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Abstract 13 

This paper describes a new version of the Real-time Air Quality Modeling System (RAQMS) which uses National 14 

Unified Operational Prediction Capability (NUOPC) coupling to combine the RAQMS chemical mechanism with the 15 

Global Ensemble Forecasting System with Aerosols (GEFS-Aerosols), the Goddard Chemistry Aerosol Radiation and 16 

Transport model (GOCART) aerosol mechanism, and NOAA’s Unified Forecast System (UFS) version 9.1 Finite 17 

Volume Cubed Sphere (FV3) dynamical core. We also present an application of TROPOMI CO column data 18 

assimilation in UFS-RAQMS with the NOAA Grid Point Statistical Interpolation (GSI) three-dimensional variational 19 

(3Dvar) analysis system to constrain UFS-RAQMS CO. We validate UFS-RAQMS control and TROPOMI CO data 20 

assimilation CO analyses for the period 15 July – 30 September 2019 against independent satellite, ground based, and 21 

airborne observations. We show the largest impacts of the TROPOMI CO data assimilation are in the lower 22 

troposphere over Siberia and Indonesia. We find UFS-RAQMS biomass burning signatures in CO column are not 23 

consistent with those in AOD near the Siberian and Indonesian biomass burning source regions within our control 24 

experiment. Assimilation of TROPOMI CO improves the representation of the biomass burning AOD/CO relationship 25 

in UFS-RAQMS by increasing the CO column, which suggests that the biomass burning CO emissions from the 26 

Blended Global Biomass Burning Emissions Product (GBBEPx) used in UFS-RAQMS are too low for boreal 27 

wildfires.  28 

1. Introduction 29 

The Real-time Air Quality Modeling System (RAQMS) is a global chemical transport model with full stratospheric 30 

and tropospheric chemistry (Pierce et al., 2007, 2009). We have incorporated the RAQMS unified 31 

stratosphere/troposphere chemistry, photolysis, and wet and dry deposition modules into NOAA’s Unified Forecast 32 

System (UFS) to produce a global atmospheric composition assimilation and forecasting system hereafter referred to 33 

as UFS-RAQMS. In this study we demonstrate the impact of Tropospheric Monitoring Instrument (TROPOMI) 34 
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(Veefkind et al., 2012) CO total column data assimilation in UFS-RAQMS utilizing the NOAA Grid Point Statistical 35 

Interpolation (GSI) three-dimensional variational (3Dvar) analysis system (Kleist et al., 2009; Wu et al., 2002).  36 

Carbon monoxide (CO) is an important atmospheric trace gas due to both its influence on OH and ozone (O3) 37 

chemistry and its use as a pollution transport tracer. The major loss pathway for CO is its reaction with OH (Logan et 38 

al., 1981), and this reaction significantly impacts the oxidizing capacity of the atmosphere. CO sources include 39 

production during VOC oxidation and direct emission from biomass burning and fossil fuel combustion. Chemical 40 

transport models (CTMs) frequently underestimate CO (eg. Naik et al., 2013; Shindell et al., 2006; Strode et al., 2015). 41 

Potential reasons for this include underestimation of anthropogenic and/or biomass burning emissions, overestimation 42 

of OH, and underestimation of secondary CO production from VOCs. 43 

Biomass burning emissions inventories have a high uncertainty due to factors including the incomplete knowledge of 44 

the spatiotemporal distribution of sources and limitations in capturing variation in fuel and fire behavior characteristics 45 

(eg. Hyer and Reid, 2009; Pan et al., 2020). CTM concentration fields will vary significantly depending on which 46 

biomass burning emission inventory is used (eg. Bian et al., 2007; Pan et al., 2020; Stockwell et al., 2022). 47 

Additionally, some biomass burning emissions schemes, including UFS-RAQMS, use emission ratios relative to CO 48 

for determining the release of VOCs and other non-CO emissions (eg. Andreae and Merlet, 2001; Lewis et al., 2013; 49 

Binte Shahid et al., 2024; Li et al., 2025) further compounding the effect of poor biomass burning CO emissions on 50 

CTM forecast skill for VOC-NOx-O3 chemistry.  51 

Chemical data assimilation (DA) systems can be used to reduce the impacts of emissions uncertainty and model 52 

deficiencies in representing sub-grid scale processes by using atmospheric composition measurements to constrain 53 

CTM concentration fields. Chemical DA capabilities have been developed by modifying meteorological DA systems 54 

to use chemical concentration measurements. DA methods implemented for chemical DA include optimal 55 

interpolation-based methods (eg. Lamarque et al., 1999; Lamarque and Gille, 2003; Pierce et al., 2007), 3D variational 56 

methods (Pagowski et al., 2010), ensemble Kalman filter methods (eg. Gaubert et al., 2020; Miyazaki et al., 2012), 57 

and 4D variational methods (eg. Inness et al., 2015; Inness et al., 2022). Chemical DA improves the CTM analysis 58 

through minimizing the difference between observations and model predictions. Observation datasets with a higher 59 

spatial coverage during the assimilation window provide more information about the true atmospheric composition. 60 

DA systems have been used to assimilate remote sensing observations of CO from Measurement of Air Pollution from 61 

Space (MAPS), Interferometric Monitor for Greenhouse Gases (IMG), Measurements of Pollution in the Troposphere 62 

(MOPITT), Infrared Atmospheric Sounding Interferometer (IASI), and TROPOMI (eg. Barré et al., 2015; Clerbaux 63 

et al., 2001; Inness et al., 2015; Inness et al., 2022; Lamarque et al., 1999). 64 

In this study we introduce UFS-RAQMS and apply it to TROPOMI CO DA during July-August-September (JAS) 65 

2019. The application of TROPOMI CO DA provides an observational constraint on model CO concentrations. The 66 

previous version of RAQMS utilized the UW hybrid model (Schaack et al., 2004) as the dynamical core and physics 67 

parameterizations from the NCAR Community Climate Model (CCM3) (Kiehl et al., 1998). Incorporation of the UFS 68 

dynamical core within the new model version updates the physical parameterizations to the suite used to produce 69 
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operational NOAA forecasts. During JAS the 2019 NASA/NOAA Fire Influence on Regional to Global Environments 70 

and Air Quality (FIREX-AQ) field campaign (Warneke et al., 2023) sampled smoke plumes over North America. The 71 

NASA Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) field campaign (Reid et al., 2023) 72 

occurred 25 August – 5 October 2019 and sampled smoke over the maritime continent. Fire activity in the continental 73 

US in 2019 was significantly below average, thought to be the result of higher fuel moisture content (Warneke et al., 74 

2023). Globally, biomass burning emissions typically peak around August-September (van der Werf et al., 2017). The 75 

Blended Global Biomass Burning Emissions Product (GBBEPx) calculates daily biomass burning emissions using 76 

observations of fire radiative power (FRP) from Moderate Resolution Imaging Spectroradiometer (MODIS) (Aqua 77 

and Terra satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS) (Suomi NPP and NOAA-20 satellites) 78 

(Zhang et al., 2019).  Siberian wildfire emissions peaked during July and August 2019, and by September global 79 

biomass burning emissions were predominantly due to burning in the tropics (fig. 1). Smoke from the Siberian 80 

wildfires was transported over North America, where it impacted tropospheric composition and surface air quality 81 

(Johnson et al., 2021). Smoke from drought-enhanced biomass burning in the maritime continent contributed to 82 

September 2019 having the 3rd highest AOD in the MODIS record, behind significant enhancements in 2006 and 83 

2015 (Reid et al., 2023). 84 

This paper is structured as follows. Section 2 describes the UFS-RAQMS model and data assimilation system as well 85 

as the method for obtaining the background error covariance statistics. Section 3 shows results from the TROPOMI 86 

CO DA experiment and validation with independent observations. Section 4 evaluates the relationship between CO 87 

column and AOD for 2 case studies- one over Siberian biomass burning in July and one over Indonesia in September. 88 

Conclusions are given in section 5. 89 

 90 

Figure 1.  GBBEPx emissions during 15 July – 30 September 2019. Panel (a) displays time series of over selected regions. 91 
Panel (b) mean spatial distribution of GBBEPx emissions. 92 

2. UFS-RAQMS Model 93 

UFS-RAQMS is an updated version of the Real-time Air Quality Modeling System (RAQMS) (Pierce et al., 2007) 94 

where the RAQMS stratosphere/troposphere chemistry, photolysis, and wet and dry deposition modules are coupled 95 
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to NOAA’s Unified Forecast System (UFS) version 9.1 Finite Volume Cubed Sphere (FV3) dynamical core (Harris 96 

and Lin, 2013; Putman and Lin, 2007). The UFS-RAQMS configuration utilized in this study is an extension of the 97 

operational NOAA Global Ensemble Forecasting System with Aerosols (GEFS-Aerosols, Bhattacharjee et al., 2023; 98 

Zhang et al., 2022). GEFS-Aerosols includes bulk aerosol modules from the Goddard Chemistry Aerosol Radiation 99 

and Transport model (GOCART, Chin et al, 2002). The GOCART aerosol module doesn’t predict secondary organic 100 

aerosols or include heterogeneous chemistry so these pathways are not able to change AOD within the UFS-RAQMS 101 

modeling system.  102 

The extension is accomplished by coupling RAQMS chemistry, photolysis, and wet and dry deposition modules with 103 

the UFS dynamical core through the National Unified Operational Prediction Capability (NUOPC, 104 

https://earthsystemmodeling.org/nuopc/) layer. The NUOPC layer defines conventions and generic components for 105 

building coupled models using the Earth System Modeling Framework (ESMF, https://earthsystemmodeling.org). 106 

This NUOPC based coupling allows the GOCART aerosol predictions to impact the RAQMS Fast-J2 (Bian and 107 

Prather, 2002) photolysis scheme and also allows the RAQMS OH and H2O2 predictions to impact the GOCART 108 

sulfate aerosol formation.   109 

The RAQMS chemistry module utilizes a family approach to reduce the number of species considered in the chemical 110 

mechanism, requiring solving of continuity equations for 55 chemical families and constituents and determination of 111 

equilibrium concentrations for 86 separate species (Pierce et al., 2007). Non-methane hydrocarbon chemistry in the 112 

RAQMS chemistry module follows the lumped-structure Carbon Bond Mechanism Z (CB-Z) (Zaveri and Peters, 113 

1999), which was modified in Pierce et al. (2007) to include an explicit isoprene oxidation scheme. Standard hydrogen 114 

oxide (HOx), chlorine oxide (ClOx), bromine oxide (BrOx), and NOx ozone photochemistry (Eckman et al., 1995) is 115 

also included. 116 

In this study we conduct UFS-RAQMS retrospective simulations during July 15, 2019 through September 30, 2019 117 

at a Cubed Sphere resolution of 192 (C192, 192x192 grid-points within each 6 cubes or approximately 0.5∘ x 0.5∘ 118 

horizontal resolution) with 64 hybrid vertical levels from the surface to upper stratosphere (approximately 0.2hPa). 119 

The UFS-RAQMS atmospheric composition experiments are conducted in “replay” mode, with UFS-RAQMS 120 

meteorological fields are initialized with Global Data Assimilation System (GDAS, Whitaker et al., 2008) analyses at 121 

6-hour intervals followed by UFS-RAQMS forecasts with and without data assimilation cycling. The forecasts without 122 

data assimilation are used as the control experiment. Both UFS-RAQMS experiments were initialized on 15 July 2019 123 

at 12Z with 1x1 degree analyses from RAQMS. The RAQMS analyses used as the chemical initial conditions are 124 

constrained by assimilating NASA Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6.1 (C61) 125 

AOD on the Terra and Aqua satellites and the NASA Ozone Monitoring Instrument (OMI) TOMS V8 cloud cleared 126 

total column ozone and Microwave Limb Sounder (MLS) version 2 stratospheric ozone profiles with the statistical 127 

digital filter (SDF) (Stobie, 2000). Global anthropogenic emissions in UFS-RAQMS are obtained from the 128 

Community Emissions Data System (CEDS, McDuffie et al., 2020). Daily global biomass burning CO emissions are 129 

specified from GBBEPx (Zhang et al., 2019). and is expanded for other trace gas emissions using species specific 130 

https://earthsystemmodeling.org/
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emissions factors from the RAQMS biomass burning scheme (Soja et al., 2004). Fire Radiative Power (FRP) is used 131 

to calculate GBBEPx plume rise (Ahmadov et al., 2017). 132 

2.1 GSI 3D-Var 133 

This study uses the operational grid point statistical interpolation (GSI) 3D variational (3DVAR) DA system (Kleist 134 

et al., 2009; Wu et al., 2002) to assimilate TROPOMI CO columns. Within this implementation, the UFS-RAQMS 135 

3D CO volume mixing ratio is used as the analysis variable in the minimization procedure. The background error 136 

covariance (BEC) statistics for CO are obtained using the National Meteorological Center (NMC) method (Descombes 137 

et al., 2015; Parrish and Derber, 1992). The NMC method typically uses differences between 24-hour forecasts and 138 

48-hour forecasts to estimate BEC statistics. Here, in addition to the standard BEC implementation, we apply the 139 

NMC method to a pair of forecasts that have different biomass burning emissions to account for uncertainties in CO 140 

emissions. The biomass burning emission BEC statistics are computed from the differences between 100% GBBEPx 141 

CO emissions and 85% GBBEPx CO emissions UFS-RAQMS CO forecasts.  142 

The biomass burning and forecast BEC statistics are combined in a piecewise-linear fashion to create “blended” BEC 143 

statistics. We set the blended BEC statistics equal to the standard, forecast-sensitive BEC statistics above model level 144 

25 (approximately 480hPa). Below model level 15 (approximately 780hPa), the blended BEC statistics are equal to 145 

the biomass burning BEC statistics with an inflation factor of 5 applied to the standard deviation. This inflation factor 146 

was tested during the development of assimilation capabilities within the RAQMS Aura Reanalysis (Bruckner et al., 147 

2024). It accounts for the fact that the 20% emission perturbation used for the emission sensitivity significantly 148 

underestimates the true uncertainties in emissions, which can be an order of magnitude for biomass burning emissions 149 

(Al-Saadi et al., 2008). The two BEC estimates are linearly blended in approximately the mid-troposphere between 150 

model levels 15 and 25. The resulting BEC statistics for forecast, emission, and blended formulations are presented in 151 

figure S1.  152 

2.1.2 TROPOMI CO Total Column 153 

TROPOMI is a higher resolution follow-on to the NASA Ozone Monitoring Instrument (OMI) that is currently in 154 

orbit on-board ESA’s polar-orbiting Sentinel-5 precursor satellite that observes in the ultraviolet (UV)-near infrared 155 

(IR) and shortwave IR. We use the v2.4.0 CO total column retrieval with the striping correction applied (Borsdorff et 156 

al., 2019). Following recommended quality assurance guidelines 157 

(https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-2-Product-Readme-158 

File.pdf, last access: 18 July 2024), we use observations with a quality assurance value 1 (best) over land and 0.7 159 

(OK, but mid-level clouds present) over ocean. This leads to assimilation of only cloudy data over ocean, as the clear 160 

sky ocean retrieval signal intensity is too weak (Inness et al., 2022). 161 

TROPOMI CO has a spatial resolution of 5.5 x 3.5 km (7 x 3.5km prior to August 6, 2019), which is higher than UFS-162 

RAQMS resolution. Owing to this difference in resolution, multiple TROPOMI observations may fall within a model 163 

grid cell during the assimilation window. Unlike other studies that utilize satellite CO “super-observations” (eg. 164 

https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-2-Product-Readme-File.pdf
https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-2-Product-Readme-File.pdf
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Gaubert et al., 2020; Inness et al., 2022; Sekiya et al., 2021), we assimilate observations individually. Super-165 

observations reduce the computational cost and representation error as well as smooth the spatial variability in analysis 166 

increments (Sekiya et al., 2021). We opted not to use super-observations due to concerns that this smoothing could 167 

lead to underestimates in localized CO column enhancements associated with biomass burning.  168 

Figure 2a shows the mean TROPOMI CO columns over the continental US during the FIREX-AQ field campaign and 169 

the NASA DC-8 flight tracks. CO columns over the central and eastern US are ~2x higher than over the western US 170 

largely due to higher topography in the western US and thus thinner atmospheric columns. Figure 2b shows the mean 171 

TROPOMI CO concentrations over SE Asia during the CAMP2Ex field campaign and the NASA P-3 flight tracks. 172 

During CAMP2Ex high CO columns (>4x1018 mol/cm2) over the islands of Borneo and Sumatra are due to the 173 

sustained burning of peatlands (Reid et al., 2023).  174 

 175 

Figure 2. Mean TROPOMI CO columns over the US (a) and SE Asia (b). FIREX-AQ DC-8 flight tracks (pink) and 176 
CAMP2Ex P-3 (black) flight tracks are shown over the respective campaign domains.    177 

3. Impact of TROPOMI CO Assimilation on UFS-RAQMS CO 178 

The UFS-RAQMS control CO columns are lower than the TROPOMI CO column observations in the NH and higher 179 

in the SH (figure 3). Figure 3 also shows the FIREX-AQ and CAMP2Ex field campaign domains and the locations of 180 

Network for the Detection of Atmospheric Composition Change (NDACC) Fourier-transform infrared (FTIR) 181 

spectrometers used to validate UFS-RAQMS CO profiles. NDACC is a global network consisting of 80 currently 182 

active stations providing high quality observations of atmospheric trace gases and aerosols using ground-based insitu- 183 

and remote sensing techniques including ozonesondes, FTIR spectrometers, lidar, and UV/visible spectroscopy (De 184 

Mazière et al., 2018). The UFS-RAQMS control experiment significantly underpredicts CO columns over central 185 

Africa, the maritime continent, and Siberian Russia. Figure 1b shows that each of these regions are associated with 186 

significant biomass burning during this period.  187 
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 188 

Figure 3. 15 July- 30 September 2019 average CO Column concentrations for (a) TROPOMI and (b) UFS-RAQMS control. 189 

Boxes indicate domains for CAMP2Ex (purple) and FIREX-AQ (yellow) campaigns. NDACC FTIR locations utilized in 190 
this study are denoted by red stars. 191 

3.1 Differences in CO between control and DA experiments 192 

To quantify the impact of assimilating TROPOMI CO on UFS-RAQMS analyses, we calculate the average percent 193 

change in zonal mean CO and CO total column between the control and TROPOMI CO DA experiments. Figure 4a 194 

shows that the assimilation increases tropospheric zonal mean CO north of 20∘S and decreases zonal mean CO above 195 

the tropopause. Above the tropopause the largest impact of the TROPOMI CO DA on CO is a decrease of 32-52% in 196 

the southern hemisphere (SH) between 40∘S and 60∘S and 11-13 km. The stratospheric regions with the largest 197 

decreases are in the midlatitudes and characterized by a strong vertical gradient in CO that sharpens as a result of the 198 

TROPOMI CO DA. This stratospheric percentage change is associated with low CO concentrations. These large 199 

stratospheric differences are not a direct consequence of the TROPOMI assimilation, as zonal mean cross sections of 200 

the analysis increments (Fig. 4b) illustrate that the DA primarily adjusts CO in the troposphere. Stratospheric CO 201 

analysis increments are concentrated near the tropopause and largest in the polar NH. Consequently, these large SH 202 

stratospheric CO percentage changes most likely arise from reductions in CO in the tropical upper troposphere through 203 

TROPOMI CO DA and then cross tropopause transport of the lower CO from the tropical upper troposphere into the 204 

stratosphere.  205 

The largest increases in zonal mean CO concentrations are between 45∘ N and 80∘N below 5km and in excess of 60%. 206 

Figure 4c shows that the assimilation tends to increase CO total column north of 30∘S and decrease CO total column 207 

south of 30∘S. The largest increases in CO total column are in excess of 60% and in Siberia and the maritime continent, 208 

which during this time period experienced significant biomass burning activity. 209 
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 210 

Figure 4. Percent difference in zonal mean CO (a) and total column CO (c) between UFS-RAQMS TROPOMI CO DA and 211 
control experiments. Average zonal mean (b) and total column (d) TROPOMI CO DA increments.  212 

3.2 Evaluation with independent datasets 213 

We evaluate improvement in UFS-RAQMS CO due to TROPOMI CO DA through validation with independent 214 

observations from the Measurements of Pollution in the Troposphere (MOPITT) instrument, the NASA/NOAA 215 

FIREX-AQ field campaign, the CAMP2EX field campaign, and NDACC FTIR spectrometers. The control and 216 

TROPOMI CO DA experiments are spatially and temporally interpolated to the observation, creating coincident 217 

model and observation pairs. For the MOPITT and NDACC comparisons, we apply the observation averaging kernels 218 

to the UFS-RAQMS coincident profiles. 219 

3.2.1 MOPITT CO Column 220 

 We compare UFS-RAQMS total column CO analyses with the MOPITT version 9 Level 3 daily mean CO column 221 

product (Deeter et al., 2022). Due to an event upset affecting instrument operation MOPITT data is unavailable for a 222 

large portion of the study period (26 July - 24 August 2019) (https://www2.acom.ucar.edu/mopitt/status). UFS-223 

RAQMS CO is sampled at the 10:30 AM local overpass time, binned onto the MOPITT level 3 grid, then linearly 224 

interpolated to the MOPITT vertical levels. The MOPITT averaging kernels and a priori are applied to the sampled 225 

UFS-RAQMS CO to account for the vertical sensitivity of the MOPITT retrieval.  The average daily MOPITT CO 226 
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column for 15 July - 30 September 2019 is shown in figure 5a.  A root mean square error (RMSE) skill score (equation 227 

1) is used to quantify the improvement in the TROPOMI CO DA experiment. The RMSE for UFS-RAQMS control 228 

and UFS-RAQMS TROPOMI CO DA are calculated relative to the MOPITT observations. Negative skill scores 229 

indicate that the assimilation degraded the forecast while positive skill indicates the assimilation increased the 230 

accuracy of the forecast. A skill score of 1 indicates that the TROPOMI CO DA experiment captures the CO columns 231 

as depicted by MOPITT. A skill score of 0 indicates that the assimilation did not improve the agreement between 232 

MOPITT and UFS-RAQMS or that the model has no skill in capturing CO in that region. 233 

RMSE_SS(𝑖,𝑗) = 1 - 
𝑅𝑀𝑆𝐸𝐷𝐴(𝑖,𝑗)

𝑅𝑀𝑆𝐸𝑐𝑡𝑟𝑙(𝑖,𝑗)
                  (1) 234 

For most grid cells the UFS-RAQMS TROPOMI CO DA experiment exhibits improved skill (fig 5d). The largest 235 

improvements in skill are over Russia, Europe, Alaska, and Canada. Due to the MOPITT data outage, the large 236 

Siberian biomass burning events are not captured within the MOPITT observations except for in the first 10 days of 237 

the experiment. Therefore, while we are unable to directly verify the increased UFS-RAQMS CO within the Siberian 238 

smoke plume during August 2019, we do show that assimilating TROPOMI CO throughout the period significantly 239 

improved background CO concentrations in the NH middle and high latitudes. UFS-RAQMS TROPOMI CO DA 240 

analyses also show improvement over regions of Africa and the maritime continent where there was widespread 241 

biomass burning during the analysis period. TROPOMI CO DA results in slight improvements over the Pacific Ocean 242 

and negative skill in the eastern Tropical Pacific near the coast of Mexico. 243 

In addition to the RMSE skill score, we compare the daily mean UFS-RAQMS CO column analyses with MOPITT 244 

CO columns over the FIREX-AQ and CAMP2Ex field campaign domains in figure 6. Correlation and bias are 245 

calculated between all observations made 15 July-30 September 2019 over 30°N - 49.5°N 82°W - 123°W (fig. 6 a,b) 246 

and 6°N - 23°N 116°E - 129°W (fig. 6 c,d). Over the FIREX-AQ domain, TROPOMI CO DA increases correlation 247 

of UFS-RAQMS with MOPITT from 0.661 to 0.8317 and decreases the bias from -0.2507 x1018 mol/cm2 to -0.0354 248 

x1018 mol/cm2. Over the CAMP2Ex domain, TROPOMI CO DA increases correlation of UFS-RAQMS with MOPITT 249 

from 0.495 to 0.9446 and decreases the bias from -0.3114 x 1018 mol/cm2 to 0.1437 x 1018 mol/cm2. 250 
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 251 

Figure 5. Comparison of MOPITT CO Column with UFS-RAQMS control and TROPOMI CO DA CO columns. 15 July- 252 
30 September 2016 mean CO column for MOPITT (a), UFS-RAQMS control (b), and UFS-RAQMS TROPOMI CO DA 253 
(e), with 26 July - 24 August 2019 excluded due to MOPITT data outage. RMSE Skill Score (d) shows improved agreement 254 
with MOPITT in UFS-RAQMS TROPOMI CO DA over UFS-RAQMS control. Mean bias relative to MOPITT for UFS-255 
RAQMS control (c) and UFS-RAQMS TROPOMI CO DA (f). 256 
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 257 

Figure 6. Comparisons of MOPITT and UFS-RAQMS CO Columns over FIREX-AQ (a,b) and CAMP2Ex (c,d) domains. 258 
TROPOMI CO DA increases correlation and decreases bias between UFS-RAQMS and MOPITT. 259 

3.2.2 FIREX-AQ In-situ measurements 260 

Over the continental US from July-September the Differential Absorption Carbon Monoxide Measurement (DACOM) 261 

instrument (Sachse et al., 1991) made measurements onboard the NASA DC-8 as part of the FIREX-AQ field 262 

campaign. FIREX-AQ sampling of smoke plumes with the DC-8 consisted of multiple perpendicular transects through 263 

the plume, with each perpendicular leg sampling smoke emitted around the same time, and the legs starting in the 264 

freshest smoke (Warneke et al., 2023). The resulting FIREX-AQ highly detailed measurements capture fine-scale 265 

changes in composition in both the cross-plume direction and as the emissions age. In the following comparisons, in-266 

plume measurements are excluded from the analysis as the horizontal resolution of the UFS-RAQMS simulations is 267 

not fine enough to capture the observed in-plume enhancements that were measured by the DC-8 close to the western 268 

US wildfires and SE US agricultural fires targeted during FIREX-AQ. In-plume and background measurements are 269 
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separated using the flags provided through the FIREX-AQ data archive, which identify enhancement in CO and black 270 

carbon above background (Warneke et al., 2023). 271 

Figure 7 shows the comparison between UFS-RAQMS and the DC-8 DACOM CO observations for non-smoke plume 272 

observations during all flights during FIREX-AQ. UFS-RAQMS CO is strongly correlated with the observed CO for 273 

both the control (0.7956) and the TROPOMI CO DA experiment (0.8129). TROPOMI CO DA improves the average 274 

bias from -9.7 ppbv to 6.3 ppbv. 275 

 276 

Figure 7. Comparison of DC-8 DACOM non-plume CO and (a) UFS-RAQMS Control experiment and (b) UFS-RAQMS 277 
TROPOMI CO DA experiment.  278 

Figure 8 shows a comparison of the vertical profiles for the FIREX-AQ DACOM CO non-plume observations and 279 

coincident UFS-RAQMS analyses. Following the interpolation of the UFS-RAQMS analyses along the DC-8 flight 280 

track and filtering out in-plume observations, the modeled and measured values were binned into 200 m altitude bins. 281 

The median (vertical profile), 25th and 75th (shaded) percentiles of the modeled and observed distributions within 282 

each 200m altitude bin are shown. Below 2 km the control and TROMPOMI CO DA experiment profiles are both 283 

within the spread for the observed profile. Above 2.5 km the control experiment profile is consistently biased low 284 

relative to the observed profile. The TROPOMI CO DA experiment profile is higher than in the control experiment 285 

and show improved agreement with the DC-8 observations. 286 
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 287 

Figure 8. Vertical profiles of non-smoke CO during FIREX-AQ for DC-8 DACOM CO (black), UFS-RAQMS Control 288 
experiment (red), and UFS-RAQMS TROPOMI CO DA experiment (blue). 289 

3.2.3 CAMP𝟐Ex In-situ measurements 290 

The NASA CAMP2Ex field campaign sampled airmasses over the Philippines 25 August–5 October 2019 with the 291 

NASA P-3 aircraft to investigate the role of aerosols in the Southeast Asian southeast monsoon (Reid et al., 2023). 292 

During the campaign, the region was impacted by significant biomass burning. In-situ CO measurements were made 293 

by a commercial cavity ringdown spectrometer (G2401-m, PICARRO, Inc.) modified with a custom gas sampling 294 

system (DiGangi et al., 2021). UFS-RAQMS analyses are sampled along the P-3 flight track. Since the P-3 didn’t 295 

sample within the fresh biomass burning plumes during CAMP2Ex we did not apply an in-plume filter to the in-situ 296 

CO measurements.  Figure 9 shows the comparison between UFS-RAQMS and the CAMP2Ex P-3 CO measurements. 297 

The UFS-RAQMS Control experiment has a low bias of -34.6 ppbv relative to the observations and is moderately 298 

correlated (0.7332). Assimilating TROPOMI CO decreases the bias in the analysis significantly to -1.8 ppbv and 299 

improves the correlation (0.8202).   300 
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 301 

Figure 9. Comparison of CAMP2Ex P3-B CO and (a) UFS-RAQMS Control experiment and (b) UFS-RAQMS TROPOMI 302 
CO DA experiment. 303 

Figure 10 shows a comparison of the vertical profiles for the CAMP2Ex CO observations and coincident UFS-RAQMS 304 

analyses. Following the interpolation of the UFS-RAQMS analyses along the P-3 flight track, the modeled and 305 

measured values were binned into 200 m altitude bins. The median (vertical profile), 25th and 75th (shaded) 306 

percentiles of the modeled and observed distributions within each 200m altitude bin are shown. Below 7km, the UFS-307 

RAQMS control experiment profile is biased low by ≥ 20 ppbv (≥ 20%) relative to the observed profile. This low 308 

bias is largest in the lowest 1.5km where it exceeds -40%. The UFS-RAQMS TROPOMI CO DA experiment profile 309 

is generally within the 25th-75th percentiles of the CAMP2Ex observations, though between ~3.5km and 5km the 310 

UFS-RAQMS DA CO profile is biased high and may indicate a slight overcorrection. The lowest 1km of the profile 311 

is still biased low, though it is now only 10-20%. 312 

The comparisons of UFS-RAQMS to the in-situ FIREX-AQ and CAMP2Ex observations show that TROPOMI CO 313 

DA improves the correlation and bias statistics. This is consistent with the MOPITT statistics over the campaign 314 

domains. However, the improvement in the statistics is better for UFS-RAQMS CO columns than for the UFS-315 

RAQMS CO profiles. This is a result of using a total column measurement to constrain the UFS-RAQMS CO analysis. 316 

UFS-RAQMS control CO is strongly correlated with the in-situ observations, indicating along with the profiles that 317 

the vertical structure and temporal variation in CO concentration is reasonably captured in UFS-RAQMS for these 318 

regions.  The DA system distributes the analysis increment vertically based on model blended BEC statistics and 319 

knowledge of observation errors and vertical sensitivities. Over the CAMP2Ex domain this leads to an overestimation 320 

of CO at 3-6km. Over the FIREX-AQ domain this leads to an overestimate of CO below 6km and underestimates 321 

above 10km. In the UFS-RAQMS TROPOMI CO DA experiment column, the effects of the adjustments compensate 322 

for each other.  323 
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 324 

Figure 10. Vertical profiles of CO during CAMP2Ex for P-3 CO observation (black), UFS-RAQMS Control experiment 325 
(red), and UFS-RAQMS TROPOMI CO DA experiment (blue). 326 

3.2.4 NDACC FTIR 327 

UFS-RAQMS CO profiles are also evaluated with FTIR CO profile observations from 6 NDACC sites (table 1). The 328 

selected NDACC FTIR spectrometers retrieve volume mixing ratio profiles from solar absorption spectra with optimal 329 

estimation using the SFIT4 algorithms (https://wiki.ucar.edu/display/sfit4/, last access: 19 July 2024).   330 

  331 
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Table 1. Location of NDACC FTIR sites used in this study. Number of profiles taken 15 July- 30 September 2019 and 332 

average bias below 25 km for the control and TROPOMI DA UFS-RAQMS experiments included.  333 

NDACC Site Name Number 

of 

Profiles 

Location 

(Latitude/Longitude) 

Mean Degrees 

of freedom 

UFS-RAQMS 

Control bias 

UFS-RAQMS 

DA bias 

Boulder, CO, USA 288 39.99ºN, 105.26ºW 2.84 -5.47 ppbv 5.04 ppbv 

La Reunion, Maido, 

France 

531 21.1ºS, 55.4ºE 2.32 5.26 ppbv 2.16 ppbv 

Mauna Loa, HI, 

USA 

54 19.54ºN, 155.58ºW 3.14 -1.37 ppbv 2.48 ppbv 

St. Petersburg, 

Russian Federation 

76 59.9ºN, 29.8ºE 2.55 -7.48 ppbv 4.22 ppbv 

Thule, Greenland 655 76.53ºN, 68.74ºW 3.17 -13.46 ppbv 6.17 ppbv 

Wollongong, 

Australia 

263 34.41ºS, 150.88ºE 2.65 7.83 ppbv 1.9 ppbv 

 334 
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 335 

Figure 11. Comparison of CO profiles from NDACC FTIR (black), UFS-RAQMS control (red), and UFS-RAQMS DA 336 
(blue). Solid lines indicate the median, shading 25th-75th percentile. 337 

UFS-RAQMS analyses were paired to the NDACC FTIR locations using a nearest-neighbor approach in the horizontal 338 

followed by linear interpolation in the time and vertical dimensions. NDACC FTIR averaging kernels and a priori 339 

profiles (figures S2 and S3) are then applied to the UFS-RAQMS profiles. The degrees of freedom for each site (table 340 

1) indicate that two to three independent layers can be resolved. Figure 11 shows a comparison of NDACC FTIR CO 341 

profiles with UFS-RAQMS.  The influence of TROPOMI CO DA on the CO profile is small above 15km, with both 342 

the control and the TROPOMI CO DA experiment generally overestimating CO concentrations in this region.  The 343 

most significant differences between the control and TROPOMI CO DA experiments occur below 10km except for at 344 

Wollongong where the most significant difference is at 11-12km (fig. 11f). The Wollongong site is at 34.41ºS, 345 

150.88ºE, where the mean impact of the DA is a 20-30% decrease in CO (section 3.1, fig 4). At Wollongong, the 346 

TROPOMI CO DA reduces the average high bias by 5-15 ppbv from 1-5km and ~10 ppbv from 5-10km but creates a 347 

low bias of ~15-20 ppbv from 10-12km. 348 

Consistent with the percent change in CO between the control and TROPOMI CO DA experiments at high latitudes 349 

in fig. 4, the Thule profile shows a significant increase in the profile due to the TROPOMI CO DA and results in very 350 

good agreement with the observed NDACC profile from 2-13km. At Thule the near-surface CO concentration is 351 

biased high in the TROPOMI CO DA experiment while it is biased low in the control. This behavior is not apparent 352 

at the other sites and may be a consequence of the use of static BEC at these latitudes. Recall, the BEC statistics 353 

obtained by this study are a function of latitude and altitude, and in the lower troposphere reflect the sensitivity of 354 

UFS-RAQMS to biomass burning emissions. Profiles of the analysis increments at NDACC locations on the days that 355 

measurements were made (not shown) indicate that the near-surface analysis increment is comparatively large 356 
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(>~15ppbv) at Boulder, St. Petersburg, and Thule. For Boulder and St. Petersburg, it appears the TROPOMI CO DA 357 

is able to correct CO for biases in anthropogenic emissions since these sites were not significantly impacted by 358 

wildfires. 359 

At the tropical NDACC sites of Mauna Loa and La Reunion changes are small. TROPOMI CO DA slightly decreases 360 

UFS-RAQMS CO at La Reunion and increases it below 15km at Mauna Loa. 361 

4 Consistency in biomass burning CO and aerosol signatures  362 

A strong relationship between black carbon aerosols and CO has been observed in airmasses dominated by biomass 363 

burning emissions (eg. Arellano Jr. et al., 2010; Spackman et al., 2008) due to their co-emission during combustion. 364 

Similarly, satellite aerosol optical depth (AOD) and CO column observations are strongly correlated over regions 365 

where biomass burning is the dominant contributor to fine mode AOD (eg. Bian et al., 2010; Edwards et al., 2004, 366 

2006). The correlation in space and time between AOD and CO is stronger in the southern hemisphere, while in the 367 

NH peak AOD and CO loadings are offset due to the higher anthropogenic pollutant loading (Bian et al., 2010; 368 

Buchholz et al., 2021; Edwards et al., 2004). Due to the shorter lifetime of biomass burning aerosols, enhancements 369 

in AOD are a strong indicator of biomass burning emissions sources while CO is a good tracer of down-wind impacts 370 

of those emissions due to its longer lifetime (eg. Bian et al., 2010; Buchholz et al., 2021; Edwards et al., 2006).  371 

Edwards et al. 2006 also finds that the correlation between CO and AOD is strongest during the first few days of a 372 

biomass burning event and declines as the local CO concentration becomes less representative of daily emissions. 373 

Here, we evaluate the relationship between AOD and CO over two biomass burning events. VIIRS AOD and 374 

TROPOMI CO are used to evaluate how realistic the UFS-RAQMS AOD/CO relationship is. We selected scenes over 375 

Siberia and over Indonesia during their respective peaks in biomass burning during the July-September 2019 analysis 376 

period. The assimilation of TROPOMI CO did not result in significant changes to UFS-RAQMS AOD. We calculate 377 

that the largest changes in sulfate AOD and sulfate concentrations on 16 September 2019 to be 5-10% and in airmasses 378 

with sulfate AOD < 0.2 and low sulfate concentrations where small changes will have an outsized impact. In the 379 

regions with higher AOD and sulfate, the difference between the two UFS-RAQMS experiments for this date is < 380 

2.5%. 381 

UFS-RAQMS CO and AOD analyses are interpolated in latitude, longitude, and time to TROPOMI and VIIRS L2 382 

observations respectively. TROPOMI averaging kernels are applied to UFS-RAQMS CO profiles. UFS-RAQMS 383 

speciated aerosol extinction profiles at 532nm are integrated to obtain AOD. The coincident model and observation 384 

data is then binned onto a 0.1x0.1 degree grid. The anticipated compact  relationship between AOD and CO is 385 

evaluated for the observations, UFS-RAQMS control, and UFS-RAQMS TROPOMI CO DA. 386 

4.1 Case Study: 22 July 2019 Siberian Smoke 387 

During July and August 2019 significant wildfire activity occurred in Siberian Russia, with a major cluster in Eastern 388 

Siberia and a major cluster in Central Siberia (Johnson et al., 2021). Wildfire activity peaked in both regions of Siberia 389 
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between 18 July and 26 July. We evaluate binned AOD and CO column on 22 July 2019 for the region 90∘E -150∘E, 390 

50∘N - 70∘N. 391 

The spatial distributions of AOD and CO over Siberia on 22 July 2019 are shown in figure 12 for VIIRS, TROPOMI, 392 

the UFS-RAQMS control, and the UFS-RAQMS TROPOMI CO DA experiment. The UFS-RAQMS AOD field is 393 

unchanged between the control and TROPOMI CO DA experiments and thus is only shown once. UFS-RAQMS does 394 

a very good job of capturing the observed synoptic scale features but does not capture fine-scale structure seen in the 395 

AOD or CO observations. UFS-RAQMS AOD is slightly overestimated outside of the plume (AOD ≥ 1) and in the 396 

plume feature around 60∘N - 70∘N, 120∘E - 130∘E. CO column is significantly underestimated in UFS-RAQMS 397 

control. Agreement with the TROPOMI observations is significantly improved in UFS-RAQMS TROPOMI CO DA. 398 

 399 

Figure 12. 22 July 2019 AOD and CO columns over Siberia. VIIRS AOD (a), UFS-RAQMS AOD (b), TROPOMI CO 400 
column (c), and UFS-RAQMS control (d) and TROPOMI CO DA (e) CO column. Black box in panel a defines region (90∘E 401 
-150∘E, 50∘N - 70∘N) for AOD/CO column relationship analysis. 402 

Scatterplots illustrating the relationship between AOD and CO column in Siberian wildfire smoke are shown in figure 403 

13 for the observations (grey), UFS-RAQMS control (red), and UFS-RAQMS TROPOMI CO DA (blue). The linear 404 

regressions are summarized in table 2. VIIRS AOD and TROPOMI CO Column exhibit a compact linear relationship 405 

with a slope near 1 and correlation of 0.8043. UFS-RAQMS control CO column and AOD are moderately correlated 406 

(0.5648), and the slope of the linear relationship is 0.2407 as UFS-RAQMS control underestimates of CO column for 407 

high AOD. TROPOMI CO DA improves the correlation between AOD and CO Column as well as increases the slope 408 

of the linear relationship. The UFS-RAQMS TROPOMI CO DA AOD/CO Column slope is 0.7749 and the correlation 409 
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is 0.7106. This improved representation of the observed linear relationship and correlation in UFS-RAQMS 410 

TROPOMI CO DA is due to the increased CO column within the Siberian wildfire plume.  411 

 412 

Figure 13. Linear relationship between AOD and CO column in Siberian wildfire smoke (90∘E -150∘E, 50∘N - 70∘N) on 22 413 
July 2019. UFS-RAQMS control (a, red) and UFS-RAQMS TROPOMI CO DA (b, blue) AOD/CO relationships are 414 
compared to observed VIIRS AOD/TROPOMI CO (grey). 415 

Table 2. Linear relationship between AOD and CO in Siberian wildfire smoke (90∘E -150∘E, 50∘N - 70∘N) on 22 July 2019. 416 

 slope intercept r 

VIIRS AOD/TROPOMI CO Column 1.0092 1.629 0.8043 

UFS-RAQMS Control AOD/CO Column 0.2407 1.7948 0.5648 

UFS-RAQMS TROPOMI CO DA AOD/CO Column 0.7749 2.0724 0.7106 

4.2 Case Study: 16 September 2019 Indonesian Smoke 417 

During September 2019 wildfire activity over Indonesia contributed to an extreme AOD enhancement in the region. 418 

We evaluate binned AOD and CO column on 16 September 2019 for the region 100∘E -130∘E, 15∘S - 15∘N.  419 

The spatial distributions of AOD and CO over Indonesia on 16 September 2019 are shown in figure 14 for VIIRS, 420 

TROPOMI, the UFS-RAQMS control, and the UFS-RAQMS TROPOMI CO DA experiment. UFS-RAQMS 421 

significantly underestimates AOD enhancements in this region, as evident in the Borneo smoke plume and over China. 422 

We believe that this is due to underestimates in emissions from peat fires in this region (Yokelson et al, 2022) CO 423 

column is significantly underestimated over the maritime continent in UFS-RAQMS control. Agreement with the 424 

TROPOMI observations is significantly improved in UFS-RAQMS TROPOMI CO DA. 425 
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 426 

Figure 14. 16 September 2019 AOD and CO columns over SE Asia. VIIRS AOD (a), UFS-RAQMS AOD (b), TROPOMI 427 
CO column (c), and UFS-RAQMS control (d) and TROPOMI CO DA (e) CO column. Black box in panel a defines region 428 
(100∘E -130∘E, 15∘S - 15∘N) for AOD/CO column relationship analysis. 429 

Scatterplots illustrating the relationship between AOD and CO column in Indonesian wildfire smoke are shown in 430 

figure 15 for the observations (grey), UFS-RAQMS control (red), and UFS-RAQMS TROPOMI CO DA (blue). The 431 

linear regressions are summarized in table 3. VIIRS AOD and TROPOMI CO Column exhibit a compact linear 432 

relationship with a slope near 1 and correlation of 0.782. UFS-RAQMS control CO column and AOD are moderately 433 

correlated (0.4886), and the slope of the linear relationship is 0.7638, however neither the AOD or CO columns capture 434 

the observed high values. TROPOMI CO DA improves the correlation between AOD and CO Column to 0.7085 but 435 

due to the low bias in UFS-RAQMS AOD over the region significantly overestimates the slope of the relationship. 436 

Assimilation of AOD data could be used to improve agreement with observations in this region.  437 
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 438 

Figure 15. Linear relationship between AOD and CO column in Indonesian wildfire smoke (100∘E -130∘E, 15∘S - 15∘N) on 439 
16 September 2019. UFS-RAQMS control (a, red) and UFS-RAQMS TROPOMI CO DA (b, blue) AOD/CO relationships 440 
are compared to observed VIIRS AOD/TROPOMI CO (grey).  441 

 442 

 443 

  444 
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Table 3. Linear relationship between AOD and CO column in Indonesian wildfire smoke (100∘E -130∘E, 15∘S - 15∘N) on 16 445 
September 2019. 446 

 slope intercept r 

VIIRS AOD/TROPOMI CO Column 0.962 1.7872 0.782 

UFS-RAQMS Control AOD/CO Column 0.7638 1.4755 0.4886 

UFS-RAQMS TROPOMI CO DA AOD/CO Column 1.275 1.3404 0.7085 

5. Conclusions 447 

The UFS-RAQMS control experiment significantly underestimates CO column relative to MOPITT and TROPOMI 448 

CO column observations. Assimilating TROPOMI CO within UFS-RAQMS using the GSI 3D-var and blended BEC 449 

generally resulted in improved UFS-RAQMS CO analyses relative to satellite, ground-based, and airborne 450 

observations. Application of TROPOMI CO DA decreases the average RMSE in CO Column relative to MOPITT 451 

and improves correlation between UFS-RAQMS and MOPITT within the FIREX-AQ and CAMP2EX domains. 452 

TROPOMI CO DA results in an improved CO profile in the free troposphere at most NDACC sites but does increase 453 

surface CO biases at high latitude locations and complexity in the vertical structure at many sites. This is a consequence 454 

of using a total column measurement to constrain a profile. Our DA system is minimizing the difference between the 455 

TROPOMI observations and the UFS-RAQMS first guess. While the CO column is well constrained, as indicated by 456 

the good agreement between UFS-RAQMS TROPOMI CO DA CO columns and MOPITT CO columns, the DA 457 

system distributes the analysis increment vertically based on model blended BEC statistics and knowledge of 458 

observation errors and vertical sensitivities. Our evaluations with NDACC FTIR CO observations and with field 459 

campaign observations show that this can lead to an over-adjustment near the surface and only small adjustments at 460 

high altitudes. 461 

TROPOMI CO DA has the largest impacts in the lower troposphere over Siberia and Indonesia. Our case studies of 462 

the relationship between AOD and CO over these regions show that in UFS-RAQMS biomass burning signatures in 463 

CO column are not consistent with those in AOD near the biomass burning source regions. Assimilating TROPOMI 464 

CO improves the representation of the biomass burning AOD/CO relationship. We believe this is an indication that 465 

the GBBEPx biomass burning CO emissions in UFS-RAQMS are too low. GBBEPx adds biomass burning emissions 466 

from VIIRS to the Quick Fire Emissions Database (QFED) biomass burning emissions estimates from MODIS (Zhang 467 

et al., 2019). QFED biomass burning aerosol emissions are scaled with biome-representative scale factors for tropical 468 

forests, extratropical forests, savanna, and grasslands that were obtained by calibrating NASA Goddard Earth 469 

Observing System Model (GEOS) AOD forecasts with MODIS AOD (Darmenov and da Silva, 2015). 470 

While assimilating CO does compensate for uncertainties in the biomass burning emissions, it does not adjust the 471 

biomass burning CO emissions themselves. Since UFS-RAQMS uses emission factors for co-emitted NOx and VOC 472 

species that are based on the GBBEPx biomass burning CO emissions, we anticipate similar uncertainties in these co-473 

emitted species. Future efforts should focus on developing capabilities to use TROPOMI CO column measurements 474 
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to adjust the GBBEPx CO biomass burning emissions within UFS-RAQMS. Similar capabilities have been developed 475 

using TROPOMI NO2 retrievals to adjust anthropogenic NOx emissions using off-line iterative mass balance 476 

approaches (East et al, 2022) and local ensemble transform Kalman filter (LETKF) techniques (Sekiya et al, 2022).  477 
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