
Response to the comments of Reviewer #2 (EGUSPHERE-2024-2496) 

 

This manuscript presents an innovative and practical approach to deriving black 

carbon (BC) mixing states using a machine learning (ML) framework, specifically 

LightGBM. The integration of SHAP analysis for interpretability and the application of 

the model to real-world data significantly enhance its relevance. The study is 

methodologically sound, with comprehensive results demonstrating the model’s 

robustness and applicability. With previous comments addressed, further minor 

clarifications, particularly in defining particle categories and expanding on error 

analysis, will further enhance the paper’s clarity and scientific rigor. Overall, this is a 

strong contribution to the field and can be published after minor revisions. 

 

Response: We appreciate the reviewer’s kind effort and constructive comments. All 

suggested improvements have been carefully implemented in the revised manuscript. 

We have expanded the rationale for choosing LightGBM algorithm in the introduction 

section, analyzed the prediction error distribution of the BC mixing state inversion 

model across different particle sizes, and provided a more detailed explanation of the 

physical significance corresponding to the important signal feature indicated by the 

SHAP results. Please find our point-by-point responses listed below. The reviewer’s 

comments are in Italic followed by our responses and revisions (in blue). 

 

Main Comments: 

 

1) Line 15-20: Briefly explain why LightGBM was chosen over other models like 

Random Forest or Neural Networks. Highlight its advantages for handling large 

datasets or nonlinear relationships. 

 

Response: Thank you for your comment. We have expanded the rationale for choosing 

the LightGBM algorithm in the introduction section of the revised manuscript. 

Regarding the abstract, we have made a brief supplement to address this point as well. 

 

The relevant amendments of the introduction are detailed on Lines 55 to 66 : 

“As an alternative, data-driven models such as machine learning (ML) can provide a good 

supplement to physical process-based models. ML can efficiently capture the nonlinear relationship 

between inputs and outputs, and has found widespread application in various fields (Carleo et al., 

2019; Jordan and Mitchell, 2015; Liakos et al., 2018; Tarca et al., 2007). In recent years, tree-

based machine learning models have gained considerable popularity due to their extremely high 

computational speed, satisfactory accuracy, and interpretability (Keller and Evans, 2019; Li et 

al., 2022; Wei et al., 2021; Yang et al., 2020). Among these, the Light Gradient Boosting Machine 

(LightGBM) has shown particularly outstanding performance. As a novel distributed gradient 

boosting framework based on decision tree algorithms, LightGBM can extract information from 

data more effectively than traditional tree models, excelling in handling complex non-linear 

relationships and high-dimensional features (Ke et al., 2017; Liu et al., 2024; Zhong et al., 2021). 



It employs innovative techniques such as gradient-based one-side sampling (GOSS) and exclusive 

feature bundling (EFB), which significantly improve computational efficiency while maintaining 

high predictive performance (Ke et al., 2017; Sun et al., 2020). Furthermore, different from some 

black-box models, LightGBM maintains the interpretability characteristic of tree-based models 

(Gan et al., 2021; Zhang et al., 2019), which can provide decision path analysis, allowing for 

deeper insights into the decision-making process. Considering these advantages, LightGBM can 

be an ideal tool for analyzing large SP2 datasets and inverting BC mixing states.” 

 

Lines 20 in abstract: 

“However, the derivation of BC mixing state from SP2 is quite challenging. Since the SP2 records 

individual particle signals, it requires complex data processing to convert raw signals into particle 

size and mixing states. Besides, the rapid accumulation of substantial data volumes impedes real-

time analysis of BC mixing states. This study employs a light gradient boosting machine (LightGBM), 

an advanced tree-based ensemble learning algorithm, to establish an inversion model which 

directly correlates SP2 signals with the mixing state of BC-containing particles.” 

 

2) Expand the discussion on how this method improves upon or complements existing 

techniques, such as the LEO fitting method or other machine learning approaches. For 

example, what specific challenges of previous methods (e.g., noise resistance, 

scalability) does this model overcome?  

 

Response: Thank you for your suggestion. A comparison between the LEO fitting 

results and machine learning results is shown in Fig. 9. As we discussed in the 

manuscript, the machine learning method utilizes more complete SP2 signals, enabling 

a more comprehensive characterization of particles. Furthermore, the signals used in 

the machine learning method have a higher signal-to-noise ratio, making it more robust 

against background noise compared to the LEO fitting method. The detailed discussion 

can be found on Lines 393 to 400 of the revised manuscript and attached below: 

“Figure 9 illustrates the LEO fitting results for two different BC-containing particles. Despite nearly 

identical leading-edge data resulting in similar Gaussian distributions and consequently the same 

Dp values through LEO fitting, the complete scattering signals of these particles exhibit significant 

differences. The ML model, by incorporating these distinctive signal features, can effectively capture 

these variations, leading to different Dp predictions. Moreover, the leading edge is traditionally 

defined as the signal from baseline-subtracted zero up to 5 % of the maximum laser intensity (Taylor 

et al., 2015). As shown in Fig. 9, this portion of the signal (in the grey-shaded area) is close to the 

baseline, making it particularly susceptible to noise interference. Compared to LEO fitting method, 

the ML model utilized a broad range of signals with a high signal-to-noise ratio, demonstrating 

enhanced noise resistance.” 



 

“Figure 9. Comparison of the scattering signal used in the Dp inversion process for internally mixed BC 

and corresponding calculation results from both the LEO fitting and the ML methods. The solid line 

represents the scattering signal obtained by SP2, and the part marked with solid dots is the scattering 

signal input to the ML model. The gray shaded area shows the leading-edge data used in the LEO fitting 

process, and the dashed line represents the scattering signal of the original particle reconstructed by 

LEO fitting.” 

 

3) Although the study uses data from a single site, could the authors discuss the 

expected performance of the model in different environmental conditions or 

geographical regions? For example, how might differences in aerosol composition 

affect results?  

 

Response: Thank you for your suggestion. Operationally, SP2 data calibration is 

essential when conducting measurements in different regions due to variations in 

instrument status. Physical inversion methods inherently require these calibration 

procedures to ensure accuracy across different observational settings. Similarly, 

machine learning algorithms, including our approach, also necessitate comparable 

calibration processes. For instance, increased voltage leads to stronger laser intensity, 

resulting in enhanced SP2 scattering signals, which can cause the model to overestimate 

particle sizes. To address this, a voltage-related calibration function can be introduced 

to adjust the model’s predictions. By integrating these calibrations derived from 

experimental data, we can enhance the model’s robustness and ensure its applicability 

across a wide range of observational settings.  

 

4) Consider adding uncertainty quantification for model predictions. For instance, 

providing confidence intervals for particle size or optical property predictions would 

help assess reliability in practical applications. 

 

Response: Thank you for your comment. We have added an analysis of the prediction 



errors of the BC mixing state inversion model across different particle sizes. By 

examining the distribution of prediction errors for the Dp of internally mixed BC in 

conjunction with the number size distribution (Fig. 5), we demonstrate that the model 

developed in this study achieves high accuracy in the 150–300 nm size range, where 

particles are most concentrated. Furthermore, based on the 25% and 75% percentiles of 

the error distribution, the model’s prediction errors exhibit minimal fluctuation within 

this size range. We have also explained the increased prediction errors at both ends of 

the size distribution. This analysis helps to illustrate the model’s performance across 

different particle size ranges and highlights its strengths and limitations. The added 

analysis can be found on Lines 320 to 333 in the revised manuscript and attached below: 

“To comprehensively assess the model’s performance across different particle size ranges, we 

further analyzed the prediction error distribution for Dp inversion model of internally mixed BC, 

as shown in Fig. 5. For particles smaller than 150 nm, the prediction errors average around 4 

nm, primarily due to the low signal-to-noise ratio of their scattering signals, which introduces 

larger uncertainties in the LEO fitting process. The model exhibits optimal performance for 

particles between 150 nm and 300 nm, with an average prediction error of approximately 1.5 nm. 

Furthermore, based on the 25% and 75% percentiles of the error distribution, the model’s 

prediction errors exhibit minimal fluctuation within this size range. However, prediction errors 

gradually increase with particle size, becoming particularly significant for particles larger than 

480 nm. This trend can be attributed to occasional irregular signals at larger sizes, such as 

scattering or incandescence signals with abnormally broad peak widths. These signal 

irregularities pose challenges to the accurate characterization of particle physical properties, 

affecting both LEO fitting accuracy and ML model predictions, potentially leading to more 

pronounced discrepancies between the two methods. The number size distribution of internally 

mixed BC in the testing set indicates that most particles fall within the 150–300 nm range, where 

the model demonstrates highest accuracy. Although the prediction errors are relatively larger at 

both ends of the size distribution (< 150 nm and > 400 nm), the number of particles in these 

ranges is comparatively small, thus having limited impact on the overall performance of the 

model.” 

 

“Figure 5. The prediction error distribution for Dp inversion model of internally mixed BC, and 

normalized number size distribution for Dp of internally mixed BC in the testing set. The solid lines in 

error distribution represent the median value, the upper and lower boundary of the shaded area is 

between the 25% and 75% quantiles.” 

 



5) The SHAP analysis identifies important features in the scattering and incandescence 

signals. However, the physical relevance of these features (e.g., why certain regions of 

the signal are more predictive) could be discussed more thoroughly. 

 

Response: Thank you for pointing this out. Through SHAP analysis, it can be observed 

that several crucial scattering signal features are distributed near the peak. This part of 

the signal represents a non-linear combination of coating evaporation and incident laser 

intensity changes. The pronounced signal variability within this certain region enables 

the machine learning model to discriminate and extract distinctive features across 

different particles during the training process. 

 

Regarding the important incandescence signal features, they are primarily concentrated 

in the interval spanning from the initial rise of the incandescence signal to its peak 

intensity. The changes in the incandescence signal are closely related to the refractory 

BC component in BC-containing particles, thereby providing insights into the 

comprehensive characteristics of the entire particle.  

 

We have further elaborated on the physical significance of the important features 

indicated by SHAP analysis in the revised manuscript. Specific modifications can be 

found on lines 367 to 371 of the revised manuscript: 

“These six features, located near the peak of the scattering signal, show a positive correlation 

between their values and predicted Dp, as evidenced by their SHAP values. This part of the signal 

represents a non-linear combination of coating evaporation and incident laser intensity changes. 

Although this portion of the scattering signal deviates from the original Gaussian profile, it still 

correlates with the characteristics of the original particle. The intensity of the scattering signal is 

proportional to the particle’s scattering cross-section, more pronounced signals indicate a larger 

scattering cross-section, and consequently, a larger Dp value.”
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