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Abstract. Black carbon (BC) radiative impact is significantly influenced by its mixing state. Single-particle soot photometer 

(SP2) is a widely recognized instrument for quantifying BC mixing state. However, the derivation of BC mixing state from 15 

SP2 is quite challenging. Since the SP2 records individual particle signals, it requires complex data processing to convert raw 

signals into particle size and mixing states. Besides, the rapid accumulation of substantial data volumes impedes real-time 

analysis of BC mixing states. This study employs a light gradient boosting machine (LightGBM) to establish an inversion 

model which directly correlates SP2 signals with the mixing state of BC-containing particles. Our model achieves high 

accuracy for both particle size inversion and optical cross-section inversion of BC-containing particles, with R² higher than 20 

0.98. Further, we employed the SHapley Additive exPlanation (SHAP) method to analyze the importance of input features 

from SP2 signals in the inversion model of the entire particle diameter (Dp) and explored their underlying physical significance. 

Compared to the widely used Leading-Edge-Only (LEO) fitting method, the machine learning (ML) method utilizes a larger 

coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate 

capture of the diverse characteristics of particles. Moreover, the ML method uses signals with a high signal-to-noise ratio, 25 

providing better noise resistance. Our model is capable of accurately and efficiently acquiring the single-particle information 

and statistical results of the BC mixing state, which provides essential data for BC aging mechanism investigation and further 

BC radiative effects assessment. 

1 Introduction 

Black carbon (BC) is the dominant absorbing aerosol, making it an important contributor to positive radiative forcing in the 30 

present-day atmosphere (Bond et al., 2013; Bond and Bergstrom, 2006; Fierce et al., 2020; Liu et al., 2017; Matsui et al., 2018; 

Ramanathan and Carmichael, 2008). As the product of incomplete combustion of fossil fuels combustion and biomass burning 
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(Jacobson, 2001), BC is refractory with a vaporization temperature near 4000 K. Because of the coagulation and condensation 

with other aerosol components during atmospheric transport, freshly emitted BC changes from externally mixed state to 

internally mixed structure. Changes in the mixing state can alter the light absorption and other properties of BC, thereby 35 

affecting its climate effect. For example, the presence of coating on BC can increase its mass absorption cross-section (MAC) 

relative to uncoated BC by lensing effect (Bond and Bergstrom, 2006; Cappa et al., 2012; Fuller et al., 1999). Therefore, 

identifying the mixing states of BC-containing particles and their relative abundance is essential for evaluating their climate 

effects. 

 40 

The single-particle soot photometer (SP2) is a well-recognized instrument that can be used for measuring the mixing state of 

BC (Moteki and Kondo, 2007; Schwarz et al., 2006; Sedlacek et al., 2012; Stephens et al., 2003). By analyzing the signals 

observed by SP2, quantitative characterization of the mixing states of BC can be obtained. Because the non-refractory material 

vaporizes due to the absorption of laser energy by the BC core, the scattering signals of BC-containing particles obtained by 

SP2 will be distorted, which poses significant difficulties in analyzing the original particle size (Dp). The leading-edge-only 45 

(LEO) fitting method is widely used (Gao et al., 2007; Moteki and Kondo, 2008; Schwarz et al., 2008) to obtain Dp, wherein 

the complete Gaussian function is reconstructed by fitting the scattering signal before particle vaporization (Liu et al., 2014; 

Shiraiwa et al., 2008; Zhang et al., 2016). Since SP2 can track the incandescence and scattering signal of each particle, field 

observation using SP2 will generate a large amount of data. Performing physical inversion of particle size requires complex 

data processing and fitting processes, making it difficult to obtain real-time online BC mixing states. As an alternative, data-50 

driven models can provide a good supplement to physical process-based models. Machine learning (ML) is a rapidly 

developing data-driven model which can efficiently simulate the nonlinear relationship between input and output, and is widely 

used in various fields (Carleo et al., 2019; Jordan and Mitchell, 2015; Liakos et al., 2018; Tarca et al., 2007). Applying ML to 

the inversion of BC mixing states can efficiently process a large number of SP2 datasets. 

 55 

In this study, an inversion model is built using the light gradient boosting machine (LightGBM) to associate the SP2 time-

dependent signals with the size of individual BC-containing particles and their optical properties. This method can simplify 

the process of quantitative analysis of BC mixing states, making it capable of real-time mixing state analysis. In addition, the 

SHapley Additive explanation (SHAP) approach is introduced to quantify the individual effect of signal factors on prediction. 

The BC mixing state inversion model developed in this study is also compared with the LEO fitting method. Finally, based on 60 

our inversion model, the mixing state characteristics of BC-containing particles can be analyzed in detail, including both single-

particle scale and statistical features. 
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2 Method 

2.1 Experimental site 

The SP2 observational data used in this study is from 1 April 2022 to 31 May 2022 at SORPES (Station for Observing Regional 65 

Process of the Earth system) station, which located in Xianlin Campus of Nanjing University in Nanjing, Jiangsu Province (a 

regional background site in the Yangtze River Delta region in China). 

2.2 SP2 apparatus and detection principle 

The SP2 consists of an intracavity Nd:YAG laser and four optical detectors. The laser operates in a TEM00 mode, with a 

Gaussian intensity distribution. The laser intensity within the cavity is approximately 106 W cm-2, which is sufficient to 70 

vaporize absorbing particles as they pass through the beam (Stephens et al., 2003). The refractory particle absorbs light and 

has a high vaporization temperature. When heated in the laser beam to the boiling point (about 4000 K), it emits visible thermal 

radiation (‘‘incandescent light’’). The intensity of this thermal radiation depends on the composition and quality of the 

refractory components, regardless of the particle morphology and mixing state (Schwarz et al., 2006; Slowik et al., 2007). Pure 

scattering particles cannot absorb enough energy to heat themselves and therefore do not emit incandescent light. They are 75 

sized based on the amount of light they scatter from the laser, which exhibits a Gaussian dependence with time. 

 

Four optical detectors are synchronously sampled at 5 MHz. One avalanche photo-detector (APD) is optically filtered to pass 

only 1064 nm radiation and measures the scattering signal from all particles, including both pure scattering particles and 

absorbing particles. The two other APDs measure incandescence signal in the visible range, optically filtered to pass broadband 80 

light at 400–650 nm and narrowband light at 610–650 nm. The ratio of signals from these two detectors can be employed to 

ascertain the vaporization temperature of the particles (Schwarz et al., 2006), ensuring that the measured particle is BC. The 

fourth two-element APD (TEAPD) detector measures the location of leading-edge data in the laser beam, which can be used 

to analyze the amount of coating or mixing state of the incandescent particles. 

3 Machine-learning-based inversion algorithm 85 

3.1 Construction of feature dataset 

Supervised machine learning is a widely employed technique wherein algorithms are utilized to derive a function that maps 

inputs to desired outputs. This study aims to establish the relationship between SP2 signals and particle size as well as optical 

properties, where particle size includes the entire particle diameter (Dp) and BC core diameter (Dc), and optical properties 

encompass scattering cross-section (Csca) and absorption cross-section (Cabs). The supervised ML is utilized in this study to 90 

achieve this goal, as depicted in Fig. 1. The learning process within an ML model typically comprises two steps: training and 

testing. In the training process, it is necessary to construct pre-processed datasets, including inputs (feature dataset) and outputs 
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(label dataset). In this study, the SP2 signals are used as the input data for the ML model, incorporating scattering signals and 

incandescence signals. Each of these signals is represented as 100-dimensional data, containing information that determines 

particle size and optical properties. However, directly using such high-dimensional data for ML would result in poor model 95 

performance. Additionally, the original signals also contain some instrument background signals, which can interfere with the 

learning process and affect the accuracy and efficiency of the model. 

 
Figure 1. Schematic diagram of BC mixing state inversion process. 

To enhance the ML performance, it is imperative to preprocess the original signals to reduce data dimension and eliminate 100 

unnecessary noise. This usually entails procedures of feature selection and feature extraction, aiming to identify and retain the 

most relevant signal features related to particle size and optical properties. Since different types of particles have different 

effective SP2 signal dimensions, it is crucial to pre-classify the particle types and select the appropriate signals for each type 

of particle as the feature data input for the ML model. 

 105 

In this study, ambient particles are classified into pure scattering particles and BC-containing particles (both externally mixed 

BC and internally mixed BC). Firstly, we differentiate the pure scattering particle and BC-containing particle depending on 

whether it has the incandescence signal. When the peak height of the incandescence signal exceeds a certain degree, the particle 

will be considered as BC-containing particle. Otherwise, it will be considered as pure scattering particle (Fig. 2a). According 

to the time delay (Δ𝑡𝑡), namely the time difference of the peak of the incandescence signal and the scattering signal (Moteki 110 
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and Kondo, 2007), BC-containing particles are further classified into externally mixed BC (Δ𝑡𝑡 < 1 μs) (Fig. 2b) and internally 

mixed BC (Δ𝑡𝑡 ≥ 1 μs) (Fig. 2c). 

 
Figure 2. (a-c) Time series of the scattering signal and incandescence signal of different types of particles: (a) pure scattering particle; (b) 
externally mixed BC; (c) internally mixed BC. (d) Histogram of the time delay (∆𝑡𝑡) of BC-containing particles. 115 

The inversion of pure scattering particles involves the Dp and Csca. Both of these parameters are calculated through the physical 

inversion process by using the scattering signals obtained by SP2. Therefore, when constructing an ML model for pure 

scattering particles, only the scattering signals are used as feature data. The scattering signals of particles when they pass 

through the laser beam are influenced by two factors: the particle size and their position in the SP2. To facilitate the comparison 

of signal intensities produced by different particles, it is essential to ensure that these particles are located in the same position. 120 

Due to the constant sample flow, the zero-crossing point in the TEAPD signal can indicate the position of particles in the 

instrument. That is, at the zero-crossing point, particles are in the same position in the instrument. Since the SP2 records the 

data from all four detector channels simultaneously, this reference position is valid for the other three detector signals. For 

pure scattering particles, the 45-dimensional scattering signals near the zero-crossing point for each particle are selected as the 

feature data. 125 

 

To perform the Dc inversion of BC-containing particles, the incandescence signals are employed as the input feature for the 

model since Dc is directly related to the incandescence signals of the particles. Differing from the feature data selection method 
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in the inversion model for pure scattering particles, the incandescence signal is not influenced by the particle's position in the 

SP2. Therefore, the 45-dimensional incandescence signals near the peak of each particle's incandescence signal are used as the 130 

feature data for model establishment. Similarly, the incandescence signals of particles are also adopted in the model to invert 

the optical properties of externally mixed BC, constructing feature data in the same way. 

 

As for internally mixed BC, when it passes through the laser beam, it both absorbs and scatters laser light. During the process 

of physical inversion, it is essential to utilize the scattering and incandescence signals to obtain Dp and optical properties of 135 

internally mixed BC. Therefore, when constructing an ML inversion model for internally mixed BC, both the scattering and 

incandescence signals need to be considered. This study employs the 90-dimensional feature data for internally mixed BC, 

consisting of 45 dimensions near the zero-crossing point for both the scattering and incandescence signals. 

3.2 Construction of label dataset 

SP2 data have been used to optically size particles. This study uses particle size and optical properties obtained from traditional 140 

physical inversion methods as the label dataset for the ML model. For pure scattering particles, when they pass through the 

laser, the particle size does not change, resulting in an undistorted scattering signal. Therefore, their Dp is positively correlated 

with the scattering amplitude. The Mie calculations indicate that, for spherical particles with diameters less than 1 μm, the 

scattering amplitude detected by SP2 exhibits a monotonic relationship with scattering cross-section (Gao et al., 2007). The 

constant ratio between them is determined by the calibration using polystyrene latex spheres (PSL). The Dp of pure scattering 145 

particles can be obtained by correlating the scattering cross-section of particles with known particle size.  

 

When the BC-containing particle enters SP2, BC will absorb the energy of the laser and emit significant incandescent light. 

The peak intensity of thermal radiation from a particle is proportional to its refractory BC mass (MBC) (Moteki and Kondo, 

2007). According to the empirical relationship between the incandescent light intensity and the particle mass calibrated using 150 

fullerene soot, the MBC of each BC-containing particle can be quantified by the peak height of the incandescence signal. 

Subsequently, the measured MBC can be further converted into the mass-equivalent diameter Dc assuming a density of  

1.8 g cm-3 (Bond and Bergstrom, 2006). 

 

Because the BC component in the particles absorbs the energy of the laser, the coating will vaporize after being heated to 155 

boiling temperature. The particle size decreases gradually due to vaporization, and the scattering signal deviates from the 

Gaussian function. The leading-edge-only (LEO) fitting method is used to reconstruct the Gaussian signal. The Dp of a BC-

containing particle can be derived by inputting the LEO fitted scattering signal and Dc into Mie calculations. 

 

Based on the particle size calculations, the optical properties of particles can be further obtained. For pure scattering particles 160 

and externally mixed BC, Mie scattering theory can be used to calculate the Csca and Cabs with known refractive index and 
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optical size of particles. For internally mixed BC, a core-shell model is required, that is, they are considered to have an ideal 

BC core and a uniform non-absorbing coating material. The Mie scattering algorithm of core-shell structured particles can be 

used to obtain the optical cross-section of internally mixed BC. In the above calculation process, a complex refractive index 

of 1.95 + 0.96i for BC core (Moteki et al., 2023), and a complex refractive index of 1.5 + 0i (Schnaiter et al., 2005) for the 165 

coating of the internally mixed BC and pure scattering particles are used. 

 

Considering the low signal-to-noise ratio for small particles in SP2, this study set the lower limit for the Dp of pure scattering 

particles at 170 nm. For BC-containing particles, the lower limits for Dc and Dp are set as 90 nm and 120 nm, respectively. 

The upper limit for all particle sizes is set as 600 nm. When the particle is too large, the resulting signal exceeds the SP2 170 

detection threshold, leading to incomplete signal recording. Therefore, even though the original particle sizes can be obtained 

through the LEO fitting method, these particles are not included in the ML dataset. This preprocessing step ensures the quality 

of the data for ML, thereby improving the accuracy of the model’s prediction. 

3.3 Machine learning model 

To quickly inverse the particle size and optical properties of particles detected by SP2, LightGBM (Ke et al., 2017) is used in 175 

this study. LightGBM is a novel GBDT (Gradient Boosting Decision Tree) algorithm. In resemblance to GBDT, the objective 

output of each tree is determined by the discrepancy between the prediction of the tree model and the expected output from 

the preceding tree, while the input remains unchanged. A collection of trees is employed to make predictions, resulting in the 

final prediction. Different from traditional GBDT algorithms, LightGBM uses a histogram-based algorithm to avoid 

calculating all continuous features and takes discrete bins as the unit, which consumes less memory and reduces the complexity 180 

of data separation to speed up the training process (Fan et al., 2019). In addition to the histogram algorithm, LightGBM adapts 

the leaf-wise strategy to grow trees, identifying the leaf with the maximum gain in split variance to perform the split, which is 

greedier than the level-wise strategy (Gan et al., 2021). Furthermore, LightGBM incorporates gradient-based one-sided 

sampling and exclusive feature bundling (Sun et al., 2020), addressing large volumes of data instances and numerous features, 

respectively. 185 

 

In the LightGBM model, many hyperparameters are used, which can be adjusted to improve the performance of the model in 

different applications. Table 1 lists the hyperparameters adjusted in this study and their related meanings. In this study, the 

SP2 data from May 11, 2022, to May 25, 2022, is used as the dataset for establishing the model. The data set is divided into a 

training set and a testing set (7:3). The training set is used to train the LightGBM regression model, while the testing set is 190 

used to evaluate the accuracy of the model. Based on the specified hyperparameter range, use the GridSearchCV function to 

form all possible parameter combinations and then perform a 5-fold cross-validation process to search for the optimal 

hyperparameter combination. Additionally, the early stop mechanism is added to prevent the model from overfitting. All the 
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optimized hyperparameters are listed in Table 2. With the hyperparameters in Table 2, the final LightGBM model can be 

trained. 195 
Table 1. The main hyperparameters of the LightGBM model tuned in this study. 

Hyperparameters Description 
learning_rate Control the shrinkage rate. 
num_leaves Control the maximum number of leaves of a decision tree. 

max_bin Control the max number of bins (data intervals) when the dataset of a parameter in the input layer 
is transformed to a histogram. 

max_depth Limit the max depth for a tree model. 

feature_fraction The proportion of the selected parameters to the total number of the parameters in the input layer. 
bagging_fraction The proportion of the selected data to the total data size. 

bagging_freq The frequency of re-sampling the data when bagging_fraction is smaller than 1.0. 
 
Table 2. The optimal hyperparameters for each particle type. The content in parentheses following the particle type name indicates the 
physical quantity that needs to be inverted for that type of particle. 

 

Hyperparameters  
Particle Type 

Pure scattering 
particle (Dp / Csca) 

Externally mixed BC 
(Csca / Cabs) 

Internally mixed BC 
(Dp / Csca / Cabs) 

BC-containing particle  
(Dc) 

learning_rate 0.05 0.05 0.05 0.05 
num_leaves 30 50 700 45 

max_bin 800 800 500 800 
max_depth 15 15 50 15 

feature_fraction 0.9 0.9 0.7 0.9 
bagging_fraction 0.9 0.7 0.8 0.9 

bagging_freq 2 3 4 2 
 200 

3.4 Model performance evaluation 

To establish a comprehensive understanding of the BC mixing state inversion model, it is necessary to evaluate and interpret 

it. The evaluation metrics employed in the inversion results of the BC mixing states in this paper include the coefficient of R2, 

root mean square error (RMSE), and mean absolute error (MAE). R2 is the most important index to verify the accuracy of the 

predicted result of a regression algorithm, with a range of 0 to 1. The result of the R2 value equalling to 1 represents the 205 

regression model gives predictions without any error. In general, the higher the R2 is, the better the fitting result is. RMSE 

stands for the standard deviation of the residuals between the predicted value and actual value calculated as: 

RMSE = �1
𝑚𝑚

(∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑚𝑚
𝑖𝑖=1 ) ,          (1) 
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where 𝑚𝑚 is the number of samples, 𝑦𝑦𝑖𝑖 is the actual value and 𝑦𝑦�𝑖𝑖 is the predicted value of 𝑖𝑖𝑡𝑡ℎ sample. MAE is another statistical 

measure to evaluate the bias between predicted value and actual value, which is defined as: 210 

MAE = 1
𝑚𝑚

|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖| .           (2) 

In general, the lower RMSE and MAE values represent the better fitting results of the model. 

3.5 Model explanation 

Given the inherent "black box" nature of machine learning models, comprehending the impact of input parameters on 

prediction results becomes challenging. As the model complexity increases, the need for post hoc explanations arises. 215 

Therefore, we involved the SHAP method to reveal the underlying reasoning behind predictions. 

 

SHAP is a novel model interpretation method that uses the Shapely value from game theory to combine optimal credit 

allocation with local explanations (Lundberg and Lee, 2017). It can be used in conjunction with different ML models for model 

interpretation. Tree-SHAP (Lundberg et al., 2019) is used in the present study to determine. It uses a linear explanatory model 220 

and Shapley values to estimate the initial prediction model, as defined by Eq. (3): 

𝑓𝑓(𝑥𝑥) = 𝛷𝛷0 + ∑ 𝛷𝛷𝑖𝑖
𝑝𝑝
𝑖𝑖=1  ,           (3) 

where 𝑓𝑓(𝑥𝑥) represents the machine learning model’s prediction; 𝛷𝛷0 is the base value of the model, which denotes the average 

prediction of all inputs; 𝛷𝛷𝑖𝑖 is the SHAP value for feature 𝑖𝑖, indicating the contribution of feature 𝑖𝑖 to the prediction; and 𝑝𝑝 is 

the total number of features. The SHAP values provide a unified measure of feature importance, allowing for a detailed 225 

understanding of the impact of each feature on the model's output. 

4 Result 

4.1 Inversion results of particle size 

The testing data are used to examine the model's accuracy. Figure 3 shows the particle size inversion results for different types 

of particles. Overall, the LightGBM model can successfully reproduce the Dc and Dp of particles. The Dc inversion of BC-230 

containing particles shows the best performance (Fig. 3b), with the R2 value reaching 0.99. Additionally, the RMSE and MAE 

values are 0.36 nm and 0.14 nm, respectively, which are the smallest among the three particle size inversion models, as the 

incandescence signal peak height of BC-containing particles is linearly correlated with the mass of refractory BC. The Dp 

inversion results for pure scattering particles are also satisfactory (Fig. 3a), with the R2 of 0.99. The RMSE and MAE values 

are 1.2 nm and 0.64 nm, slightly lower than the Dc inversion for BC-containing particles. The Dp of pure scattering particles 235 

is calculated from the peak height of their scattering signals. Fluctuations in the instrument’s voltage can lead to changes in 

laser intensity, which in turn affects the peak height of the scattering signals. This can result in slight deviations between the 

model-predicted values and actual values for certain particles. A few particles with prediction values that significantly deviate 
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from the actual values (> 30 nm) are affected by instrument noise signals, leading to abnormal scattering signals for these 

particles. 240 

 

The R2, RMSE, and MAE values for the Dp inversion model of internally mixed BC are 0.98, 5.85 nm, and 2.98 nm, 

respectively (Fig. 3c). According to density distribution, the predicted values for the majority of particles are close to the actual 

values. Compared to the particle size inversions of the first two types, the relationship between Dp and scattering signals and 

incandescence signals for internally mixed BC is nonlinear, making the physical inversion process more complex and involving 245 

more input variables, thus increasing the difficulty of inversion. The LEO fitting method and ML method adopts different parts 

of raw signals, leading to diverse Dp. The detailed discussion of this deviation is shown in Section 4.3. Furthermore, not all 

particle signals are in ideal conditions, and when two particles pass through the laser simultaneously, some interfering particle 

signals may be produced.  

 250 
Figure 3. Inversion results of particle size for different types of particles: (a) Dp of pure scattering particles; (b) Dc of BC-containing particles; 
(c) Dp of internally mixed BC. 

4.2 Inversion results of optical properties 

The results of the scattering and absorption cross-section inversion for three types of particles are shown in Figs. 4 and 5. 

Overall, the inversion of Csca and Cabs of different types of particles shows a good performance, with R2 higher than 0.98. For 255 

pure scattering particles, the R2 of the Csca inversion is 0.99 (Fig. 4a), indicating close agreement between model predictions 

and actual values. For externally mixed BC, the R2 for both the Csca and Cabs inversion can reach 0.99 (Fig. 4b). The slight 

discrepancy between the model predictions and actual values for externally mixed BC with high optical cross-sections arises 

from the limited data sample, resulting in inadequate learning for these large particles. As for internally mixed BC (Fig. 4c), 

the R2 values for the Csca and Cabs inversion models are 0.98 and 0.99, respectively, with better inversion results for the Cabs. 260 

Except for a few particles with substantial deviations, the majority of particles exhibit high consistency between model 

predictions and actual value.  
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Figure 4. Inversion results of Csca for three types of particles：(a) pure scattering particles; (b) externally mixed BC; (c) internally mixed 
BC. 265 

 
Figure 5. Inversion results of Cabs for externally mixed BC (a) and internally mixed BC (b). 

4.3 SHAP interpretations 

To elucidate the relative contributions of various input features to the model output, the SHapley Additive exPlanation (SHAP) 

method was introduced to conduct feature importance analysis. Figure 6 presents the analysis results, where each point 270 

represents an individual data point from the dataset. The color of each point indicates the corresponding feature value for that 

specific sample, transitioning from blue to red as the feature value increases. The features are ranked by importance on the y-

axis, with higher positions indicating greater importance. The position of an instance on the x-axis represents its SHAP value, 

which measures the impact of a feature on the model output for that specific data point. Points on the positive side of the zero 

line indicate a positive contribution of the input feature on the model prediction, whereas points on the negative side indicate 275 

a negative effect of the corresponding input feature. Additionally, the distance of a data point from the zero line is proportional 

to the impact of the corresponding input feature on the model prediction for that specific data point. To simplify the expression, 

the 45-dimensional scattering signals of the input model are designated as SCLG1, SCLG2, ..., SCLG45, and the 45-

dimensional incandescent signals are named similarly as BBLG1, BBLG2, ..., BBLG45. 

 280 
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Figure 6a shows the SHAP summary plot for the Dp inversion model of internally mixed BC. The top fifteen features 

contributing to the model are listed. As can be seen, these features include eight scattering signal features and seven 

incandescence signal features. The specific distribution of these features within the signals is shown in Fig. 6b. According to 

the SHAP summary plot, the top three important features are SCLG22, SCLG23, and SCLG21, which correspond to three 

consecutive scattering signal positions. Similarly, the features SCLG15, SCLG14, and SCLG16 ranked 7th, 11th, and 12th 285 

respectively form a continuous scattering signal. These six features are located near the peak of the scattering signal, and as 

their feature values increase, the predicted Dp also increases according to the change in SHAP values. In addition, among the 

top fifteen important features, the other two isolated scattering signal features are SCLG11 and SCLG1. The SHAP value for 

SCLG11 shows a similar trend to the aforementioned features as the feature value changes, while the SHAP value for SCLG1 

can be either positive or negative as the feature value increases. The reason is that SCLG1 is at the starting position of the 290 

scattering signal input to the ML model, close to the baseline of the original scattering signal without dimensionality reduction, 

and is greatly interfered by instrument noise, thus having no clear correlation with the model's final output. 

 

The seven incandescence signal features among the top fifteen important features form a continuous segment of the 

incandescence signal, namely BBLG24 to BBLG30. This segment corresponds to the position from the onset of incandescence 295 

signal emission by BC-containing particles to near the peak of the incandescence signal. The SHAP values for these seven 

incandescence signal features all exhibit a trend wherein their contribution to the prediction of Dp transitions from positive to 

negative as the feature values increase. This is because for internally mixed BC with the same scattering cross-section, a larger 

Dc leads to a thinner coating thickness, resulting in a smaller predicted Dp, given that the scattering coefficient of the BC core 

is greater than that of the coating. Furthermore, the peak height of the incandescence signal is positively correlated with Dc. 300 

Therefore, larger feature values correspond to smaller predicted Dp. Additionally, for internally mixed BC with the same Dc, 

the peak height of the incandescence signal remains the same, but the peak occurrence time varies with the thickness of the 

coating. When the coating is thicker, it takes longer for the coating to evaporate, resulting in a delayed onset of the 

incandescence signal. Compared to thinner coatings, this causes more data points from BBLG24 to BBLG30 to lie near the 

baseline of the incandescence signal, leading to smaller corresponding values (Fig. S1).  305 
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Figure 6. (a) The SHAP summary plot for the Dp inversion model of internally mixed BC, showing the top fifteen features ranked by 
importance. (b) The specific positions of the top fifteen important features indicated by SHAP values within the scattering and incandescence 
signals input to the ML model. The darker color of the scatter points represents the higher importance ranking of the corresponding features. 
The gray shaded area shows the portion of the scattering signal used for LEO fitting that is included in the input features for ML.  310 

 

According to the contribution of each feature indicated by SHAP values, it can be observed that the important features in the 

ML model differ from the leading-edge data used during the physical inversion process. ML model uses the signal near the 

peak, as illustrated in Fig. 6b, while the LEO fitting method uses the signal as the BC-containing particle enters the edge of 

the laser, prior to coating evaporation, to derive the particle size. Figure 7 displays the LEO fitting results for two distinct BC-315 

containing particles. Since the data used for LEO fitting are almost identical, the fitting results in two Gaussian functions with 

the same distribution, yielding the same derived Dp. However, looking into the whole scattering signal, these two BC-

containing particles differ significantly. The scattering signal adopted by the ML model can reflect this difference, resulting in 

different Dp outcomes. Moreover, the leading edge is defined as the data from zero to 5 % of the maximum laser intensity in 

practice, with the baseline subtracted (Taylor et al., 2015). As shown in Fig. 7, this portion of the signal (in the grey-shaded 320 

area) is close to the baseline, making it more susceptible to noise interference. Compared to LEO fitting method, the ML model 

utilized a larger coverage of signals with high signal-to-noise ratio, providing better noise resistance.  
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Figure 7. The comparison of the scattering signal used in the Dp inversion process for internally mixed BC and specific calculation results 
between the LEO fitting method and the ML method. The solid line represents the scattering signal obtained by SP2, the part marked with 325 
solid dots is the scattering signal input to the ML model, the gray shaded area shows the leading-edge data used in the LEO fitting process, 
and the dashed line represents the scattering signal of the original particle reconstructed by LEO fitting. 

4.4 Model application 

The BC mixing state inversion model developed in this study exhibits broad applicability and can be applied to SP2 data 

obtained over different observation periods. To validate the model's effectiveness, we applied it to the SP2 dataset from April 330 

2022. The results indicate that the model can rapidly and accurately invert the single-particle size information of BC-containing 

particles. Specifically, the model achieved an R² value of 0.99 for Dc inversion and 0.98 for Dp inversion (Table S1). Based on 

the inversion data, we can analyze the overall size distribution of internally mixed BC in April. From the number size 

distributions of the Fig. 8, it is evident that Dc is primarily concentrated around 130 nm, while Dp is mainly around 185 nm. 

The specific size distribution of particles in the two-dimensional histogram indicates that when Dc is relatively small (<100 335 

nm), Dp is primarily distributed around 180 nm. When Dc is small, some particles with thin coatings are not detected due to 

the detection limits of the SP2, resulting in overall thicker coating. As Dc gradually increases to the range of 120 to 140 nm, 

the main distribution area of Dp decreases to around 165 nm, corresponding to a reduction in coating thickness. 
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Figure 8. Distribution of Dp and Dc of internally mixed BC derived based on the BC mixing state inversion model. The image plot is a two- 340 
dimensional histogram where the color represents the number of particles falling within a specific size range, normalized to the maximum 
value. The number distribution of Dc and Dp are normalized to the peak value respectively. 

Furthermore, we can derive comprehensive statistical results for BC-containing particles by utilizing the BC particle size 

results along with the SP2 sampling data. The statistical analysis of various physical properties of BC-containing particles in 

April 2022 is shown in Fig. 9. The variation of refractory BC (rBC) mass concentration is within the range of 0.24 to 0.36  345 

μg m-3 (Fig. 9a), and the relative number fraction of BC-containing particles to the total number of particles ranges from 0.26 

to 0.36, with an average value of 0.31 (Fig. 9b). They exhibit very similar diurnal patterns. Due to less emissions and the 

development of the planetary boundary layer (PBL) in the daytime, minimum values occur in the afternoon, and values remain 

consistently high throughout the evening. The formation of the nocturnal boundary layer would favor the accumulation of 

pollutants, leading to elevated rBC mass concentrations during the night and early morning hours (Zhang et al., 2020). During 350 

busy traffic periods in the morning and evening, rBC mass concentration and the relative abundance of BC-containing particles 

increase significantly due to traffic emissions. Figure 9c shows the diurnal variation of coating thickness (calculated by Dp−Dc) 

of internally mixed BC, with an average value of 78 nm. Although the coating thickness is generally stable throughout the day, 

it exhibits larger variability (as indicated by the shaded area in Fig. 9c) in the afternoon. This increased variability may be 

attributed to the enhanced aging of BC on certain days when atmospheric conditions are conducive to photochemical reactions. 355 

There is a pronounced decrease in coating thickness of internally mixed BC at 10:00 LT. The freshly emitted BC from morning 

traffic undergoes aging processes and mixes with other substances in the atmosphere. Consequently, a portion of the BC 
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transitions from external to internal mixing state. This newly internally mixed BC, having experienced a short aging period, 

exhibits a thinner coating. This phenomenon contributes to an overall reduction in the mean coating thickness of the BC 

population. After 21:00 LT, the coating thickness increases gradually resulting from nighttime ageing process.  360 

 
Figure 9. The diurnal cycles of (a) the rBC mass concentration; (b) the relative number fraction of BC-containing particles to the total 
number of particles; (c) the coating thickness of internally mixed BC. The solid lines represent the median value. The upper and lower 
boundary of the shaded area stand for the 75th and 25th percentiles, respectively. 

5 Conclusion 365 

This study conducted a series of explorations on the relationship between SP2 data and BC mixing state, establishing a ML-

based inversion model using LightGBM to link SP2 signals with particle size and optical properties. The results show that the 

inversion model can efficiently derive the core and particle size of different types of particles and their optical properties. The 

R2 between the predicted value and the actual value of the model can reach 0.98 or higher. This model can serve as a substitute 

for traditional physical inversion processes, simplifying the quantitative analysis process of particle size and optical properties.  370 

 

Further, we employed the SHAP method to analyze the importance of the input features from SP2 signal in Dp inversion model 

and explored their underlying physical significance. Compared to the LEO fitting method, the ML method utilizes a larger 
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coverage of signals encompassing the peak of scattering signal rather than the leading-edge data. This allows for more accurate 

capture of the diverse characteristics of particles. Moreover, ML method uses signals with high signal-to-noise ratio, providing 375 

better noise resistance. Additionally, by using the LightGBM algorithm, our method determines the model output by 

calculating the average value of the samples within the leaf nodes, further ensuring the robustness of the model. 

 

Based on the model we have established, we can extract statistical features of BC-containing particles, including rBC mass 

concentration, coating thickness of internally mixed BC, BC number fraction, etc. These characteristics contribute to a better 380 

understanding of the physical properties of BC. The SP2 dataset in SORPES station was employed to validate the effectiveness 

and applicability of our model. The results indicate that the model can rapidly and accurately derive various physical properties 

of BC-containing particles. The BC number fraction varies between 0.26 and 0.36, with an average of 0.31. The diurnal 

variation in the coating thickness of internally mixed BC is generally stable, with an average of 78 nm. With this model, online 

real-time mixing state analysis of single-particle measurement is realized. The method is simple and feasible, can be widely 385 

used in environmental and climate studies. 
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