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 1 

1	Abstract	2 

Southern African woodlands (SAW) are the world’s largest savanna, covering ~3 M km2, but their carbon 3 

balance, and its interactions with climate and disturbance are poorly understood. Here we address three 4 

issues that hinder regional efforts to address international climate agreements: producing a state-of-the-art 5 

C budget of SAW region; diagnosing C cycle functional variation and interactions with climate and fire 6 

across SAW; and evaluating SAW C cycle representation in land surface models (LSMs). Using 1506 7 

independent 0.5o pixel model calibrations, each constrained with local earth observation time series of 8 

woody carbon stocks (Cwood) and leaf area, we produce a regional SAW C analysis (2006-2017). The 9 

regional net biome production is neutral, -0.08 Mg C ha-1 yr-1 (95% Confidence Interval –1.67 - 1.66), with 10 

fire emissions contributing ~0.88 Mg C ha-1 yr-1 (95% CI 0.36-2.51). Fire-related mortality driving fluxes 11 

from total coarse wood carbon (Cwood) to dead organic matter likely exceeds both fire-related emissions 12 

from Cwood to atmosphere and non-fire Cwood mortality. The emergent spatial variation in biogenic fluxes 13 

and C pools is strongly correlated with mean annual precipitation and burned area. But there are multiple, 14 

potentially confounding, causal pathways through which variation in environmental drivers impacts spatial 15 

distribution of C stocks and fluxes, mediated by spatial variations in functional parameters like allocation, 16 

wood lifespan and fire resilience. Greater Cwood in wetter areas is caused by positive precipitation effects 17 

on net primary production and on parameters for wood lifespan, but is damped by a negative effect with 18 

rising precipitation increasing fire-related mortality. Compared to this analysis, LSMs showed marked 19 

differences in spatial distributions and magnitudes of C stocks and fire emissions. The current generation 20 

of LSMs represent savanna as a single plant functional type, missing important spatial functional variations 21 

identified here. Patterns of biomass and C cycling across the region are the outcome of climate controls on 22 

production, and vegetation-fire interactions which determine residence times, linked to spatial variations in 23 

key ecosystem functional characteristics. 24 
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 3 

2	Introduction	1 

Tropical savannas, dominated by trees and grasses, cover 40% of the vegetated tropics (Pennington et al., 2 

2018) including 2.3-3.1 M km2 in southern Africa (Ribeiro et al., 2020;Ryan et al., 2016). Savanna C stocks 3 

and net C fluxes are substantial in the global carbon cycle (Sitch et al., 2015), but with major geographical 4 

variations. Spatially there is a strong coupling between precipitation and tree cover across African savanna, 5 

particularly where annual precipitation is < 800 mm (Sankaran et al., 2005). The presence of substantial, 6 

dry fuel loads means that disturbance from fire is common during the dry season (Andela et al., 2017). Fire 7 

influences decadal C sinks through combustion related emissions (van der Werf et al., 2017) and 8 

disturbance impacts on both vegetation growth rates (Yin et al., 2020) and tree mortality (Levick et al., 9 

2015). Overall, the interactions of climate and disturbance, particularly from fire, generate dynamic 10 

conditions for C stocks and fluxes across tropical savannas and woodlands (Archibald et al., 2013;Lehmann 11 

et al., 2014), which are poorly mapped and understood.  12 

 13 

Southern African woodlands (SAW) are the dominant land cover in the dry tropics of southern Africa 14 

(Campbell, 1996), and form the world’s largest savanna (Mistry, 2014;Ryan et al., 2016), covering much 15 

of Tanzania, Mozambique, Zambia, Zimbabwe, Malawi, Angola and southern DRC. The woodlands of this 16 

region are phylogenetically distinct from other tropical savannas (Dexter et al., 2015) and have 17 

biogeochemical and fire patterns (Alvarado et al., 2020) that are linked to unique functional traits (Osborne 18 

et al., 2018). These woodlands have long been subjected to, and thus are highly adapted to, disturbance by 19 

people, fire (generally set by people), and herbivores (Chidumayo, 2002;Chidumayo, 2004). Overall, the 20 

woodland C cycle is often non-steady-state, and anthropogenic change is strengthening this tendency (Ryan 21 

et al., 2016). Fire impacts on the C cycle and vegetation C stocks are linked to wet seasons moist enough 22 

for biological production to generate fuel load, and dry seasons intense enough to dry fuel for destructive 23 

fires. Wetter areas of the SAW region may have biomass stimulated by rising production but limited by 24 

rising mortality from fire. 25 

 26 

A complete ecosystem C cycle analysis for the SAW region, that spans climatic gradients, resolves process 27 

interactions between climate, fire and the ecological functioning of C cycling, does not currently exist. 28 

There are knowledge gaps both on biosphere-atmosphere exchanges and on internal ecosystem processing 29 

of C. Deriving dynamics of C requires quantification and linkage of relevant processes controlling the 30 

biosphere-atmosphere exchange of C, its allocation or transfer to different C pools, and the turnover of 31 

these pools.  Eddy flux data are scarce and short term in this region (Merbold et al., 2009). As a result, the 32 

net biome exchange (NBE) of CO2 and its components (e.g. gross primary production (GPP), ecosystem 33 



 4 

respiration (Reco), fire emissions (EFire)) remain poorly quantified (Ciais et al., 2011;Ernst et al., 2024). 1 

Internal C processes, particularly mortality or turnover of key pools (linked to mean residence time, MRT), 2 

are critical for determination of C balance but poorly quantified (Friend et al., 2014;Smallman et al., 2021). 3 

The MRT is the ratio of C pool size to the total losses from that pool per unit time. In savanna, MRT is 4 

sensitive to both external factors like burning and to internal ecosystem properties. External factors like 5 

burning are likely to shorten residence times, but vegetation may adapt to burning with increased tissue 6 

resilience to fire.  Plant tissue (wood, foliage) lifespans may vary spatially, for instance with climate.  7 

 8 

These C cycle knowledge gaps hinder national efforts to manage savanna carbon stores to meet international 9 

actions like the Paris Agreement of the UNFCCC. Also, these gaps weaken model projections of trajectories 10 

of C for this region under climate change. Simulation models typically represent tropical woodlands across 11 

the globe using a single ‘plant functional type’ (PFT), with PFT-specific parameters which may lead to 12 

biased outcomes (Bloom et al., 2016). The functional differences within the savanna biome (Lehmann et 13 

al., 2014;Moncrieff et al., 2014) mean that region-specific carbon cycle estimates linked to locally valid 14 

functional characteristics are required. Even within the SAW region, we expect to find biological variation 15 

and gradients in functional characteristics (Osborne et al., 2018). Understanding this variation and links to 16 

the environment can underpin more robust knowledge. This knowledge can improve representation and 17 

therefore forecasts from land surface models, for instance those used to study trends in the land carbon 18 

cycle, such as the Trendy experiment (Sitch et al., 2015). 19 

 20 

Insights into SAW C cycling are accumulating through intensive studies and extensive observations. 21 

Researchers have developed robust methods for woodland inventory and landscape sampling (SEOSAW 22 

partnership, 2021). Chronosequence studies have documented the biomass recovery rates of these 23 

ecosystems post-disturbance (Chidumayo, 2004;Chidumayo, 2013;Kalaba et al., 2013;Gonçalves et al., 24 

2017) to provide insights into annual to decadal dynamics. Earth observations (EO) of vegetation greening 25 

(changes in leaf area index, LAI) have been found reliable against in situ data on canopy phenology (Ryan 26 

et al., 2014;Ryan et al., 2017) and hence can map potential for photosynthesis in time and space. Radar 27 

remote sensing has been identified as an effective tool for mapping biomass and its changes over these 28 

landscapes (Ryan et al., 2012;Mitchard et al., 2009). These actions have developed the first regional 29 

analyses for biomass in space and time (McNicol et al., 2018;McNicol et al., 2023). Long term observations 30 

from satellites track the burned area across these landscapes (Chuvieco et al., 2019). These multiple new 31 

analyses of the SAW region provide an opportunity to generate a more robust assessment of the C cycle 32 

from local to regional scales. Mechanistic models calibrated with these data can provide a complete, 33 

constrained, and probabilistic quantification of the carbon cycle and its processes. 34 
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 1 

In the present study, we combine new spatial data products with a model-data fusion system (CARDAMOM 2 

(Bloom and Williams, 2015)), to create the most comprehensive diagnostic analysis to date of the CO2-C 3 

cycle of the SAW region in southern Africa. We use this analysis to address questions about key controlling 4 

processes on the dynamics of major C pools, and their variation with climate and fire disturbance across 5 

the region for 2006-2017. We further characterise net CO2 exchanges resulting from different driving 6 

factors and variations in plant processes, including allocation and mortality. Net ecosystem exchange (NEE 7 

= Reco – GPP; sink has a negative sign) is purely biogenic, i.e. biological processes driven by atmospheric 8 

conditions. Net biome production (NBP) includes human-driven emissions from prescribed factors such as 9 

fire and land use removals (NBP = – NEE – fire emissions – biomass removals by external factors; sink has 10 

a positive sign). Specifically, this study generates a full C cycle analysis and asks the following research 11 

questions (RQ):  12 

1. How do fluxes and resulting net exchanges of CO2 vary across the SAW region and covary with 13 

climate, fire, and functional characteristics?  14 

2. How do carbon stocks and their longevity covary with climate, fire, and functional characteristics?    15 

3. How does data-constrained analysis of ecosystem C cycling compare to Trendy land surface model 16 

estimates for the region? 17 

  18 

For RQ1 we hypothesise that biogenic fluxes (GPP, Reco) will be determined by a positive relationship with 19 

precipitation, the dominant control on biological metabolism in SAW (Campbell, 1996). We hypothesise 20 

that NBP across SAW will be determined by a negative relationship with burned area, through fire 21 

emissions (EFire). For RQ2 we hypothesise that C stocks in total coarse wood C (Cwood) will be positively 22 

correlated with, and their distribution determined by, precipitation. But we hypothesise there will be 23 

mediating effects from variations in functional characteristics such as wood lifespan and fire resilience, 24 

evidenced by broad scale gradients in these ecosystem functional characteristics. For RQ3 we hypothesise 25 

that comparisons of land surface models from Trendy with CARDAMOM analyses will be more consistent 26 

in biosphere-atmosphere fluxes than in stock estimates, because of the challenge of calibrating modelled 27 

stocks to observations (Fawcett et al., 2022). 28 

The novelty of this research is threefold. The regional C budget produced here is state-of-the-art due to its 29 

consistency with locally calibrated estimates of woody biomass dynamics from earth observation. Causal 30 

inference approaches disentangle emergent spatial patterns in C dynamics and ecosystem functional 31 

characteristics, providing new biogeographical understanding of ecological functioning and diversity. The 32 

spatially detailed model calibration builds an emergent map of process and C cycle variation that allows 33 

resolution of within biome patterns, enhancing assessment of LSMs. 34 
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	1 

3	Methods	2 

Multiple EO products of C stocks and LAI, and a soil C map, are combined into a pixel-by-pixel regional 3 

analysis, through assimilation with an intermediate complexity biophysical ecosystem model (Bloom and 4 

Williams, 2015) that is calibrated over the area of interest (Figure 1) with local climate, fire and forest 5 

clearance forcing data. The result is a rigorous, probabilistic C cycle assessment, including GPP, NBP, 6 

allocation to tissues, pool sizes, ecosystem processes, fire emissions, fire mortality and non-fire mortality. 7 

Calibrated parameters and C cycle assessments are produced independently for each of the 1506 model 8 

pixels at 0.5º spatial and monthly temporal resolution for a 12-year period (2006-2017 inclusive). The study 9 

domain comprises all of Tanzania, Mozambique, Zambia, Zimbabwe, Malawi, Angola and southern 10 

Democratic Republic of Congo (DRC) and covers 4.5 M km2, including miombo woodland and a mix of 11 

other woodland and savanna types and land uses (SEOSAW partnership, 2021;Godlee et al., 2021). 12 

Statistical analysis then relates the spatially independent, data-consistent analytical outputs of each pixel to 13 

climate, fire/human disturbance and to outputs of LSMs to address the research questions. 14 

 15 

 16 

 17 
 18 

Figure 1. Schematic of the CARDAMOM methodology (green box) and modelling process (yellow box). 19 
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for a process model (b). Independent estimates are made for each location (pixel) in the analysis. Parameter 1 

estimates are constrained to ensure that specific model state variable predictions (c) match independent 2 

observations for those variables at that location (d). Model predictions are made using local forcing data on 3 

climate and disturbance (e). The model has 32 parameters (f) that govern biological processes, fire impacts 4 

and include 7 initial conditions, with priors provided for each (g). A Monte Carlo process explores 5 

parameter space defined by the priors, comparing model estimates (c) with observations (d), and using 6 

ecological and dynamical constraints (EDCs, h) to inform selection (accept/reject) of parameter 7 

combinations. Once parameter posterior ensembles are generated for each pixel (a), then a separate 8 

modelling process uses these parameters to generate ensemble C cycle estimates for each pixel (i) using the 9 

model (b) and specified forcing (e). 10 

 11 

 12 

3.1 Environmental data 13 

3.1.1 Biomass, LAI time series and soil C data for calibration 14 

25 m resolution L-band radar data from ALOS-PALSAR were used to estimate aboveground woody carbon 15 

(AGC), based on a calibration with field estimates (McNicol et al., 2018). We used a scalar linking above 16 

and belowground wood C stocks (Cwood = 1.42 x AGC (Ryan et al., 2011)) to prepare four annual 0.5o maps 17 

of Cwood for the 4-year period 2007-2010 based on higher resolution data from McNicol et al. (2018). 18 

Uncertainty in the biomass observations (2.5 tC ha-1) was estimated based on a local characterisation of 19 

bias in retrieved biomass (McNicol et al., 2018). 20 

MODIS EO (Myneni et al., 2021) product number MCD15A2H.061 provided 8-day composite information 21 

on LAI (2006-2017) aggregated to months. Prior information on soil carbon stocks to a depth of 1.0 m were 22 

drawn from the SoilGrids2 database (250 m resolution), a machine-learning based interpolation of field 23 

inventories (Hengl et al., 2017). All data were aggregated to the 0.5º model spatial grid resolution. LAI and 24 

soil carbon estimates were provided with a corresponding uncertainty estimate from their respective 25 

products. The assimilation makes uses of LAI data available for all months of the analysis (n=144), biomass 26 

data for four of the 12 years (n=4), and soil C data as a single value applied to its initial status (n=1). 27 

3.1.2 Disturbance and burned area observations for driving analyses 28 

MODIS product number MCD64A1.061 provided monthly, 500 x 500 m burned area data (Giglio et al., 29 

2018). Tree cover loss is imposed as a fractional removal of biomass, derived from the 30-m resolution 30 

Global Forest Watch data on area disturbed (Hansen et al., 2013). Both data sets were aggregated to the 31 

model 0.5° spatial grid and monthly resolution. Land use change or vegetation transition was not included 32 

in the dynamics of the modelled ecosystem. 33 
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3.1.3 Woody biomass chrono-sequences for model validation 1 

Chronosequence data provided estimates of the accumulation rate of woody biomass for two areas in the 2 

SAW region. At N’hambita, Mozambique, we generated estimates of biomass from 28 plots each of 0.125 3 

ha, with age since abandonment ranging from 2-30 years (Williams et al., 2008). At Kilwa District, 4 

Tanzania, we used estimates from 55 plots each of 0.2 ha, with age-since-abandonment of 2-47 years 5 

(McNicol et al., 2015).  6 

3.1.4 Meteorological and soil physics data for model forcing and soil parameters 7 

CARDAMOM meteorological drivers were extracted from the CRU-JRAv2.1 dataset, a 6-hourly 0.5º      8 

dataset of precipitation using the Japanese Reanalysis product (see (Harris, 2019)) and aggregated to 9 

monthly resolutions (Figure S 1). Soil sand/clay fractions required for estimating soil hydraulic properties 10 

for input to the ecosystem model in CARDAMOM are extracted from the SoilGrids2 dataset.  11 

 12 

3.2 Modelling the carbon cycle 13 

3.2.1 Terrestrial Ecosystem Model 14 

An intermediate complexity ecosystem model, DALEC-4 (Williams et al., 2005), simulated carbon stored 15 

in both live biomass (labile, foliage, fine roots and total coarse wood which includes stems, branches, and 16 

coarse roots) and dead organic matter (a litter pool, and a Soil Organic Matter (SOM) pool that includes 17 

coarse wood debris), see Figure 3 for the model structure. The model simulates C flows (allocation and 18 

turnover/mortality) between pools and with the atmosphere (photosynthesis and respiration) and requires 19 

25 parameters and 7 initial conditions (Table 1). Processes are sensitive to climate drivers, and pools are 20 

sensitive to disturbance drivers (fire and other biomass removal). Photosynthetic uptake (GPP) is estimated 21 

by the Aggregated Canopy Model, ACM2 (Smallman and Williams, 2019), as a function of temperature, 22 

solar radiation, atmospheric CO2, precipitation and LAI (LAI is simulated by DALEC). Water supply to 23 

the canopy is generated by a coupled water cycle model which estimates ecosystem water stock and 24 

accessibility as a function of precipitation, soil texture and wood and root C stocks. Autotrophic respiration 25 

(Ra) is estimated as a fixed fraction of GPP. Net primary production (NPP = GPP – Ra) is allocated using 26 

fixed fractions to live pools. Heterotrophic respiration of litter and soil carbon (Rh) is estimated as a function 27 

of carbon stock, a turnover rate and a temperature coefficient. Ecosystem respiration (Reco) is the sum of Ra 28 

and Rh. Canopy phenology is simulated by a model with pixel-specific fixed times each year for budburst 29 

and leaf senescence. Bud burst leads to allocation of C from the labile to foliar pool. Leaf senescence 30 

initiates turnover of C from the foliar pool. There is no explicit separation of tree and grass components in 31 

the model. 32 

 33 
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Parameter Prior low Prior high Units Posterior to 

prior ratio 

Parameter type 

Decomposition rate 0.00001 0.01 d-1 0.88 res 

Fraction of GPP respired 0.2 0.8 fraction 0.61 all 

Fraction of NPP to foliage 0.1 0.5 fraction 0.63 all 

Fraction of NPP after labile allocation 

to roots 

0.1 0.8 fraction 

0.83 

all 

Leaf Lifespan 1.001 6 y 0.09 fol 

TOR wood 0.000009 0.001 d-1 0.53 res 

TOR roots 0.001368 0.02 d-1 0.90 res 

TOR litter 0.0001141 0.02 d-1 at 0°C 0.94 res 

TOR SOM 0.000001368 0.00009126 d-1 at 0°C 0.82 res 

temperature factor, Q10 0.019 0.08 - 0.93 res 

Canopy efficiency 10 100 gCm-2d-1 0.23 fol 

Leaf onset day 365.25 1461 Day of year 0.12 fol 

Fraction of NPP after leaf allocation 

to Clab 

0.01 0.5 fraction 

0.55 

all 

Clab release period 10 100 d 0.68 fol 

Leaf fall onset day 365.25 1461 Day of year 0.03 fol 

Leaf fall period 20 150 d 0.48 fol 

LCA (leaf C per area) 20 180 gCm-2 0.75 fol 

IC Clab 1 2000 gCm-2 0.03 init 

IC Cfol 1 2000 gCm-2 0.13 init 

IC Croot 1 2000 gCm-2 0.20 init 

IC Cwood 1 30000 gCm-2 0.02 init 

IC Clitter 1 2000 gCm-2 0.13 init 

IC CSOM 200 250000 gCm-2 0.03 init 

IC soil water as fraction of field 

capacity 

0.5 1 fraction 

0.84 

init 

Fraction of Cwood which is coarse root 0.15 0.5 fraction 0.94 root 

Coarse root biomass to reach 50 % of 

max rooting depth 

100 2500 g m-2 

0.82 

root 

Max rooting depth 0.35 20 m 0.83 root 

Biomass resilience to fire (r) 0.01 0.99 fraction 0.62 fire 

Combustion completeness (K) for 

foliage 

0.01 0.99 fraction 

0.73 

fire 

Combustion completeness (K) for 

root and wood 

0.01 0.99 fraction 
0.24 

fire 

Combustion completeness (K) for 

soil 

0.01 0.1 fraction 

0.58 

fire 
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 10 

Combustion completeness (K) for 

litter 

0.01 0.99 fraction 

0.90 

fire 

 1 

      Table 1 Parameters for the DALEC model, showing their prior and posterior values for a selected 2 

location, units, and the ratio of the posterior 95% confidence interval to the prior range. Parameters are 3 

categorised according to their role in C dynamics as follows: Allocation (all), residence times (res), foliar 4 

traits (fol), rooting depth (root), fire and combustion (fire) and initial conditions (init). TOR is turnover rate. 5 

IC is initial condition. Clab is labile C pool that supports leaf flushing. 6 

 7 

Fire emissions are determined from the fraction of each pixel burned following Exbrayat et al. (2018). 8 

 9 

𝐸! = 𝐵.𝐾! . 𝐶! 10 

For each model pixel, fire C emissions from pool x (Ex) are a function of pixel burned area fraction (B), a 11 

combustion completeness parameter for pool x (Kx) and the C stock size of pool x (Figure 3). Kx is calibrated 12 

by CARDAMOM (Table 1). Combustion completeness is assumed to vary across pools within each pixel, 13 

reflecting differences in structure, location and form of each pool. These parameters also vary spatially 14 

across pixels. Of the non-combusted vegetation pools in the burned fraction, fire-driven mortality moves a 15 

fraction of C to the SOM pool:  16 

𝑀!,#$%& = 𝐵. (1 − 𝐾!). (1 − 𝑟). 𝐶! 17 

For each pixel, fire-driven mortality of tissue x (Mx,fire) is the non-combusted component of fire-impacted 18 

pool x, further modified by a vegetation resilience parameter r, also calibrated by CARDAMOM (Table 1). 19 

Resilience is assumed to be a holistic property of vegetation, rather than a tissue-specific property, reflecting 20 

the vegetation’s evolutionary history in response to fire. 21 

The SOM pool is assumed to include coarse woody debris (CWD), and simulated fire emissions from the 22 

SOM pool therefore include the contribution from CWD. A fraction of the litter pool is converted to SOM 23 

because of fire. For biomass removals linked to land use, C losses are determined by the fraction of each 24 

pixel deforested as identified by GFW forcing data, with all foliage C transferred to litter pools, and 80% 25 

of aboveground wood biomass removed from the ecosystem (i.e. human extraction). Other pools are not 26 

deemed affected by this disturbance.  27 

 28 

3.2.2 Calibration using model-data fusion 29 

CARDAMOM is a model-data fusion framework (MDF) which combines local observations, their 30 

uncertainties and ecological knowledge of the terrestrial C cycle to calibrate DALEC parameters 31 
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probabilistically. CARDAMOM uses a Bayesian approach within an Adaptive-Proposal Markov Chain 1 

Monte Carlo (AP-MCMC) algorithm to retrieve ensembles of local parameters for each 0.5o pixel, 2 

consistent with local observations, uncertainties, climate and disturbance forcing, and ecological theory 3 

embedded in DALEC's structure (Bloom et al., 2016).  4 

All DALEC parameters have a specified prior range to guide calibration (Table 1). Specific prior estimates 5 

(i.e. mean + uncertainty) are provided based on literature studies for (i) the fraction of GPP allocated to Ra  6 

(Ra: GPP = 0.46+/-0.12 (Waring et al., 1998;Collalti and Prentice, 2019)) and (ii) the canopy photosynthetic 7 

efficiency (Ceff = 21.1 +/- 8.5 (Kattge et al., 2011)). CARDAMOM imposes ecological realism, or common 8 

sense, on parameter retrievals using ecological and dynamic constraints, EDCs. EDCs set the likelihood of 9 

a given parameter proposal to 0 if none of the conditions defined by the EDCs are met. The EDCs are 10 

intended to prevent three kinds of ecologically inconsistent parameter proposals: 1) unrealistic 11 

combinations, e.g. to ensure that turnover of fine roots is faster than for wood (in the absence of 12 

disturbance), 2) maintaining emergent ecosystem ratios within observed ranges, e.g. fine root to foliar ratio, 13 

3) preventing inappropriate carbon stock dynamics such as exponential carbon stock changes on short time 14 

scales outside disturbance/fire. Fire-related parameters (for combustion and mortality) are constrained by 15 

per pixel observations of biomass and/or LAI change that coincide with burning in the forcing data. The 16 

resultant DALEC parameter uncertainty encompasses the combined uncertainties of the observational 17 

constraints, parameter priors, the prior ranges and the plausible ecological parameter space as defined by 18 

the EDCs.  19 

3.2.3 Validation against independent regional products 20 

Once calibrated probabilistically at each pixel, DALEC is then run using the same forcing data to generate 21 

local ensembles of C cycle estimates (Figure 1). The first stage of validation tests the calibration process 22 

by evaluating the simulated LAI, Cwood and soil C against the assimilated data for these variables to test for 23 

an unbiased estimate and for spatial coherence (random error across pixels) for each variable. The second 24 

stage of tests is to evaluate the CARDAMOM analyses against other regional products. For NBE the 25 

reanalyses are compared against OCO2 v10 MIP estimates {Byrne, 2023 #4617}; for GPP against the 26 

combined estimates from FluxCOM (Jung et al., 2020), Copernicus (Fuster et al., 2020) and FluxSatv2 27 

(Joiner and Yoshida, 2021); and for fire emissions against the combined estimates of GFEDv4.1s (van der 28 

Werf et al., 2017) and GFAS (Kaiser et al., 2012). The third stage of validation uses two SAW locations 29 

with chronosequence data. The local 0.5o DALEC calibration from the analysis was used in an experiment, 30 

with 90% of woody biomass removed in the model, and regrowth followed over decades using historical 31 

climate data and burned area data. 32 

 33 

3.3 Trendy Model Analysis 34 
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18 process-based Land Surface Models (LSMs) were applied in the “Trends and Drivers of Regional Scale 1 

Terrestrial Sources and Sinks of Carbon Dioxide” (Trendy-v11) project that supported the Global Carbon 2 

Budget 2022 assessment (GCB2022; (Sitch et al., 2015;Friedlingstein et al., 2022)). LSMs are applied in a 3 

set of factorial simulations using forcing datasets of observed global CO2 content, observation-based 4 

merged climate forcing from CRUJRA and historical Land-Use and Land cover changes (LULCC) 5 

(Friedlingstein et al., 2022). For the TRENDY v11 experiments, LSMs are typically applied at 0.5-degree 6 

resolution over the period 1700 to 2021. A subset of LSMs include prognostic fire models (Table S1). We 7 

analysed the simulation results from the ‘S3’ simulation, where all three drivers vary, for the period 2006-8 

2017. 9 

To compare data-constrained estimates of the terrestrial C cycle for the region against the Trendy ensemble, 10 

we assess the agreement between domain-aggregated estimates for key C stocks and fluxes and their 11 

seasonality. We also provide an indication of the spatial-temporal consistency of each LSM with our 12 

CARDAMOM benchmark based on the fraction of pixels (in space and time) for which each LSM estimate 13 

falls within the CARDAMOM 95% confidence interval. The outputs of the analysis are also evaluated 14 

against the mean of the Trendy ensemble for the region, and against individual models using spatial 15 

statistics and temporal analysis of seasonal dynamics of net exchanges (NBP) and their component 16 

processes (Ra, Rh, EFire). 17 

 18 

3.4 Spatial carbon cycle variability and determinants  19 

The simulated C dynamics reflect the responses of the ecosystem model within a multivariate driver and 20 

data space. At an individual 0.5o pixel, the model structure and retrieved parameter values determine the 21 

temporal C cycle response to the environmental drivers. However, across the model domain, parameters 22 

are retrieved independently for each pixel, generating an emergent map of functional variation over SAW. 23 

This approach is an alternative modelling paradigm to the approach used by LSMs for which a single set 24 

of model parameters is used to represent a particular plant functional type. The biogeographic gradients in 25 

the C stocks and fluxes across the SAW determined by our analysis therefore represent the combination of 26 

effects and interactions between the spatial variability in environmental drivers and the spatial variability 27 

in ecological function, as characterised by the retrieved variations in model parameters. 28 

To understand and explore the spatial sensitivity of the C cycle and ecological processes to environmental 29 

factors we used a causal analysis approach similar to previous empirical studies that have synthesised 30 

multiple observation streams to understand biogeographic gradients and their relationship to environmental 31 

drivers (e.g. (Lehmann et al., 2014)). Common with these observation-based studies, our retrieved 32 

biogeographic gradients are not determined by a prior spatial model. However, the model-data fusion 33 

approach provides some key benefits, notably: (i) synthesising multiple observation streams (and 34 
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uncertainties) at the pixel level into an ecologically coherent and internally consistent representation of C 1 

stocks and fluxes (Smallman et al., 2022), and (ii) explicitly partitioning the C dynamics along particular 2 

process pathways, such as production, allocation and mortality, thus providing more detailed insights into 3 

the functional variation across the SAW region.  4 

We applied Wright’s path approach (Runge et al., 2015;Wright, 1921, 1934) to estimate linear direct causal 5 

effects that link the temporally averaged, ensemble-median C diagnostics to environmental drivers across 6 

SAW. Wright’s method only applies in the linear case. Here, the direct causal effect of a variable Xi on a 7 

variable Xj is essentially quantified as the slope of the linear regression of Xi on Xj, where any source of 8 

confounding is removed prior to the regression. Environmental drivers that we considered in the causal 9 

analysis include observed meteorological variables (e.g. precipitation, abbreviated as PPTN) and modelled 10 

quantities (e.g. GPP), which were selected to resolve their causal effects on C fluxes and stocks and to avoid 11 

confounding. To account for the influences of climate on fire activity and productivity limitations on fuel 12 

availability, we also included burned area, which was causally linked to fire-related fluxes driving mortality, 13 

combustion-related emissions, and post-combustion transfers between pools. To compare linear direct 14 

causal effects across variables, variables were standardised prior to the analysis. The total causal effect of 15 

Xi on Xj was then estimated as the sum of the products of all possible causal pathways from Xi to Xj (Wright, 16 

1934;Runge et al., 2015). Causal analysis was focussed on NBP and the dynamics of the live pools, to align 17 

with data availability (e.g. LAI and biomass observations) and thus rich information for calibration and 18 

inference of causation, using links to disturbance and climate data. Note, that when we refer to causal effects 19 

in this work, these are standardised linear direct causal effects. For more detail, see the supplementary 20 

information.  21 

 22 

4	Results	23 

4.1 Calibration and validation 24 

The calibration process constrained model parameters to differing degrees (Table 1). Strongest constraints 25 

were for initial conditions for C pools; foliar parameters related to leaf lifespan, leaf flush and fall; 26 

combustion completeness for wood; and canopy efficiency (productive capacity). The weakest constraints 27 

were for residence times for litter, roots and SOM, rooting depth parameters and most fire/combustion 28 

parameters. The variation in constraint is consistent with proximity of parameters to assimilated data, thus 29 

parameters connected to LAI and Cwood are best constrained. 30 

The calibrated model outputs explained much of the observed spatio-temporal variation in MODIS LAI 31 

(r=0.93) and ALOS biomass (r=0.99) and the spatial variation in soil C (r=0.97) (Figure S 2). Normalised 32 Deleted: (Figure S 2)33 



 14 

root mean square errors were for LAI = 0.17; biomass = 0.06; soil C = 0.04. The calibration bias was 6% 1 

or less in all cases (regression slopes: LAI =0.94; biomass=1.01; soil C =1.01). 2 

For NBE, OCO2 inversions suggest a close-to-neutral exchange, with uncertainty spanning zero (Figure S 3 

3), consistent with CARDAMOM estimates: 0.0 (95% CI -1.67-1.66) MgC ha-1 y-1. CARDAMOM’s 4 

median regional GPP estimate was 15.95 (CI 13.02-18.68) Mg C ha-1 yr-1, within the range of estimates 5 

from the earth observation-orientated GPP products when scaled to the SAW region (Figure S 3).  6 

CARDAMOM’s median fire emissions were largely within the range of fire emissions products (Figure S 7 

3) though its uncertainties were much larger than the products’ range. 8 

At the locations in Mozambique and Tanzania, recovery of Cwood in the model was consistent with data 9 

(Figure  2). The uncertainty in the model accumulation rate (95% confidence intervals) was similar in 10 

magnitude to the spread of biomass across the field inventories. Differences in burned area in the model 11 

simulations, rather than climate, explain the higher steady-state Cwood stock in the Tanzanian site. 12 

 13 

 14 

 15 

 16 
 17 

Figure  2. Independent test of wood biomass regrowth post-disturbance at two locations in southern African 18 

woodlands (left – Tanzania; right – Mozambique, note different scales). For both locations the DALEC 19 

model was calibrated at quasi-steady state using local EO data over the period 2006-2017 and local data on 20 

meteorology and burned area. 90% of wood steady state biomass was then removed (initial vertical green 21 

line at age=0) and modelled woody biomass accumulation (green line shows median, shaded interval shows 22 
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 15 

95% CI) is plotted against multiple independent chronosequence estimates based on data from fallow fields 1 

(blue dots).  2 

 3 

4.2 The carbon cycle of the SAW region 4 

CARDAMOM estimated that 49% of regional GPP is respired (Figure 3) and remaining NPP is allocated 5 

between foliage (median fraction = 0.18), a labile pool (0.13), fine roots (0.26) and Cwood (0.37). Each 6 

ensemble member allocations sum to 1, but ensemble median fractions sum to < 1 (0.94) at the regional 7 

scale because posterior distributions of allocation in the analysis are not normal.  8 

 9 

 10 

 11 

 12 
Figure 3. The C budget of the SAW region based on the CARDAMOM analysis at 0.5 x 0.5 degrees with 13 

a monthly time step between 2006-2017. Numbers show estimate of fluxes (alongside arrows) and of stocks 14 

(in boxes), using the mean value of all pixel medians in the SAW region. Units are MgC ha−1 for stocks and 15 

MgC ha−1 yr−1 for fluxes. 95% confidence intervals are shown in a fractional form with 2.5 and 97.5 16 

percentiles as numerator and denominator. Black fluxes are biogenic, including net primary production 17 

(NPP), mortality (Mort), autotrophic respiration (Ra) and heterotrophic respiration (Rh). NEE = 18 

Ra+Rh−GPP. NBE = NEE +Etotal. Red disturbance fluxes are dominated by fire-driven emissions (E) and 19 

the fire-driven components of plant tissue mortality or loss of litter to SOM (indicated in red figures). Note 20 

that not all pools are in steady state and that the SOM pool includes coarse woody debris. The analysis 21 
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produced non-normal distributions so budget closure in the summary is not exact, which explains why here 1 

reported NEE ¹ Rh +Ra – GPP. Individual ensembles have full budget closure. 2 

 3 

Mean residence times (MRT) of pools are sub-annual for foliage, labile, fine roots, and litter. MRT for 4 

wood is 8 years (95% CI 4-20 years) and for CSOM is 28 years (CI 11-90 years) (Figure S 4). Disturbance 5 

fluxes are 100-fold larger from fire rather than clearance (Figure S 1). On average 23% of the region’s area 6 

is burned annually, mostly set by people. Burning losses from Cwood are transferred to the atmosphere (~16% 7 

of total disturbance flux) or to dead organic matter (~84%).  Losses from the Cwood pool are largest through 8 

fire disturbance (~59% of total mortality flux) and remaining non-fire losses encapsulate pests, diseases, 9 

herbivory, plant aging, and degradation not detected by estimates of tree cover loss (Figure 3), but 10 

uncertainties are large. For other pools, both live and dead, non-disturbance flux magnitudes exceed 11 

disturbance fluxes. The regional C balance is approximately neutral (mean NBP: -0.08 (–1.67-1.66) Mg C 12 

ha-1 y-1). However, in the absence of fire disturbance (i.e. NEE), the region is a potential sink of 1.04 Mg C 13 

ha-1 yr-1. 14 

NBP is a function of changes to total plant biomass (sum of all live C pools, Cveg) and to dead organic 15 

matter (litter plus soil organic matter C, CDOM), which are dominated by the two largest pools, Cwood and 16 

CSOM. The analysis of changes to Cveg (ΔCveg) is constrained by the assimilation of multiple biomass maps 17 

2007-2010 (Figure 4), with largest losses in the east (Tanzania and N Mozambique) and through W Zambia 18 

and S Angola. There are areas of positive ΔCveg in S DRC, N Angola, E Zambia, W Zimbabwe and S 19 

Mozambique. The distribution of ΔCveg is unimodal and evenly distributed between regions of increasing 20 

and decreasing Cveg resulting in a regionally neutral stock change for ΔCveg of 0.0 (-0.4/0.43) Mg C ha-1 y-21 
1. The analysis of ΔCDOM is not directly constrained by observations. ΔCDOM is also unimodal, with a 22 

relatively even split between areas accumulating and losing C from the soil. Uncertainties on ΔCDOM are 23 

approximately four times higher than for ΔCveg (note different scales in panels of Figure 4).     24 
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 1 

Figure 4. Spatial mapping of median gross fluxes, NBP, and temporally averaged rates of change in the live 2 

pools (Cveg= Cwood + Croots + Cfoliage + Clabile) and dead organic matter (CDOM = CSOM+Clitter) C stocks across 3 

the SAW region at 0.5o resolution, 2006-2017, as determined by diagnostic analysis. Gaps in maps relate 4 

to areas without biomass observations due to gaps in ALOS-PALSAR data. GPP is gross primary 5 

production; Reco is ecosystem respiration; EFire is fire emissions; NBP = GPP – Reco – EFire – biomass 6 

removals by management (the latter are a relatively small flux compared to the others). 7 

4.3 Environmental controls on carbon fluxes (RQ1) 8 

Median GPP distribution across the SAW region (Figure 4) is skewed unimodal, with a peak at 20 MgC ha-9 
1 yr-1 and a tail of lower GPP (Figure S 5). Reco is similarly skewed, and strongly spatially correlated (r=0.95) 10 

with GPP, with a peak in its frequency distribution at 17 MgC ha-1 yr-1. Fire emissions fluxes (EFire) are 11 

non-normal, dominated by low emissions (<1 MgC ha-1 yr-1) but with a tail of higher emissions up to 4 12 
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MgC ha-1 yr-1. The distribution of pixel-level median NBP peaks just below the source-sink boundary and 1 

spans -2 to +3 MgC ha-1 yr-1. There is clear spatial structure to the fluxes, with higher GPP, Reco, fire 2 

emissions and NBP concentrated in certain areas (Figure 4) and correlated with forcings (Figure S 6).  3 

The causal networks constructed to assess the controls on the spatial distribution of C fluxes identifies the 4 

importance of precipitation and fire and their interactions (Figure 5, Figures S 7-9). Precipitation is the 5 

dominant factor determining the rates of C cycling across the SAW, driving both the productivity and 6 

mortality fluxes, with compensating effects on the overall C balance. Precipitation dominates the 7 

distribution of GPP, with a standardised effect of 0.94 (0.90/0.98) [95% Confidence Interval]. Radiation is 8 

positively linked to GPP (0.20; 0.16/0.24), while VPD (-0.13; -0.17/-0.11) and temperature are negatively 9 

linked (-0.14; -0.17/-0.11). Precipitation is the dominant environmental driver of NPP (total standardised 10 

effect: 0.86; 0.81/0.91), mediated by an environmental effect on carbon use efficiency (CUE). Precipitation 11 

is also associated with the largest total standardised causal effects on the mortality fluxes driven by fire 12 

(0.34; 0.31/0.38) and on non-fire mortality (0.55; 0.50/0.58). The total causal effect of precipitation on 13 

gross fire mortality fluxes includes contributing causal pathways linked to the standing Cveg stocks as well 14 

as through influences on the fire-driven turnover of C (Figures S 7-9). Fire is a key source of C losses in 15 

SAW woodlands. Burned area increases along the precipitation gradient (0.43; 0.37/0.48), and with 16 

increasing VPD (0.34; 0.27/0.42). Burned area drives the fire mortality flux from the Cveg pool (0.31; 17 

0.28/0.33), with a significant mediating effect from the increasing resistance of C stocks to fire in fire-prone 18 

areas described by spatial patterns in parameters (see Figure S 7). 19 

 20 
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 1 

Figure 5 A summary of the causal effect analysis on spatial patterns in the pixel-median estimates of key 2 

fluxes of C across the SAW region (with error bars for 95% bootstrapped CIs). Fluxes include GPP, 3 

allocation to biomass (NPP), and mortality caused by fire and non-fire factors. For each flux the 4 

standardised causal effects of different climate drivers (mean annual precipitation, PPTN; air temperature, 5 

airT; short wave radiation, SWR; vapour pressure deficit, VPD) and fire (via burned area, BA) are 6 

compared. Note that the causal analysis did not include a causal link between BA and GPP, NPP. 7 

 8 

 9 



 20 

4.4 Environmental controls on stocks and MRT (RQ2) 1 

C stocks in SAW are primarily in dead organic matter pools (CDOM) with a mean of 98 MgC ha-1 (95% 2 

confidence internal, 57-142), 99% of which is CSOM to a depth of 1.0 m. Mean Cveg are 26 MgC ha-1 (22-3 

30), with 87% in Cwood. The mean ratio CDOM:Cveg is 4.0 (95% CI 2.1-12.5). Distributions of C stocks in live 4 

and dead pools are unimodal (Figure S 10). The spatial patterns of C stocks are similar to the distributions 5 

of biogenic fluxes (Figure 6).  6 

 7 

 8 

 9 
 10 

Figure 6. Spatial mapping of live C stocks, which are dominated by Cwood (left) and dead organic C (right) 11 

across the SAW region at 0.5o resolution, 2006-2017, as determined by diagnostic analysis. Gaps in maps 12 

relate to areas without biomass mapping due to gaps in ALOS-PALSAR data. 13 

 14 

The spatial distribution of C stocks depends on C assimilated via NPP and the rate of C turnover (T) (Figures 15 

7, S 7). The spatial distribution of Cwood is positively impacted by NPPwood (standardised effect 0.65; 16 

0.61/0.69) and negatively impacted by turnover rates (Twood,fire: –0.60; –0.67/–0.54; Twood,other: –0.54; –0.58/–17 

-0.51). Causal analysis (Figure S 7) across the spatial dataset indicates that precipitation (PPTN) impacts 18 

Cwood along three mediating pathways: (A) positively via primary production (total effect of PPTN mediated 19 

by NPPwood = 0.36; 0.32/0.40), (B) negatively via fire mortality rates (total effect of PPTN mediated by 20 

Twood,fire = –0.07; –0.10/–0.04), and (C) positively via non-fire mortality rates (total effect of PPTN mediated 21 

by Twood,other= 0.11; 0.08/0.14). The analysis revealed clear emergent spatial variations in key functional 22 
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characteristics across the SAW region (Figure 8) controlling each of these pathways, including the fraction 1 

of NPP allocated to wood (A); the fire resistance of ecosystems (B), determined as biomass resilience to 2 

fire × (1 - Combustion completeness for wood) (Table 1); and the non-fire median turnover rate of Cwood.  3 

The productivity pathway (path A) is the dominant control on the distribution of Cwood across the SAW 4 

(total standardised effect of PPTN on Cwood = 0.40; 0.35/0.47). The impacts on Cwood of turnover driven by 5 

fire and non-fire processes are comparable, but opposing and spatially variable (Figure 8). In higher 6 

precipitation areas the link between relative fire mortality and burned area is weakened by a strong 7 

compensating effect of higher fire resistance of vegetation (Figure S 7). The total standardised impact of 8 

fire (burned area) on Cwood is negative (–0.33; –0.37/–0.30). The impact of other meteorological drivers 9 

(VPD, short-wave radiation and air temperature) on Cwood are relatively weaker.  Overall fire emissions 10 

represent a major loss from the Cwood pool (Figure 3), with burned area driving fire-related turnover rates 11 

(total causal effect: 0.55; 0.48/0.62) and hence MRT. We conclude that representation of SAW by a single 12 

plant functional type (PFT) approach misses important spatial functional variations in residence times and 13 

fire resistance. 14 

The turnover of the fine root and foliage C pools are dominated by the phenological turnover associated 15 

with seasonal growth and senescence directly tied to the seasonality of rainfall (Figure S 8-9). This turnover 16 

is linked to the temporally averaged meteorological drivers, although with relatively weak standardised 17 

effects. Generally, turnover rates (1/MRT) of both pools are negatively impacted by annual PPTN and VPD, 18 

while annual temperature and short-wave radiation (SWR) have a positive effect, although there is no clear 19 

dominant term. There is a correlation between PPTN and SWR (Pearson’s r = –0.51). Higher MRT for 20 

roots and foliage in wetter areas suggests extended phenology both above and belowground, and identify a 21 

further important functional variation within SAW that a single PFT approach misses.  22 

 23 

 24 
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Figure 7 Summary of the causal effects from climate factors on spatial patterns in the pixel-median 1 

estimates of total coarse wood C (Cwood) across the SAW region (with error bars for 95% bootstrapped CIs). 2 

For mean annual precipitation (PPTN), air temperature (airT), short wave radiation (SWR), and vapour 3 

pressure deficit (VPD), the total standardised causal effect is shown in the leftmost column of the four 4 

panels. The three columns (A-C) show how the total effect for each factor is the outcome of three aggregated 5 

causal pathways: climate effects operating through (A) changes to net primary production of wood, (B) 6 

fire-driven turnover and (C) non-fire turnover. The total direct effect of fire (through burned area, BA) is 7 

also shown for reference. 8 

 9 
 10 

Figure 8. Spatial variations in three key ecosystem functional characteristics across Southern African 11 

woodlands retrieved from the analysis. These three characteristics connect to the three pathways (Figure S 12 

7) that are hypothesised to link spatial variation in environmental drivers (Figure S 1) to Cwood (Figure 6). 13 

Pathway (A) operates via variation in woody productivity, which is a function of the fraction of total NPP 14 

allocated to wood, shown in the left panel; Pathway (B) operates through Cwood turnover driven by fire, 15 

which is linked to spatial variation in ecosystem fire resistance characteristics (= r (1-Kwood)) shown in the 16 

central panel; and Pathway (C) is linked to variation in non-fire turnover rate (TORwood), which has inferred 17 

spatial variations as shown in the right panel. 18 

 19 

4.5 Comparison of observation-constrained analysis of C cycling to land surface model 20 

estimates for the SAW region (RQ3) 21 

The seasonal cycles of GPP from CARDAMOM have similar amplitude and phase to the Trendy ensemble 22 

mean, but individual Trendy models had larger variations in amplitude and phase, often outside the 23 

CARDAMOM confidence interval (Figure S 11). For GPP, 13 of the 18 Trendy models had regional mean 24 
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annual estimates within the 95% CI of CARDAMOM estimates. The median annual GPP of the Trendy 1 

ensemble (15.8 MgC ha-1 yr-1) was 2% less than the median CARDAMOM estimate (16.0 MgC ha-1 yr-1), 2 

and comparable to the mean estimate for GPP of the independent observation-based products for the region 3 

(15.7 MgC ha -1 yr-1) (Figure S 3). CARDAMOM NBP amplitude was larger than all but three of the Trendy 4 

models, some of which had virtually no amplitude. These differences were linked to each major component 5 

of emissions (Figure S 12). 6 

The spatial overlap of GPP between the Trendy ensemble and CARDAMOM 95% CI was not complete, 7 

ranging from 10% to 48% (Table S2; Figure S13-14), and typically lower during each wet season. For net 8 

biome production, the mean estimates of all Trendy models were close to neutral over the region, consistent 9 

with the CARDAMOM NBP. However, there were significant differences in amplitude and spatial 10 

distribution (Table S1; Figure S14). The consistency of the spatial-temporal estimates of NBP for each 11 

LSM with the CARDAMOM 95% CI ranged from 29% to 68% (Table S2; Figure S 15-16).  12 

Estimates of Cveg varied markedly between Trendy LSMs (15-66 MgC ha-1) for the SAW region. Only three 13 

out of 18 Trendy models had regional mean Cveg estimates within the 95% CI of the CARDAMOM-DALEC 14 

estimates (Table S1). The spatial distribution in Cveg stocks varied markedly between LSMs (Figure S17-15 

18), with spatial-temporal consistency between individual LSMs and the CARDAMOM 95% CI varying 16 

from 5% to 35% (Table S2), suggesting significant spatial biases. Considering the net change in the live 17 

vegetation pools, ΔCveg, for which the CARDAMOM estimate is more closely constrained by the 18 

assimilated data than NBP, the spatially coherent discord between the Trendy LSMs and the CARDAMOM 19 

benchmark becomes more apparent (Figure 9, Figure S 18). 20 

 21 

 22 

Figure 9. A comparison the data-constrained estimate of annual mean change in vegetation C stocks (DCveg) 23 

from the CARDAMOM analysis with the mean estimate from the Trendy LSM ensemble. The right panel 24 

shows the consistency of Trendy data by mapping the fraction of the 18 ensemble members with estimates 25 



 24 

within the 95% confidence interval of the CARDAMOM analysis. Data cover the SAW region and the 1 

period 2006-2017. 2 

  3 

 4 

5	Discussion	5 

5.1 Identification of carbon sinks and sources in the SAW region 6 

The analysis reveals a balance between sources and sinks in this region from 2006 to 2017 (Figure 4), 7 

dependent on the spatial gradients in productivity, driven by precipitation, and mortality, an important 8 

component of which is driven by fire (Figure 6, 7). Changes in Cveg across the SAW have previously been 9 

linked to varying patterns of land use and wood-fuel harvesting, and recovery of some woodlands with 10 

reduced human pressures in other areas (McNicol et al., 2018). The explicit land-use flux modelled by 11 

CARDAMOM is dependent on changes in tree cover detected by satellites, which indicated a small areal 12 

extent of LUC forcing. Comparatively small disturbances typically associated with degradation processes, 13 

e.g. wood-fuel harvesting, while potentially widespread (Bailis et al., 2015), are challenging to detect 14 

(Milodowski et al., 2017) and maybe missed by the satellite products used in this analysis. Within the 15 

CARDAMOM diagnostic analysis, C fluxes driven either by fire not detected in burned area data, or by 16 

non-fire degradation not detected by GFW, are implicitly represented within the non-fire mortality flux, 17 

which contributes strongly to the spatial distribution of ΔCveg. Development and assimilation of longer time 18 

series of wood biomass with low bias, alongside robust time-series estimates of degradation, extent and 19 

intensity would help to refine understanding of how anthropogenic activities impact the strength of the 20 

terrestrial C sink. 21 

5.2 What are the environmental controls on exchanges of C throughout the region? 22 

The analysis supported the hypothesis that precipitation has the dominant control on GPP across the region 23 

(causal effect PPTN – GPP: 0.94; 95% CI: 0.90/0.98). This strong spatial relationship was the result of (i) 24 

directly modelled links between soil moisture and stomatal conductance, and (ii) correlations between LAI 25 

observational data (assimilated by CARDAMOM) and patterns of precipitation. Wetter areas were thus 26 

associated with moister soils and higher LAI, both stimulating higher GPP, and indicative that water 27 

availability is the principal limiting factor on GPP, consistent with (limited) eddy covariance data across 28 

sub-Saharan Africa (Merbold et al., 2009). 29 

We expected that productivity would positively impact burned area (BA), through fuel load. Our results 30 

were supportive to an extent (direct standardised causal effect of NPP on BA: 0.30; 0.21/0.38) (Figure S 31 

7), but burned area was also positively related to VPD (direct causal effect of VPD on BA: 0.38; 0.31/0.46), 32 

indicating that climate-dependent fuel moisture limitation may be as important as fuel load. Our results are 33 
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consistent with assessments that identified the SAW region straddling the transition between a fire regime 1 

limited by fuel build-up and one limited by fuel moisture (Archibald et al., 2009a; Alvarado et al., 2020; 2 

Archibald et al., 2009b). 3 

We hypothesised that NBP across SAW would be negatively impacted by the burned area fraction. The 4 

analysis supported this hypothesis: burned area was a strong driver of C losses; without the contribution of 5 

fire emissions, the analysis indicated that the approximately C neutral SAW would have likely been a C 6 

sink. However, burned area did not drive the spatial distribution of either ΔCveg or NBP, due to concurrent 7 

spatial gradients in NPP driven by precipitation (Figure 5), and mediating impacts across the SAW 8 

environmental gradient arising from functional variations, including changes linked to wood lifespan and 9 

effective fire resistance (Figure 8). As a result, despite constituting a major driver of C losses, burned area 10 

fraction is actually positively correlated in space with NBP across the region (Pearson’s r=0.28). The 11 

emergent picture from the diagnostic analysis is that the carbon balance of the SAW region is determined 12 

by the interplay between precipitation-driven gradients of productivity, and losses driven by a combination 13 

of fire emissions and Rh, and that these fluxes are mediated by spatial variations in plant function linked to 14 

climate gradients. The finding of function-climate gradients here matches plot level analysis along 15 

precipitation gradients in West Africa (Zhang-Zheng et al., 2024). 16 

Fire-driven fluxes (e.g. within Mortwood) are uncertain in the analysis Figure 3) because the posterior 17 

parameter estimates for fire-related parameters (r, K) are relatively poorly constrained by observations 18 

(Table 1). For instance, Kwood is constrained only by local temporal interactions of observed burned area 19 

and biomass dynamics. r, a vegetation characteristic, is constrained by observations of burned area, biomass 20 

and also LAI. Thus, equifinality between r and Kwood is reduced due to their differential constraint from 21 

independent observations. A next step to enhance analysis would be to assimilate further independent 22 

observations of fire impacts (e.g. radiative power). The coarse spatial resolution of our analysis (0.5o) is 23 

unable to resolve the fine-scale heterogeneities in the landscape. Grass litter is critical fuel for fires in the 24 

region (Archibald et al., 2009b), but our analysis does not separate tree and grass foliage and litter pools. 25 

Our diagnostics indicated that the fire resistance of vegetation increased with burned area, but secondarily 26 

also in wetter areas. These emergent responses could be explained by direct plant-level adaptation to fire 27 

(e.g. thicker bark), or through community-level feedbacks where fire is excluded due to increasing tree 28 

canopy cover excluding grass (Ryan and Williams, 2011; Ramo et al., 2021). 29 

5.3 Controls on wood and soil C stocks  30 

We hypothesised that C stocks in soils and biomass will be spatially correlated, and their distribution 31 

determined by precipitation. Our analysis was supportive, with both stocks positively and most strongly 32 

driven by precipitation (total causal effect: 0.40; 0.35/0.47), despite the mediating impact of precipitation 33 

on burned area. Our analysis suggests that larger Cwood stocks in wetter regions are sustained by a 34 
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combination of higher NPP and slower relative rates of turnover. Our hypothesis that Cwood MRT is 1 

inversely related to burned area is supported by the causal analysis (Figure S 7). Fire-related mortality from 2 

Cwood to CSOM likely exceeds fire-related emissions from Cwood to atmosphere, and natural rates of Cwood 3 

mortality fluxes into CSOM (Figure 3). Without fire disturbance, the MRT of Cwood could more than double 4 

from 8 to 20 years, and this would imply a similar proportional increase in steady state wood biomass, 5 

increasing from a mean of 22 to 55 MgC ha-1, a credible estimate based on fire exclusion experiments in 6 

SAW (Ryan and Williams, 2011). Our conclusions for the dynamics of CSOM are necessarily weaker. We 7 

lack robust constraint on CSOM dynamics, either though repeat mappings or through chronosequence studies. 8 

Chronosequence data from part of the SAW suggest little change in soil C stocks after decades of post-9 

disturbance recovery. 10 

We found support for our hypothesis that spatial variations in ecosystem functional characteristics influence 11 

the distribution of biomass across SAW. The analysis revealed emergent regional gradients in ecosystem 12 

functional characteristics related to woody allocation, wood lifespan and fire resilience (Figure 8), among 13 

others. Analysis showed strong causal effects from climate and disturbance drivers on patterns of functional 14 

variation (Figure S 7). Thus, wetter areas of the SAW tend to have live vegetation stocks with reduced 15 

vulnerability to fire, longer wood lifespans in the absence of fire, and lower proportional allocation of NPP 16 

to wood. There are also important functional variations in the dynamics of leaf and fine root pools linked 17 

to climate, linked to strong phenological patterns across SAW (Ryan et al., 2017) and with impacts on 18 

production patterns.  19 

 20 

5.4 Evaluation of Land Surface Models 21 

Our analysis supported the hypothesis that GPP and Reco fluxes from the Trendy models agree more closely 22 

with CARDAMOM analyses than do Trendy models’ estimates of C stocks (Table S1). Nevertheless, while 23 

the domain aggregate estimates for GPP were comparable between Trendy mean and CARDAMOM 24 

analyses, this obscures substantial variation among models (Table S1, Table S2), which showed strong 25 

spatially structured variability inconsistent with CARDAMOM estimates (Figures S15, S18) (Teckentrup 26 

et al., 2021). The apparent discrepancies highlight the challenges faced by the current generation of LSMs 27 

to estimates the sensitivity of GPP to soil moisture variation in water-limited environments (Paschalis et 28 

al., 2020;MacBean et al., 2021). There was greater disagreement between the Trendy ensemble and the 29 

CARDAMOM estimate regarding Cveg stock (Table S1, S2) and there were marked differences in their 30 

estimates of the spatial distribution of Cveg (Figure S 13). On average, Trendy Cveg across the SAW was 31 

larger than CARDAMOM estimates (Table S1), in line with Trendy results over Australian savanna 32 

compared with satellite estimates (Teckentrup et al., 2021) although this bias was not consistent across the 33 

ensemble of LSMs.  34 
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 27 

Both Trendy models and CARDAMOM analyses suggest the region was close to neutral NBP. However, 1 

Trendy models had lower seasonal variation in NBP than CARDAMOM. These differences were more 2 

related to inconsistencies in C emissions from respiration and fire, rather than foliar phenology and GPP 3 

(Figure S 12). The low amplitude of NBP in Trendy models results from a strong temporal coupling in GPP 4 

and Reco. CARDAMOM analyses have large seasonal amplitudes arising from seasonal divergence, due to 5 

litter production occurring at the end of the wet season, leading to dry season decomposition, coupled also 6 

with dry season fires. The DALEC model lacks a soil moisture control on Rh, whereas most Trendy models 7 

do include this relation. This structural difference may explain temporal differences in Rh (Figure S 12), 8 

particularly as the assimilated data have no direct constraint on Rh. 9 

 10 

5.5 Conclusions 11 

Our analysis reveals that carbon dynamics of the SAW are determined by the interplay between 12 

precipitation and fire, mediated by substantial spatial variations in plant functional characteristics. Spatial 13 

analyses from model-data fusion provided insights into SAW C dynamics variation in response to the 14 

regional gradients in climate and disturbance. Precipitation is the dominant control on both primary 15 

productivity (GPP) and C residence times. GPP variations are controlled directly by precipitation, through 16 

soil moisture limitation on primary production, and indirectly through functional variations in phenology 17 

(LAI). Precipitation gradients impact C residence times indirectly, through correlated variations in related 18 

functional characteristics. For instance, precipitation is linked to patterns of effective fire resistance in 19 

vegetation, and to variation in lifespan of Cwood when fire is absent (Figure 8). Consequently, the spatial 20 

distribution of C stocks across the SAW is significantly determined by the precipitation gradient through 21 

multiple interacting pathways.  22 

The full C cycle analysis of the region is the current state-of-the art due to its direct incorporation of repeat 23 

biomass maps that are locally calibrated and validated. The analysis suggests that Cwood mortality driven by 24 

fire is attributed as the major loss term from Cwood, albeit with large uncertainties (Figure 3). The fire-driven 25 

fall in Cwood residence time across the precipitation gradient linked to rising burned area and fire mortality 26 

(Figure 5), acts to damp positive feedbacks between increasing GPP and Cwood. If fire effects are removed, 27 

our analysis suggest a ~3-fold increase in Cwood (Bond et al., 2005). Much larger uncertainties remain in the 28 

analysis of soil C due to sparsity of data compared to aboveground biomass. 29 

This analysis has mapped variation in functional characteristics, challenging the use of a single PFT for this 30 

region. CARDAMOM suggests substantial variations in functional characteristics across the SAW, for 31 

instance for wood, foliar and fine root lifespans and allocation, and fire resistance. These variations likely 32 

explain why LSM estimates are inconsistent with the data-constrained estimates from this study. Individual 33 

LSMs deviated inconsistently from CARDAMOM estimates, with individual components of the C cycle 34 
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 28 

varying in space and between models. Cveg stocks and fire emissions were the source of largest discrepancy, 1 

alongside the temporal distribution of fluxes. 2 

The C budgets here can also support more robust and observationally consistent national reporting in the 3 

region for the Paris Agreement of the UNFCCC. The detailed resolution of the outputs, with locally valid 4 

functional characteristics, can enhance national CO2 emission factors for fire disturbance, for instance. 5 

Working closely with national agencies, approaches such as demonstrated could deliver Tier 3 estimates of 6 

national C budgets to support countries world-wide. 7 

 8 
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