of the first and total Sobol indices for a parameter
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Figure 6. First order Sobol index S1 (z-axis) and total Sobol index Sto+ (y-axis) for the physics parameters (in legend) and outputs, net SW
radiation at TOA (panels (a) and (f)), net LW radiation at TOA (panels (b) and (g)), net radiative bugdet at TOA (panels (c) and (h)), cloud
cover (panels (d) and (i)), water vapour path (panels (e) and (j)). We use the GP trained on PPE; for panels (a) to (e) and trained on PPE3
for panels (f) to (j). To calculate the Sobol indices, the sampling method of Saltelli et al. (2010) was used, with 70000 samples, allowing a

converged value of the indices.

and corresponding output, the higher the influence of that parameter on that output. Looking at panels (d) and (e) we see that
the two most influential parameters in P,; on cloud cover and water vapour metrics are crt and pr0, which are the ones we
keep among the tuning parameters in Pp2. Looking at panels (d) and (e) we see that the two most influential parameters in
Pp1 on cloud cover and water vapour metrics are crt and pr0, which are the ones we keep among the tuning parameters in
Pp2. In panels from (f) to (j), obtained from the emulator trained on PPE3, we see that cvtfall has overall a large effect on
all physics metrics, and the largest on cloud cover, while crt has the largest effect on the TOA net radiative budget, and we

therefore decide to keep these tuning parameters in Ppq for PPEs.
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3.2.3 Visualization of the parameter-to-output maps

The previously trained emulator can also be used for the visualization of the parameter-to-output dependencies. These visu-
alizations complement the sensitivity analysis presented in the previous section, and further helped us in the selection of the
tuning parameters to be kept across the phases of our sequential tuning approach. Generally, such visualizations are very useful
for informing the user of the effect of a parameter on the outputs: they can help selecting the most influential parameters and
the corresponding plausible ranges, potentially reducing the computational costs of tuning exercises.

Here we construct these parameter-to-output maps, similarly to what has been done by Mauritsen et al. (2012), with the
important difference that the use of GP emulators in our case allows for a more extensive, or denser, exploration of the selected
parameter space. We exemplify such visualizations in Fig. 7, constructed from GP emulators for physics outputs trained on
PPE; and PPEs in the first two lines (Fig. 7 a-h) and on PPE3 and PPE, in the last two lines (Fig. 7 i-p). The parameters that
are not being changed are kept fixed to their best performing value from PPE5 (marked with the magenta star in Figures 2 and
3 — although we emphasize that with the trained emulators one can very quickly generate new maps for different parameters).
The red shaded areas in each plot denote the allowed output ranges from the observational data. For the parameters from P}
varied, the value of global cloud cover (second row of Fig. 7) remains below the lower bound given by the observational data
(at 62.7%), which is consistent with our observations in Fig. 2. This is the reason why we selected an increased parameter
set Ppo for the next PPEs, which indeed had a higher influence on the global cloud cover (forth row of Fig. 7). We refer the
reader to Appendix E for the parameter-to-output map constructed from PPE; and PPEs and showing the effect of the six
parameters in Py on all physics metrics (Fig. E1). Likewise, the parameter-to-output map constructed from PPE3 and PPE,
and showing the effect of all parameters in Py is shown in Fig. E1.

Together with the previous Section 3.2.2, these maps allow us to identify which parameters are likely to be the most influen-
tial for our physics tuning metrics. The parameters that we identified as mestty-most influential for the physics output metrics
are the critical relative humidity in the upper troposphere (crt) and the coefficient conversion from cloud water to rain (cprcon),
influencing the radiation metrics and global cloud cover, together with the coefficient of sedimentation velocity of cloud ice
(cvtfall). These parameters have a strong linear influence (crt in Fig. 7 d. and h.) and non-linear influence (cprcon and cvtfall
in Fig. 7 j., n., and L, p., respectively) on the physics metrics. Note that parameters governing cloud microphysical processes
(e.g. fall velocities such as cvtfall) were identified as tuning parameters widely shared among climate models in Hourdin et al.

(2017) synthesis paper (see Table ES4 therein).
3.3 Tuning of the dynamics outputs

We now discuss the simultaneous tuning of the physics and dynamics outputs. Due to the expected large variability of dynamics

outputs (see next Section 3.3.1) which can potentially hinder the training of regression models;-, we expect history matchin

to require a large number of iterations and costly ICON simulations. Therefore, we adopt a similar approach to Giorgetta et al.
(2018), in that we generate a PPE (PPE5) and select the best performing model configurations. Also in this case, our criterion
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Figure 7. Parameter-to-output maps predicted with GP-emulators trained on PPE; and PPE, (a-h) and GP-emulators trained on PPE3 and
PPE4 (i-p). In the first and third row (a-d and i-1) the net SW and LW radiation at the TOA are shown. In the second and forth row (e-h and
m-p) the global cloud cover is shown. Figures a. and e. show the effect of entrmid, b. and f. that of entrpen, c. and g. of pr0, d. and h. of

crt, i. and m. of cmfctop, j. and n. of cprcon, k. and o. of ccsaut, and 1. and p. of cvtfall.

for evaluating the model performance gives a higher importance to the global radiation metrics, which are our primary tuning
goals, and puts less stringent requirements on the other tuning metrics.

The ML-based tuning of the physics output metrics discussed in the previous section serves as a basis for the second tuning

385 step addressing the dynamics outputs. PPEs is generated by simultaneously varying the parameters in the set Ppq (with LHC

sampling), while keeping the other parameters fixed to their best configuration obtained with history matching, from PPEs

(see Table 5 and the magenta star in Fig. 2 and Fig. 3). The physics parameters in Ppq are selected based on a sensitivity
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analysis with Sobol indices, as explained in Section 3.2.2. The choice of the dynamics parameters follows Giorgetta et al.
(2018), with gkdrag and gkwake chosen for tuning the zonal wind stresses on the ocean surface, and rmscon affecting the
zonal mean winds. In Fig. 8 we show the physics (panels (a) and (b)) and the dynamics (panels (c) and (d)) outputs from PPEs;,
and highlight the two model configurations (the cyan and the red dot) which achieve the best model performance within PPE;.
The selected configurations are those closest to the observational range in panel (a) of Fig. 8, given that achieving a balanced
TOA radiation has a higher importance in our tuning experiment (Giorgetta et al., 2018). The values of the parameters for these
two selected simulations are given in Table 7. These also achieve results comparable with the tuned ICON-aes-1.3, with the
TOA radiation balance within the interval [0,1] W/m?, the TOA long- and short-wave radiation metrics within 1 W/m? from
the observational range. Also for the other two physics output metrics the performance of the two selected configurations is
comparable to ICON-aes-1.3, as they show less than 1% difference in global cloud cover compared to the observational range,
and less than 0.5 kg/m? difference in the water vapor path. The differences with respect to reference data and ICON-aes-1.3
become more apparent when looking at the dynamics metrics. In panel (c) and (d) it can indeed be seen that the values of these
metrics from the reference dataset are not covered by the generated PPE. For most of the metrics the differences of the selected
configurations from the reference dataset remain comparable to those of ICON-aes-1.3, except for the mean zonal wind stress
over the Southern Ocean (tauu SOO - see panel (c)), where the difference increased from roughly 0.005 N/m? to roughly
0.02 N/m?. The values of the parameters for these two selected runs are given in Table 7. Given the different settings used in
the manual tuning for ICON-aes-1.3 (160 km instead of the 80 km resolution used here, and the different time steps used),
the differences in the optimal model configurations are not surprising. For instance, the model resolution strongly affects the
parameters describing the unresolved orography, and thus the values of the corresponding parameters (Giorgetta et al., 2018).

In the next section we analyze the variability of the dynamics outputs, and we identify in it a possible explanation for the
difficulty of matching them in our tuning. Afterwards, in Section 4, we evaluate the results from PPE5 on model outputs not
targeted during the tuning experiment, for a better assessment of the results and a better comparison with the previously tuned
ICON-aes-1.3.

3.3.1 Analysis of output variability

We now use PPE5 to analyze the internal variability of the investigated output metrics and compare them to the parameters’
effects. The year-to-year variability of the output metrics is shown in Fig. 9 where we plot the long- vs. short-time averages
of the considered outputs, for 30 runs of PPEs. Additional data complementing the information of Fig. 9 can be found in
Appendix D. In Fig. 9 it can be clearly seen that the dynamics outputs (panels in the lower row) have a larger variability across
years compared to the physics ones (upper row), which is apparent from the larger spread around the diagonal (no spread would
signify no variance), and the larger error bar (which represents the standard deviation over the yearly averages). In each panel

we also report the ratio between the mean spread across years Sy and the PPE spread Sppg, which for each output metric Y’
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Figure 8. Physics (top row) and dynamics (bottom row) output variables for PPEs (blue triangles), compared to ICON-aes-1.3 (orange

triangle) and observational datasets. Two selected PPE members corresponding to the best performing configurations are highlighted (cyan

square and red triangle). For comparison, two other runs are also highlighted (black circles).

are defined as:

Syrs = \/% Z?:l Varyears,i(y) s

Sers = /LTI, (V=)

®)
®)

where n denotes the size of the PPE, Varyears ; (Y") the variance of output Y over the simulated years for the i-th PPE member,

Y; the ten-year mean of output Y for the i-th PPE member, and Y the average of the Y; over all PPE members. The ratio

Syears/SPPE gives a quantitative measure of the comparison between the yearly output variability and the effects of changing

21



425

430

Physics Parameters

1st selected run

2nd selected run

Giorgetta et al. (2018)

entrmid 2.8526e-4 2.6751e-4 2e-4
entrpen 9.2951e-5 9.2951e-5 2e-4
entrdd 1.7662e-4 1.7662e-4 4e-4
cmftau 2114.6 2114.6 3600
pr0 0.93168 0.93168 1

crt 0.81681 0.80417 0.8
cmfctop default value: 0.1 default value: 0.1

cprcon default value: 2.5e-4 | default value: 2.5e-4

ccsaut default value: 2.0 default value: 2.0

csecfrl default value: 1.5e-5 | default value: 1.5e-5

cvtfall 1.7479 2.00239

crs 0.88400 0.80222

csatsc 0.8700 0.64369

Dynamics Parameters

gkdrag 0.17404 0.20595 0.1
gkwake 0.08262 0.087592 0.01
rmscon 0.91864 0.82209 0.87
gpicmea 28.375 53.976

gstd 8.40780 13.025

Table 7. Values of the parameters for the two members of PPE5 yielding the best output metrics, shown as cyan square and red triangle in

Fig. 8. For comparison, the values of the parameters tuned by Giorgetta et al. (2018) are given as well.

parameters in the PPE. It is clear that for the dynamics outputs, especially the zonal wind stresses on the ocean surface, this
ratio is almost one order of magnitude larger than for the physics ones.

An additional source of uncertainty in the dynamics output metrics is their restricted geographical location, which exposes
them to biases in spatial patterns. The low variability in the physics variables, which are global means, is consistent with the
common observation that already simulations as short as one year can give good tuning results, though using more years, as
for instance a full decade used in (Giorgetta et al., 2018), has the benefit to include a larger variation of prescribed boundary
conditions as for example El Nifio, La Nifia or neutral years.

The analysis shown in Fig. 9 shows that for dynamics outputs, the internal variability is almost of the same order of magnitude

of the PPE variance, and can therefore partly hide the effects of changing parameters, as discussed above.
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Figure 9. Ten-year mean (1980-1989, y axis) against the mean of one particular year (here 1980, = axis), for the physics (top row, panels
(a) to (d)) and dynamics (bottom row, panels (e) to (h)) output variables for 30 runs of PPEs, represented by different colors. For each
data point, the dotted vertical line shows the spread of the annual mean across the ten years (maximum and minimum values), and the solid

vertical line denotes one standard deviation, calculated on the 1980-1989 period.

4 Evaluation of the selected runs

Now we test our selected model configurations on different variables that were not targeted during the tuning. We call these

“evaluation metrics”. Specifically, we assess whether the outputs of our selected parameter configurations are also compatible

with the evaluation metrics, i.e., within the spread of the reanalysis and observational datasets used as reference. This evaluation
step allows us to check whether the tuning process has induced significant biases on metrics not targeted during the tuning (i.e.,

overtuning to the target metrics). The evaluation metrics that we inspect are the global multi-annual averages (from 1980 to
1989 included) of the surface temperature (ts), the total precipitation (pr), the pressure at sea level (psl), the vertically integrated
cloud ice (clivi), and the vertically integrated cloud condensed water content (clwvi). The results of this evaluation step are
shown in Fig. 10. For most of the computed evaluation metrics, our selected model configurations are within the observational
range given by the spread of the reanalysis and observational datasets used as reference (green symbols and lines in Fig. 10),
thus indicating that our tuning experiment had a beneficial effect on the evaluation metrics that were not targeted by the
tuning. This is the case for the two selected runs and the two highlighted runs from the ICON-A PPEj5. These selected model
configurations show a slight positive bias < 0.1°C on the global average of the surface temperature compare to the reference

values. We conclude that our tuning experiment successfully produced configurations largely comparable to ICON-aes-1.3.
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While it did not show substantial improvement over the manually tuned version, which is difficult to improve upon, we discuss

the limitations of our approach and propose potential improvements in the next section.
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Figure 10. Five evaluation metrics averaged on the 1980-1989 (included) period for the PPE5 (blue, cyan, red, black, gray), the icon-aes
ICON-aes-1.3 (orange triangle), and reanalysis datasets and observational datasets (green). For the datasets starting after 1980, the time period
considered is the earliest available 10 years: for CLARA (AVHRR) and ESACCI CLOUD (AVHRR-fv3.0) it is 1982-1991, for MODIS it is
2002-2011.

5 Discussions and Conclusions

In this work, we develop an ML-based tuning approach and apply it to the atmospheric component of the ICON climate
model (ICON-A). The-approach-is-based-en-Our approach is inspired by history matching (Williamson et al., 2013, 2017),
which balances an extensive exploration of the tuning parameter space with the need of minimizing the number of required
ICON-A model simulations. This exploration is aided by building and using emulators, here Gaussian processes (GPs), for
each of the considered output metrics. The emulator approximates the climate model simulation outputs for arbitrary values
of the tuning parameters, and can be used to create large emulated metrics ensembles at a much cheaper computational cost.
We integrate a history-matching-inspired method We-integrate-history-matchingin a sequential approach, where at each phase
different parameter sets are sequentially constrained. We first apply our approach to the tuning of physics output metrics
(globally averaged radiation and cloud properties), and in a second step we tune also for dynamics output metrics (related
to geographically specific atmospheric circulation properties) using a PPE consisting of 80 ten-year ICON-A runs. The ML-
based tuning of physics parameterizations, with just one iteration ef-history-matehing-and a total of 60 model simulations, is
already sufficient to achieve a model configuration yielding a global TOA net radiation budget in the range of [0,1] W/m?2,
global radiation metrics and water vapor path consistent with the reference observations, and a globally averaged cloud cover
differing by only 2% with respect to the observations. Weremark-Note that these results, in particular the speed-ofconvergenee
of-history-matehingnumber of iterations necessary to converge to the observational range, generally depend on the specific
setup. Furthermore, we remark that our approach presents some differences to traditional history matching implementations.
While it allowed us to draw some configurations with outputs compatible with observations for some metrics, a thorough
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characterization of the space of plausible parameters (the not-ruled-out-yet space (Williamson et al., 2013)) is beyond the

scope of our work, and would require several iterations of standard history matching.
In the simultaneous PPE-based tuning of physics and dynamics parameterizations, we achieve a TOA radiation balance

within the interval [0,1] W/m?, TOA long- and short-wave radiation metrics to within 1 W/m? from the targeted range, but are
not able to reduce the biases in the dynamics output metrics with respect to the previously manually tuned ICON-aes-1.3. The
PPE for this tuning step allows us to perform an analysis of the physics and dynamics outputs variability and its comparison
with the parameters’ effects. This analysis reveals a larger year-to-year variability of the dynamics compared to the physics
output metrics. This, combined with the sensitivity of the dynamics metrics to geographic patternbiases, highlights potential
limitations that emulator-based approaches may face when tuning for these dynamics metrics. This suggests at the same time

that metrics averaged over broader spatial regions may suffer less from these issues and be more amenable to emulator-based
approaches, although too much averaging in space would make the tuning target less characteristic. For the case of the dynamics
variable which are proxies for polar stratospheric vortices (zonal mean zonal wind, averaged at 60° North and 60° South at

10 hPa, 10-year average), a possible way to reduce the noise would be to increase the simulation duration and to average the
field over only winter or summer months. A further evaluation of the selected model configurations on metrics that were not

targeted during tuning suggests that our approach does not cause overtuning to the tuning targets, and for our use case results
in a model configuration that can be considered of a similar performance as the previously tuned ICON-aes-1.3.

Our sequential approach, where at each phase only a small subset of parameters is varied, allows to keep the costs of the
PPEs relatively low (with 30 members we could reach good emulator accuracies), and to obtain ICON-A model configurations
showing an overall performance comparable to ICON-aes-1.3 on most of the selected tuning metrics. However, such an ap-
proach may face the problem of neglecting some of the (non-linear) parameter interdependencies and the possible feedbacks.
In situations where such parameter interactions and their hierarchy of importance are largely unknown, we would recommend
simultaneously tuning all parameters, when computationally feasible. Indeed, while with our analysis we are able to identify
which parameters are influential for the chosen metrics (see Section 3.2.3), we cannot establish a clear hierarchy of which of
these should be tuned in a sequential manner. This is exemplified by Figures 4 and 8, with the PPEs showing a large spread in
the global radiative metrics despite some of the physics parameters being kept fixed. Furthermore, accounting for all parameter
dependencies and feedbacks could be particularly important for tuning coupled models, e.g., for properly accounting for the
interactions between atmosphere and ocean. The number of parameters that can be tuned simultaneously is ultimately limited
by the available computational resources, since the required size of the PPEs scales with the size of the tuning parameter space.
Therefore, sensitivity analysis as presented here becomes a crucial tool to identify and keep only the most important parameters
in each model component.

We also note that even though history matching is constructed to minimize the number of climate model simulations for the
PPEs, this number is still the major computational bottleneck in tuning, which gets worse when tuning models at resolutions
higher than the one considered here. Again, including as much prior knowledge as possible in the choice of the parameters,
which in a Bayesian setting amounts to the selection of a prior distribution for the optimal parameter values, will be important.

Such knowledge of a prior distribution may for instance be obtained by the computationally cheaper tuning of the same model
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at lower resolutions, provided the same parameterization schemes are used. Incorporating such prior knowledge could reduce
the size of the PPEs and the number of history matching iterations required to converge to an optimal model configuration
(Fletcher et al., 2022), compared to starting from general uninformative priors as we did here (with LHC sampling).

Finally, while here we explored the feasibility of ML-based tuning approaches to improve the tuning of climate models,
the seamless integration of such methods within the specific climate modeling framework - to practically enable an automatic
application - is an aspect that needs to be addressed in further studies. Some aspects of model tuning, such as the choice
of tuning metrics, will remain subjective, as highly dependent on the details and complexity of the model as well as on its
intended uses. Other steps however, such as sensitivity analysis and selection of tuning parameters, their exploration and
the evaluation of the outcomes could be incorporated, at least partly, in an automated approach. It is therefore important to
understand which design choices are best suited for such automatic approaches, as we foresee that these will lead to more
accurate and potentially computationally cheaper model tuning, also making this important step in climate model development

more objective and reproducible.

Code availability. The code is published under https://github.com/EyringMLClimateGroup/bonnet24gmd_automatic_tuning_atm. The soft-

ware code for the ICON model is available from https://icon-model.org.

Appendix A: Times series of the observational products used

Figure A1 shows the time series of the observational products used for the cloud cover and the water vapour path. The ten
year period 1980-1989 was used for the tuning of the dynamic outputs of ICON-A. For the cloud cover observational datasets,
the earliest year available is 1982, therefore we added the years 1990-1991 in our tuning analysis. The variability in the years
illustrates the internal climate variability. We remark that other observational products exist for these outputs but do not include
the studied years. For example, ESACCI-WATERVAPOUR starts from year 2002, MODIS starts from year 2002, or Cloudsat
starts from year 2006.

Appendix B: Details on GP emulators and choice of the underlying hyperparameters

In this appendix we give a brief description of the Gaussian process (GP) regression framework used to construct emulators in
this work, and provide the relevant details regarding the hyperparameters used in their implementation. Gaussian processes are
widely used in the context of Bayesian optimization, as they are a method for describing distributions over unknown functions,
and can be efficiently updated, or trained, using samples from the ground-truth distribution (Rasmussen and Williams, 2005).
In our case, the function we want to approximate with GP regression is that describing the dependence of a specific output ¥’

of the climate model, on a set of tuning parameters &, which we call Y;,0401 (). The output of a Gaussian process trained on
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Figure A1. Time series of the observational products used for the cloud cover and the water vapour path

set T = {x;, Yinodel1(x;) }; of ground-truth samples ICON-A model runs in our case) can be written as:

fF@)|T ~GPu(-),EC ), (B1)

)

where GP denotes the GP function distribution with p () and £-C' respectively being the mean function and the covariance
matrix that implicitly depend on 7T, i.e., have been updated with the knowledge of the training data 7 using Bayes’ rule. Closed
form expressions for these functions are available and can be found in Rasmussen and Williams (2005). That is to say, given
a new configuration x of tuning parameters, a GP trained on an ICON-A PPE for a given variable Y would output a normally
distributed random variable with mean g () and variance o?(z) (which can also be explicitly calculated from the knowledge
of the covariance matrix #-C (Rasmussen and Williams, 2005)). We therefore interpret () as our GP emulator prediction

for Y, and o () as the associated uncertainty, and write:

Yemu (%) = p() , (B2)
Var(Yomu (z)) = 0%(x) , (B3)

which we use in Eq. (1) in the main text.
Importantly, the properties of the GP, in particular of the covariance matrix #-C, depend on the choice of a kernel function
k(x,x’), which describes how the predictions at two points & and ' are correlated. Kernel functions may also contain trainable

hyperparameters, which are typically optimized by maximizing the log marginal likelihood with respect to the training dataset

(Rasmussen and Williams, 2005).

For our implementations we used the GP regression library implemented in scikit-learn package (https://scikit-learn.org/
stable/). We found Matérn kernels to yield the highest prediction accuracy (which we measure via R? coefficient). Matérn
kernels have two hyperparameters: a lengthscale [ and a smoothness parameter v. The length scale is typically the distance by

which one can extrapolate outside the training data points: smaller values of [ correspond to more rapidly varying functions that
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Figure B1. Performance (R? coefficient, calculated with 5-fold cross-validation) of the GP emulator with Matern kernel trained on PPE;
and PPE,, for different choices of hyperparameters: (a) for different values of v, (b) for different values of «, and (c) for different values of

n_restart.

the GP can fit. This hyperparameter, together with the overall scale of the kernel, is optimized using the L-BFGS-B optimization
(Jorge Nocedal, 2006) pre-implemented in scikit-learn. For the smoothness parameter v, four values were tested: v = 0.5
corresponds to the absolute exponential kernel, v = 1.5 to a one-time differentiable function, v = 2.5 to a twice differentiable
function and v — oo to a radial basis function (RBF) kernel. These four values of v allow a computational cost around ten
times smaller than other values, since they do not require to evaluate the modified Bessel function (Rasmussen, 2006). The
values of v = 2.5 and v — oo yield large negative R2-scores, so are not represented here. In panel (a) of Fig. B1 we observe a
comparable performance of the GP emulator for v = 0.5 (absolute exponential kernel) and v = 1.5.

Other hyperparameters in the GP optimization are the noise level o (which can be interpreted as the variance of Gaussian
noise added to the training data, with the aim of increasing the numerical stability of GP evaluations) and the number of
random hyperparameter initializations for the log marginal likelihood optimization (denoted with n_restart). Several values
of a between 10715 and 10~° were tested. We show these tests in panel (b) Fig. B1. The values of o < 10710 yield large
negative R? scores. A change of « for 1071% < a < 107° does not have a significant effect on the performance of the GP
emulator. Finally, we also tested several values of the n_restart, between 0 and 100, as shown in panel (c) of Fig. B1. From
the tests presented in Fig. B1, the following values of the three hyperparameters are chosen (which are also default values in

scikit-learn): v = 1.5, « = 10719 and n_restart= 0.

Appendix C: Additional information on the generated PPEs

In this appendix we show additional data for the PPEs we generated in this work. Specifically, in Fig. C1 we show the sampled
parameter values for PPE3 (red circles) and PPE, (grey triangles), where signs of (slow) convergence of history matching
are visible already after one iteration (in the distribution of the members of PPE, being slightly shifted and narrower). Figure
C2 shows the sampled parameter values for PPE5 (blue triangles), with the cyan square and red triangle marking the best

performing configurations reported in Table 7 in the main text.
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Figure C1. Sampled parameter values for PPE3 (red circles) and PPEy4 (grey triangles). For each panel, two parameters are plotted on the
two axes (see Table 3). The two PPEs are generated with parameter set Pp2. Signs of (slow) convergence of history matching are visible
already after one iteration (in the distribution of the members of PPE, being slightly shifted and narrower). The extents of the plots includes

all the PPE4, but not all of the PPEs3.
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Appendix D: Times series of the physics and dynamic metrics

In this appendix we show additional information complementing Fig. 9 in Section 3.2.1 in the main text. In Fig. D1 we show
the yearly averages of the physics (top row, panels (a) to (d)) and dynamics (bottom row, panels (e) to (h)) output variables
for the 30 runs of PPEj5 corresponding to Fig. 9. Also in these time series the higher year-to-year variability of the dynamics

outputs compared to the physics ones can be clearly seen.

Appendix E: Additional information on parameter-to-output maps

In this appendix we show additional information on the parameter-to-output maps discussed in Section 3.2.3. In Fig.E1 (resp.
Fig. E2) we show the parameter-to-output map predicted with the GP-emulators trained on PPE; and PPE,, (resp. PPE3 and
PPE,), on parameter set Pp;. (resp. Pp2). In Fig. E2 o-u we can see that parameter set Py does indeed allow for a higher (and

closer to the observational values) global cloud cover compared to P, (Fig. E1).
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Figure C2. Sampled parameter values for PPEs5 (blue triangles). For each panel, two parameters are plotted on the two axes (see Tables 3
and 4). The PPE is generated with parameter set Ppq. Two selected PPE members corresponding to the best performing configurations are

highlighted (cyan square and red triangle).
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Figure D1. Time series (yearly averages) of the physics (top row, panels (a) to (d)) and dynamics (bottom row, panels (e) to (h)) output
variables for 30 runs of PPEs5 (each color corresponds to one run). The values at year 1980 and 1989 are connected with a dashed line to

help the reader identify the runs.

36



a. b. C

NE 250 1 250 250 : 250

s + net LW rad at TOA

=245 net SW rad at TOA 245 245 245
————— 240

235

E
®

T 230 230 230 230

2225 90002 0.0004 2%° 00002 00004 22> 0.0002 0.0004 2252000 4000 6000 225 0.8 10 ¥ o6 08
£ 9 10 h. 10 L. 10 J

z

s s 5 5 5 B—n

4 P o

o0 0 0

[

j=]

°

S

Qo

-

S

©

2

3

o

-5 N s — -5}~
\~\\--~
-10 -10 e -10 -10 -10 -10
-15 0.0002 00004 0.0002 00004 0.0002 0.0004 152000 4000 6000 -15 0.8 1.0 -15 0.6 0.8
m. n. o. p. q. r.

$70 70 70 70 70 70
o]
2 65— 65 65 65 65 65
3
3 _— T —ee — ———— —
360| — 60 60— ——— 60| — 60— 60 \X\
S

55 0.0002 0.0004 > 00002 00004 2> 00002 0.0004 52000 4000 6000 55 08 10 5 06 08
Eos S. 28 t 28 U. 28 v. 28 w. 28 X.
g
326 26 26 26 26 26
o
<
‘g 24 24 24 24 24 24
<]
22 2 2 2 2 2
g
9]
ézo 0.0002 00004 20 0.0002 00004 20 0.0002 0.0004 202000 4000 6000 20 0.8 T, 2056 038

Entrmid [m~] Entrpen [m~] Entrdd [m~] cmftau [s] pro [-] crt[-]

Figure E1. Parameter-to-output maps predicted with the GP-emulators trained on PPE; and PPE,. Every column corresponds to one tuning
parameter being changed (see the list in Table 3), and every row to an output metric. The parameters that are not being changed are kept
fixed to their best performing value from PPE; (marked with the magenta star in Figures 2 and 3). The red shaded areas in each plot denote
the allowed output ranges from the observational data. The other colored lines in each plot denote the emulator predictions (for the first row,
dark and light blue denote the net long- and short-wave radiation at TOA, respectively), with the corresponding uncertainty (one standard

deviation) represented as the shaded area.
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Figure E2. Parameter-to-output map predicted with the GP-emulators trained on PPE3 and PPE4. Every column corresponds to one tuning
parameter being changed (see the list in Table 3), and every row to to an output variable. The parameters that are not being changed are kept
fixed to their best performing value from PPE, (marked with the magenta star in Figures 2 and 3). The red shaded areas in each plot denote
the allowed output ranges from the observational data. The other colored lines in each plot denote the emulator predictions (for the first row,
dark and light blue denote the net long- and short-wave radiation at TOA, respectively), with the corresponding uncertainty (one standard

deviation) represented as the shaded area.
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