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Abstract 13 

This paper describes a new version of the Real-time Air Quality Modeling System (RAQMS) which uses National 14 

Unified Operational Prediction Capability (NUOPC) coupling to combine the RAQMS chemical mechanism with the 15 

Global Ensemble Forecasting System with Aerosols (GEFS-Aerosols), the Goddard Chemistry Aerosol Radiation and 16 

Transport model (GOCART) aerosol mechanism, and NOAA’s Unified Forecast System (UFS) version 9.1 Finite 17 

Volume Cubed Sphere (FV3) dynamical core. We also present an application of TROPOMI CO column data 18 

assimilation in UFS-RAQMS with the NOAA Grid Point Statistical Interpolation (GSI) three-dimensional variational 19 

(3Dvar) analysis system to constrain UFS-RAQMS CO. We validate UFS-RAQMS control and TROPOMI CO data 20 

assimilation CO analyses for the period 15 July – 30 September 2019 against independent satellite, ground based, and 21 

airborne observations. We show the largest impacts of the TROPOMI CO data assimilation are in the lower 22 

troposphere over Siberia and Indonesia. We find UFS-RAQMS biomass burning signatures in CO column are not 23 

consistent with those in AOD near the Siberian and Indonesian biomass burning source regions within our control 24 

experiment. Assimilation of TROPOMI CO improves the representation of the biomass burning AOD/CO relationship 25 

in UFS-RAQMS by increasing the CO column, which. The results also suggestsindicates that the biomass burning 26 

CO emissions from the Blended Global Biomass Burning Emissions Product (GBBEPx) used in UFS-RAQMS are 27 

too low for boreal wildfires.  28 

1. Introduction 29 

The Real-time Air Quality Modeling System (RAQMS) is a global chemical transport model with full stratospheric 30 

and tropospheric chemistry (Pierce et al., 2007, 2009). We have incorporated the RAQMS unified 31 

stratosphere/troposphere chemistry, photolysis, and wet and dry deposition modules into NOAA’s Unified Forecast 32 

System (UFS) to produce a global atmospheric composition assimilation and forecasting system hereafter referred to 33 

as UFS-RAQMS. In this study we demonstrate the impact of Tropospheric Monitoring Instrument (TROPOMI) 34 

(Veefkind et al., 2012)TROPOMI CO total column data assimilation in UFS-RAQMS utilizing the NOAA Grid Point 35 
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Statistical Interpolation (GSI) three-dimensional variational (3Dvar) analysis system (Kleist et al., 2009; Wu et al., 36 

2002).  37 

Carbon monoxide (CO) is an important atmospheric trace gas due to both its influence on OH and ozone (O3) 38 

chemistry and its use as a pollution transport tracer. The major loss pathway for CO is its reaction with OH (Logan et 39 

al., 1981), and this reaction significantly impacts the oxidizing capacity of the atmosphere. CO sources include 40 

production during VOC oxidation and direct emission from biomass burning and fossil fuel combustion. Chemical 41 

transport models (CTMs) frequently underestimate CO (eg. Naik et al., 2013; Shindell et al., 2006; Strode et al., 2015). 42 

Potential reasons for this include underestimation of anthropogenic and/or biomass burning emissions, overestimation 43 

of OH, and underestimation of secondary CO production from VOCs. 44 

Biomass burning emissions inventories have a high uncertainty due to factors including the incomplete knowledge of 45 

the spatiotemporal distribution of sources and limitations in capturing variation in fuel and fire behavior characteristics 46 

(eg. Hyer and Reid, 2009; Pan et al., 2020). CTM concentration fields will forecasts vary significantly depending on 47 

which biomass burning emission inventory is used (eg. Bian et al., 2007; Pan et al., 2020; Stockwell et al., 2022). 48 

Additionally, some biomass burning emissions schemes, including UFS-RAQMS, use emission ratios relative to CO 49 

for determining the release of VOCs and other non-CO emissions (eg. Andreae and Merlet, 2001; Lewis et al., 2013; 50 

Binte Shahid et al., 2024; Li et al., 2025) further compounding the effect of poor biomass burning CO emissions on 51 

CTM forecast skill for VOC-NOx-O3 chemistry.  52 

Chemical data assimilation (DA) systems can be used to reduce the impacts of emissions uncertainty and model 53 

deficiencies in representing sub-grid scale processes by using atmospheric composition measurements to constrain 54 

CTM concentration fields. Chemical DA capabilities have been developed by modifying meteorological DA systems 55 

to use chemical concentration measurements. DA methods implemented for chemical DA include optimal 56 

interpolation-based methods (eg. Lamarque et al., 1999; Lamarque and Gille, 2003; Pierce et al., 2007), 3D variational 57 

methods (Pagowski et al., 2010), ensemble Kalman filter methods (eg. Gaubert et al., 2020; Miyazaki et al., 2012), 58 

and 4D variational methods (eg. Inness et al., 2015; Inness et al., 2022). Chemical DA improves the CTM analysis 59 

through minimizing the difference between observations and model predictionsanalyses. Observation datasets with a 60 

higher spatial coverage during the assimilation window provide more information about the true atmospheric 61 

composition. DA systems have been used to assimilate remote sensing observations of CO from Measurement of Air 62 

Pollution from Space (MAPS), Interferometric Monitor for Greenhouse Gases (IMG), Measurements of Pollution in 63 

the Troposphere (MOPITT), Infrared Atmospheric Sounding Interferometer (IASI), and TROPOMI (eg. Barré et al., 64 

2015; Clerbaux et al., 2001; Inness et al., 2015; Inness et al., 2022; Lamarque et al., 1999). 65 

In this study we introduce UFS-RAQMS and apply it to TROPOMI CO DA during July-August-September (JAS) 66 

2019. The application of TROPOMI CO DA provides an observational constraint on model CO concentrations. The 67 

previous version of RAQMS utilized the UW hybrid model (Schaack et al., 2004) as the dynamical core and physics 68 

parameterizations from the NCAR Community Climate Model (CCM3) (Kiehl et al., 1998). Incorporation of the UFS 69 

dynamical core within the new model version updates the physical parameterizations to the suite used to produce 70 
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operational NOAA forecasts.  During JAS the 2019 NASA/NOAA Fire Influence on Regional to Global Environments 71 

and Air Quality (FIREX-AQ) field campaign (Warneke et al., 2023) sampled smoke plumes over North America. The 72 

NASA Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) field campaign (Reid et al., 2023) 73 

occurred 25 August – 5 October 2019 and sampled smoke  over the maritime continent. Fire activity in the continental 74 

US in 2019 was significantly below average, thought to be the result of higher fuel moisture content (Warneke et al., 75 

2023). Globally, biomass burning emissions typically peak around August-September (van der Werf et al., 2017). The 76 

Blended Global Biomass Burning Emissions Product (GBBEPx) calculates daily biomass burning emissions using 77 

observations of fire radiative power (FRP) from Moderate Resolution Imaging Spectroradiometer (MODIS) (Aqua 78 

and Terra satellites) and Visible Infrared Imaging Radiometer Suite (VIIRS) (Suomi NPP and NOAA-20 satellites) 79 

(Zhang et al., 2019).  Siberian wildfire emissions peaked during July and August 2019, and by September global 80 

biomass burning emissions were predominantly due to burning in the tropics (fig. 1). Smoke from the Siberian 81 

wildfires was transported over North America, where it impacted tropospheric composition and surface air quality 82 

(Johnson et al., 2021). Smoke from drought-enhanced biomass burning in the maritime continent contributed to 83 

September 2019 having the 3rd highest AOD in the MODIS record, behind significant enhancements in 2006 and 84 

2015 (Reid et al., 2023). 85 

This paper is structured as follows. Section 2 describes the UFS-RAQMS model and data assimilation system as well 86 

as the method for obtaining the background error covariance statistics. Section 3 shows results from the TROPOMI 87 

CO DA experiment and validation with independent observations. Section 4 evaluates the relationship between CO 88 

column and AOD for 2 case studies- one over Siberian biomass burning in July and one over Indonesia in September. 89 

Conclusions are given in section 5. 90 

 91 

Figure 1.  GBBEPx emissions during 15 July – 30 September 2019. Panel (a) displays time series of over selected regions. 92 
Panel (b) mean spatial distribution of GBBEPx emissions. 93 

2. UFS-RAQMS Model 94 

UFS-RAQMS is an updated version of the Real-time Air Quality Modeling System (RAQMS) (Pierce et al., 2007) 95 

where the RAQMS stratosphere/troposphere chemistry, photolysis, and wet and dry deposition modules are coupled 96 
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to NOAA’s Unified Forecast System (UFS) version 9.1 Finite Volume Cubed Sphere (FV3) dynamical core (Harris 97 

and Lin, 2013; Putman and Lin, 2007). The UFS-RAQMS configuration utilized in this study is an extension of the 98 

operational NOAA Global Ensemble Forecasting System with Aerosols (GEFS-Aerosols, Bhattacharjee et al., 2023; 99 

Zhang et al., 2022). GEFS-Aerosols includes bulk aerosol modules from the Goddard Chemistry Aerosol Radiation 100 

and Transport model (GOCART, Chin et al, 2002). The GOCART aerosol module doesn’t predict secondary organic 101 

aerosols or include heterogeneous chemistry so these pathways are not able to change AOD within the UFS-RAQMS 102 

modeling system.  103 

The extension is accomplished by coupling RAQMS chemistry, photolysis, and wet and dry deposition modules with 104 

the UFS dynamical core through the National Unified Operational Prediction Capability (NUOPC, 105 

https://earthsystemmodeling.org/nuopc/) layer. The NUOPC layer defines conventions and generic components for 106 

building coupled models using the Earth System Modeling Framework (ESMF, https://earthsystemmodeling.org). 107 

This NUOPC based coupling allows the GOCART aerosol predictions to impact the RAQMS Fast-J2 (Bian and 108 

Prather, 2002) photolysis scheme and also allows the RAQMS OH and H2O2 predictions to impact the GOCART 109 

sulfate aerosol formation.   110 

The RAQMS chemistry module utilizes a family approach to reduce the number of species considered in the chemical 111 

mechanism, requiring solving of continuity equations for 55 chemical families and constituents and determination of 112 

equilibrium concentrations for 86 separate species (Pierce et al., 2007). Non-methane hydrocarbon chemistry in the 113 

RAQMS chemistry module follows the lumped-structure Carbon Bond Mechanism Z (CB-Z) (Zaveri and Peters, 114 

1999), which was modified in Pierce et al. (2007) to include an explicit isoprene oxidation scheme. Standard hydrogen 115 

oxide (HOx), chlorine oxide (ClOx), bromine oxide (BrOx), and NOx ozone photochemistry (Eckman et al., 1995) is 116 

also included. 117 

In this study we conduct UFS-RAQMS retrospective simulations during July 15, 2019 through September 30, 2019 118 

at a Cubed Sphere resolution of 192 (C192, 192x192 grid-points within each 6 cubes or approximately 0.5∘ x 0.5∘ 119 

horizontal resolution) with 64 hybrid vertical levels from the surface to upper stratosphere (approximately 0.2hPa). 120 

The UFS-RAQMS atmospheric composition experiments are conducted in “replay” mode, with UFS-RAQMS 121 

meteorological fields are initialized with Global Data Assimilation FSystem (GDAS, Whitaker et al., 2008) GFS 122 

analyses at 6-hour intervals followed by UFS-RAQMS forecasts with and without data assimilation cycling. The 123 

forecasts without data assimilation are used as the control experiment. Both UFS-RAQMS experiments were 124 

initialized on 15 July 2019 at 12Z with 1x1 degree analyses from RAQMS. ,The RAQMS analyses used as the 125 

chemical initial conditions are constrained by assimilating  which includes assimilation of NASA Moderate Resolution 126 

Imaging Spectroradiometer (MODIS) collection 6.1 (C61) AOD on the Terra and Aqua satellites and the NASA Ozone 127 

Monitoring Instrument (OMI) TOMS V8 cloud cleared total column ozone and Microwave Limb Sounder (MLS) 128 

version 2 stratospheric ozone profiles with the statistical digital filter (SDF) (Stobie, 2000). Global anthropogenic 129 

emissions in UFS-RAQMS are obtained from the Community Emissions Data System (CEDS, McDuffie et al., 2020). 130 

Daily global biomass burning CO emissions are specified from GBBEPx (Zhang et al., 2019.) and is expanded for 131 
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other trace gas emissions using species specific emissions factors from the RAQMS biomass burning scheme (Soja et 132 

al., 2004). Fire Radiative Power (FRP) is used to calculate GBBEPx plume rise (Ahmadov et al., 2017). 133 

2.1 GSI 3D-Var 134 

This study uses the operational grid point statistical interpolation (GSI) 3D variational (3DVAR) DA system (Kleist 135 

et al., 2009; Wu et al., 2002) to assimilate TROPOMI CO columns. Within this implementation, the UFS-RAQMS 136 

3D CO volume mixing ratio is used as the analysis variable in the minimization procedure. The background error 137 

covariance (BEC) statistics for CO are obtained using the National Meteorological Center (NMC) method (Descombes 138 

et al., 2015; Parrish and Derber, 1992). The NMC method typically uses differences between 24-hour forecasts and 139 

48-hour forecasts to estimate BEC statistics. Here, in addition to the standard BEC implementation, we apply the 140 

NMC method to a pair of forecasts that have different biomass burning emissions to account for uncertainties in CO 141 

emissions. The biomass burning emission BEC statistics are computed from the differences between 100% GBBEPx 142 

CO emissions and 85% GBBEPx CO emissions UFS-RAQMS CO forecasts.  143 

The biomass burning and forecast BEC statistics are combined in a piecewise-linear fashion to create “blended” BEC 144 

statistics. We set the blended BEC statistics equal to the standard, forecast-sensitive BEC statistics above model level 145 

25 (approximately 480hPa). Below model level 15 (approximately 780hPa), the blended BEC statistics are equal to 146 

the biomass burning BEC statistics with an inflation factor of 5 applied to the standard deviation. This inflation factor 147 

was tested during the development of assimilation capabilities within the RAQMS Aura Reanalysis (Bruckner et al., 148 

2024). It accounts for the fact that the 20% emission perturbation used for the emission sensitivity significantly 149 

underestimates the true uncertainties in emissions, which can be an order of magnitude for biomass burning emissions 150 

(Al-Saadi et al., 2008).  , The two BEC estimates are linearly blended in approximately the mid-troposphere Bbetween 151 

model levels 15 and 25, the two BEC estimates are linearly blended. The resulting BEC statistics for forecast, 152 

emission, and blended each formulations are presented in figure S1.  153 

2.1.2 TROPOMI CO Total Column 154 

The Tropospheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) is a higher resolution follow-on to the 155 

NASA Ozone Monitoring Instrument (OMI) that is currently in orbit on-board ESA’s polar-orbiting Sentinel-5 156 

precursor satellite that observes in the ultraviolet (UV) UV-near infrared (IR) and shortwave IR. We use the v2.4.0 157 

CO total column retrieval with the striping correction applied (Borsdorff et al., 2019). Following recommended quality 158 

assurance guidelines (https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-Level-159 

2-Product-Readme-File.pdf, last access: 18 July 2024), we use observations with a quality assurance value 1 (best) 160 

over land and 0.7 (OK, but mid-level clouds present) over ocean. This leads to assimilation of only cloudy data over 161 

ocean, as the clear sky ocean retrieval signal intensity is too weak (Inness et al., 2022). 162 

TROPOMI CO has a spatial resolution of 5.5 x 3.5 km (7 x 3.5km prior to August 6, 2019), which is higher than UFS-163 

RAQMS resolution. Owing to this difference in resolution, multiple TROPOMI observations may fall within a model 164 

grid cell during the assimilation window. Unlike other studies that utilize satellite CO “super-observations” (eg. 165 
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Gaubert et al., 2020; Inness et al., 2022; Sekiya et al., 2021), we assimilate observations individually. Super-166 

observations reduce the computational cost and representation error  as well assince using super-observations smooths 167 

the spatial variability in analysis increments (Sekiya et al., 2021). We opted not to use super-observations due to 168 

concerns that this smoothing could. This smoothing could lead to underestimates in localized CO column 169 

enhancements associated with biomass burning.  170 

Figure 2a shows the mean TROPOMI CO columns over the continental US during the FIREX-AQ field campaign and 171 

the NASA DC-8 flight tracks. CO columns over the central and eastern US are ~2x higher than over the western US 172 

largely due to higher topography in the western US and thus thinner atmospheric columns. Figure 2b shows the mean 173 

TROPOMI CO concentrations over SE Asia during the CAMP2Ex field campaign and the NASA P-3 flight tracks. 174 

During CAMP2Ex high CO columns (>4x1018 mol/cm2) over the islands of Borneo and Sumatra are due to the 175 

sustained burning of peatlands (Reid et al., 2023).  176 

 177 

Figure 2. Mean TROPOMI CO columns over the US (a) and SE Asia (b). FIREX-AQ DC-8 flight tracks (pink) and 178 
CAMP2Ex P-3 (black) flight tracks are shown over the respective campaign domains.    179 

3. Impact of TROPOMI CO Assimilation on UFS-RAQMS CO 180 

The UFS-RAQMS control CO columns are lower than the TROPOMI CO column observations in the NH and higher 181 

in the SH (figure 3). Figure 3 also shows the FIREX-AQ and CAMP2Ex field campaign domains and the locations of 182 

Network for the Detection of Atmospheric Composition Change (NDACC) Fourier-transform infrared (FTIR) 183 

spectrometers used to validate UFS-RAQMS CO profiles. NDACC is a global network consisting of 80 currently 184 

active stations providing high quality observations of atmospheric trace gases and aerosols using ground-based insitu- 185 

and remote sensing techniques including ozonesondes, FTIR spectrometers, lidar, and UV/visible spectroscopy (De 186 

Mazière et al., 2018). The UFS-RAQMS control experiment significantly underpredicts CO columns over central 187 

Africa, the maritime continent, and Siberian Russia. Figure 1b shows that each of these regions are associated with 188 

significant biomass burning during this period.  189 
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 190 

Figure 3. 15 July- 30 September 2019 average CO Column concentrations for (a) TROPOMI and (b) UFS-RAQMS control. 191 

Boxes indicate domains for CAMP2Ex (purple) and FIREX-AQ (yellow) campaigns. NDACC FTIR locations utilized in 192 
this study are denoted by red stars. 193 

3.1 Differences in CO between control and DA experiments 194 

To quantify the impact of assimilating TROPOMI CO on UFS-RAQMS analyses, we calculate the average percent 195 

change in zonal mean CO and CO total column between the control and TROPOMI CO DA experiments. Figure 4a 196 

shows that the assimilation increases tropospheric zonal mean CO north of 20∘S and decreases zonal mean CO above 197 

the tropopause. Above the tropopause the largest impact of the TROPOMI CO DA on CO is a decrease of 32-52% in 198 

the southern hemisphere (SH) between 40∘S and 60∘S and 11-13 km. The stratospheric regions with the largest 199 

decreases are in the midlatitudes and characterized by a strong vertical gradient in CO that sharpens as a result of the 200 

TROPOMI CO DA. This stratospheric percentage change is associated with low CO concentrations. These large 201 

stratospheric differences are not a direct consequence of the TROPOMI assimilation, as zonal mean cross sections of 202 

the analysis increments (Fig. 4bnot shown) illustrate that the DA primarily adjusts CO in the troposphere. Stratospheric 203 

CO analysis increments are concentrated near the tropopause and largest in the polar NH. Consequently, these large 204 

SH stratospheric CO percentage changes most likely arise from reductions in CO in the tropical upper troposphere 205 

through TROPOMI CO DA and then cross tropopause transport of the lower CO from the tropical upper troposphere 206 

into the stratosphere.  207 

The largest increases in zonal mean CO concentrations are between 45∘ N and 80∘N below 5km and in excess of 60%. 208 

Figure 4cb shows that the assimilation tends to increase CO total column north of 30∘S and decrease CO total column 209 

south of 30∘S. The largest increases in CO total column are in excess of 60% and in Siberia and the maritime continent, 210 

which during this time period experienced significant biomass burning activity. 211 
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 212 

Figure 4. Percent difference in zonal mean CO profile (a) and total column CO (cb) between UFS-RAQMS TROPOMI CO 213 
DA and control experiments. Average zonal mean (b) and total column (d) TROPOMI CO DA increments.  214 

3.2 Evaluation with independent datasets 215 

We evaluate improvement in UFS-RAQMS CO due to TROPOMI CO DA through validation with independent 216 

observations from the Measurements of Pollution in the Troposphere (MOPITT) instrument, the NASA/NOAA 217 

FIREX-AQ field campaign, the CAMP2EX field campaign, and NDACC FTIR spectrometers. The control and 218 

TROPOMI CO DA experiments are spatially and temporally interpolated to the observation, creating coincident 219 

model and observation pairs. For the MOPITT and NDACC comparisons, we apply the observation averaging kernels 220 

to the UFS-RAQMS coincident profiles. 221 

3.2.1 MOPITT CO Column 222 

 We compare daily mean UFS-RAQMS total column CO analyses with the MOPITT version 9 Level 3 daily mean 223 

CO column product (Deeter et al., 2022). Due to an event upset affecting instrument operation MOPITT data is 224 

unavailable for a large portion of the study period (26 July - 24 August 2019) 225 

(https://www2.acom.ucar.edu/mopitt/status). Daily average UFS-RAQMS CO is sampled at to the approximate 10:30 226 

AM local overpass time, binned onto the MOPITT level 3 grid, then linearly interpolated to the MOPITT vertical 227 

levels. The MOPITT averaging kernels and a priori are applied to the sampled UFS-RAQMS CO to account for the 228 
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vertical sensitivity of the MOPITT retrieval.  . The average daily MOPITT CO column for 15 July - 30 September 229 

2019 is shown in figure 5a.  A root mean square error (RMSE) skill score (equation 1) is used to quantify the 230 

improvement in the TROPOMI CO DA experiment. The RMSE for UFS-RAQMS control and UFS-RAQMS 231 

TROPOMI CO DA are calculated relative to the MOPITT observations. Negative skill scores indicate that the 232 

assimilation degraded the forecast while positive skill indicates the assimilation increased the accuracy of the forecast. 233 

A skill score of 1 indicates that the TROPOMI CO DA experiment captures the CO columns as depicted by MOPITT. 234 

A skill score of 0 indicates that the assimilation did not improve the agreement between MOPITT and UFS-RAQMS 235 

or that the model has no skill in capturing CO in that region. 236 

RMSE_SS(𝑖,𝑗) = 1 - 
𝑅𝑀𝑆𝐸𝐷𝐴(𝑖,𝑗)

𝑅𝑀𝑆𝐸𝑐𝑡𝑟𝑙(𝑖,𝑗)
                  (1) 237 

For most grid cells the UFS-RAQMS TROPOMI CO DA experiment exhibits improved skill (fig 5cd). The largest 238 

improvements in skill are over Russia, Europe, Alaska, and Canada. Due to the MOPITT data outage, the large 239 

Siberian biomass burning events are not captured within the MOPITT observations except for in the first 10 days of 240 

the experiment. Therefore, while we are unable to directly verify the increased UFS-RAQMS CO within the Siberian 241 

smoke plume during August 2019, we do show that assimilating TROPOMI CO throughout the period significantly 242 

improved background CO concentrations in the NH middle and high latitudes. UFS-RAQMS TROPOMI CO DA 243 

analyses also show improvement over regions of Africa and the maritime continent where there was widespread 244 

biomass burning during the analysis period. TROPOMI CO DA results in slight improvements over the Pacific Ocean 245 

and negative skill in the eastern Tropical Pacific near the coast of Mexico. 246 

In addition to the RMSE skill score, we compare the daily mean UFS-RAQMS CO column analyses with MOPITT 247 

CO columns over the FIREX-AQ and CAMP2Ex field campaign domains in figure 6. Correlation and bias are 248 

calculated between all observations made 15 July-30 September 2019 over 30°N - 49.5°N 82°W - 123°W (fig. 6 a,b) 249 

and 6°N - 23°N 116°E - 129°W (fig. 6 c,d). Over the FIREX-AQ domain, TROPOMI CO DA increases correlation 250 

of UFS-RAQMS with MOPITT from 0.661 to 0.8317 and decreases the bias from -0.2507 x1018 mol/cm2 to -0.0354 251 

x1018 mol/cm2 . Over the CAMP2Ex domain, TROPOMI CO DA increases correlation of UFS-RAQMS with MOPITT 252 

from 0.495 to 0.9446 and decreases the bias from -0.3114 x 1018 mol/cm2  to 0.1437 x 1018 mol/cm2 . 253 
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 254 

Figure 5. Comparison of MOPITT CO Column with UFS-RAQMS control and TROPOMI CO DA CO columns. 15 July- 255 
30 September 2016 mean CO column for MOPITT (a), UFS-RAQMS control (b), and UFS-RAQMS TROPOMI CO DA 256 
(ed), with 26 July - 24 August 2019 excluded due to MOPITT data outage. RMSE Skill Score (cd) shows improved 257 
agreement with MOPITT in UFS-RAQMS TROPOMI CO DA over UFS-RAQMS control. Mean bias relative to MOPITT 258 
for UFS-RAQMS control (c) and UFS-RAQMS TROPOMI CO DA (f). 259 
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 260 

Figure 6. Comparisons of MOPITT and UFS-RAQMS CO Columns over FIREX-AQ (a,b) and CAMP2Ex (c,d) domains. 261 
TROPOMI CO DA increases correlation and decreases bias between UFS-RAQMS and MOPITT. 262 

3.2.2 FIREX-AQ In-situ measurements 263 

Over the continental US from July-September the Differential Absorption Carbon Monoxide Measurement (DACOM) 264 

instrument (Sachse et al., 1991) made measurements onboard the NASA DC-8 as part of the FIREX-AQ field 265 

campaign. FIREX-AQ sampling of smoke plumes with the DC-8 consisted of multiple perpendicular transects through 266 

the plume, with each perpendicular leg sampling smoke emitted around the same time, and the legs starting in the 267 

freshest smoke (Warneke et al., 2023). The resulting FIREX-AQ highly detailed measurements capture fine-scale 268 

changes in composition in both the cross-plume direction and as the emissions age. In the following comparisons, in-269 

plume measurements are excluded from the analysis as the horizontal resolution of the UFS-RAQMS simulations is 270 

not fine enough to capture the observed in-plume enhancements that were measured by the DC-8 close to the western 271 

US wildfires and SE US agricultural fires targeted during FIREX-AQ. In-plume and background measurements are 272 
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separated using the flags provided through the FIREX-AQ data archive, which identify enhancement in CO and black 273 

carbon above background (Warneke et al., 2023). 274 

Figure 7 shows the comparison between UFS-RAQMS and the DC-8 DACOM CO observations for non-smoke plume 275 

observations during all flights during FIREX-AQ. UFS-RAQMS CO is strongly correlated with the observed CO for 276 

both the control (0.7956) and the TROPOMI CO DA experiment (0.8129). TROPOMI CO DA improves the average 277 

bias from -9.7.6635 ppbv to 6.32821 ppbv. 278 

 279 

Figure 7. Comparison of DC-8 DACOM non-plume CO and (a) UFS-RAQMS Control experiment and (b) UFS-RAQMS 280 
TROPOMI CO DA experiment.  281 

Figure 8 shows a comparison of the vertical profiles for the FIREX-AQ DACOM CO non-plumesmoke observations 282 

and coincident UFS-RAQMS analyses. Following the interpolation of the UFS-RAQMS analyses along the DC-8 283 

flight track and filtering out in-plumesmoke observations, the modeled and measured values were binned into 200 m 284 

altitude bins. The median (vertical profile), 25th and 75th (shaded) percentiles of the modeled and observed 285 

distributions within each 200m altitude bin are shown. Below 2 km the control and TROMPOMI CO DA experiment 286 

profiles are both within the spread for the observed profile. Above 2.5 km the control experiment profile is consistently 287 

biased low relative to the observed profile. The TROPOMI CO DA experiment profile is higher than in the control 288 

experiment and show improved agreement with the DC-8 observations. 289 
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 290 

Figure 8. Vertical profiles of non-smoke CO during FIREX-AQ for DC-8 DACOM CO (black), UFS-RAQMS Control 291 
experiment (red), and UFS-RAQMS TROPOMI CO DA experiment (blue). 292 

3.2.3 CAMP𝟐Ex In-situ measurements 293 

The NASA CAMP2Ex field campaign sampled airmasses over the Philippines 25 August–5 October 2019 with the 294 

NASA P-3 aircraft to investigate the role of aerosols in the Southeast Asian southeast monsoon (Reid et al., 2023). 295 

During the campaign, the region was impacted by significant biomass burning. In-situ CO measurements were made 296 

by a commercial cavity ringdown spectrometer (G2401-m, PICARRO, Inc.) modified with a custom gas sampling 297 

system (DiGangi et al., 2021). UFS-RAQMS analyses are sampled along the P-3 flight track. Since the P-3 didn’t 298 

sample within the fresh biomass burning plumes during CAMP2Ex we did not apply an in-plume filter to the in-situ 299 

CO measurements.  Figure 9 shows the comparison between UFS-RAQMS and the CAMP2Ex P-3 CO measurements. 300 

The UFS-RAQMS Control experiment has a low bias of -34.64.553 ppbv relative to the observations and is moderately 301 

correlated (0.7332). Assimilating TROPOMI CO decreases the bias in the analysis significantly to -1.83731.8 ppbv 302 

and improves the correlation (0.8202).   303 
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 304 

Figure 9. Comparison of CAMP2Ex P3-B CO and (a) UFS-RAQMS Control experiment and (b) UFS-RAQMS TROPOMI 305 
CO DA experiment. 306 

Figure 10 shows a comparison of the vertical profiles for the CAMP2Ex CO observations and coincident UFS-RAQMS 307 

analyses. Following the interpolation of the UFS-RAQMS analyses along the P-3 flight track, the modeled and 308 

measured values were binned into 200 m altitude bins. The median (vertical profile), 25th and 75th (shaded) 309 

percentiles of the modeled and observed distributions within each 200m altitude bin are shown. Below 7km, the UFS-310 

RAQMS control experiment profile is biased low by ≥ 20 ppbv (≥ 20%) relative to the observed profile. This low 311 

bias is largest in the lowest 1.5km where it exceeds -40%. The UFS-RAQMS TROPOMI CO DA experiment profile 312 

is generally within the 25th-75th percentiles of the CAMP2Ex observations, though between ~3.5km and 5km the 313 

UFS-RAQMS DA CO profile is biased high and may indicate a slight overcorrection. The lowest 1km of the profile 314 

is still biased low, though it is now only 10-20%. 315 

The comparisons of UFS-RAQMS to the in-situ FIREX-AQ and CAMP2Ex observations show that TROPOMI CO 316 

DA improves the correlation and bias statistics. This is consistent with the MOPITT statistics over the campaign 317 

domains. However, the improvement in the statistics is better for UFS-RAQMS CO columns than for the UFS-318 

RAQMS CO profiles. This is a result of using a total column measurement to constrain the UFS-RAQMS CO analysis. 319 

UFS-RAQMS control CO is strongly correlated with the in-situ observations, indicating along with the profiles that 320 

the vertical structure and temporal variation in CO concentration is reasonably captured in UFS-RAQMS for these 321 

regions.  The DA system distributes the analysis increment vertically based on model blended BEC statistics and 322 

knowledge of observation errors and vertical sensitivities. Over the CAMP2Ex domain this leads to an overestimation 323 

of CO at 3-6km. Over the FIREX-AQ domain this leads to an overestimate of CO below 6km and underestimates 324 

above 10km. In the UFS-RAQMS TROPOMI CO DA experiment column, the effects of the adjustments vertical 325 

distribution compensate for each other.  326 
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 327 

Figure 10. Vertical profiles of CO during CAMP2Ex for P-3 CO observation (black), UFS-RAQMS Control experiment 328 
(red), and UFS-RAQMS TROPOMI CO DA experiment (blue). 329 

3.2.4 NDACC FTIR 330 

UFS-RAQMS CO profiles are also evaluated with FTIR CO profile observations from 6 NDACC sites (table 1). The 331 

selected NDACC FTIR spectrometers retrieve volume mixing ratio profiles from solar absorption spectra with optimal 332 

estimation using the SFIT4 algorithms (https://wiki.ucar.edu/display/sfit4/, last access: 19 July 2024).   333 

  334 
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Table 1. Location of NDACC FTIR sites used in this study. Number of profiles taken 15 July- 30 September 2019 and 335 

average bias below 25 km for the control and TROPOMI DA UFS-RAQMS experiments included.  336 

NDACC Site Name Number 

of 

Profiles 

Location 

(Latitude/Longitude) 

Mean Degrees 

of freedom 

UFS-RAQMS 

Control bias 

UFS-RAQMS 

DA bias 

Boulder, CO, USA 288 39.99ºN, 105.26ºW 2.84 -5.47 ppbv 5.04 ppbv 

La Reunion, Maido, 

France 

531 21.1ºS, 55.4ºE 2.32 5.26 ppbv 2.16 ppbv 

Mauna Loa, HI, 

USA 

54 19.54ºN, 155.58ºW 3.14 -1.37 ppbv 2.48 ppbv 

St. Petersburg, 

Russian Federation 

76 59.9ºN, 29.8ºE 2.55 -7.48 ppbv 4.22 ppbv 

Thule, Greenland 655 76.53ºN, 68.74ºW 3.17 -13.46 ppbv 6.17 ppbv 

Wollongong, 

Australia 

263 34.41ºS, 150.88ºE 2.65 7.83 ppbv 1.9 ppbv 

 337 
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 338 

Figure 11. Comparison of CO profiles from NDACC FTIR (black), UFS-RAQMS control (red), and UFS-RAQMS DA 339 
(blue). Solid lines indicate the median, shading 25th-75th percentile. 340 

UFS-RAQMS analyses were paired to the NDACC FTIR locations using a nearest-neighbor approach in the horizontal 341 

followed by linear interpolation in the time and vertical dimensions. NDACC FTIR averaging kernels and a priori 342 

profiles (figures S2 and S3) are then applied to the UFS-RAQMS profiles. The degrees of freedom for each site (table 343 

1) indicate that two to three independent layers can be resolved. Figure 11 shows a comparison of NDACC FTIR CO 344 

profiles with UFS-RAQMS.  The influence of TROPOMI CO DA on the CO profile is small above 15km, with both 345 

the control and the TROPOMI CO DA experiment generally overestimating CO concentrations in this region.  The 346 

most significant differences between the control and TROPOMI CO DA experiments occur below 10km except for at 347 

Wollongong where the most significant difference is at 11-12km (fig. 11f). The Wollongong site is at 34.41ºS, 348 

150.88ºE, where the mean impact of the DA is a 20-30% decrease in CO (section 3.1, fig 4). At Wollongong, the 349 

TROPOMI CO DA reduces the average high bias by  5-15 ppbv from 1-5km and ~10 ppbv from 5-10km but creates 350 

a low bias of ~15-20 ppbv from 10-12km. 351 

Consistent with the percent change in CO between the control and TROPOMI CO DA experiments at high latitudes 352 

in fig. 4, the Thule profile shows a significant increase in the profile due to the TROPOMI CO DA and results in  very 353 

good agreement with the observed NDACC profile from 2-13km. At Thule the near-surface CO concentration is 354 

biased high in the TROPOMI CO DA experiment while it is biased low in the control. This behavior is not apparent 355 

at the other sites and may be a consequence of the use of static BEC at these latitudes. Recall, the BEC statistics 356 

obtained by this study are a function of latitude and altitude, and in the lower troposphere reflect the sensitivity of 357 

UFS-RAQMS to biomass burning emissions. Profiles of the analysis increments at NDACC locations on the days that 358 

measurements were made (not shown) indicate that the near-surface analysis increment is comparatively large 359 
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(>~15ppbv) at Boulder, St. Petersburg, and Thule. For Boulder and St. Petersburg, it appears the TROPOMI CO DA 360 

is able to correct CO for biases in anthropogenic emissions since these sites were not significantly impacted by 361 

wildfires. 362 

At the tropical NDACC sites of Mauna Loa and La Reunion changes are small. TROPOMI CO DA slightly decreases 363 

UFS-RAQMS CO at La Reunion and increases it below 15km at Mauna Loa. 364 

4 Consistency in biomass burning CO and aerosol signatures  365 

A strong relationship between black carbon aerosols and CO has been observed in airmasses dominated by biomass 366 

burning emissions (eg. Arellano Jr. et al., 2010; Spackman et al., 2008) due to their co-emission during combustion. 367 

Similarly, satellite aerosol optical depth (AOD) and CO column observations are strongly correlated over regions 368 

where biomass burning is the dominant contributor to fine mode AOD (eg. Bian et al., 2010; Edwards et al., 2004, 369 

2006). The correlation in space and time between AOD and CO is stronger in the southern hemisphere, while in the 370 

NH peak AOD and CO loadings are offset due to the higher anthropogenic pollutant loading (Bian et al., 2010; 371 

Buchholz et al., 2021; Edwards et al., 2004). Due to the shorter lifetime of biomass burning aerosols, enhancements 372 

in AOD are a strong indicator of biomass burning emissions sources while CO is a good tracer of down-wind impacts 373 

of those emissions due to its longer lifetime (eg. Bian et al., 2010; Buchholz et al., 2021; Edwards et al., 2006).  374 

Edwards et al. 2006 also finds that the correlation between CO and AOD is strongest during the first few days of a 375 

biomass burning event and declines as the local CO concentration becomes less representative of daily emissions. 376 

Here, we evaluate the relationship between AOD and CO over two biomass burning events. VIIRS AOD and 377 

TROPOMI CO are used to evaluate how realistic the UFS-RAQMS AOD/CO relationship is. We selected scenes over 378 

Siberia and over Indonesia during their respective peaks in biomass burning during the July-September 2019 analysis 379 

period. The assimilation of TROPOMI CO did not result in significant changes to UFS-RAQMS AOD. We calculate 380 

that the largest changes in sulfate AOD and sulfate concentrations on 16 September 2019 to be 5-10%  and in airmasses 381 

with sulfate AOD < 0.2 and low sulfate concentrations where small changes will have an outsized impact. In the 382 

regions with higher AOD and sulfate, the difference between the two UFS-RAQMS experiments for this date is < 383 

2.5%. 384 

UFS-RAQMS CO and AOD analyses are interpolated in latitude, longitude, and time to TROPOMI and VIIRS L2 385 

observations respectively. TROPOMI averaging kernels are applied to UFS-RAQMS CO profiles. UFS-RAQMS 386 

speciated aerosol extinction profiles at 532nm are integrated to obtain AOD. The coincident model and observation 387 

data is then binned onto a 0.1x0.1 degree grid. The anticipated compact linear relationship between AOD and CO is 388 

evaluated for the observations, UFS-RAQMS control, and UFS-RAQMS TROPOMI CO DA. 389 

4.1 Case Study: 22 July 2019 Siberian Smoke 390 

During July and August 2019 significant wildfire activity occurred in Siberian Russia, with a major cluster in Eastern 391 

Siberia and a major cluster in Central Siberia (Johnson et al., 2021). Wildfire activity peaked in both regions of Siberia 392 
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between 18 July and 26 July. We evaluate binned AOD and CO column on 22 July 2019 for the region 90∘E -150∘E, 393 

50∘N - 70∘N. 394 

The spatial distributions of AOD and CO over Siberia on 22 July 2019 are shown in figure 12 for VIIRS, TROPOMI, 395 

the UFS-RAQMS control, and the UFS-RAQMS TROPOMI CO DA experiment. The UFS-RAQMS AOD field is 396 

unchanged between the control and TROPOMI CO DA experiments and thus is only shown once. UFS-RAQMS does 397 

a very good job of capturing the observed synoptic scale features but does not capture fine-scale structure seen in the 398 

AOD or CO observations. UFS-RAQMS AOD is slightly overestimated outside of the plume (AOD ≥ 1) and in the 399 

plume feature around 60∘N - 70∘N, 120∘E - 130∘E. CO column is significantly underestimated in UFS-RAQMS 400 

control. Agreement with the TROPOMI observations is significantly improved in UFS-RAQMS TROPOMI CO DA. 401 

 402 

Figure 12. 22 July 2019 AOD and CO columns over Siberia. VIIRS AOD (a), UFS-RAQMS AOD (b), TROPOMI CO 403 
column (c), and UFS-RAQMS control (d) and TROPOMI CO DA (e) CO column. Black box in panel a defines region (90∘E 404 
-150∘E, 50∘N - 70∘N) for AOD/CO column relationship analysis. 405 

Scatterplots illustrating the relationship between AOD and CO column in Siberian wildfire smoke are shown in figure 406 

13 for the observations (grey), UFS-RAQMS control (red), and UFS-RAQMS TROPOMI CO DA (blue). The linear 407 

regressions are summarized in table 2. VIIRS AOD and TROPOMI CO Column exhibit a compact linear relationship 408 

with a slope near 1 and correlation of 0.8043. UFS-RAQMS control CO column and AOD are moderately correlated 409 

(0.5648), and the slope of the linear relationship is 0.2407 as UFS-RAQMS control underestimates of CO column for 410 

high AOD. TROPOMI CO DA improves the correlation between AOD and CO Column as well as increases the slope 411 

of the linear relationship. The UFS-RAQMS TROPOMI CO DA AOD/CO Column slope is 0.7749 and the correlation 412 
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is 0.7106. This improved representation of the observed linear relationship and correlation in UFS-RAQMS 413 

TROPOMI CO DA is due to the increased CO column within the Siberian wildfire plume.  414 

 415 

Figure 13. Linear relationship between AOD and CO column in Siberian wildfire smoke (90∘E -150∘E, 50∘N - 70∘N) on 22 416 
July 2019. UFS-RAQMS control (a, red) and UFS-RAQMS TROPOMI CO DA (b, blue) AOD/CO relationships are 417 
compared to observed VIIRS AOD/TROPOMI CO (grey). 418 

Table 2. Linear relationship between AOD and CO in Siberian wildfire smoke (90∘E -150∘E, 50∘N - 70∘N) on 22 July 2019. 419 

 slope intercept r 

VIIRS AOD/TROPOMI CO Column 1.0092 1.629 0.8043 

UFS-RAQMS Control AOD/CO Column 0.2407 1.7948 0.5648 

UFS-RAQMS TROPOMI CO DA AOD/CO Column 0.7749 2.0724 0.7106 

4.2 Case Study: 16 September 2019 Indonesian Smoke 420 

During September 2019 wildfire activity over Indonesia contributed to an extreme AOD enhancement in the region. 421 

We evaluate binned AOD and CO column on 16 September 2019 for the region 100∘E -130∘E, 15∘S - 15∘N.  422 

The spatial distributions of AOD and CO over Indonesia on 16 September 2019 are shown in figure 14 for VIIRS, 423 

TROPOMI, the UFS-RAQMS control, and the UFS-RAQMS TROPOMI CO DA experiment. UFS-RAQMS 424 

significantly underestimates AOD enhancements in this region, as evident in the Borneo smoke plume and over China. 425 

We believe that this is due to underestimates in emissions from peat fires in this region (Yokelson et al, 2022) As a 426 

result, we also show the UFS-RAQMS AOD scaled by a factor of 3. CO column is significantly underestimated over 427 
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the maritime continent in UFS-RAQMS control. Agreement with the TROPOMI observations is significantly 428 

improved in UFS-RAQMS TROPOMI CO DA. 429 

 430 

Figure 14. 16 September 2019 AOD and CO columns over SE Asia. VIIRS AOD (a), UFS-RAQMS AOD (b), UFS-RAQMS 431 
AOD scaled by 3 (c), TROPOMI CO column (cd), and UFS-RAQMS control (de) and TROPOMI CO DA (ef) CO column. 432 
Black box in panel a defines region (100∘E -130∘E, 15∘S - 15∘N) for AOD/CO column relationship analysis. 433 

Scatterplots illustrating the relationship between AOD and CO column in Indonesian wildfire smoke are shown in 434 

figure 15 for the observations (grey), UFS-RAQMS control (red), and UFS-RAQMS TROPOMI CO DA (blue). The 435 

linear regressions are summarized in table 3. VIIRS AOD and TROPOMI CO Column exhibit a compact linear 436 

relationship with a slope near 1 and correlation of 0.782. UFS-RAQMS control CO column and AOD are moderately 437 

correlated (0.4886), and the slope of the linear relationship is 0.7638, however neither the AOD or CO columns capture 438 

the observed high values. TROPOMI CO DA improves the correlation between AOD and CO Column to 0.7085 but 439 

due to the low bias in UFS-RAQMS AOD over the region significantly overestimates the slope of the relationship. 440 

Assimilation of AOD data could be used to improve agreement with observations in this region.  To approximate the 441 

modeled AOD/CO relationship without the low AOD bias, we apply a scaling factor of 3 to the UFS-RAQMS AOD. 442 

Applying this scaling inflates UFS-RAQMS AOD enhancements over Borneo to be closer to observed values (fig 14c, 443 

fig. 15c,d). By accounting for the low AOD bias in this way, we obtain a slope for UFS-RAQMS control CO column 444 

and scaled AOD of 0.2546 and for UFS-RAQMS TROPOMI CO DA a slope of 1.275. This points to the need to also 445 

assimilate AOD data to improve the agreement with observations in this region.  446 
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 447 

Figure 15. Linear relationship between AOD and CO column in Indonesian wildfire smoke (100∘E -130∘E, 15∘S - 15∘N) on 448 
16 September 2019. UFS-RAQMS control (a, red) and UFS-RAQMS TROPOMI CO DA (b, blue) AOD/CO relationships 449 
are compared to observed VIIRS AOD/TROPOMI CO (grey). UFS-RAQMS control (c, red) and UFS-RAQMS TROPOMI 450 
CO DA (d, blue) AODx3/CO relationships are compared to observed VIIRS AOD/TROPOMI CO (grey).  451 

 452 

 453 

  454 
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Table 3. Linear relationship between AOD and CO column in Indonesian wildfire smoke (100∘E -130∘E, 15∘S - 15∘N) on 16 455 
September 2019. 456 

 slope intercept r 

VIIRS AOD/TROPOMI CO Column 0.962 1.7872 0.782 

UFS-RAQMS Control AOD/CO Column 0.7638 1.4755 0.4886 

UFS-RAQMS TROPOMI CO DA AODx3/CO Column 3.8251 1.3404 0.7085 

UFS-RAQMS Control AODx3/CO Column 0.2546 1.4755 0.4886 

UFS-RAQMS TROPOMI CO DA AOD/CO Column 1.275 1.3404 0.7085 

5. Conclusions 457 

The UFS-RAQMS control experiment significantly underestimates CO column relative to MOPITT and TROPOMI 458 

CO column observations. Assimilating TROPOMI CO within UFS-RAQMS using the GSI 3D-var and blended BEC 459 

generally resulted in improved UFS-RAQMS CO analyses relative to satellite, ground-based, and airborne 460 

observations. Application of TROPOMI CO DA decreases the average RMSE in CO Column relative to MOPITT 461 

and improves correlation between UFS-RAQMS and MOPITT within the FIREX-AQ and CAMP2EX domains. 462 

TROPOMI CO DA results in an improved CO profile in the free troposphere at most NDACC sites but does increase 463 

surface CO biases at high latitude locations and complexity in the vertical structure at many sites. This is a consequence 464 

of using a total column measurement to constrain a profile. Our DA system is minimizing the difference between the 465 

TROPOMI observations and the UFS-RAQMS first guess. While the CO column is well constrained, as indicated by 466 

the good agreement between UFS-RAQMS TROPOMI CO DA CO columns and MOPITT CO columns, the DA 467 

system distributes the analysis increment vertically based on model blended BEC statistics and knowledge of 468 

observation errors and vertical sensitivities. Our evaluations with NDACC FTIR CO observations and with field 469 

campaign observations show that this can lead to an over-adjustment near the surface and only small adjustments at 470 

high altitudes. 471 

TROPOMI CO DA has the largest impacts in the lower troposphere over Siberia and Indonesia. Our case studies of 472 

the relationship between AOD and CO over these regions show that in UFS-RAQMS biomass burning signatures in 473 

CO column are not consistent with those in AOD near the biomass burning source regions. Assimilating TROPOMI 474 

CO improves the representation of the biomass burning AOD/CO relationship. We believe this is an indication that 475 

the GBBEPx biomass burning CO emissions in UFS-RAQMS are too low. GBBEPx adds biomass burning emissions 476 

from VIIRS to the Quick Fire Emissions Database (QFED) biomass burning emissions estimates from MODIS (Zhang 477 

et al., 2019). QFED biomass burning aerosol emissions are scaled with biome-representative scale factors for tropical 478 

forests, extratropical forests, savanna, and grasslands that were obtained by calibrating NASA Goddard Earth 479 

Observing System Model (GEOS) AOD forecasts with MODIS AOD (Darmenov and da Silva, 2015). 480 

While assimilating CO does compensate for uncertainties in the biomass burning emissions, it does not adjust the 481 

biomass burning CO emissions themselves. Since UFS-RAQMS uses emission factors for co-emitted NOx and VOC 482 
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species that are based on the GBBEPx biomass burning CO emissions, we anticipate similar uncertainties in these co-483 

emitted species. Future efforts should focus on developing capabilities to use TROPOMI CO column measurements 484 

to adjust the GBBEPx CO biomass burning emissions within UFS-RAQMS. Similar capabilities have been developed 485 

using TROPOMI NO2 retrievals to adjust anthropogenic NOx emissions using off-line iterative mass balance 486 

approaches (East et al, 2022) and local ensemble transform Kalman filter (LETKF) techniques (Sekiya et al, 2022).  487 
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