
Response to the comments of Reviewer #1 (EGUSPHERE-2024-2496) 

 

The mixing states of black carbon are widely measured by the single-particle soot 

photometer (SP2) instrument. This study employed a machine learning (ML) based 

method, light gradient boosting machine (LightGBM), to process the scattering and 

incandescence signals of SP2 and to retrieve the mixing states of particles. ML based 

method performs more efficiently than the traditional Leading-Edge-Only (LEO) 

approach with quite consistent retrieval outcomes. The relative importances of the 

selected signal features in retrieving the particle microphysical properties were studied 

by SHapley Additive exPlanation (SHAP) method. The authors stated that this ML 

based method has the potential to be a reliable noise-resistant approach to analyze the 

SP2 data. My major comments are attached below.  

 

Response: We sincerely thank the reviewer #1 for the insightful suggestions and 

constructive comments. In response, we have thoroughly revised the manuscript and 

prepared a detailed, point-by-point response to all comments and questions raised. In 

the revised manuscript, we have added conceptual definitions for different particle 

types and clarified their classification criteria. Additionally, we provide a more detailed 

description of the feature dataset construction process, explaining the intrinsic 

connection between the feature signals used in the model and the original signals, as 

well as their scientific significance. Here are our point-to-point responses. 

 

Main Comments: 

 

1) Fig.3, 4, & 5 compare the predicted particle microphysical properties with those 

named “actual values”. How did you define the “actual values”, and how they were 

obtained? Were they the outputs from LEO approach or did you use any other particle 

sizer instruments to measure the “actual values” of particle size? According to the 

meaning of “actual”, this value should be regarded as the ground-truth, or more 

reliable measurements of the particle size. 

 

Response: Thank you for pointing this out. These particle microphysical properties 

named “actual values” are derived through physical inversion methods, as detailed in 

the “Construction of label dataset” section of our manuscript. Specifically, for internally 

mixed BC, these values are outputs from the LEO approach. We employed the machine 

learning model to learn the mapping relationship between the input (SP2 signals) and 

output (microphysical properties) data. Based on the developed inversion model, when 

we input SP2 signals, the model can predict the corresponding microphysical properties. 

These predicted values are then compared with the “actual values” obtained through 

the physical inversion methods to evaluate the model’s performance, as shown in Fig. 

3, 4, & 5.  

 

We appreciate your reminder, and we realize that using the “actual values” in the 



manuscript is not appropriate. In response, we have revised it to “observed values”. 

 

2) Fig. 7 shows the robustness of the ML-based retrievals by comparing the retrieved 

particle size with the one obtained by LEO approach. LEO method, because it utilizes 

part of the scattering signal, has the possibility to mischaracterize the particles with 

different sizes. Comments: I agree that the retrieval accuracy will be improved with 

more observational constraints or signal feature inputs. However, the reason that LEO 

method only utilizes the threshold portion but not the entire scattering signals is that 

the loss or vaporization of particle coatings happens after the particle started to absorb 

laser energy in SP2. The entire scattering signal function doesn’t reflect the scattering 

properties of the original mixing states of BC-containing particles (coating thickness, 

BC core size, etc.). Therefore, LEO method utilizes the threshold portion of the signal 

when the particle properties (size) doesn’t change significantly yet in SP2. Though the 

proposed ML-based method utilizes more signal feature, it doesn’t necessarily reflect 

the true size of the original coated particles. 

 

Response: Thank you for your comment. As you described, the LEO fitting uses the 

leading edge of the scattering signal, which corresponds to the stage before the coating 

evaporates, aiming to capture the original characteristics of the particle when it has not 

yet significantly changed in the SP2. While, as we pointed out in the discussion of Fig. 

7 (which corresponds to Fig. 9 in the revised manuscript), the leading edge of the 

scattering signal is close to the baseline and thus more susceptible to noise interference, 

which may increase uncertainty in the LEO fitting.  

 

As the BC core absorbs laser energy, the coating evaporates upon reaching its boiling 

point, the scattering signal gradually deviates from a Gaussian distribution. Although 

this distorted part of the signal cannot directly reflect the initial physical characteristics 

of the particle, the changes in the signal are not entirely random. This signal can be 

considered a complex function of the BC core diameter (Dc) and the entire particle 

diameter (Dp). In fact, previous studies have tried to use these changes in the scattering 

signal to depict the variation of particle scattering cross-section in the SP2 or the mixing 

state of BC (Moteki et al., 2014; Moteki and Kondo, 2008; Sedlacek et al., 2012).  

 

Considering that the leading-edge signal only accounts for a small portion of the entire 

scattering signal, the information it can provide is limited. Therefore, this study 

attempts to input the complete scattering signal change into a machine learning model, 

aiming to parse the information contained in the subsequent signal. This approach can 

make more comprehensive use of the information expressed by the signal, thereby 

providing more robust results. 

 

3) Table 2: This table shows the hyperparameters for each particle type. What are the 

“Internally mixed BC” and “BC-containing particle” by definition? BC-containing 

particle is a subset of internally mixed BC in my opinion. Then why did you use different 

hyperparameters for them? 



Response: Thank you for your question. We have provided more detailed explanations 

of the definitions for different particle types in the revised manuscript. Lines 109 to 122 

in the revised manuscript reflect the specific revisions: 

“In this study, ambient particles measured by SP2 are classified into pure scattering particles and 

BC-containing particles. Pure scattering particles are those that only scatter light without 

significant absorption, while BC-containing particles, which contain refractory BC (rBC), both 

scatter and absorb light. BC-containing particles are further subdivided into externally mixed BC 

and internally mixed BC. Externally mixed BC refers to freshly emitted BC particles that have 

not yet mixed with other aerosol components, while internally mixed BC describes BC that has 

undergone atmospheric aging processes and incorporated with other materials (Oshima et al., 

2009). Operationally, we differentiate the pure scattering particle and BC-containing particle 

depending on whether it has the incandescence signal. ... The incandescence signal peak occurs 

when all non-BC material has evaporated and the BC reaches its incandescence temperature, 

thus the magnitude of 𝜟𝒕 correlates with the thickness of the coating on BC particles: a larger 

𝜟𝒕 corresponds to a thicker coating that takes longer to evaporate. By examining the distribution 

of 𝜟𝒕  values in the SP2 measurements, as illustrated in Fig. 2d (Sedlacek et al., 2012; 

Subramanian et al., 2010; Zhang et al., 2016), BC-containing particles with 𝛥𝑡 < 2 𝜇𝑠  are 

classified as externally mixed BC (Fig. 2b), while those with 𝛥𝑡 ≥ 2 𝜇𝑠  are categorized as 

internally mixed BC (Fig. 2c).” 

 

In addition, the hyperparameter tuning is optimized for the specific tasks of each model, 

rather than using a universal setting. By adjusting the hyperparameters, we establish the 

mapping between the model’s inputs and outputs. Since each model uses different 

features and inverses different microphysical properties, the hyperparameters used in 

model construction also vary accordingly. 

 

Line-by-line comments: 

1) Line 73: “quality of the refractory components”, what does “quality” mean here? 

 

Response: Thank you for pointing this out. The “quality” here refers to the mass of the 

refractory BC. For clarity, we have replaced it with the word “mass” in the revised 

manuscript. 

 

Line 84 in the revised manuscript:  

“The intensity of this thermal radiation depends on the composition and mass of the refractory 

components, regardless of the particle morphology and mixing state (Schwarz et al., 2006; Slowik 

et al., 2007).” 

 

2) Line 76: Add reference here (Gao, R. S., et al., 2007, Aerosol Science & Technology) 

 

Response: Thank you for your reminder. We have added the reference in the 

corresponding position. 

 



Line 88 in the revised manuscript:  

“Particle size, therefore, can be measured based on the amount of light they scatter from the laser, 

which exhibits a Gaussian dependence with time (Gao et al., 2007).” 

 

3) Line 124: “45-dimensional scattering signals”. What is the relationship between the 

45- dimensional signals and the abovementioned “100-dimensional signals of SP2 data” 

in line 94, and 90-dimenional feature data in line 137. It would be better to provide 

additional contexts/descriptions of the principles of signal feature selection for optical 

retrievals. 

 

Response: Thank you for your comment. The SP2 signal is recorded based on the 

elapsed time, with each time window corresponding to information about a single 

particle. For each particle, the corresponding original scattering signal and 

incandescence signal are both 100-dimensional. The position of particles within the 

instrument is not known in advance. Among SP2’s four detectors, there is a two-element 

APD (TEAPD) detector. This detector has a gap perpendicular to the particle’s direction 

of motion, resulting in a notch in the TEAPD signal, as shown in Fig. R1a. Given the 

stability of SP2’s optical alignment and constant sample flow rate, this notch provides 

a precise time reference for a particle’s position within the instrument. In practice, the 

signal from the leading element is inverted, transforming the notch into a zero-crossing 

point (Fig. R1b) (Gao et al., 2007). Since SP2 simultaneously records data from all four 

detector channels, this time reference is valid for the signals from the other three 

detectors as well. 

 

Figure R1. (a) The original scattering signal measured by TEAPD before the signal from the leading 

element is inverted. (b) The TEAPD signal obtained by SP2, with the blue asterisk indicating the position 

of the zero-crossing point. 

 

For pure scattering particles, we locate the zero-crossing point in the scattering signal 

and then extract 22 data points both before and after it, creating a 45-dimensional 

feature dataset (Fig. R2a). In this newly constructed 45-dimensional feature signal, 

particles are positioned at consistent locations within the instrument for each 

corresponding dimension, eliminating the influence of laser intensity distribution on the 

scattering signal. 

 

When inverting the Dc of BC-containing particles, since the peak intensity of the 

incandescence signal is positively correlated with the mass of the refractory BC 



component in the particle, the peak of the incandescence signal is selected as a reference 

point, from which 22 data points are extracted both preceding and following this point 

(Fig. R2b), yielding a 45-dimensional feature dataset. This method ensures the 

incandescence signal peaks from different BC-containing particles are positioned at the 

same dimension within the feature dataset, facilitating direct comparisons between 

particles. The optical properties of externally mixed BC are also determined by the 

refractory BC component, so the same feature selection method is adopted. 

 

For internally mixed BC, its size and optical cross-section characteristics are reflected 

by both the scattering and incandescence signals. We select scattering features for 

internally mixed BC using the same approach as for pure scattering particles. 

Considering that the relative relationship between the incandescence and scattering 

signals in the original signal can reflect particle characteristics, the incandescence 

signal is selected with 22 data points before and after the zero-crossing point in a similar 

way (Fig. R2c). The 90-dimensional feature signal composed of the selected 45-

dimensional scattering signal and 45-dimensional incandescence signal is used as the 

input feature for the internally mixed BC inversion model. 

 
Figure R2. Relationship between the original SP2 signals (line plots) and the feature signals used in 

machine learning model construction (scatter plots) for different particle types: (a) pure scattering 

particles; (b) externally mixed BC; (c) internally mixed BC. The method for selecting feature signals 

used in inverting the core diameter (Dc) of BC-containing particles is identical to that used for externally 



mixed BC. 

 

We have provided additional descriptions of the principles of signal feature selection 

for different particle types as suggested. The Figs. R1 and R2 presented here have also 

been incorporated into the revised manuscript and Supplement Information to further 

illustrate these principles. Specifically, Fig. R1 has been added as Fig. 3 in the revised 

manuscript, while Fig. R2 has been included as Fig. S1 in the Supplement Information. 

 

Lines 141 to 143: 

“The SP2 signal is recorded based on the elapsed time, with each time window corresponding to 

information about a single particle. For each particle, the original scattering signal and 

incandescence signal are both 100-dimensional. The position of particles within the instrument 

is not known in advance.”  

 

Lines 154 to 162: 

“ As mentioned in Sect. 2.2, one of the four detectors in the SP2 is a split APD detector. This 

detector has a gap perpendicular to the particle’s direction of motion, resulting in a notch in the 

TEAPD signal, as shown in Fig. 3a. Given the stability of SP2’s optical alignment and constant 

sample flow rate, this notch provides a precise time reference for a particle’s position within the 

instrument. In practice, the signal from leading element is inverted, transforming the notch into 

a zero-crossing point (Fig. 3b) (Gao et al., 2007). Since SP2 simultaneously records data from all 

four detector channels, this time reference is valid for the signals from the other three detectors as 

well. We locate the zero-crossing point in the scattering signal and then extract 22 data points 

both before and after it, creating a 45-dimensional feature dataset (Fig. S1a). Through this 

standardization, the differences in signal intensity can be accurately attributed to the inherent 

physical properties of the particles. 

 

Lines 168 to 173: 

Based on this characteristic, the peak of the incandescence signal is selected as a reference point, 

from which 22 data points are extracted both preceding and following this point (Fig. S1b), 

yielding a 45-dimensional feature dataset used for inverting the Dc of BC-containing particles. 

This method ensures the incandescence signal peaks from different BC-containing particles are 

positioned at the same dimension within the feature dataset, facilitating direct comparisons 

between particles while preserving comprehensive information about the incandescence process.  

 

Lines 184 to 189: 

“Compared with other particle types, the internally mixed BC has a more complex structure. … 

Simultaneously, considering that the relative relationship between the original incandescence 

and scattering signals can reflect particle characteristics, such as coating thickness (Moteki and 

Kondo, 2007; Schwarz et al., 2006; Subramanian et al., 2010), the incandescence signal is 

selected with 22 data points before and after the zero-crossing point in a similar way (Fig. S1c). 

The feature extraction process yields a 90-dimensional feature dataset, comprising 45-

dimensional scattering signal and 45-dimensional incandescence signal, ensuring that we can 



comprehensively capture the key characteristics of internally mixed BC.” 

 

4) Line 191: What is “GridSearchCV function”. 

 

Response: Thank you for your question. GridSearchCV is an automated 

hyperparameter tuning technique that combines grid search with cross-validation 

(Ahmad et al., 2022). In this process, a range of values is defined for each 

hyperparameter, and then all possible combinations are systematically tried. It uses K-

fold cross-validation to evaluate the performance of each hyperparameter combination, 

eliminating the need for manual adjustments by automatically executing tests for all 

possible combinations. GridSearchCV assesses performance based on the average 

results of cross-validation and ultimately selects the hyperparameter combination that 

produces the best performance. The main advantage of this method lies in its ability to 

comprehensively and systematically explore the hyperparameter space while providing 

reliable estimates of the model’s generalization capability. We have added a brief 

explanation of the GridSearchCV function in the revised manuscript. 

 

Lines 251 to 254: 

“The GridSearchCV with 5-fold cross-validation is employed to optimize the hyperparameter 

configuration of the LightGBM inversion model. This comprehensive approach facilitates an 

exhaustive search for the optimal hyperparameter combination within a predefined parameter 

space (Ahmad et al., 2022). By utilizing cross-validation, the methodology effectively mitigates 

the risk of overfitting and provides robust estimates of the model’s generalization performance.” 

 

5) Line 191: Please check the grammar of the sentence starting with “Based on”. What 

is the subject of this sentence? 

 

Response: Thank you for your careful review and for pointing out this grammatical 

issue. The sentence beginning with “Based on” lacks a clear subject, which affects its 

grammatical structure. We have revised the sentence to “The GridSearchCV with 5-

fold cross-validation is employed to optimize the hyperparameter configuration of the 

LightGBM inversion model.” [Page 10, Line 251] 
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Response to the comments of Reviewer #2 (EGUSPHERE-2024-2496) 

 

This manuscript presents an innovative and practical approach to deriving black 

carbon (BC) mixing states using a machine learning (ML) framework, specifically 

LightGBM. The integration of SHAP analysis for interpretability and the application of 

the model to real-world data significantly enhance its relevance. The study is 

methodologically sound, with comprehensive results demonstrating the model’s 

robustness and applicability. With previous comments addressed, further minor 

clarifications, particularly in defining particle categories and expanding on error 

analysis, will further enhance the paper’s clarity and scientific rigor. Overall, this is a 

strong contribution to the field and can be published after minor revisions. 

 

Response: We appreciate the reviewer’s kind effort and constructive comments. All 

suggested improvements have been carefully implemented in the revised manuscript. 

We have expanded the rationale for choosing LightGBM algorithm in the introduction 

section, analyzed the prediction error distribution of the BC mixing state inversion 

model across different particle sizes, and provided a more detailed explanation of the 

physical significance corresponding to the important signal feature indicated by the 

SHAP results. Please find our point-by-point responses listed below. The reviewer’s 

comments are in Italic followed by our responses and revisions (in blue). 

 

Main Comments: 

 

1) Line 15-20: Briefly explain why LightGBM was chosen over other models like 

Random Forest or Neural Networks. Highlight its advantages for handling large 

datasets or nonlinear relationships. 

 

Response: Thank you for your comment. We have expanded the rationale for choosing 

the LightGBM algorithm in the introduction section of the revised manuscript. 

Regarding the abstract, we have made a brief supplement to address this point as well. 

 

The relevant amendments of the introduction are detailed on Lines 55 to 66 : 

“As an alternative, data-driven models such as machine learning (ML) can provide a good 

supplement to physical process-based models. ML can efficiently capture the nonlinear relationship 

between inputs and outputs, and has found widespread application in various fields (Carleo et al., 

2019; Jordan and Mitchell, 2015; Liakos et al., 2018; Tarca et al., 2007). In recent years, tree-

based machine learning models have gained considerable popularity due to their extremely high 

computational speed, satisfactory accuracy, and interpretability (Keller and Evans, 2019; Li et 

al., 2022; Wei et al., 2021; Yang et al., 2020). Among these, the Light Gradient Boosting Machine 

(LightGBM) has shown particularly outstanding performance. As a novel distributed gradient 

boosting framework based on decision tree algorithms, LightGBM can extract information from 

data more effectively than traditional tree models, excelling in handling complex non-linear 

relationships and high-dimensional features (Ke et al., 2017; Liu et al., 2024; Zhong et al., 2021). 



It employs innovative techniques such as gradient-based one-side sampling (GOSS) and exclusive 

feature bundling (EFB), which significantly improve computational efficiency while maintaining 

high predictive performance (Ke et al., 2017; Sun et al., 2020). Furthermore, different from some 

black-box models, LightGBM maintains the interpretability characteristic of tree-based models 

(Gan et al., 2021; Zhang et al., 2019), which can provide decision path analysis, allowing for 

deeper insights into the decision-making process. Considering these advantages, LightGBM can 

be an ideal tool for analyzing large SP2 datasets and inverting BC mixing states.” 

 

Lines 20 in abstract: 

“However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records 

individual particle signals, it requires complex data processing to convert raw signals into particle 

size and mixing states. Besides, the rapid accumulation of substantial data volumes impedes real-

time analysis of BC mixing states. This study employs a light gradient boosting machine (LightGBM), 

an advanced tree-based ensemble learning algorithm, to establish an inversion model which 

directly correlates SP2 signals with the mixing state of BC-containing particles.” 

 

2) Expand the discussion on how this method improves upon or complements existing 

techniques, such as the LEO fitting method or other machine learning approaches. For 

example, what specific challenges of previous methods (e.g., noise resistance, 

scalability) does this model overcome?  

 

Response: Thank you for your suggestion. A comparison between the LEO fitting 

results and machine learning results is shown in Fig. 9. As we discussed in the 

manuscript, the machine learning method utilizes more complete SP2 signals, enabling 

a more comprehensive characterization of particles. Furthermore, the signals used in 

the machine learning method have a higher signal-to-noise ratio, making it more robust 

against background noise compared to the LEO fitting method. The detailed discussion 

can be found on Lines 393 to 400 of the revised manuscript and attached below: 

“Figure 9 illustrates the LEO fitting results for two different BC-containing particles. Despite nearly 

identical leading-edge data resulting in similar Gaussian distributions and consequently the same 

Dp values through LEO fitting, the complete scattering signals of these particles exhibit significant 

differences. The ML model, by incorporating these distinctive signal features, can effectively capture 

these variations, leading to different Dp predictions. Moreover, the leading edge is traditionally 

defined as the signal from baseline-subtracted zero up to 5 % of the maximum laser intensity (Taylor 

et al., 2015). As shown in Fig. 9, this portion of the signal (in the grey-shaded area) is close to the 

baseline, making it particularly susceptible to noise interference. Compared to LEO fitting method, 

the ML model utilized a broad range of signals with a high signal-to-noise ratio, demonstrating 

enhanced noise resistance.” 



 

“Figure 9. Comparison of the scattering signal used in the Dp inversion process for internally mixed BC 

and corresponding calculation results from both the LEO fitting and the ML methods. The solid line 

represents the scattering signal obtained by SP2, and the part marked with solid dots is the scattering 

signal input to the ML model. The gray shaded area shows the leading-edge data used in the LEO fitting 

process, and the dashed line represents the scattering signal of the original particle reconstructed by 

LEO fitting.” 

 

3) Although the study uses data from a single site, could the authors discuss the 

expected performance of the model in different environmental conditions or 

geographical regions? For example, how might differences in aerosol composition 

affect results?  

 

Response: Thank you for your suggestion. Operationally, SP2 data calibration is 

essential when conducting measurements in different regions due to variations in 

instrument status. Physical inversion methods inherently require these calibration 

procedures to ensure accuracy across different observational settings. Similarly, 

machine learning algorithms, including our approach, also necessitate comparable 

calibration processes. For instance, increased voltage leads to stronger laser intensity, 

resulting in enhanced SP2 scattering signals, which can cause the model to overestimate 

particle sizes. To address this, a voltage-related calibration function can be introduced 

to adjust the model’s predictions. By integrating these calibrations derived from 

experimental data, we can enhance the model’s robustness and ensure its applicability 

across a wide range of observational settings.  

 

4) Consider adding uncertainty quantification for model predictions. For instance, 

providing confidence intervals for particle size or optical property predictions would 

help assess reliability in practical applications. 

 

Response: Thank you for your comment. We have added an analysis of the prediction 



errors of the BC mixing state inversion model across different particle sizes. By 

examining the distribution of prediction errors for the Dp of internally mixed BC in 

conjunction with the number size distribution (Fig. 5), we demonstrate that the model 

developed in this study achieves high accuracy in the 150–300 nm size range, where 

particles are most concentrated. Furthermore, based on the 25% and 75% percentiles of 

the error distribution, the model’s prediction errors exhibit minimal fluctuation within 

this size range. We have also explained the increased prediction errors at both ends of 

the size distribution. This analysis helps to illustrate the model’s performance across 

different particle size ranges and highlights its strengths and limitations. The added 

analysis can be found on Lines 320 to 333 in the revised manuscript and attached below: 

“To comprehensively assess the model’s performance across different particle size ranges, we 

further analyzed the prediction error distribution for Dp inversion model of internally mixed BC, 

as shown in Fig. 5. For particles smaller than 150 nm, the prediction errors average around 4 

nm, primarily due to the low signal-to-noise ratio of their scattering signals, which introduces 

larger uncertainties in the LEO fitting process. The model exhibits optimal performance for 

particles between 150 nm and 300 nm, with an average prediction error of approximately 1.5 nm. 

Furthermore, based on the 25% and 75% percentiles of the error distribution, the model’s 

prediction errors exhibit minimal fluctuation within this size range. However, prediction errors 

gradually increase with particle size, becoming particularly significant for particles larger than 

480 nm. This trend can be attributed to occasional irregular signals at larger sizes, such as 

scattering or incandescence signals with abnormally broad peak widths. These signal 

irregularities pose challenges to the accurate characterization of particle physical properties, 

affecting both LEO fitting accuracy and ML model predictions, potentially leading to more 

pronounced discrepancies between the two methods. The number size distribution of internally 

mixed BC in the testing set indicates that most particles fall within the 150–300 nm range, where 

the model demonstrates highest accuracy. Although the prediction errors are relatively larger at 

both ends of the size distribution (< 150 nm and > 400 nm), the number of particles in these 

ranges is comparatively small, thus having limited impact on the overall performance of the 

model.” 

 

“Figure 5. The prediction error distribution for Dp inversion model of internally mixed BC, and 

normalized number size distribution for Dp of internally mixed BC in the testing set. The solid lines in 

error distribution represent the median value, the upper and lower boundary of the shaded area is 

between the 25% and 75% quantiles.” 

 



5) The SHAP analysis identifies important features in the scattering and incandescence 

signals. However, the physical relevance of these features (e.g., why certain regions of 

the signal are more predictive) could be discussed more thoroughly. 

 

Response: Thank you for pointing this out. Through SHAP analysis, it can be observed 

that several crucial scattering signal features are distributed near the peak. This part of 

the signal represents a non-linear combination of coating evaporation and incident laser 

intensity changes. The pronounced signal variability within this certain region enables 

the machine learning model to discriminate and extract distinctive features across 

different particles during the training process. 

 

Regarding the important incandescence signal features, they are primarily concentrated 

in the interval spanning from the initial rise of the incandescence signal to its peak 

intensity. The changes in the incandescence signal are closely related to the refractory 

BC component in BC-containing particles, thereby providing insights into the 

comprehensive characteristics of the entire particle.  

 

We have further elaborated on the physical significance of the important features 

indicated by SHAP analysis in the revised manuscript. Specific modifications can be 

found on lines 367 to 371 of the revised manuscript: 

“These six features, located near the peak of the scattering signal, show a positive correlation 

between their values and predicted Dp, as evidenced by their SHAP values. This part of the signal 

represents a non-linear combination of coating evaporation and incident laser intensity changes. 

Although this portion of the scattering signal deviates from the original Gaussian profile, it still 

correlates with the characteristics of the original particle. The intensity of the scattering signal is 

proportional to the particle’s scattering cross-section, more pronounced signals indicate a larger 

scattering cross-section, and consequently, a larger Dp value.”
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Response to the comments in the quick report of Reviewer #2 

(EGUSPHERE-2024-2496) 

 

The manuscript “Inversion Algorithm of Black Carbon Mixing State Based on Machine 

Learning” presents a novel approach for deriving the mixing state of black carbon (BC) 

particles using a machine learning (ML) method, specifically LightGBM, as an 

alternative to traditional physical inversion methods. The work is significant as it 

addresses the challenge of processing large volumes of SP2 data for real-time analysis. 

The integration of SHapley Additive exPlanation (SHAP) for feature importance 

analysis adds a valuable layer of interpretability to the model. This paper presents a 

valuable contribution to the field of atmospheric science, particularly in improving the 

efficiency of BC mixing state analysis through machine learning. With improvements in 

the methodology description, error analysis, and discussion of model limitations, this 

paper could make a stronger impact in its field. However, there are several areas where 

the manuscript could be improved for clarity, reproducibility, and scientific rigor. The 

problems are addressed as following. 

 

Response: We sincerely thank the reviewer’s comprehensive and helpful comments. In 

response, we have refined the manuscript by incorporating more precise definitions of 

different particle types, expanding the methodological description in Section 3 

“Machine-learning-based inversion algorithm”, and enhancing the analysis in the result 

section. Please find our point-by-point responses listed below. The reviewer’s 

comments are in Italic followed by our responses and revisions (in blue). 

 

1) The introduction provides sufficient background on the importance of BC mixing 

states and the challenges of deriving such information from SP2 data. However, the 

transition to the machine learning method feels abrupt. The motivation for choosing 

LightGBM over other machine learning models should be better justified. For instance, 

why was LightGBM preferred over other common models like Random Forest or Neural 

Networks?  

 

Response: This comment aligns with Comment 1 in the main comments of Reviewer 

#2. We appreciate the reviewer’s suggestion and have accordingly expanded the 

introduction to provide more rationale for our choice of LightGBM. Specific 

modifications can be found on Lines 55 to 66 of the revised manuscript, please refer to 

our response to Comment 1 in the main comments of Reviewer #2. 

 

2) Some progresses are made about the complex mixing structures and morphologies 

(Wang et al., 2021b; Wang et al., 2017; Wang et al., 2021a; Pang et al., 2022). This 

should also be mentioned when considering the accuracy of LEO and ML inversion  

 

Response: Thanks for your suggestion. The complex structure and morphology of BC-



containing particles indeed affect the accuracy of the inversion to some extent. We have 

added this information to the result analysis section. 

 

Lines 326 to 329: 

“Furthermore, the complex mixing structures and morphologies of BC-containing particles also 

affect the accuracy of both methods (Pang et al., 2022; Wang et al., 2017, 2021a, b). Given that 

the quantitative impact of these factors is challenging to determine currently, this study does not 

involve discussion related to this aspect, leaving it as a direction for future research.” 

 

3) The description of feature extraction from SP2 signals is somewhat unclear. It is 

mentioned that 45-dimensional data are used, but the criteria for selecting these 

dimensions and their physical significance should be explained more thoroughly.  

 

Response: Thank you for pointing this out. The SP2 signal is recorded based on the 

elapsed time, with each time window corresponding to information about a single 

particle. For each particle, the corresponding original scattering signal and 

incandescence signal are both 100-dimensional. The position of particles within the 

instrument is not known in advance. Among SP2’s four detectors, there is a two-element 

APD (TEAPD) detector. This detector has a gap perpendicular to the particle’s direction 

of motion, resulting in a notch in the TEAPD signal, as shown in Fig. R1a. Given the 

stability of SP2’s optical alignment and constant sample flow rate, this notch provides 

a precise time reference for a particle’s position within the instrument. In practice, the 

signal from the leading element is inverted, transforming the notch into a zero-crossing 

point (Fig. R1b) (Gao et al., 2007). Since SP2 simultaneously records data from all four 

detector channels, this time reference is valid for the signals from the other three 

detectors as well. 

 

Figure R3. (a) The original scattering signal measured by TEAPD before the signal from the leading 

element is inverted. (b) The TEAPD signal obtained by SP2, with the blue asterisk indicating the position 

of the zero-crossing point. 

 

For pure scattering particles, we locate the zero-crossing point in the scattering signal 

and then extract 22 data points both before and after it, creating a 45-dimensional 

feature dataset (Fig. R2a). In this newly constructed 45-dimensional feature signal, 

particles are positioned at consistent locations within the instrument for each 

corresponding dimension, eliminating the influence of laser intensity distribution on the 

scattering signal. 



When inverting the BC core diameter (Dc) of BC-containing particles, since the peak 

intensity of the incandescence signal is positively correlated with the mass of the 

refractory BC component in the particle, the peak of the incandescence signal is 

selected as a reference point, from which 22 data points are extracted both preceding 

and following this point (Fig. R2b), yielding a 45-dimensional feature dataset. This 

method ensures the incandescence signal peaks from different BC-containing particles 

are positioned at the same dimension within the feature dataset, facilitating direct 

comparisons between particles. The optical properties of externally mixed BC are also 

determined by the refractory BC component, so the same feature selection method is 

adopted. 

 

For internally mixed BC, its size and optical cross-section characteristics are reflected 

by both the scattering and incandescence signals. We select scattering features for 

internally mixed BC using the same approach as for pure scattering particles. 

Considering that the relative relationship between the incandescence and scattering 

signals in the original signal can reflect particle characteristics, the incandescence 

signal is selected with 22 data points before and after the zero-crossing point in a similar 

way (Fig. R2c). The 90-dimensional feature signal composed of the selected 45-

dimensional scattering signal and 45-dimensional incandescence signal is used as the 

input feature for the internally mixed BC inversion model. 

 
Figure R4. Relationship between the original SP2 signals (line plots) and the feature signals used in 



machine learning model construction (scatter plots) for different particle types: (a) pure scattering 

particles; (b) externally mixed BC; (c) internally mixed BC. The method for selecting feature signals 

used in inverting the core diameter (Dc) of BC-containing particles is identical to that used for externally 

mixed BC. 

 

We have provided additional descriptions of the principles of signal feature selection 

for different particle types as suggested. The Figs. R1 and R2 presented here have also 

been incorporated into the revised manuscript and Supplement Information to further 

illustrate these principles. Specifically, Fig. R1 has been added as Fig. 3 in the revised 

manuscript, while Fig. R2 has been included as Fig. S1 in the Supplement Information. 

 

Lines 141 to 143: 

“The SP2 signal is recorded based on the elapsed time, with each time window corresponding to 

information about a single particle. For each particle, the original scattering signal and 

incandescence signal are both 100-dimensional. The position of particles within the instrument 

is not known in advance.”  

 

Lines 154 to 162: 

“ As mentioned in Sect. 2.2, one of the four detectors in the SP2 is a split APD detector. This 

detector has a gap perpendicular to the particle’s direction of motion, resulting in a notch in the 

TEAPD signal, as shown in Fig. 3a. Given the stability of SP2’s optical alignment and constant 

sample flow rate, this notch provides a precise time reference for a particle’s position within the 

instrument. In practice, the signal from leading element is inverted, transforming the notch into 

a zero-crossing point (Fig. 3b) (Gao et al., 2007). Since SP2 simultaneously records data from all 

four detector channels, this time reference is valid for the signals from the other three detectors as 

well. We locate the zero-crossing point in the scattering signal and then extract 22 data points 

both before and after it, creating a 45-dimensional feature dataset (Fig. S1a). Through this 

standardization, the differences in signal intensity can be accurately attributed to the inherent 

physical properties of the particles. 

 

Lines 168 to 173: 

Based on this characteristic, the peak of the incandescence signal is selected as a reference point, 

from which 22 data points are extracted both preceding and following this point (Fig. S1b), 

yielding a 45-dimensional feature dataset used for inverting the Dc of BC-containing particles. 

This method ensures the incandescence signal peaks from different BC-containing particles are 

positioned at the same dimension within the feature dataset, facilitating direct comparisons 

between particles while preserving comprehensive information about the incandescence process.  

 

Lines 184 to 189: 

“Compared with other particle types, the internally mixed BC has a more complex structure. … 

Simultaneously, considering that the relative relationship between the original incandescence 

and scattering signals can reflect particle characteristics, such as coating thickness (Moteki and 

Kondo, 2007a; Schwarz et al., 2006; Subramanian et al., 2010), the incandescence signal is 



selected with 22 data points before and after the zero-crossing point in a similar way (Fig. S1c). 

The feature extraction process yields a 90-dimensional feature dataset, comprising 45-

dimensional scattering signal and 45-dimensional incandescence signal, ensuring that we can 

comprehensively capture the key characteristics of internally mixed BC.” 

 

4) The split of the dataset (70/30) for training and testing is standard, but additional 

information on how the dataset was balanced or handled for bias should be included. 

Provide more detail on the characteristics of the training and testing sets (e.g., balance 

of particle types, particle sizes). If any resampling techniques (such as SMOTE) were 

used to handle imbalances, this should be mentioned.  

 

Response: Thank you for your reminder. In this study, the dataset used for machine 

learning comprises 15 days of SP2 field observation data. For each particle type, the 

number of samples used in machine learning reaches an order of 105. The dataset is 

randomly partitioned into training and testing sets with a ratio of 7:3, and this unbiased 

selection method helps improve the reliability and generalizability of the model. To 

demonstrate the effectiveness of this data division, we analyzed the normalized number 

size distributions of particle diameter (Dp) in both the training and testing sets for the 

internally mixed BC inversion model. As shown in Fig. R3, the consistent distributions 

between these two sets validate the rationality of our data partitioning approach. The 

related description and Fig. R3 have been included as Fig. S2 in the Supplement 

Information. 

 

Figure R3. The normalized number size distribution of the training set (black marks and line) and testing 

set (red marks and line) used in the Dp inversion model for internally mixed BC.  

 

5) While the high R² values are impressive, the paper lacks a more detailed error 

analysis. The discussion primarily focuses on RMSE and MAE, but additional insights 

on how these errors are distributed across different particle sizes or conditions would 

enhance the results section. Consider providing a deeper analysis of the error 

distribution, perhaps by including more examples of model underperformance and an 

explanation for these cases. 

 

Response: This comment closely aligns with the suggestions in Comment 4 of 

Reviewer #2’s main comments regarding a deeper analysis of model predictions. In 



response, we have added a more comprehensive prediction error analysis for the Dp 

inversion model of internally mixed BC, as it is the most representative aspect of our 

study. This detailed analysis can be found on Lines 320 to 333 of the revised manuscript. 

For a full discussion of this analysis, please refer to our response to Comment 4 in 

Reviewer #2’s main comments. 

 

6) The traditional processing methods of SP2 detection signals should be discussed in 

detail, such as how externally mixed black carbon is identified, how internally mixed 

black carbon is determined, and the specific methods and principles for calculating Dp 

and Dc. This would help readers better understand the data in the results and discussion 

sections. 

 

Response: Thank you for your suggestion. Operationally, the classification between 

externally and internally mixed BC is determined by the time delay, defined as the time 

difference between the peak of the incandescence signal and the scattering signal. In 

the revised manuscript, we have provided a more detailed explanation of how the 

traditional SP2 signal processing method distinguishes between externally mixed BC 

and internally mixed BC.  

 

The relevant amendments are detailed on Lines 119 to 122: 

“The incandescence signal peak occurs when all non-BC material has evaporated and the BC 

reaches its incandescence temperature, thus the magnitude of 𝜟𝒕 correlates with the thickness 

of the coating on BC particles: a larger 𝜟𝒕 corresponds to a thicker coating that takes longer to 

evaporate. By examining the distribution of 𝛥𝑡 values in the SP2 measurements, as illustrated in 

Fig. 2d (Sedlacek et al., 2012; Subramanian et al., 2010; Zhang et al., 2016), BC-containing 

particles with 𝛥𝑡 < 2 𝜇𝑠 are classified as externally mixed BC (Fig. 2b), while those with 𝛥𝑡 ≥

2 𝜇𝑠 are categorized as internally mixed BC (Fig. 2c).” 

 

In addition, in the “Construction of label dataset” section, we have provided a more 

detailed introduction to the traditional processing methods and principles for inverting 

the particle size of different particle types based on SP2 detection signals.  

 

Lines 196 to 198: 

“To obtain the Dp of pure scattering particles, the scattering signal amplitude is first used to 

determine the particle’s scattering cross-section, which is then compared with that of PSL 

particles of known diameter to determine the Dp.” 

 

Lines 202 to 205: 

“The peak intensity of thermal radiation emitted by the rBC is proportional to its mass (MBC) 

(Moteki and Kondo, 2007b). According to the empirical relationship between the incandescent light 

intensity and the particle mass calibrated using fullerene soot, the MBC of each BC-containing 

particle can be quantified. Assuming a density of 1.8 g cm-3 (Bond and Bergstrom, 2006), the 

measured MBC can be further converted into the mass-equivalent diameter Dc.” 



Lines 208 to 215: 

“As the evaporation of the particle, the scattering signal deviates from a Gaussian distribution, 

making it inappropriate to directly use the scattering amplitude to calculate Dp. To properly size 

these particles, the LEO fitting method is employed to reconstruct the Gaussian signal. As 

described in Sect. 3.3, the zero-crossing point in the TEAPD signal can serve as a position 

reference for particles in the SP2. Moreover, the position difference between the zero-crossing 

point and the peak laser intensity remains constant during measurements. The width of the laser 

intensity distribution and the position of peak laser intensity relative to the zero-crossing point, 

both determined by Gaussian fitting of numerous unsaturated pure scattering particles, are used 

to constrain the LEO fitting, leaving the fitting amplitude as the only free parameter. Using 

leading-edge data from the signal onset to 5% of the maximum laser intensity for LEO fitting, 

can obtain the reconstructed scattering amplitude and further convert it to particle scattering 

cross-section. The Dp of internally mixed BC can be derived by inputting the LEO-fitted scattering 

cross-section, BC core diameter, and the corresponding refractive indices of the core and coating 

into the Mie calculation model (Laborde et al., 2012; Liu et al., 2014; Schwarz et al., 2008; Taylor 

et al., 2015).” 

 

7) Is it possible that the authors provide signal classification and discrimination in the 

machine learning process, including the determination of the zero-crossing point in the 

TEAPD signal, and then match the corresponding machine learning scheme? This 

could eliminate the need for manual preprocessing, making the method more user-

friendly.  

 

Response: Thank you for your suggestion. As mentioned in the “Machine-learning-

based inversion algorithm” section of the manuscript, pure scattering particles and BC-

containing particles are distinguished based on a set threshold for the incandescence 

signal peak amplitude. BC-containing particles are further classified into externally and 

internally mixed BC based on the time delay. The zero-crossing point is obtained 

through interpolation of the TEAPD signal. These processes have been developed into 

a robust algorithm, which can be executed by simply inputting the raw SP2 signals and 

completed in a short time. In the future, we plan to integrate this part with machine 

learning methods to enhance the overall system’s user-friendliness.  

 

8) In Figure 3, there are three types of particles: pure scattering particles, BC 

containing particles, and internally mixed BC; In Figure 4, there are pure scattering 

particles, externally mixed particles, and internally mixed BC. Then, did BC containing 

particles include both internally mixed and surface-attached BC particles? Or did 

internally mixed BC particles excluded surface-attached BC particles? The definition 

should be clear when they were first mentioned.  

 

Response: Thank you for pointing this out. In this study, ambient particles measured 

by SP2 are classified into pure scattering particles and BC-containing particles. Pure 

scattering particles are those that only scatter light without significant absorption, while 

BC-containing particles, which contain refractory BC (rBC), both scatter and absorb 



light. BC-containing particles are further subdivided into externally mixed BC and 

internally mixed BC. Externally mixed BC refers to freshly emitted BC particles that 

have not yet mixed with other aerosol components, while internally mixed BC describes 

BC that has undergone atmospheric aging processes and incorporated with other 

materials (Oshima et al., 2009). The conceptual definitions of these particle types have 

been incorporated into the revised manuscript, specifically elaborated on Lines 110 to 

115. 

 

Operationally, we differentiate the pure scattering particle and BC-containing particle 

depending on whether it has the incandescence signal. BC-containing particles are 

further classified into externally and internally mixed BC based on the time delay.. A 

more comprehensive explanation of these classification criteria is provided in our 

response to Comment 6.  

 

According to the aforementioned definitions for different particle types, the “surface-

attached” BC type you referred to belongs to the internally mixed BC. However, current 

analyses of SP2 signals, such as time delay, remain insufficient to conclusively 

determine particle morphology (Sedlacek et al., 2015). Therefore, we did not make a 

distinction for the “surface-attached” type in this study.  

 

We have provided additional clarification on this point in the revised manuscript, 

specifically on Lines 125 to 127:  

“Additionally, relying solely on time delay may not be sufficient to distinguish certain types of 

BC-containing particles, such as “attached type”(Sedlacek et al., 2015). Therefore, in this study, 

no further classification is made regarding the detailed morphology of BC-containing particles.”  

 

9) Lines 168-169: Why your chose 170 nm as the lower limit for Dp? Please present the 

references. 

 

Response: Thank you for your question. This is determined by the detection limit of 

the SP2. For pure scattering particles, when the Dp is small, the corresponding scattering 

cross-section is insufficient to produce a strong enough scattering signal. These weak 

signals are easily affected by the background noise, and as a result, the particle size 

inverted may not be accurate. During preprocessing, we examined the original 

scattering signals corresponding to pure scattering particles of different sizes. We 

ultimately selected 170 nm as the lower limit for the Dp to ensure the quality of data 

used in the machine learning process (Schwarz et al., 2006; Sedlacek et al., 2015).  

 

We have added the references on Line 228 in the revised manuscript: 

“For the pure scattering particles, the smallest size limit for Dp is set at 170 nm (Schwarz et al., 

2006; Sedlacek et al., 2015).” 

 

10) Figure 3: It seems the particle size inversion of internally mixed BC particles can 

have deviations up to 100 nm. Maybe this deviation is too high, I think. Why this 



happens?  

 

Response: Thank you for your comment. This observed phenomenon is due to 

occasional particles with irregular signals at the large size end, characterized by 

scattering or incandescence signals with peak widths significantly broader than typical 

measurements. In these cases, the physical characteristics of the particles are difficult 

to accurately characterize, which consequently impacts the accuracy of both LEO 

fitting and ML model predictions, potentially introducing more pronounced 

discrepancies between the two methods. 

 

We have incorporated a detailed explanation in the error analysis for the Dp inversion 

of internally mixed BC on Lines 315 to 320 in the revised manuscript. 

“However, prediction errors gradually increase with particle size, becoming particularly 

significant for particles larger than 480 nm. This trend can be attributed to occasional irregular 

signals at larger sizes, such as scattering or incandescence signals with abnormally broad peak 

widths. These signal irregularities pose challenges to the accurate characterization of particle 

physical properties, affecting both LEO fitting accuracy and ML model predictions, potentially 

leading to more pronounced discrepancies between the two methods.” 

 

11) Figure3: Why the pure scattering and internally mixed ones are smaller and none 

of them are ~600 nm. Is that true? The upper limit of the Dc of BC-containing particles 

is up to 600 nm, then why the upper limit of the Dp of internally mixed BC is smaller 

than 600 nm?  

 

Response: Thank you for your question. The SP2 can detect pure scattering particles 

and internally mixed BC with diameters up to 600 nm. However, for relatively large 

particles, the scattered light may exceed the threshold of the scattering signal detector, 

as illustrated in Fig. R4. This figure shows that the scattering signal information for 

such particles is incomplete. While the LEO fitting method can reconstruct the original 

scattering signal, inputting these incomplete signals into machine learning models may 

compromise model performance. Consequently, in this study, particle data with 

saturated scattering signals are not included in the machine learning model. This is 

discussed in the “Construction of label dataset” section. 

 

For BC-containing particles, the BC core diameter (Dc) is calculated using the peak 

intensity of the incandescence signal. This calculation method is relatively 

straightforward, and typically, the incandescence signal does not reach saturation when 

Dc is around 600 nm. As a result, in this study, the Dc of BC-containing particles can 

reach up to 600 nm. 

 

Previous SP2 studies have predominantly focused on pure scattering particles within 

the 200–400 nm range, with Dp of internally mixed BC predominantly distributed below 

500 nm (Huang et al., 2012; Liu et al., 2014; Zhang et al., 2018). The particle samples 

selected for this study cover these ranges. 



 

Figure R4. The scattering and incandescence signals of the saturated particle. 

 

12) Figure 3c: Was the larger deviation due to the complex mixing structures and 

morphologies? When people use core-shell model to calculate the size, they omitted the 

differences of mixing structures and morphologies among individual BC particles. So, 

I think the deviation came from the simplification of the shape model of BC. 

 

Response: Thank you for your comment. BC-containing particles have complex 

structures and morphologies, while traditional physical inversion is based on simplified 

core-shell model assumptions. This simplification may lead to discrepancies between 

machine learning predictions and physical inversion results. However, under current 

field observation conditions, it is challenging to accurately quantify the impact of BC 

structure and morphology on the results. This issue requires more in-depth investigation 

in future studies to better understand and assess the influence of these complex factors 

on inversion results. We have added the relevant explanation on Lines 336 to 339 in the 

revised manuscript. 

 

13) How about the SHAP summary for the Dp and Dc externally mixed BC particles and 

the SHAP for Csca and Cabs for different types of BC particles?  

 

Response: Thank you for your question. According to the definition of externally 

mixed BC, the Dc and Dp of externally mixed BC are identical. As a result, the size 

inversion for externally mixed BC is equivalent to determining the Dc of BC-containing 

particles. Given this equivalence, for externally mixed BC, this research focuses only 

on the inversion of its optical cross-section. 

 

For pure scattering particles, the Dp can be directly retrieved from the scattering 

amplitude. Consequently, in the SHAP analysis results, the feature dimensions 

corresponding to the scattering signal peak are of key importace. Similarly, since the 

refractory BC mass is proportional to the peak value of the incandescence signal, there 

is a strong correlation between the Dc and the amplitude of the incandescence signal. 

This relationship is evident in the SHAP results, where feature dimensions associated 

with the incandescence signal peak demonstrate significant importance. For externally 

mixed BC, the optical cross-sections are calculated using Mie theory based on Dc. 



Therefore, the SHAP analysis results also show that the feature dimensions 

corresponding to the peak position of the incandescence signal are crucial.  

 

The case of internally mixed BC is more complex. Its optical cross-section exhibits a 

complex, non-linear relationship with both scattering and incandescence signals. 

Figures R5a and R5b illustrate the SHAP summary plots for the inversion models of 

absorption and scattering cross-sections of internally mixed BC, respectively. Due to 

the small magnitude of the optical cross-section, the SHAP values shown here have 

been amplified for clarity. The SHAP summary plot for the absorption cross-section of 

internally mixed BC shows that most of the top fifteen important features are related to 

the incandescence signal. Specifically, features BBLG28, BBLG29, and BBLG27, 

corresponding to the feature dimensions near the peak of the incandescence signal, 

contribute most significantly to the absorption cross-section. Among the top fifteen 

features, several features related to the scattering signal (SCLG12 to SCLG15) are also 

present. These features, associated with the peak positions of the scattering signal, 

demonstrate that larger feature values positively contribute to the inversion of the 

absorption cross-section. This phenomenon can be attributed to the “lensing effect” of 

the coating, which enhances the absorption of the BC core (Cappa et al., 2012; Schwarz 

et al., 2008). For the inversion model of the scattering cross-section of internally mixed 

BC, scattering signal features are particularly important, showing a positive correlation 

with the scattering cross-section. Meanwhile, the incandescence signal, which reflects 

the characteristics of the BC core, also plays an important role in the inversion process. 

 

 

Figure R5. The SHAP summary plot for the optical cross-section inversion model of internally mixed 

BC: (a) absorption cross-section; (b) scattering cross-section. 

 

We have supplemented the SHAP results for the inversion models of the optical cross-

section of internally mixed BC in the Supporting Information. While inversion models 

for particle size and optical properties of other particle types typically exhibit relatively 



straightforward relationships between physical properties and signal features. This 

study primarily focuses on the more complex case of internally mixed BC, and does not 

elaborate on the SHAP results of these relatively simple scenarios. 

 

14) Figure 8: Is the axis of this graph logarithmic? 

 

Response: Thank you for your careful review. Indeed, Fig. 8 utilizes a logarithmic scale 

for its axes. To clarify, we have added a clear note in the figure caption specifying that 

the axes are plotted on a logarithmic scale: 

“Figure 10. Distribution of Dp and Dc of internally mixed BC retrieved from the BC mixing state 

inversion model. The main panel is a two-dimensional histogram where the color represents the 

normalized number of particles within a specific size range. Side panels display the normalized 

number size distributions of Dc and Dp, each scaled to its peak value. Both Dp and Dc axes use 

logarithmic scales.” 

 

15) Figure 9: I think the Dp/Dc and Dc values can also be provided. Because these 

values are import for the analyzing of BC aging. 

 

Response: Thank you for your suggestion. We have added the Dp/Dc and Dc values in 

Fig. 9. The revised figure is shown as follows： 



 
“Figure 11. The diurnal cycles of (a) the rBC mass concentration; (b) the relative number fraction of 

BC-containing particles to the total number of particles; (c–e) the coating thickness, Dp/Dc, and Dc 

values of internally mixed BC. The solid lines represent the median value. The upper and lower 

boundary of the shaded area is between the 25% and 75% quantiles.” 
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Response to the comments of Xiaolong Fan (EGUSPHERE-2024-2496) 

 

The Single-particle soot photometer (SP2) is a widely recognized instrument for 

quantifying the mixing state of black carbon (BC). However, deriving BC mixing state 

from SP2 measurements remains challenging. This study introduces a user-friendly SP2 

inversion method based on machine learning. Notably, the machine learning approach 

does not merely replicate the results of physical inversion methods but also utilizes 

previously unexploited signals. It overcomes the low signal-to-noise ratio issue in input 

signal prevalent in conventional methods. This advancement will benefit the 

development of BC mixing state observations and radiative effect assessments. Overall, 

the manuscript is well-organized, and I recommend its publication after minor revisions. 

 

Response: We are grateful for the reviewer’s valuable comments. We have carefully 

revised the manuscript by: (1) adding a detailed analysis of the model’s performance 

across different particle diameter ranges, (2) including a comprehensive comparison of 

inversion results between training and testing sets in the Supplementary Information, 

and (3) enhancing the introduction section with a detailed rationale for selecting the 

LightGBM algorithm. Please find our responses (blue text) to the comments (black text) 

below. 

 

1) There appears to be a correlation between the deviation of predicted values from the 

true values and particle size, as observed in Figure 3c. It would be beneficial to further 

characterize the relationship between prediction accuracy and particle diameter (Dp). 

This analysis could provide valuable insights into the model’s performance across 

different particle size ranges and potentially identify any systematic biases or 

limitations in the prediction methodology. 

 

Response: Thank you for pointing this out. We have added a comprehensive prediction 

error analysis for the Dp inversion model of internally mixed BC to further characterize 

the relationship between prediction accuracy and Dp. The added analysis can be found 

on Lines 310 to 323 in the revised manuscript and attached below: 

“To comprehensively assess the model’s performance across different particle size ranges, we 

further analyzed the prediction error distribution for Dp inversion model of internally mixed BC, 

as shown in Fig. 5. For particles smaller than 150 nm, the prediction errors average around 4 

nm, primarily due to the low signal-to-noise ratio of their scattering signals, which introduces 

larger uncertainties in the LEO fitting process. The model exhibits optimal performance for 

particles between 150 nm and 300 nm, with an average prediction error of approximately 1.5 nm. 

Furthermore, based on the 25% and 75% percentiles of the error distribution, the model’s 

prediction errors exhibit minimal fluctuation within this size range. However, prediction errors 

gradually increase with particle size, becoming particularly significant for particles larger than 

480 nm. This trend can be attributed to occasional irregular signals at larger sizes, such as 

scattering or incandescence signals with abnormally broad peak widths. These signal 

irregularities pose challenges to the accurate characterization of particle physical properties, 



affecting both LEO fitting accuracy and ML model predictions, potentially leading to more 

pronounced discrepancies between the two methods. The number size distribution of internally 

mixed BC in the testing set indicates that most particles fall within the 150–300 nm range, where 

the model demonstrates highest accuracy. Although the prediction errors are relatively larger at 

both ends of the size distribution (< 150 nm and > 400 nm), the number of particles in these 

ranges is comparatively small, thus having limited impact on the overall performance of the 

model.” 

 

“Figure 5. The prediction error distribution for Dp inversion model of internally mixed BC, and 

normalized number size distribution for Dp of internally mixed BC in the testing set. The solid lines in 

error distribution represent the median value, the upper and lower boundary of the is between the 25 % 

and 75 % quantiles.” 

 

2) Does the deviation between the predicted values and the true values refer to the test 

set, or does it also occur in the training set? What could be the underlying reasons for 

this? Please clarify. 

 

Response: Thank you for your question. The observed deviation between predicted and 

true values exists in both training and testing sets. As shown in Figure R1, the 

coefficients of determination R² for the training and testing sets are 0.99 and 0.98, 

respectively. These high R² values indicate excellent model performance, with the close 

R² values demonstrating the model’s strong predictive capability and good 

generalization performance.  

 

Figure R5. The Dp inversion results of internally mixed BC for both training set (a) and testing set (b). 

 



The SP2 measurement process introduces intrinsic variability primarily through 

instrument background noise and measurement uncertainties. These factors contribute 

to inevitable errors and challenges in achieving high-precision measurements, even 

when employing advanced algorithms like LightGBM. Additionally, BC-containing 

particles exhibit complex signal characteristics marked by non-linear relationships, 

varying core-shell structures, and signal-to-noise ratio limitations, particularly for both 

ends of the particle size distribution, as we discussed in our response to Comment 1. 

These complexities affect both traditional physical inversion methods and machine 

learning predictions, leading to discrepancies between the “true” values (which have 

been renamed as “observed values” in the revised manuscript) obtained from physical 

inversion and the predicted values from machine learning models.  

 

Furthermore, it’s important to note that the LEO fitting method and ML method utilize 

different parts of the original signals, which can lead to discrepancies in Dp values. We 

conducted a comprehensive comparison between the LEO fitting method and the 

machine learning method, elaborating on the differences in signal utilization between 

the two approaches and their impact on inversion results. A detailed discussion can be 

found on Lines 395 to 402 of the revised manuscript. Moreover, the Fig. R1 and related 

content have been added as Fig. S3 to the Supplementary Information. 

 

Lines 393 to 400: 

“Figure 9 illustrates the LEO fitting results for two different BC-containing particles. Despite nearly 

identical leading-edge data resulting in similar Gaussian distributions and consequently the same 

Dp values through LEO fitting, the complete scattering signals of these particles exhibit significant 

differences. The ML model, by incorporating these distinctive signal features, can effectively capture 

these variations, leading to different Dp predictions. Moreover, the leading edge is traditionally 

defined as the signal from baseline-subtracted zero up to 5 % of the maximum laser intensity (Taylor 

et al., 2015). As shown in Fig. 9, this portion of the signal (in the grey-shaded area) is close to the 

baseline, making it particularly susceptible to noise interference. Compared to LEO fitting method, 

the ML model utilized a broad range of signals with a high signal-to-noise ratio, demonstrating 

enhanced noise resistance.” 



 

“Figure 9. Comparison of the scattering signal used in the Dp inversion process for internally mixed BC 

and corresponding calculation results from both the LEO fitting and the ML methods. The solid line 

represents the scattering signal obtained by SP2, and the part marked with solid dots is the scattering 

signal input to the ML model. The gray shaded area shows the leading-edge data used in the LEO fitting 

process, and the dashed line represents the scattering signal of the original particle reconstructed by 

LEO fitting.” 

 

3) Does the inversion of Dc and Dp in BC-containing particles utilize multiple outputs 

from the same trained model, or from different models? Additionally, does Dc influence 

the inversion of Dp? 

 

Response: Thank you for your comment. This study employs different inversion 

models for Dp and Dc of BC-containing particles. Although both models are founded 

on the LightGBM algorithm, they are developed independently due to their distinct 

feature data and target variables. The Dc inversion model uses only incandescence 

signals as features, while the Dp inversion model incorporates both incandescence and 

scattering signals. Consequently, two separate models with different hyperparameters 

are required to establish unique mappings between their respective input signals and 

particle characteristics. 

 

For internally mixed BC, Dc influences the inversion of Dp. In the traditional physical 

inversion method, we first obtain the peak height of the reconstructed scattering signal 

through LEO fitting, and then derive the scattering cross-section. This scattering cross-

section is determined by both the BC core and coating material. Consequently, Dc needs 

to be integrated with Mie theory to accurately estimate Dp. A detailed introduction of 

this method is provided in the “Construction of label dataset” section of the revised 

manuscript. 

 

In our machine learning method, we similarly consider the influence of Dc. The 



characteristics of the BC core in internally mixed BC are reflected in the incandescence 

signal. Therefore, when constructing the Dp inversion model for internally mixed BC, 

we incorporate both scattering signals and incandescence signals as feature data. This 

methodology allows us to capture the influence of both the BC core and the coating on 

the overall particle size, enabling a more accurate prediction of Dp for BC-containing 

particles. 

 

Lines 208 to 215: 

“As the evaporation of the particle, the scattering signal deviates from a Gaussian distribution, 

making it inappropriate to directly use the scattering amplitude to calculate Dp. To properly size 

these particles, the LEO fitting method is employed to reconstruct the Gaussian signal. As 

described in Sect. 3.3, the zero-crossing point in the TEAPD signal can serve as a position 

reference for particles in the SP2. Moreover, the position difference between the zero-crossing 

point and the peak laser intensity remains constant during measurements. The width of the laser 

intensity distribution and the position of peak laser intensity relative to the zero-crossing point, 

both determined by Gaussian fitting of numerous unsaturated pure scattering particles, are used 

to constrain the LEO fitting, leaving the fitting amplitude as the only free parameter. Using 

leading-edge data from the signal onset to 5% of the maximum laser intensity for LEO fitting, 

can obtain the reconstructed scattering amplitude and further convert it to particle scattering 

cross-section. The Dp of internally mixed BC can be derived by inputting the LEO-fitted scattering 

cross-section, BC core diameter, and the corresponding refractive indices of the core and coating 

into the Mie calculation model (Laborde et al., 2012; Liu et al., 2014; Schwarz et al., 2008; Taylor 

et al., 2015).” 

 

4) Could you elaborate on the rationale behind selecting LightGBM over alternative 

models? 

 

Response: Thank you for your suggestion. We have provided a more comprehensive 

rationale for selecting LightGBM over alternative models in the introduction of the 

revised manuscript. 

 

The relevant amendments are detailed on Lines 55 to 66: 

“As an alternative, data-driven models such as machine learning (ML) can provide a good 

supplement to physical process-based models. ML can efficiently capture the nonlinear relationship 

between inputs and outputs, and has found widespread application in various fields (Carleo et al., 

2019; Jordan and Mitchell, 2015; Liakos et al., 2018; Tarca et al., 2007). In recent years, tree-

based machine learning models have gained considerable popularity due to their extremely high 

computational speed, satisfactory accuracy, and interpretability (Keller and Evans, 2019; Li et 

al., 2022; Wei et al., 2021; Yang et al., 2020). Among these, the Light Gradient Boosting Machine 

(LightGBM) has shown particularly outstanding performance. As a novel distributed gradient 

boosting framework based on decision tree algorithms, LightGBM can extract information from 

data more effectively than traditional tree models, excelling in handling complex non-linear 

relationships and high-dimensional features (Ke et al., 2017; Liu et al., 2024; Zhong et al., 2021). 

It employs innovative techniques such as gradient-based one-side sampling (GOSS) and exclusive 



feature bundling (EFB), which significantly improve computational efficiency while maintaining 

high predictive performance (Ke et al., 2017; Sun et al., 2020). Furthermore, different from some 

black-box models, LightGBM maintains the interpretability characteristic of tree-based models 

(Gan et al., 2021; Zhang et al., 2019), which can provide decision path analysis, allowing for 

deeper insights into the decision-making process. Considering these advantages, LightGBM can 

be an ideal tool for analyzing large SP2 datasets and inverting BC mixing states.” 
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