
Response to the comments of Xiaolong Fan (EGUSPHERE-2024-2496) 

 

The Single-particle soot photometer (SP2) is a widely recognized instrument for 

quantifying the mixing state of black carbon (BC). However, deriving BC mixing state 

from SP2 measurements remains challenging. This study introduces a user-friendly SP2 

inversion method based on machine learning. Notably, the machine learning approach 

does not merely replicate the results of physical inversion methods but also utilizes 

previously unexploited signals. It overcomes the low signal-to-noise ratio issue in input 

signal prevalent in conventional methods. This advancement will benefit the 

development of BC mixing state observations and radiative effect assessments. Overall, 

the manuscript is well-organized, and I recommend its publication after minor revisions. 

 

Response: We are grateful for the reviewer’s valuable comments. We have carefully 

revised the manuscript by: (1) adding a detailed analysis of the model’s performance 

across different particle diameter ranges, (2) including a comprehensive comparison of 

inversion results between training and testing sets in the Supplementary Information, 

and (3) enhancing the introduction section with a detailed rationale for selecting the 

LightGBM algorithm. Please find our responses (blue text) to the comments (black text) 

below. 

 

1) There appears to be a correlation between the deviation of predicted values from the 

true values and particle size, as observed in Figure 3c. It would be beneficial to further 

characterize the relationship between prediction accuracy and particle diameter (Dp). 

This analysis could provide valuable insights into the model’s performance across 

different particle size ranges and potentially identify any systematic biases or 

limitations in the prediction methodology. 

 

Response: Thank you for pointing this out. We have added a comprehensive prediction 

error analysis for the Dp inversion model of internally mixed BC to further characterize 

the relationship between prediction accuracy and Dp. The added analysis can be found 

on Lines 310 to 323 in the revised manuscript and attached below: 

“To comprehensively assess the model’s performance across different particle size ranges, we 

further analyzed the prediction error distribution for Dp inversion model of internally mixed BC, 

as shown in Fig. 5. For particles smaller than 150 nm, the prediction errors average around 4 

nm, primarily due to the low signal-to-noise ratio of their scattering signals, which introduces 

larger uncertainties in the LEO fitting process. The model exhibits optimal performance for 

particles between 150 nm and 300 nm, with an average prediction error of approximately 1.5 nm. 

Furthermore, based on the 25% and 75% percentiles of the error distribution, the model’s 

prediction errors exhibit minimal fluctuation within this size range. However, prediction errors 

gradually increase with particle size, becoming particularly significant for particles larger than 

480 nm. This trend can be attributed to occasional irregular signals at larger sizes, such as 

scattering or incandescence signals with abnormally broad peak widths. These signal 

irregularities pose challenges to the accurate characterization of particle physical properties, 



affecting both LEO fitting accuracy and ML model predictions, potentially leading to more 

pronounced discrepancies between the two methods. The number size distribution of internally 

mixed BC in the testing set indicates that most particles fall within the 150–300 nm range, where 

the model demonstrates highest accuracy. Although the prediction errors are relatively larger at 

both ends of the size distribution (< 150 nm and > 400 nm), the number of particles in these 

ranges is comparatively small, thus having limited impact on the overall performance of the 

model.” 

 

“Figure 5. The prediction error distribution for Dp inversion model of internally mixed BC, and 

normalized number size distribution for Dp of internally mixed BC in the testing set. The solid lines in 

error distribution represent the median value, the upper and lower boundary of the is between the 25 % 

and 75 % quantiles.” 

 

2) Does the deviation between the predicted values and the true values refer to the test 

set, or does it also occur in the training set? What could be the underlying reasons for 

this? Please clarify. 

 

Response: Thank you for your question. The observed deviation between predicted and 

true values exists in both training and testing sets. As shown in Figure R1, the 

coefficients of determination R² for the training and testing sets are 0.99 and 0.98, 

respectively. These high R² values indicate excellent model performance, with the close 

R² values demonstrating the model’s strong predictive capability and good 

generalization performance.  

 

Figure R1. The Dp inversion results of internally mixed BC for both training set (a) and testing set (b). 

 



The SP2 measurement process introduces intrinsic variability primarily through 

instrument background noise and measurement uncertainties. These factors contribute 

to inevitable errors and challenges in achieving high-precision measurements, even 

when employing advanced algorithms like LightGBM. Additionally, BC-containing 

particles exhibit complex signal characteristics marked by non-linear relationships, 

varying core-shell structures, and signal-to-noise ratio limitations, particularly for both 

ends of the particle size distribution, as we discussed in our response to Comment 1. 

These complexities affect both traditional physical inversion methods and machine 

learning predictions, leading to discrepancies between the “true” values (which have 

been renamed as “observed values” in the revised manuscript) obtained from physical 

inversion and the predicted values from machine learning models.  

 

Furthermore, it’s important to note that the LEO fitting method and ML method utilize 

different parts of the original signals, which can lead to discrepancies in Dp values. We 

conducted a comprehensive comparison between the LEO fitting method and the 

machine learning method, elaborating on the differences in signal utilization between 

the two approaches and their impact on inversion results. A detailed discussion can be 

found on Lines 395 to 402 of the revised manuscript. Moreover, the Fig. R1 and related 

content have been added as Fig. S3 to the Supplementary Information. 

 

Lines 393 to 400: 

“Figure 9 illustrates the LEO fitting results for two different BC-containing particles. Despite nearly 

identical leading-edge data resulting in similar Gaussian distributions and consequently the same 

Dp values through LEO fitting, the complete scattering signals of these particles exhibit significant 

differences. The ML model, by incorporating these distinctive signal features, can effectively capture 

these variations, leading to different Dp predictions. Moreover, the leading edge is traditionally 

defined as the signal from baseline-subtracted zero up to 5 % of the maximum laser intensity (Taylor 

et al., 2015). As shown in Fig. 9, this portion of the signal (in the grey-shaded area) is close to the 

baseline, making it particularly susceptible to noise interference. Compared to LEO fitting method, 

the ML model utilized a broad range of signals with a high signal-to-noise ratio, demonstrating 

enhanced noise resistance.” 



 

“Figure 9. Comparison of the scattering signal used in the Dp inversion process for internally mixed BC 

and corresponding calculation results from both the LEO fitting and the ML methods. The solid line 

represents the scattering signal obtained by SP2, and the part marked with solid dots is the scattering 

signal input to the ML model. The gray shaded area shows the leading-edge data used in the LEO fitting 

process, and the dashed line represents the scattering signal of the original particle reconstructed by 

LEO fitting.” 

 

3) Does the inversion of Dc and Dp in BC-containing particles utilize multiple outputs 

from the same trained model, or from different models? Additionally, does Dc influence 

the inversion of Dp? 

 

Response: Thank you for your comment. This study employs different inversion 

models for Dp and Dc of BC-containing particles. Although both models are founded 

on the LightGBM algorithm, they are developed independently due to their distinct 

feature data and target variables. The Dc inversion model uses only incandescence 

signals as features, while the Dp inversion model incorporates both incandescence and 

scattering signals. Consequently, two separate models with different hyperparameters 

are required to establish unique mappings between their respective input signals and 

particle characteristics. 

 

For internally mixed BC, Dc influences the inversion of Dp. In the traditional physical 

inversion method, we first obtain the peak height of the reconstructed scattering signal 

through LEO fitting, and then derive the scattering cross-section. This scattering cross-

section is determined by both the BC core and coating material. Consequently, Dc needs 

to be integrated with Mie theory to accurately estimate Dp. A detailed introduction of 

this method is provided in the “Construction of label dataset” section of the revised 

manuscript. 

 

In our machine learning method, we similarly consider the influence of Dc. The 



characteristics of the BC core in internally mixed BC are reflected in the incandescence 

signal. Therefore, when constructing the Dp inversion model for internally mixed BC, 

we incorporate both scattering signals and incandescence signals as feature data. This 

methodology allows us to capture the influence of both the BC core and the coating on 

the overall particle size, enabling a more accurate prediction of Dp for BC-containing 

particles. 

 

Lines 208 to 215: 

“As the evaporation of the particle, the scattering signal deviates from a Gaussian distribution, 

making it inappropriate to directly use the scattering amplitude to calculate Dp. To properly size 

these particles, the LEO fitting method is employed to reconstruct the Gaussian signal. As 

described in Sect. 3.3, the zero-crossing point in the TEAPD signal can serve as a position 

reference for particles in the SP2. Moreover, the position difference between the zero-crossing 

point and the peak laser intensity remains constant during measurements. The width of the laser 

intensity distribution and the position of peak laser intensity relative to the zero-crossing point, 

both determined by Gaussian fitting of numerous unsaturated pure scattering particles, are used 

to constrain the LEO fitting, leaving the fitting amplitude as the only free parameter. Using 

leading-edge data from the signal onset to 5% of the maximum laser intensity for LEO fitting, 

can obtain the reconstructed scattering amplitude and further convert it to particle scattering 

cross-section. The Dp of internally mixed BC can be derived by inputting the LEO-fitted scattering 

cross-section, BC core diameter, and the corresponding refractive indices of the core and coating 

into the Mie calculation model (Laborde et al., 2012; Liu et al., 2014; Schwarz et al., 2008; Taylor 

et al., 2015).” 

 

4) Could you elaborate on the rationale behind selecting LightGBM over alternative 

models? 

 

Response: Thank you for your suggestion. We have provided a more comprehensive 

rationale for selecting LightGBM over alternative models in the introduction of the 

revised manuscript. 

 

The relevant amendments are detailed on Lines 55 to 66: 

“As an alternative, data-driven models such as machine learning (ML) can provide a good 

supplement to physical process-based models. ML can efficiently capture the nonlinear relationship 

between inputs and outputs, and has found widespread application in various fields (Carleo et al., 

2019; Jordan and Mitchell, 2015; Liakos et al., 2018; Tarca et al., 2007). In recent years, tree-

based machine learning models have gained considerable popularity due to their extremely high 

computational speed, satisfactory accuracy, and interpretability (Keller and Evans, 2019; Li et 

al., 2022; Wei et al., 2021; Yang et al., 2020). Among these, the Light Gradient Boosting Machine 

(LightGBM) has shown particularly outstanding performance. As a novel distributed gradient 

boosting framework based on decision tree algorithms, LightGBM can extract information from 

data more effectively than traditional tree models, excelling in handling complex non-linear 

relationships and high-dimensional features (Ke et al., 2017; Liu et al., 2024; Zhong et al., 2021). 

It employs innovative techniques such as gradient-based one-side sampling (GOSS) and exclusive 



feature bundling (EFB), which significantly improve computational efficiency while maintaining 

high predictive performance (Ke et al., 2017; Sun et al., 2020). Furthermore, different from some 

black-box models, LightGBM maintains the interpretability characteristic of tree-based models 

(Gan et al., 2021; Zhang et al., 2019), which can provide decision path analysis, allowing for 

deeper insights into the decision-making process. Considering these advantages, LightGBM can 

be an ideal tool for analyzing large SP2 datasets and inverting BC mixing states.” 
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