Sources and trends of Black Carbon Aerosol in a Megacity of Nanjing, East China After the China Clean Action Plan and Three-Year Action Plan

Figure S1 The location of sampling site, In the right panel, the sampling site in Nanjing is marked with a black elliptical dot (© Google Earth)

Figure S2 Bivariate polar plots of hourly BC concentration in four seasons

Figure S3 Diurnal variation of pollutant gases and meteorology factors

Figure S4 Hourly, annually, seasonal and monthly variation of AAE

Figure S5 Comparison of BC from TAP data and predicted daily average BC by the machine learning models

Figure S6 The predictor's importance for BC at (A) 880 nm and (B) 370 nm

Figure S7 Different component distinguished by KZ filter for (A) BC (B) BC_{liquid} (C) BC_{solid}

Table S1 Source apportionment results used different AAE combinations

Doromotoro	AAEso	olid=1.8	AAEso	olid=1.9	AAEso	olid=2.0	AAEs	olid=2.1	AAEso	olid=2.2
Farameters	Liquid	Solid								
AAE _{liquid} =0.8	62.40%	37.60%	67.14%	32.86%	71.06%	28.94%	74.34%	25.66%	77.12%	22.88%
AAE _{liquid} =0.9	67.27%	32.73%	71.67%	28.33%	75.24%	24.76%	78.20%	21.80%	80.66%	19.33%
AAE _{liquid} =1.0	73.40%	26.60%	77.25%	22.74%	80.31%	19.69%	82.80%	17.20%	84.85%	15.15%
AAE _{liquid} =1.1	81.33%	18.66%	84.28%	15.72%	86.56%	13.44%	88.37%	11.63%	89.83%	10.16%

Table S2 BC/PM _{2.5}	and BC/CO ratios	from different sources

Sources	BC/PM _{2.5}
Biomass burning & coal	
Agricultural burning	0.058-0.131ª
Forest fire	0.032ª
Residential wood combustion	0.042-0.33ª
Residential coal combustion	0.26^{a}
Fossil fuel	
Light-duty gasline	0.059-0.37ª
Heavy-duty diesel	0.33-0.74ª
Light-duty diesel	0.62-0.64ª
Sources	BC/CO
Industry	0.0072 ^b
Power plant	0.0177 ^b
Residential	0.0371 ^b
Traffic	0.0052 ^b
a:(Chow et al., 2011)	

b:(Zhang et al., 2009)

seasons	Air pollutants	absolute slope ^a	relative slope ^b	р
	BC	-0.17	-0.06	0.03
	Bcliquid	-0.13	-0.06	0.05
	BC _{solid}	-0.02	-0.05	0.14
spring	so2	-3.22	-0.21	0.00
	no2	-1.99	-0.05	0.04
	со	-0.08	-0.10	0.02
	pm2.5	-4.60	-0.10	0.00
	BC	-0.11	-0.04	0.01
	Bcliquid	-0.08	-0.04	0.02
	BC _{solid}	-0.02	-0.04	0.02
summer	so2	-1.96	-0.16	0.00
	no2	-0.50	-0.01	0.42
	со	-0.04	-0.05	0.23
	pm2.5	-5.48	-0.16	0.01
	BC	-0.08	-0.03	0.07
	Bcliquid	-0.05	-0.02	0.16
	BC _{solid}	-0.02	-0.07	0.00
autumn	so2	-2.34	-0.19	0.09
	no2	-1.21	-0.04	0.02
	со	-0.03	-0.04	0.41
	pm2.5	-6.69	-0.23	0.01
	BC	-0.21	-0.07	0.01
	Bcliquid	-0.16	-0.07	0.01
	BCsolid	-0.05	-0.06	0.01
winter	so2	-3.71	-0.26	0.00
	no2	-0.67	-0.01	0.43
	со	-0.07	-0.07	0.00
	pm2.5	-5.47	-0.10	0.00

	Table S3 The	change rates	of BC and	other air	pollutants	across o	different	season
--	--------------	--------------	-----------	-----------	------------	----------	-----------	--------

^a: μg m⁻³ yr⁻¹

^b: % yr-1

Component	BC	$\mathrm{BC}_{\mathrm{liquid}}$	BCsolid
Var(X)	0.16	0.16	0.40
Var(X _{ST})	68.87%	72.80%	51.71%
Var(X _{SN})	15.90%	11.37%	39.71%
Var(X _{LT})	8.00%	8.10%	0.35%
Cov (X _{SN} , X _{ST})	2.73%	2.76%	0.23%
Cov (X _{SN} , X _{LT})	0.90%	1.15%	0.00%
Cov (X _{ST} , X _{LT})	0.00%	0.00%	2.44%
Var(X _{LT} ^{emi})	2.76%	2.31%	2.31%
$Var(X_{LT}^{met})$	2.16%	2.68%	0.35%
Cov (X _{ST} , X _{LT})	1.50%	1.54%	0.41%

Table S4 Total variance of log-transformed time series of BC, BC_{liquid} and BC_{solid} and relative contributions of variances of and covariances among each component to total variance

Chow, J. C., Watson, J. G., Lowenthal, D. H., Antony Chen, L. W., and Motallebi, N.: PM2.5 source profiles for black and organic carbon emission inventories, Atmospheric Environment, 45, 5407 - 5414, <u>https://doi.org/10.1016/j.atmosenv.2011.07.011</u>, 2011.

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, 10.5194/acp-9-5131-2009, 2009.