Minimal influence of future Arctic sea ice loss on North Atlantic jet stream morphology- Supplementary Information

Model	Jet latitude μ (°)		Jet latitude daily σ (°)		Jet latitude interannual σ (°)		Jet latitude skew		Jet latitude	
	Present- day	Future	Present- day	Future	Present- day	Future	Present- day	Future	p(rc-2)	
AWI-CM-1- 1-MR	$\begin{array}{c} 46.9 \pm \\ 0.10 \end{array}$	$\begin{array}{c} 46.3 \pm \\ 0.10 \end{array}$	9.5	9.5	2.5	2.9	0.4	0.4	0.18	
CanESM5	$\begin{array}{c} 49.7 \pm \\ 0.07 \end{array}$	$\begin{array}{c} 48.8 \pm \\ 0.07 \end{array}$	7.1	7.0	2.6	2.4	0.1	0.3	0.043	
FGOALS-f3- L	$\begin{array}{c} 47.7 \pm \\ 0.08 \end{array}$	46.7 ± 0.09	7.8	8.1	2.2	2.4	0.3	0.4	0.03	
HadGEM3- GC31-MM	$\begin{array}{c} 48.3 \pm \\ 0.06 \end{array}$	$\begin{array}{c} 47.7 \pm \\ 0.06 \end{array}$	9.8	10.4	2.8	3.0	0.1	0.2	0.0059	
IPSL-CM6A- LR	$\begin{array}{r} 46.3 \pm \\ 0.09 \end{array}$	46.1 ± 0.08	12.2	11.0	3.7	3.0	0.3	0.4	0.062	
MIROC6	46.4 ± 0.12	46.2 ± 0.13	11.5	11.9	3.1	3.3	0.2	0.3	1.00	

Table S1: Summary of jet latitude statistics

Table S2: Summary of jet speed statistics

Model	Jet speed μ (ms ⁻¹)		Jet speed daily σ (ms-1)		Jet speed interannual σ (ms-1)		Jet speed skew		Jet speed
	Present- day	Future	Present- day	Future	Present- day	Future	Present- day	Future	p(k -5)
AWI-CM-1-1- MR	$\begin{array}{c} 13.1 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 13.0 \pm \\ 0.03 \end{array}$	2.6	2.6	0.7	0.7	0.1	0.1	0.98
CanESM5	$\begin{array}{c} 13.9 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 13.9 \pm \\ 0.02 \end{array}$	2.2	2.1	0.6	0.6	0.05	0.05	1.00
FGOALS-f3- L	$\begin{array}{c} 13.6 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 13.5 \pm \\ 0.03 \end{array}$	2.4	2.5	0.7	0.7	-0.02	0.05	1.00
HadGEM3- GC31-MM	12.7 ± 0.02	$\begin{array}{c} 12.6 \pm \\ 0.02 \end{array}$	2.6	2.7	0.8	0.7	0.1	0.1	0.80
IPSL-CM6A- LR	12.8 ± 0.02	$\begin{array}{c} 13.0 \pm \\ 0.02 \end{array}$	3.3	3.0	0.9	0.9	0.2	0.1	0.85
MIROC6	12.0 ± 0.03	$\frac{11.9 \pm 0.03}{11.9 \pm 0.03}$	2.9	3.0	0.8	0.8	0.2	0.2	0.70

Table S3:	Summary	of jet mass	statistics
-----------	---------	-------------	------------

Model	Jet mass μ (x10 ¹³ ms ⁻¹)		Jet mass daily σ (x 10 ¹³ ms ⁻¹)		Jet mass interannual σ (x 10 ¹³ ms ⁻¹)		Jet mass skew		Jet mass
	Present- day	Future	Present- day	Future	Present- day	Future	Present- day	Future	р(к-8)
AWI-CM-1-1- MR	$\begin{array}{c} 8.6 \pm \\ 0.04 \end{array}$	$\begin{array}{c} 8.3 \pm \\ 0.04 \end{array}$	3.6	3.5	1.3	1.3	-0.01	-0.03	0.82
CanESM5	10.9 ± 0.04	10.5 ± 0.04	3.9	3.7	1.4	1.4	-0.3	-0.2	0.83
FGOALS-f3- L	$\begin{array}{c} 9.8 \pm \\ 0.04 \end{array}$	9.6± 0.04	3.6	3.7	1.3	1.3	-0.2	-0.1	0.85
HadGEM3- GC31-MM	$\begin{array}{c} 8.2 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 7.8 \pm \\ 0.02 \end{array}$	3.5	3.5	1.3	1.2	-0.05	-0.02	0.12
IPSL-CM6A- LR	$\begin{array}{c} 8.0 \pm \\ 0.03 \end{array}$	8.1 ± 0.03	4.0	3.8	1.5	1.5	0.1	0.06	0.99
MIROC6	$\begin{array}{c} 7.0 \pm \\ 0.04 \end{array}$	$\begin{array}{c} 6.8 \pm \\ 0.04 \end{array}$	3.4	3.3	1.1	1.2	0.04	0.2	0.83

Table S4: Summary of jet area statistics

Model	Jet area μ (x10 ¹² m ²)		Jet area daily σ (x 10 ¹² m ²)		Jet area interannual σ (x 10 ¹² m ²)		Jet area skew		Jet area
	Present- day	Future	Present- day	Future	Present- day	Future	Present- day	Future	h(w-2)
AWI-CM-1-1- MR	$\begin{array}{c} 6.3 \pm \\ 0.02 \end{array}$	6.1 ± 0.02	2.3	2.2	0.9	0.8	-0.3	-0.3	0.49
CanESM5	7.6 ± 0.02	7.4 ± 0.02	2.3	2.2	0.9	0.9	-0.5	-0.4	0.65
FGOALS-f3- L	$\begin{array}{c} 7.0 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 6.8 \pm \\ 0.02 \end{array}$	2.2	2.2	0.8	0.8	-0.5	-0.4	0.44
HadGEM3- GC31-MM	$\begin{array}{c} 6.2 \pm \\ 0.01 \end{array}$	5.9 ± 0.01	2.3	2.3	0.9	0.8	-0.3	-0.3	0.06
IPSL-CM6A- LR	5.9 ± 0.02	5.8 ± 0.02	2.6	2.4	0.9	0.9	-0.2	-0.2	0.88
MIROC6	5.5 ± 0.02	5.3 ± 0.02	2.3	2.3	0.8	0.9	-0.2	-0.1	0.65

 Table S5:
 Summary of jet tilt statistics

Model	Jet tilt μ (°)		Jet tilt daily σ (°)		Jet tilt interannual σ (°)		Jet tilt skew		Jet tilt
	Present- day	Future	Present- day	Future	Present- day	Future	Present- day	Future	p(k -5)
AWI-CM-1-1- MR	6.2 ± 0.11	$\begin{array}{c} 6.2 \pm \\ 0.10 \end{array}$	10.1	9.8	2.5	2.4	-0.3	-0.3	1.00
CanESM5	9.0 ± 0.09	8.2 ± 0.09	8.7	8.8	2.4	2.2	-0.2	-0.3	0.26
FGOALS-f3- L	4.0 ± 0.10	$\begin{array}{c} 4.0 \pm \\ 0.10 \end{array}$	9.3	9.6	2.3	2.6	-0.05	-0.04	1.00

HadGEM3- GC31-MM	7.4 ± 0.06	7.0 ± 0.06	9.6	9.7	2.4	2.5	-0.3	-0.3	0.30
IPSL-CM6A- LR	$\begin{array}{c} 6.4 \pm \\ 0.08 \end{array}$	$\begin{array}{c} 6.2 \pm \\ 0.08 \end{array}$	10.3	10.1	2.7	2.4	-0.4	-0.3	0.97
MIROC6	6.1 ± 0.10	5.9 ± 0.10	9.8	9.5	2.4	2.3	-0.3	-0.05	0.90

Figure S1: Distributions of daily jet area in winter for simulations forced by present-day (blue) and future (red) SIC. Data are for the largest mass jet object on each day and distributions have been fitted with a kernel density estimate. Ensemble mean (μ), standard deviation (σ), skew and K-S test p-value for the distributions are shown in the legend. Means are bold where the difference between present-day and future simulations is statistically significant based on a t-test at the 95% confidence level. Standard deviations are bold where the difference between time periods is greater than for random sampling.

Figure S2: Distributions of daily jet tilt in winter for simulations forced by present-day (blue) and future (red) SIC. Data are for the largest mass jet object on each day and distributions have been fitted with a kernel density estimate. Ensemble mean (μ), standard deviation (σ), skew and K-S test p-value for the distributions are shown in the legend.

Figure S3: Distributions of daily jet latitude in winter for simulations forced by present-day and future SIC. The simulations are present-day SIC (blue line) and future SIC (red line). Data are for the largest mass object on each day and the second largest mass object for days with more than one jet object. Distributions have been fitted with a kernel density estimate. Ensemble mean (μ), standard deviation (σ) and skew are shown. Standard deviations are bold where the difference between time periods is greater than for random sampling.