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Abstract. Satellite observations of the total column dry-air CO2 (XCO2) have been proven to support 10 

the monitoring and constraining of fossil fuel CO2 (ffCO2) emissions at the urban scale. We utilized the 11 

XCO2 retrieval data from China’s first laser carbon satellite dedicated to comprehensive atmospheric 12 

environmental monitoring, DQ-1, in conjunction with a high-resolution transport model and a Bayesian 13 

inversion system, to establish a system for quantifying and detecting CO2 emissions in urban areas. 14 

Additionally, we quantified the impact of uncertainties from satellite measurements, transport models, 15 

and biospheric fluxes on emission inversions. To address uncertainties from the transport model, we 16 

introduced random wind direction and speed errors to the ffCO2 plumes and conducted 104 simulations 17 

to obtain the error distribution. In our pseudo-data experiments, ODIAC overestimated fossil fuel 18 

emissions for Beijing and Riyadh, while underestimating emissions for Cairo. Specifically, we simulated 19 

Beijing and leveraged DQ-1’s active remote sensing capabilities, utilizing its rapid day-night revisit 20 

ability. We assessed the impact of daily biospheric fluxes on ffXCO2 enhancements and further analyzed 21 

the diurnal variations of biospheric flux impacts on local XCO2 enhancements using three-hourly 22 

average NEE data. The results indicate that a significant proportion of local XCO2 enhancements are 23 

notably influenced by biospheric CO2 variations, potentially leading to substantial biases in ffCO2 24 

emission estimates. Moreover, considering biospheric flux variations separately under day and night 25 

conditions can improve simulation accuracy by 20-70%. With appropriate representations of uncertainty 26 

components and a sufficient number of satellite tracks, our constructed system can be used to quantify 27 

and constrain urban ffCO2 emissions effectively. 28 

1 Introduction 29 

More than 170 countries have signed the Paris Agreement, vowing to keep the global average temperature 30 

increase within 2 degrees Celsius in this century. Accurate carbon accounting is the basis for any 31 

mitigation measures. Over 70% of the anthropogenic CO2 emissions are from urban areas (Birol, 2010). 32 

It is thus critical to develop effective means to estimate urban CO2 emissions accurately. “bottom-up” 33 

(inventory) approaches have shown good performances in developed countries such as U.S.A and E.U 34 
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(Crippa et al., 2018; Kevin R Gurney et al., 2009). However, huge uncertainties in estimation of 35 

anthropogenic CO2 emissions are inevitable in developing countries such as China and India because of 36 

the booming economics and imperfect monitoring systems. For example, the discrepancy between 37 

different estimations of CO2 emissions of China exceeded 1,770 million tones (20%) in 2011(Shan et al., 38 

2016), which is approximately equal to the Russian Federation’s total emissions in 2011(Shan et al., 39 

2018). Therefore, “top-down” (inverse) approaches could play a more significant role in those countries 40 

to estimate and update carbon fluxes. In addition, carbon emission inventories with a spatial resolution 41 

of 0.1°are available at the global scale (Janssens-Maenhout et al., 2017; Oda & Maksyutov, 2011), 42 

however, Oda et,al warned that available information is insufficient to fully evaluate the relationship 43 

between CO2 emission and the proxy data, such as population and nightlight(Oda & Maksyutov, 2011). 44 

Consequently, associated errors would increase at finer resolutions. On the other hand, the anthropogenic 45 

carbon emissions are assumed to be known quantities and are important as reference for analyzing a 46 

budget of the three fluxes(Kevin Robert Gurney et al., 2005; K. R. Gurney et al., 2002). Therefore, there 47 

is an urgent need to develop novel methods to acquire more robust and accurate surface CO2 fluxes with 48 

fine resolution in urban areas where the majority of anthropogenic CO2 emissions locate. 49 

The atmospheric inversion technique has been widely used to retrieve carbon fluxes at large geographic 50 

scales (Bakwin et al., 2004; Ballantyne, Alden, Miller, Tans, & White, 2012; Bousquet, Ciais, Peylin, 51 

Ramonet, & Monfray, 1999; Breon & Peylin, 2003; Gerbig et al., 2003; Myneni et al., 2001; Stephens et 52 

al., 2007; Watson et al., 2009), by using measurements from the network of ground-based greenhouse 53 

gas stations. Dense and accurate observations of CO2 dry-air mixing ratios (xCO2) are needed to inverse 54 

carbon fluxes at a finer geographic scale (Kaminski et al., 2017; Rayner & O'Brien, 2001), enabling 55 

smaller-scale sources emitting CO2 into the atmosphere to be better quantified (A. Eldering, C. W. O'Dell, 56 

et al., 2017). Remote sensing from space is undoubtedly the most appropriate means to obtain dense CO2 57 

observations rapidly in large extents (Buchwitz et al., 2017; Ehret et al., 2008). GOSAT and OCO-2 58 

provide us an opportunity to retrieve column-average xCO2 (XCO2) globally except in Polar Regions. 59 

Recent studies have demonstrated the promising potential of OCO-2 to help scientists identify localized 60 

CO2 sources (Schwandner et al., 2017) , estimate regional CO2 fluxes (A. Eldering, P. O. Wennberg, et 61 

al., 2017) and map the gross primary production (Kohler, Guanter, Kobayashi, Walther, & Yang, 2018; 62 

Li, Xiao, & He, 2018; Sun et al., 2018). It is still a challenging mission to obtain accurate estimates of 63 
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CO2 fluxes using XCO2 products, especially in urban areas, because the signals received by OCO-64 

2/GOSAT need to be attributed unambiguously to variations in atmospheric CO2 concentration, as 65 

opposed to variations caused by environmental factors such as aerosols and clouds (J. B. Miller, P. P. 66 

Tans, & M. Gloor, 2014). Along with the success of passive remote sensing of CO2, U.S.A and China are 67 

ambitious to send their LIDAR sensors into the orbit to realize monitoring CO2 in all latitudes and in 68 

nights (Abshire et al., 2017; Han et al., 2017a). Effect of aerosols and thin clouds on retrievals of XCO2 69 

can be eliminate through a differential process of signals from two very close wavelengths (Amediek, 70 

Fix, Wirth, & Ehret, 2008; Han, Gong, Lin, Ma, & Xiang, 2015; Mao et al., 2018).Therefore, a smaller 71 

bias of retrievals of CO2-IPDA LIDAR is expected comparing with the passive remote sensing, which is 72 

beneficial for inversion of CO2 fluxes. Previous studies had focused on performance evaluation of CO2-73 

IPDA LIDARs in terms of systematic errors, random errors as well as the coverage (Ehret et al., 2008; 74 

Han et al., 2017a; Kawa et al., 2010). There are evident differences between XCO2 products of OCO-2 75 

and those of the forthcoming CO2-IPDA LIDAR in terms of coverage patterns (Kawa et al., 2010; C. 76 

Kiemle, Kawa, Quatrevalet, & Browell, 2014; C. Kiemle et al., 2011). Unlike the passive remote sensing 77 

of CO2 that can scan perpendicular to the direction of the satellite orbit, IPDA LIDAR in practice has 78 

sensors that only operate in point mode due to the unaffordable power consumption and cost of 79 

implementing a scan mode. Such a difference can be ignored when one tries to estimate large scale CO2 80 

fluxes by using satellite-derived XCO2 products with a resolution of 1°(or coarser). However, specific 81 

inversion methods, which take the characteristics of LIDAR products into considerations, are urgently 82 

needed for inversion of fine scale CO2 fluxes (Christoph Kiemle et al., 2017). Our previous work has 83 

already confirmed that it is feasible to retrieve XCO2 in urban areas using the CO2-IPDA LIDAR（ACDL）84 

which will be onboard on the Atmospheric Environment Monitoring Satellite (AEMS) DQ-1 of China 85 

(Han et al., 2018). In this work, an inversion framework is used to inverse fine scale (~1 km/0.01°) CO2 86 

fluxes of urban areas using pseudo XCO2 observations from ACDL. Our main objective is to figure out 87 

the ability and potential of ACDL to help us estimate anthropogenic carbon emission in urban areas. In 88 

turn, results of the performance evaluation will be the justification for improve the configuration of the 89 

ongoing ACDL and its successor which would be sent to the orbit in just 2-3 years after AEMS.     90 

Though positive relationship between satellite-derived XCO2 anomalies/enhancements and CO2 91 

emissions has been witnessed (Hakkarainen, Ialongo, & Tamminen, 2016), it is by no means a forgone 92 
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conclusion that CO2 sources and sinks can now be measured from space at high resolution (J. B. Miller 93 

et al., 2014). Atmospheric transport models are indispensable to build a bridge between CO2 94 

sources/sinks and measured concentrations (Rayner & O'Brien, 2001). Stochastic Time-Inverted 95 

Lagrangian Transport (STILT) was invented in 2003 (J. C. Lin et al., 2003) and soon was utilized to 96 

inverse fluxes of trace gases (Gerbig et al., 2003; J. C. Lin et al., 2004). In 2010, Weather Research and 97 

Forecasting (WRF) model was coupled with STILT (WRF-STILT), offering an attractive tool for inverse 98 

flux estimates (Nehrkorn et al., 2010). Since then, several scientists utilized this effect tool to model CO2 99 

distribution and inverse CO2 fluxes using in-situ measurements (Kort, Angevine, Duren, & Miller, 2013; 100 

Nehrkorn et al., 2013; Pillai et al., 2012; Vogel et al., 2013) as well as satellite observations (Reuter et 101 

al., 2014; Turner et al., 2018; J. S. Wang et al., 2014). Recently, STILT was further updated to facilitate 102 

modeling of trace gases with a fine scale (Fasoli, Lin, Bowling, Mitchell, & Mendoza, 2018). The key 103 

product provided by WRF-STILT is the “footprint” which describes the sensitivity of measurements 104 

(receptors) to surface fluxes in upwind regions. Then, the Bayesian inversion method can be used along 105 

with the footprint and a-priori surface fluxes to estimate a-posterior surface fluxes.     106 

In this study, we propose a framework based on DQ-1 XCO2 data to periodically assess urban-scale fossil 107 

fuel CO2 emissions. We employ Observing System Simulation Experiments (OSSEs) to investigate the 108 

performance of DQ-1's ACDL XCO2 products in improving CO2 flux estimation at an enhanced spatial 109 

resolution of 0.01° × 0.01° over urban areas. The OSSE consists of a forward simulation module and an 110 

inversion framework. The forward module utilizes WRF modeling for high-resolution simulations, 111 

allowing us to capture fine-scale gas particle transport characteristics and variations. We simulate pseudo-112 

measurements and corresponding errors based on hardware configurations, environmental parameters, 113 

and physical process simulations within this module. The inversion framework relies on footprints 114 

provided by WRF-STILT to estimate urban-scale emission scaling factors using Bayesian inversion 115 

methods. The study also accounts for the impacts of measurement errors, transport model uncertainties, 116 

and biosphere flux uncertainties on emission estimation uncertainty throughout the OSSE. Initially, we 117 

evaluate emission estimation uncertainty related to transport model and measurement errors, focusing on 118 

three cities: Beijing, Riyadh, and Cairo, each with distinct topographical influences. Riyadh and Cairo 119 

exhibit negligible local biosphere flux impacts on emission estimates due to relatively flat terrain and 120 

stable wind fields, categorizing them as "plume cities" where CO2 emissions are typically captured in 121 
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plume forms due to these conditions (Ye et al., 2020). Building on these simulations, we conduct OSSEs 122 

to assess the potential of using XCO2 data from multiple DQ-1 orbits to track urban emissions regularly. 123 

Leveraging DQ-1's unique day-night revisit capability, we also evaluate uncertainties arising from local 124 

biosphere flux variations in Beijing. Unlike previous inversion studies using OCO-2/3, which primarily 125 

sample during daytime, DQ-1's day-night orbit allows for more evenly distributed temporal sampling. 126 

Furthermore, combining DQ-1's day-night revisit capability, we introduce for the first time an analysis 127 

of how biosphere flux variations between day and night affect emission estimates using forward 128 

simulations and Bayesian inversion. Lastly, we summarize the significance of future satellite 129 

observations in monitoring urban emissions. 130 

2 Data and method 131 

2.1 ACDL XCO2 products 132 

In order to design a device similar to the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 133 

onboard the CALIPSO satellite, the design of DQ-1 was initially proposed in 2012. It was officially 134 

approved in 2017. Distinct from other environmental monitoring satellites, a notable and innovative 135 

highlight of DQ-1 is the integration of a lidar payload for space-based top-down CO2 detection, known 136 

as ACDL. In subsequent developments, ACDL underwent a series of laboratory prototype developments 137 

(Zhu et al., 2019) and airborne prototype testing missions (Q. Wang et al., 2021; Xiang et al., 2021; Zhu 138 

et al., 2020). Finally, ACDL was launched into a near-Earth sun-synchronous orbit at an altitude of 139 

approximately 705 kilometers on April 18, 2022. ACDL began data collection in late May 2022 and 140 

officially commenced operations. This study primarily utilizes data from June 2022 to April 2023 for 141 

further research. 142 

ACDL employs standard IPDA lidar technology, using differential absorption methods to acquire column 143 

concentrations of atmospheric carbon dioxide (CO2). A detailed description of the XCO2 detection 144 

algorithms and products is in preparation. In this paper, we briefly introduce its detection principles. 145 

ACDL emits a pair of nearly simultaneous observation signals, one with a wavelength located at the 146 

strong absorption position of the R16 line in the CO2 spectrum (on-line wavelength) and the other at a 147 

weak absorption position of the same line (off-line wavelength). The on-line and off-line wavelengths 148 
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are stabilized at 6361.225 cm-1 and 6360.981 cm-1, corresponding to 1572.024 nm and 1572.085 nm, 149 

respectively. This slight wavelength difference enables ACDL to counteract interference from aerosols 150 

and other molecules, excluding water vapor, through the differential process of the reflected signals. The 151 

detection of XCO2 by ACDL is calculated based on specific algorithms (see Section 2.4.1).  152 

 153 

Figure 1：the schematic diagram for DQ-1's detection principle 154 

Figure 1 illustrates the detection principle of DQ-1. The XCO2 products generated by ACDL are similar 155 

to those of GOSAT, adopting a point sampling mode. The lidar operates in nadir observation mode, with 156 

approximately one 70-meter footprint observed every 350 meters along the track. 157 

According to Equation 1, we calculate XCO2 by directly using the normalized weighting function (IWF). 158 

Significant differences in XCO2 measurements can be observed between ACDL and OCO-2/3. Currently, 159 

passive remote sensing satellites like OCO-2/3 and GOSAT estimate XCO2 by measuring the solar 160 

spectrum and using a priori information guided by optimal estimation theory to derive xco2(p), ultimately 161 

obtaining XCO2 (J. B. Miller, P. P. Tans, & M. J. N. G. Gloor, 2014). In contrast to these traditional 162 

passive optical remote sensing satellites, ACDL does not 'estimate' xco2(p) but directly 'calculates' the 163 

weighted average column concentration (Zhang et al., 2024). During the integration phase of ACDL's 164 

development, we evaluated the WF shapes of various on-line wavelengths and selected one that responds 165 

strongly near the surface and weakly at higher altitudes (Han et al., 2017b). This design allows changes 166 

in surface CO2 concentration, driven by surface CO2 fluxes, to be more prominently reflected in the 167 

XCO2
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surface

City’s CO2 
emissions

CO2 plume

https://doi.org/10.5194/egusphere-2024-2495
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

 

column concentration. Therefore, this WF enhances the ability to identify surface CO2 variations and 168 

provides more information for subsequent CO2 flux inversion. 169 

2.2 Study Area 170 

Considering the available orbital tracks for DQ-1 inversion, vegetation coverage, and the complexity of 171 

meteorological conditions, this paper selects three cities and regions to highlight the different sources of 172 

uncertainty in emission inversion and the inversion capability of DQ-1. The selected cities share the 173 

following characteristics: 1) high fossil fuel emissions; 2) typical "plume cities," characterized by 174 

ffXCO2 enhancements distributed in plume forms (Deng et al., 2017). Riyadh, with a population of 8 175 

million, and Cairo, with a population of 20 million, have significantly weaker biosphere contributions 176 

compared to Beijing. In subsequent research, it is considered that the spatial gradient of biosphere CO2 177 

flux can be ignored compared to local fossil fuel emissions. 178 

To assess the impact of biosphere flux uncertainty on the inversion process and separately evaluate the 179 

impact of daytime and nighttime biosphere flux on the simulated local XCO2 enhancement, we selected 180 

Beijing, the capital city of China, with a population of approximately 21.5 million. Beijing is not only 181 

the political center of China but also one of the most populous cities. Compared to its surrounding areas, 182 

Beijing has relatively less vegetation. Surrounding cities might have better-preserved natural ecological 183 

environments and more abundant vegetation cover due to less industrialization and urbanization. For 184 

instance, the mountainous and suburban areas around Beijing may have more forests, grasslands, and 185 

farmlands, whereas green spaces within Beijing are often limited to parks, green belts, and a few nature 186 

reserves. As a city with high fossil fuel emissions and active biosphere exchange, Beijing is well-suited 187 

for studying the impact of biosphere flux uncertainty on emission estimates. 188 

2.3 Atmosphere Mode Setting 189 

2.3.1 WRF-STILT 190 

The spatial heterogeneity of emissions and dense point sources (such as power plants) lead to a complex 191 

spatial structure of urban emissions, resulting in intricate ffCO2 plumes combined with local atmospheric 192 

dynamics. To explore fine-scale urban emission patterns, this study employs the WRF-STILT model 193 

(WRF: Weather Research and Forecasting, STILT: Stochastic Time-Inverted Lagrangian Transport). The 194 
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STILT Lagrangian model driven by WRF meteorological fields is characterized by a realistic treatment 195 

of convective fluxes and mass conservation properties, which are crucial for accurate top-down estimates 196 

of CO2 emissions. 197 

In this study's application of STILT, hourly outputs from version 4.0 of WRF are used to provide high-198 

resolution meteorological fields, with the model grid configured to 51 vertical (eta) layers. The 6-hourly 199 

NCEP FNL (Final) global operational analysis data with a resolution of 1° are used as initial and boundary 200 

conditions for meteorological and land surface fields to provide the initial and boundary conditions for 201 

WRF runs. The simulations run for 30 hours, but only the 7th to 30th hours of each simulation are used 202 

to avoid spin-up effects in the first 6 hours. 203 

Each city uses the same one-way WRF nesting at 27 km, 9 km, and 3 km resolutions, with Riyadh 204 

( 23 7625 5 7625. , . EN 4  - 25 4375 27 4375. , . EN  ), Cairo ( 29 1625 30 4125. , . EN  - 30 8375 32 0875. , . EN  ), and Beijing 205 

( 39 4 115 5. , . EN - 41 075 117 175. , . EN ) having their innermost regions used to filter DQ-1's orbital data. The 206 

study area for STILT is set to be smaller than the innermost WRF region to eliminate the marginal effects 207 

of WRF. Footprints quantitatively describe the contribution of surface fluxes from upwind areas to the 208 

total mixing ratio at specific measurement locations, with units of mixing ratio per unit flux. The footprint 209 

used in lidar satellite inversions is different from that used in general optical satellites, as detailed in 210 

Section 2.4.1. STILT is configured to release 500 particles per receptor each time, with forward 211 

dispersion over 24 hours. The particle release heights for STILT are set within the range of 50-1000 m, 212 

with releases every 50 m, and 1000-2000 m, with releases every 100 m. Generally, as MAXAGL 213 

increases from 1 km to 2 km, the urban enhancement increases and then stabilizes(Wu et al., 2021). 214 

 215 

2.3.2 Inventory of Fossil Fuel Emissions 216 

This article uses The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) which is a 217 

global high-resolution fossil fuel carbon dioxide emissions (ffco2) data product (Tomohiro Oda, 2015). 218 

The 2023 version of ODIAC (ODIAC2023, 2000-2022) is based on the Appalachian State University's 219 

Carbon Dioxide Information Analysis Center (CDIAC) team's (Gilfillan & Marland, 2021; Hefner, 220 

Marland, Oda, & Change, 2024) most recent national ffco2 estimates (2000-2020). The ODIAC 221 

emissions inventory provides 1 1km km  global monthly average ffCO2. The spatial decomposition of 222 
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emissions is accomplished using a variety of spatial proxy data, such as the geographic location of point 223 

sources, satellite observations of night lights, and airplane and ship tracks. Seasonality of emissions was 224 

obtained from the CDIAC monthly gridded data product (Andres et al., 2011)and supplemented using 225 

the Carbon Monitor product (2020-2022, https://carbonmonitor.org/). In this paper, monthly data from 226 

ODIAC are time-allocated, and neither the subsequent modeling nor the pseudo-data take into account 227 

the daily and weekly time-variation of the ODIAC product. 228 

2.3.3 Background XCO2 229 

To extract the XCO2 enhancement for DQ-1 inversion, we define XCO2 enhancement as entirely driven 230 

by fossil fuel emissions. A classic method for extracting orbital background concentrations involves 231 

selecting another "clean" orbit (minimally influenced by fossil fuel emissions) that is spatially and 232 

temporally close, and using averaging or linear regression to approximate a background concentration 233 

for the orbit under study. In this study, due to the fine-scale urban area emissions inversion, the study 234 

area is small, making it challenging to find another clean orbit for calculating the background 235 

concentration. 236 

Previous studies have used inversion methods to derive background concentrations for orbits (Pei et al., 237 

2022), but these typically yield a background concentration for a region. These methods usually produce 238 

a value unaffected by geographic location within a small area. However, for each orbit we study, a single, 239 

constant background concentration is clearly unreasonable. Therefore, based on previous research, we 240 

designed a simple and quick method to extract background concentrations, generating a background line 241 

for each orbit of interest. 242 

First, we perform a wavelet transform on DQ-1's XCO2 data: 2 2( )
Lidar Lidar

DWT
XCO DWT XCO=  . Here, DWT243 

represents the discrete wavelet transform. The discrete wavelet transform can compress the DQ-1 data, 244 

retaining the larger XCO2 enhancements caused by fossil fuel emissions while attenuating enhancements 245 

due to other factors. After the discrete wavelet transform, we assume that data exceeding a certain 246 

threshold 2 0 5 2( ) . ( )
Lidar Lidar

DWT DWT
mean XCO XCO+ is due to fossil fuel emissions and do not include these in the 247 

background line calculation. We then perform a linear regression on the remaining data to extract the 248 

background line. 249 

https://doi.org/10.5194/egusphere-2024-2495
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



10 

 

2.3.4 Biological Flux 250 

We specifically considered the influence of biogenic flux on the emission constraints in urban areas for 251 

DQ-1. Two open-source NEE datasets were utilized in our study. The first dataset is derived from the 252 

Carnegie-Ames-Stanford Approach-Global Fire Emissions Database Version 3 (CASA-GFED3) model 253 

(Van der Werf et al., 2010), which provides 3-hourly average net ecosystem exchange (NEE) of carbon. 254 

This dataset incorporates biogenic fluxes as well as fluxes associated with biomass burning emissions, 255 

offering a global coverage of 3-hourly average NEE. 256 

Additionally, we considered the ODIAC dataset, which provides advanced data-driven products on 257 

global primary production, net ecosystem exchange, and ecosystem respiration (Jiye, 2020). The ODIAC 258 

dataset offers 10-day average global NEE data and utilizes extensive ecosystem indices from MODIS 259 

and ERA5 to deliver more precise data. 260 

According to the study by (Ye et al., 2020), to better describe the diurnal variations and spatial distribution 261 

of biogenic fluxes, the MODIS green vegetation fraction (GVF) was used to downscale the 3-hourly NEE 262 

from the original grid resolutions (0.5° × 0.625° and 0.1° × 0.1°) to the WRF domain resolutions (27, 9, 263 

and 3 km). This method assumes a linear relationship between carbon uptake and release and the 264 

vegetation canopy coverage. 265 

Our application of these datasets and downscaling methods enables a more accurate representation of 266 

biogenic flux contributions to urban carbon emissions. By integrating high-resolution biogenic flux data, 267 

we can improve the precision of emission inventories and enhance our understanding of urban carbon 268 

dynamics. This approach allows us to better inform urban planning and policy-making aimed at reducing 269 

carbon footprints and mitigating climate change impacts. 270 

2.4 Emission Optimization Method 271 

2.4.1 Lidar Measurements as a Function of Flux：XSTILT-Lidar 272 

Unlike the XCO2 products from passive satellites such as OCO-2/3, the XCO2 product from DQ-1 273 

(hereafter referred to as 2Lidar
XCO to distinguish it from passive satellite XCO2 products) is derived using 274 

the differential between on-wavelength (strong CO2 absorption) and off-wavelength (weak CO2 275 

absorption) measurements. In this context, 2Lidar
XCO  is obtained through the differential of the lidar 276 
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signals and integration weighting functions described in Section 2.1. Here, ( )WF p represents the lidar 277 

signal and p represents the pressure: 278 

0

0

2

2
_

_

ln( )

( )

off on

on offLidar

p toa

p surface

V V

V V
XCO

WF p dp

−

−





==


                                                 1 279 

Here,
on

V and
off

V  represent the reflected signal energies at the on-wavelength and off-wavelength, 280 

respectively, while 0on
V

−  and
0off

V
−

 denote the transmitted signal energies. _p surface  indicates the 281 

atmospheric pressure at the laser ground point, and _p top  represents the pressure at the top of the 282 

atmosphere. The denominator of Equation 1 represents the integration weighting function, as detailed in 283 

the study by (Refaat et al., 2016): 284 

( ) ( , , ) ( )
wf on off dry

WF p p N p  =                                                 2 285 

Here, ( , , )
wf on off

p    denote the CO2 differential absorption cross-sections at the on-wavelength and 286 

off-wavelength, respectively.
dry

N represents the number of dry air molecules per unit area in the pressure 287 

layer. This formula allows for the construction of the relationship between 2Lidar
XCO and the CO2 profile288 

2( )CO p : 289 

1 2

1 2

2
2 2 2

_

_

_

_

( ) ( ) ( ) ( )
( ) ( )

( )

p toa

p surfaceLidar

p toa

p surface

XCO p WF p WF p WF p
XCO CO p CO p

IWF IWFWF p dp
= =  +  +   



           3 290 

Thus, the simulated enhancement in CO2 emissions due to fossil fuels, 291 

2
2 2( ) , ( )

ffCO
CO p ffCO foot h =   , can be interpolated from the modeling results of CO2 fluxes and 292 

tracer-tagged footprints. Therefore, a relationship between CO2 fluxes and 𝑋𝐶𝑂2𝐿𝑖𝑑𝑎𝑟  is established: 293 

1 2

1 2
2 2 2 2

( ) ( )
, ( ) , ( )

Lidar Lidar

background

WF p WF p
XCO XCO ffCO foot h ffCO foot h

IWF IWF
− ==    +    +                4 294 

Here,
2

2 2 2
,

Lidar Lidar Lidar

ffCO p background
XCO XCO XCO= −   represents the XCO2 enhancement extracted from DQ-1 295 

observational data, and 2Lidar

background
XCO represents the background concentration selected from the DQ-1 296 

orbit (detailed in Section 2.3.3). The symbol ,  denotes the inner product operator, 2ffCO is the prior 297 

emission flux, and ( )
n

foot h represents the simulated footprints at different altitude layers. This formula 298 

establishes the mathematical foundation for inversion. 299 

By integrating footprints from different release heights (Section 2.3.1 explains the selection of STILT 300 
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release heights), we further simplify the above equation. Here, we define
2

2
,

Lidar

ffCO a
XCO as the XCO2 301 

enhancement simulated by the atmospheric transport model. 302 

2
2 2

,
,

Lidar Liadr

ffCO a
XCO XSTILT ffCO=                                                   5 303 

1

( )
( )

n
Lidar i

i

i

WF p
XSTILT foot h

IWF=

=                                                     6 304 

Here, we define Lidar
XSTILT as the column-averaged footprint, corresponding to the column-averaged 305 

CO2 concentration. The inner product of the column-averaged footprint and the prior emission flux yields 306 

the simulated XCO2 enhancement. Thus, we can optimize the fossil fuel CO2 (ffCO2) emission 307 

parameters using the simulated and observed XCO2 enhancements to achieve the best consistency 308 

between the model and observed increments. By achieving this optimization, we ensure that the model 309 

accurately reflects the observed data, providing a reliable basis for further studies and policy-making. 310 

 311 

Figure 2: Schematic diagram of XSTILT, Fig. (a) represents the simulated footprints at each horizontal 312 

altitude level we set (one footprint per 50m below 1000m, one footprint per 100m from 1000m-2000m, where 313 

MAXAGL represents the highest atmospheric altitude we simulate, which is 2000m) and the column average 314 

footprints obtained by integrating using the normalized integration function in Fig. (b). Figure (c). 315 

2.4.2 Optimization of Emission Constraint Factors 316 

We adopted a Bayesian inversion method similar to that used by (Ye et al., 2020), which utilizes OCO-2 317 

observational data to constrain ffXCO2, aiming to achieve correlation between the model and observed 318 

ffXCO2 increments. Unlike the inversion of individual emission grids, we optimize emissions by 319 
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200m
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1

( )
( )

n
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i

i

WF p
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adjusting a scaling factor (λ) for the entire city's prior emissions without modifying each grid's flux 320 

individually. The observational data along the DQ-1 orbit across all regions of interest serve as constraints 321 

for the inversion, which can be expressed as: 322 

p a p
y y  =  +                                                                      7 323 

Here,
p

y and
a

y represent the observed and simulated ffXCO2 enhancements, respectively. The term
p

324 

denotes the observational error, which consists of DQ-1 measurement error, model error, and model 325 

parameter error, defined as follows: 326 

2 2

1 1
2 2( ), ( )

time time

p p a a
time time

y mean ffXCO dt y mean ffXCO dt= =                            8 327 

Here, 2
p

ffXCO represents the DQ-1 XCO2 enhancement after removing the background concentration. 328 

2
a

ffXCO represents the simulated XCO2 enhancement, obtained from the convolution of the fossil fuel 329 

emission inventory and the footprint. We averaged the DQ-1 data over one-second intervals (3.35 km) 330 

along the orbit to obtain 2
p

ffXCO and corresponding simulated data 2
a

ffXCO . 331 

According to the Bayesian inversion method, we transform the state vector into a scaling factor (λ), which 332 

represents the constraint ability of pseudo-observations on regional emissions. The Jacobian matrix is 333 

given by the simulated XCO2 enhancement
a

y  . The observation error variance 2

measurement
  and model 334 

transport error variance 2

mod
 are considered. We assume that DQ-1 observations are unbiased with respect 335 

to the true values. Random errors were added to the observations, following a Gaussian distribution with 336 

a standard deviation of 0.5 ppm, representing the lower limit of observational errors. The transport model 337 

error was obtained by perturbing wind speed and wind direction errors; more wind observations help 338 

reduce atmospheric transport uncertainties. For example, data assimilation systems have proven useful 339 

in reducing atmospheric transport errors in data-rich areas like Los Angeles (Lauvaux et al., 2016). 340 

Besides systematic wind direction errors, some areas exhibit positive/negative wind direction biases (Ye 341 

et al., 2020). The X-STILT model proposed by Wu et al(Wu et al., 2021). can correct wind biases by 342 

rotating model trajectories. the transport model error propagates by transforming the model ffXCO2 343 

plumes with added random wind speed and wind direction errors (by rotating ffXCO2 plumes). To 344 

estimate transport model uncertainty in the model ffXCO2, we performed multiple (104 times) random 345 

wind speed and direction perturbations on the model plume and extracted the uncertainty distribution of 346 

ffXCO2 using the 25th and 75th percentiles. We establish the loss function ( )J x to calculate the posterior 347 
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scaling factor: 348 

1 2 2
( ) ( ) ( ) ( )

T

p a p p a a a
J y y S y y     − −= − − + −                                          9 349 

2 2 2

modp measurement
  = +                                                            10 350 

Here, p
S represents the observational error covariance matrix. We assume that the observational errors of 351 

different orbits are uncorrelated, so p
S is a diagonal matrix with the observational error variances 2

p
 on 352 

the main diagonal. Since the DQ-1 measurement errors and atmospheric transport model errors are 353 

unbiased and uncorrelated, we estimate 2

p
 by summing both error variances.

a
 represents the prior value 354 

of the scaling factor, uniformly set to 1. a
 represents the uncertainty of prior emissions, derived from 355 

previous studies combined with the emission characteristics of different cities. Since the ODIAC product 356 

does not provide uncertainty estimates, ODIAC was originally designed for atmospheric CO2 flux 357 

calculations to reduce model biases caused by coarse grid resolution. Considering the simple 358 

downscaling based on nightlights in ODIAC, urban emissions derived from ODIAC are affected by errors 359 

related to emission disaggregation. For example, (Lauvaux et al., 2016) reported a 20% difference 360 

compared to Gurney et al. (2012)(Kevin R Gurney et al., 2012) despite significant differences in emission 361 

modeling methods. Gurney et al. (2019)(Kevin R Gurney et al., 2019) further compared the ODIAC and 362 

Hestia products for four US cities (Los Angeles, Salt Lake City, Indianapolis, and Baltimore), finding 363 

city-wide emission differences ranging from -1.5% (Los Angeles) to 20.8% (Salt Lake City). Empirical 364 

values of ODIAC ffCO2 uncertainty can be obtained by comparing ODIAC inventories with other 365 

emission fluxes, such as high-resolution top-down satellite products. Smaller temporal scales result in 366 

greater empirical value deviations. Considering different city emission characteristics, such as industrial 367 

cities like Cairo and Riyadh with irregular emissions and large uncertainties in industrial emissions, we 368 

set prior emission uncertainties for these cities at 45%. For large cities with distinct and regular emission 369 

characteristics, the uncertainty is set at 25%, as their emission estimates are more accurate compared to 370 

industrial cities. 371 

By minimizing the loss function, we obtain the posterior scaling factor
^

 and posterior uncertainty 
^

 : 372 

2 1
^

( ) ( )
T T

a a a a p a p p a a
y y S y S y y   −= + + −                                               11 373 

2 1 2 1
^

( )
T

a p a a
y S y − − −= +                                                              12 374 
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To evaluate the performance of the scaling factor, we define the mean kernel (
^

/AK  =   ): 375 

1 2 1 1
( ) ( )

T T

a p a a a p a
AK y S y y S y− − − −= +                                                     13 376 

The value of AK closer to 1 indicates a more accurate estimation of the scaling factor. 377 

2.5 OSSEs: Optimization of Emissions using Different DQ-1 Tracks 378 

Given the limited number of DQ-1 overpass tracks and the impact of atmospheric conditions during 379 

overpasses on emission optimization, we implemented Observing System Simulation Experiments 380 

(OSSEs). These experiments were conducted using multiple DQ-1 tracks to constrain urban fossil fuel 381 

emissions repeatedly and to statistically evaluate DQ-1's potential in constraining urban fossil fuel 382 

emissions. Specifically, we initially screened all DQ-1 overpass tracks, selecting those located downwind 383 

of major fossil fuel emission areas to better utilize DQ-1 data for constraining overall regional fossil fuel 384 

emissions. For each city's overpass track, we extracted pseudo-observation data and modeling data. 385 

DQ-1's advantage over other passive remote sensing satellites lies in its capability for nighttime 386 

observations, which are largely unaffected by clouds and aerosols. Therefore, we studied the relationship 387 

between daytime and nighttime observations and emission estimation uncertainties, as well as the impact 388 

of different tracks and the number of tracks on emission estimates. We used the ODIAC fossil fuel 389 

emission inventory as the prior emissions for the OSSEs, assuming that the prior emissions are the true 390 

emissions and that emissions remain stable over a short period. 391 

Pseudo-observation data and modeling data for each city were derived using the same method. Pseudo-392 

observation data were obtained by averaging the 1-second detection range of the selected DQ-1 overpass 393 

tracks, with adjacent pseudo-observation data separated by 3.35 km (1 second). This method helps 394 

eliminate some of the background noise and wind speed impacts on emission optimization. We assumed 395 

that DQ-1 observations are unbiased with respect to the true values and added random errors to each DQ-396 

1 observation, with the error following a Gaussian distribution and a standard deviation of 0.5 ppm. 397 

Pseudo-observation data are also unbiased relative to the true values, with random errors accumulated 398 

over time for each observation data:

2

1

1

2
1

,

( )

N

i DQ

is
N




−

==


 Here, N  represents the random error of each 399 

pseudo-observation data. Modeling data were obtained by convolving the emission inventory of the area 400 

with the tracer contributions corresponding to the geographic locations. 401 
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By using multiple DQ-1 overpass tracks to repeatedly constrain urban fossil fuel emissions and analyzing 402 

the results statistically, we assessed the potential of DQ-1 in constraining fossil fuel emissions in urban 403 

areas. This approach allowed us to examine the effectiveness of daytime and nighttime observations, the 404 

influence of different overpass tracks, and the impact of track quantity on emission estimates. 405 

3 Results 406 

3.1 Fossil Fuel Enhancement in Urban Areas 407 

In this section, we summarize the prior ffXCO2 emissions for each study area. The total monthly 408 

emissions for Beijing, Riyadh, and Cairo during the selected months are approximately 2.4-3.5 Mt 409 

C/month, 2.3-3.3 Mt C/month, and 1.9-2.4 Mt C/month, respectively. We constrain emissions by 410 

comparing observed and simulated ffXCO2 enhancements. Here, ffXCO2 enhancement is defined as the 411 

increment in XCO2 concentration caused by local fossil fuel emissions relative to the background XCO2 412 

level. The prior ffXCO2 enhancement is simulated using the ODIAC prior emission inventory and the 413 

STILT footprint convolution. The observed ffXCO2 enhancement from DQ-1 is obtained by subtracting 414 

the background concentration from the observational data (as detailed in Section 2.3.3 and shown in 415 

Figure 3). By comparing the prior ffXCO2 enhancement with the observed ffXCO2 enhancement, we 416 

evaluate the trends in ffXCO2 changes along the tracks and explore the sources and detection capabilities 417 

of the ffXCO2 signal. 418 
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 419 

Figure 3: Comparison of the simulated and observed ffXCO2 enhancements from DQ-1 data over Riyadh 420 

on March 02, 2023 and June 20, 2022 around 11:00 UTC. Figures (a) and (b) show the DQ-1 XCO2 (black 421 

dots and blue triangles) and the simulated XCO2 (red solid line, sum of simulated ffXCO2 and background 422 

concentrations) along the two orbits, averaged over 1 s. The black dots represent the background 423 

concentrations involved in deriving the background. The black dots represent the data involved in the 424 

derivation of the background concentration (black solid line), which are linearly regressed against latitude 425 

after a discrete wavelet transform. Figures (c) and (d) show the simulated ffXCO2 and the observed ffXCO2 426 

obtained from the DQ-1 data. background XCO2 concentrations have been subtracted. Vectors represent 10 427 

m wind speeds and reference vectors represent 10 m/s wind speeds. 428 

Figure 3 presents the results of two DQ-1 overpasses over Riyadh on March 2, 2023, and June 20, 2022, 429 

at 11:00 AM. Figures 3a and 3b show the simulated and observed ffXCO2 enhancements as a function 430 

of latitude for these two overpasses. The maximum ffXCO2 enhancements observed along the two tracks 431 

were 8 ppm and 5 ppm, respectively. 432 

In the overpass on March 2, significant ffXCO2 enhancements were observed by DQ-1 between 24.8°N 433 

and 25.3°N, with the simulated ffXCO2 also responding to this enhancement. Although the peak 434 

observed values were narrower than the simulated values, both were of similar magnitudes, with only 435 

slight differences, and their trends were largely consistent. However, the simulated ffXCO2 did not 436 

respond to the observed enhancement in the 24.1°N to 24.3°N range, which may be due to the sensitivity 437 

of the STILT footprint to wind direction. 438 

In the overpass on June 20, the agreement between the simulated and observed values was better than in 439 

the March 2 overpass. The observed peak and the simulated peak were both within the 23.8°N to 24.6°N 440 

range, with a difference of less than 1 ppm. The differences between the results of the two tracks may be 441 
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because the March 2 track passed through the city's main emission area and intersected the simulated 442 

plume (Figure 3c). In this case, ffXCO2 fluctuations were minimal, with values remaining high relative 443 

to the background concentration, making it difficult to detect significant enhancements. In contrast, the 444 

June 20 track was downwind of the main emission area, making it more sensitive to the city's fossil fuel 445 

emissions and resulting in better agreement between the simulated and observed values. 446 

 447 

Figure 4: Similar to Fig. 3, but for the trajectories of DQ-1 over Cairo on June 26 (a and d), August 02 (b and 448 

e), August 16 (c and f) at 11:00 UTC, November 08 (g and j), and November 15 (h and k) at about 23:00 UTC 449 

in 2022. 450 

For Cairo, we examined ffXCO2 enhancements using six DQ-1 overpasses on July 26, August 2, August 451 

16, November 8, November 15, and November 22, 2022 (Figure 4). Compared to Riyadh, the simulated 452 

ffXCO2 enhancements over Cairo were mostly below 2 ppm, indicating lower overall emissions in Cairo 453 

than in Riyadh. The simulated ffXCO2 enhancements over Cairo were more dispersed, showing a multi-454 

point distribution rather than the concentrated enhancements observed over Riyadh. 455 

The observed ffXCO2 enhancements over Cairo were generally higher and narrower than the simulated 456 

ones, which were smoother. Despite these differences, the trends in ffXCO2 enhancements between the 457 

simulations and observations were similar and of the same magnitude, except for the July 26 simulation, 458 

which overlooked some observed enhancements between 30.2°N and 30.4°N, and the November 8 459 

overpass, where a spatial shift of approximately 0.2° was observed between the simulated and observed 460 

ffXCO2 enhancements. 461 

Overall, the comparison between DQ-1 observations and WRF-STILT-based simulations suggests that 462 
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the DQ-1 satellite is well-suited for fine-scale urban emission optimization. This indicates that DQ-1 can 463 

effectively be used for detailed monitoring and analysis of urban emissions. 464 

3.2 Comparison of DQ-1 and OCO-2 Restraint Capabilities 465 

 466 

Figure 5: (a) and (b) show the position and XCO2 data of two pairs of OCO-2 and DQ-1 orbits that we selected 467 

for transit to Beijing at 05:00 on December 01, 2022 and 05:00 on April 08, 2023, respectively 468 

Considering previous studies that used OCO-2/3 and GOSAT for inversion (Patra et al., 2021; Roten et 469 

al., 2022; H. Wang et al., 2019), we selected one of these inversion methods (Ye et al., 2020) for 470 

comparison with DQ-1 inversions and validation using TCCON site data. The posterior scaling factor 471 

was applied to the ODIAC inventory flux to simulate XCO2 at TCCON site locations, and these 472 

simulations were compared with TCCON data, assumed to be the true XCO2 at those locations. The 473 

simulated XCO2 for TCCON was obtained using an integration method provided by TCCON, with 51 474 

altitude levels corresponding to the input levels of our STILT model. The footprints from these 51 altitude 475 

levels were integrated using the integration operator integration_operator_x2019 and the averaging 476 

kernel ak_xco2 to obtain the simulated XCO2.  477 

To better compare the inversion results from OCO-2 and DQ-1, we selected tracks that were spatially 478 

and temporally close and located downwind of major urban emission areas. Figure 5 shows two pairs of 479 

OCO-2 and DQ-1 tracks over Beijing on December 1, 2022, and April 8, 2023, both at 05:00, passing 480 

through the major emission downwind area of the city. The figure shows ffXCO2 enhancements and 481 

wind fields at the time of the satellite overpasses. The results clearly indicate significant ffXCO2 482 

enhancements, exceeding 2 ppm in April, demonstrating that DQ-1 can observe notable ffXCO2 483 

enhancements from space. 484 
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Figures 5e-h show that the ffXCO2 enhancements simulated from DQ-1 and OCO-2 overpasses are of 485 

similar magnitude and spatial distribution, with strong spatial consistency across different times due to 486 

stable local emissions and wind fields. Beijing's topography, with high elevations in the northwest and 487 

low-lying plains in the southeast, influences the prevailing west-to-east winds, and the flat terrain of the 488 

main urban area means the simulated ffXCO2 is minimally affected by topography. The smaller ffXCO2 489 

enhancements observed on December 1 compared to April 8 are primarily due to wind directions 490 

affecting the track within the 40.2°-41° range, making it difficult to simulate emissions. 491 

This comparison highlights the capability of DQ-1 to effectively observe and simulate urban ffXCO2 492 

enhancements, supporting its application in fine-scale emission optimization. 493 
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 494 

Figure 6: Similar to Fig. 3, (a)-(d) show the simulated ffXCO2 and measured ffXCO2 for the DQ-1 and OCO-495 

2 orbits transiting Beijing at 05:00 UTC 01 December 2022 and 05:00 UTC 08 April 2023, and (e)-(h) represent 496 

the comparison of the simulated ffXCO2 (colored shadows) with the observed ffXCO2 enhancement (colored 497 

dots, minus background concentrations) from DQ-1 data collected over Beijing at ~05:00 UTC. Each panel is 498 

labeled with the date of observation. Vectors represent 10 m wind speeds and reference vectors represent 10 499 

m/s wind speeds. 500 

Figure 6 (a-d) illustrates the simulated and observed XCO2 for two pairs of DQ-1 and OCO-2 tracks. 501 
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The simulated XCO2 (red line in the figures) is derived by adding the background concentration to the 502 

simulated ffXCO2 extracted along the satellite tracks. Overall, both OCO-2 and DQ-1 observations 503 

exhibit similar distributions, with high-value points located in the same latitude ranges. DQ-1 504 

observations are generally 4-8 ppm higher than OCO-2, attributed to the inherent characteristics of the 505 

satellites—DQ-1 being an active lidar satellite, largely unaffected by clouds and aerosols. This systematic 506 

difference can be mitigated during background concentration extraction due to the overall similarity in 507 

data distribution. 508 

On December 1 and April 8, DQ-1 and OCO-2 observed ffXCO2 enhancements of approximately ~2.5 509 

ppm and ~1.5 ppm, respectively. Although OCO-2 did not capture the ffXCO2 enhancement within the 510 

40.2°-41° range on December 1, and there was a ~0.15° spatial shift between observed and simulated 511 

XCO2 peaks on April 8, the simulated ffXCO2 was of the same magnitude as the observations. This 512 

indicates that DQ-1 performs comparably to OCO-2 in urban-scale inversions. The peak shift in OCO-2 513 

data might be due to errors in the horizontal wind field. The background gradient on December 1 was 514 

more pronounced than on April 8, and the integrated ffXCO2 enhancement along the track was consistent 515 

with DQ-1 measurements, validating the latitude gradient-based background extraction method for 516 

urban-scale inversions. 517 

Figure 7 compares TCCON site observations within the Beijing study area with the simulated results for 518 

December 1 and April 8. The prior ffXCO2 (blue bars) represents the simulated ffXCO2 at the TCCON 519 

site, obtained using the previously described simulation method. The posterior ffXCO2 (light green and 520 

orange bars) is derived by applying the posterior scaling factors from DQ-1 and OCO-2 overpass tracks 521 

to the prior ffXCO2, with posterior uncertainties indicated. The true value, provided by TCCON products, 522 

is shown by the dark green bars. 523 

Overall, DQ-1 and OCO-2 inversion results are similar in magnitude, with DQ-1 results closer to TCCON 524 

observations. The differences between DQ-1 results and TCCON observations are 0.9% and 16% for 525 

December 1 and April 8, respectively, compared to 10% and 25% for OCO-2. This demonstrates that 526 

DQ-1 can effectively constrain urban fossil fuel emissions, performing comparably to, or even surpassing, 527 

OCO-2 in certain tracks. 528 
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 529 

Figure 7: TCCON site simulations received ffXCO2 (blue columns represent simulations using a priori 530 

ODIAC lists, bright green columns represent simulations using a posteriori lists estimated with DQ-1, orange 531 

columns represent simulations using a posteriori lists estimated with OCO-2, and dark green columns 532 

represent ffXCO2 observed by TCCON). The black lines on the columns represent uncertainties. 533 
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3.3 Impact of DQ-1 in Estimating Biotic Fluxes using Daytime vs. Nighttime Tracks 534 

 535 

Figure 8: Orbital simulation results for a pair of diurnal observations of the transit of Beijing on January 09, 536 

2023 at about 23:00 (night) and January 10, 2023 at about 11:00 (day) UTC. 537 

Both biosphere carbon flux and fossil fuel emissions influence XCO2 variations. This section examines 538 

the impact of biosphere flux on emission estimates. When ffXCO2 significantly exceeds biosphere 539 

carbon flux, the biosphere's contribution to XCO2 changes can be negligible (e.g., in Cairo and Riyadh, 540 

where the spatial gradient of NEE is much smaller than fossil fuel emissions). This study attributes 541 

biosphere carbon flux to vegetation production and human emissions. This part of carbon emissions 542 

varies with the day-night cycle. During the day, vegetation absorbs CO2 through photosynthesis, which 543 

significantly outweighs CO2 release through respiration. At night, vegetation only undergoes respiration, 544 

releasing CO2. 545 

As the world's first lidar satellite capable of observing XCO2 at night, DQ-1 offers groundbreaking 546 

potential in studying diurnal variations in urban emissions. This section leverages this feature to observe 547 

the impact of vegetation rhythm and human activities on XCO2 changes. We compare global three-hourly 548 

CASA data and ten-day average NEE data from ODIAC. ODIAC's ten-day average data cannot separate 549 

diurnal NEE variations, while the higher temporal resolution of CASA can effectively capture the time 550 

gradient of NEE within the same day. We will illustrate the impact of NEE on inversion and how this 551 
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impact changes between day and night. Previous satellite-based urban flux inversions lacked night-time 552 

data, preventing day-night comparisons and separation of nocturnal and diurnal CO2 emissions. 553 

For this study, we selected two tracks on January 9, 2023, at 23:00 and January 10, 2023, at 11:00 (UTC). 554 

Given the close timing of these tracks, we assume the total fossil fuel emissions are the same for both. 555 

The January 9 track is approximately 0.5° (about 50 km) downwind from the main urban emissions, with 556 

an average wind speed greater than 3 m/s. Thus, the emissions detected by this track are considered to 557 

originate from the previous five hours. The January 10 track passes through the main urban emission 558 

area, capturing emissions effectively. We simulate forward eight-hour gas diffusion (sunset on January 9 559 

at 09:00 and sunrise on January 10 at 15:35 UTC). The simulated enhancement for the January 9 track is 560 

assumed to come entirely from night-time emissions, while the January 10 enhancement comes from 561 

daytime emissions. Comparing the simulation results with observations, both are of the same magnitude, 562 

indicating that the forward eight-hour simulation effectively captures the observed ffXCO2 enhancement. 563 

To explore the impact of diurnal biosphere carbon flux on XCO2 enhancement, we couple prior emissions 564 

from ODIAC with spatially scaled NEE data as the new prior emissions, then simulate the track XCO2. 565 

Using constant boundary conditions, latitude changes do not need to be considered for background 566 

concentration. Therefore, local XCO2 enhancement is defined as the total XCO2 minus the minimum 567 

XCO2 value in the track. The XCO2 enhancement measured by DQ-1 is derived using methods outlined 568 

in previous sections. 569 

This approach allows us to accurately account for both daytime and nighttime variations in XCO2 due 570 

to biosphere activity, providing a comprehensive view of the urban carbon flux. 571 
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 572 

Figure 9: (a)-(d) represent the contribution of orbital XCO2 enhancement and biospheric fluxes to the local 573 

XCO2 enhancement for two pairs of diurnal observations on 09 and 10 January 2023 and 19 and 20 June 574 

2022, the black dots represent the 1-second averaged observations (subtracted from the background values) 575 

on each orbit, the red solid line represents the simulated ffXCO2, and the green and blue solid lines represent 576 

the simulated ΔXCO2 (fossil fuel and biosphere fluxes) using different NEE data for simulated ΔXCO2 (fossil 577 

fuel and biogenic fluxes), where the green line uses ten-day averaged ODIAC NEE data and the blue line uses 578 

CASA three-hourly NEE data. 579 

Figure 9 presents a comparison of simulated and observed XCO2 enhancements for two pairs of day and 580 

night overpass tracks over Beijing on January 9, 2023, at 23:00, January 10 at 05:00, June 19, 2022, at 581 

23:00, and June 20 at 05:00. Overall, the simulated XCO2 enhancements (including the biosphere XCO2 582 

signal) align more closely with the observed ΔXCO2 (black dots) than the simulated ffXCO2 alone (red 583 

line). 584 

The figure shows that the XCO2 enhancements using CASA's diurnal NEE data differ significantly from 585 

those using ODIAC's ten-day average NEE data. The simulation for the June 19 track at 23:00 indicates 586 

that using CASA's night-time NEE data (blue line) can accurately simulate the observed XCO2 587 

enhancement, coming closer to the observed XCO2 enhancement than the ffXCO2 simulation alone. In 588 

contrast, the simulation using ODIAC's ten-day average NEE data (green line) shows a notable CO2 589 

absorption phenomenon in the 40.2°-41° range, starkly different from the CASA results and the observed 590 

XCO2 enhancement. This discrepancy arises because ODIAC's ten-day average NEE data are insensitive 591 

to short-term temporal variations and cannot reflect diurnal changes within a day. Moreover, this period 592 

is Beijing's summer, with vigorous daytime vegetation activity leading to CO2 absorption and a 593 
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consequent drop in XCO2 (as seen in Figure 9d, where the daytime simulated XCO2 enhancement is 594 

much lower than ffXCO2). According to the June 19 simulation results, biosphere flux-induced XCO2 595 

changes account for 21.2% (CASA) and -54.3% (ODIAC) of the observed XCO2 enhancement. 596 

For the January 9 track at 23:00, both CASA and ODIAC data show significant XCO2 enhancements. 597 

However, the CASA simulation aligns more closely with the observations. This difference may be 598 

because ODIAC's ten-day average data, influenced by daytime data, diminish its accuracy in night-time 599 

scenarios. The simulation results for the January 9 track show that biosphere flux-induced local XCO2 600 

enhancements account for 13.37% (CASA) and 7.73% (ODIAC) of the observed comprehensive XCO2 601 

enhancement. 602 

Overall, the biosphere flux's impact on XCO2 enhancement varies significantly between day and night. 603 

In urban-scale inversions, DQ-1's ability to rapidly revisit both day and night can further optimize the 604 

influence of biosphere flux on inversion accuracy. This capability highlights DQ-1's potential to provide 605 

more precise urban-scale fossil fuel emission constraints, especially by distinguishing diurnal variations 606 

in biosphere activity. 607 

3.4 Emission Estimates and a Posteriori Uncertainties 608 

Table 1 Results of inversion of urban emission scaling factors for selected cities using DQ-1 XCO2 data 609 

 

 

 

City 

 

 

 

Overpass 

 

Prior total  

emission  

(Mt C/month) 

Prior total 

emission 

uncertainty 

(
a

 ) 

Measurement 

uncertainty  

(
measurement

  , 

units: ppm) 

Transport model 

uncertainty 

(
Model

  , units: 

ppm) 

 

Scaling factor(λ) 

± posterior 

uncertainty（ ̂ ） 

 

Riyadh 02 March 2023 2.37 45% 1.03 2.53 0.75±0.20  

 20 June 2022 3.49  0.98 2.58 0.86±0.16  

Beijing 01 December 2022 4.61 25% 1.88/2.11 2.64 0.98±0.15 1.09±0.18 

 08 April 2023 3.35  1.57/1.93 1.79 0.65±0.11 0.70±0.14 

 09 January 2023 

10 January 2023 

2.40 

2.40 

 2.01 

1.99 

3.04 

1.45 

0.91±0.12 

1.00±0.14 

 

 

  

19 June 2022 

20 June 2022 

3.81 

3.81 

 

 

1.78 

1.52 

2.11 

1.12 

0.96±0.16 

0.53±0.11 
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Cairo 

 

 

 

 

26 June 2022 

02 August 2022 

16 August 2022 

08 November 2022 

15 November 2022 

22 November 2022 

2.43 

2.49 

2.49 

1.96 

1.96 

1.96 

45% 1.08 

1.45 

1.67 

1.22 

0.98 

1.11 

0.56 

0.71 

0.87 

0.36 

1.31 

0.21 

1.06±0.20 

0.98±0.12 

1.21±0.14 

1.15±0.16 

1.19±0.11 

1.06±0.13 

Notes. Scaling factors and their a posteriori uncertainties are shown for each orbit, as well as integrated 610 

information for all selected orbits. Uncertainty components are listed for each orbit, including the a 611 

priori uncertainty in the scaling factor and the measurement and transport uncertainty in the integral 612 

ffXCO2 (some selected orbital data inverted using OCO-2 data are bolded). 613 

In this section, we present the inversion estimation results for emissions from Riyadh, Cairo, and Beijing 614 

using the DQ-1 tracks shown in Section 3.1. The inversion process considers uncertainties arising from 615 

both measurement and transport. The inversion yields a scaling factor for the total emissions for each 616 

selected city. Specifically, for Beijing, we compare the inversion results with the simultaneously passing 617 

OCO-2 tracks. 618 

Each selected track underwent inversion. The table below shows the posterior emission scaling factors 619 

for each track, along with the uncertainties in the measured and simulated ffXCO2. These uncertainties 620 

were determined using the methods described in Section 2.4. Notably, the prior uncertainty in the 621 

emission scaling factors for Beijing was set at 25%, compared to Riyadh and Cairo, reflecting better 622 

knowledge of emissions from such a world-class megacity (see Section 2.4.2). 623 

For the selected tracks over Riyadh, Cairo, and Beijing, the posterior scaling factors were 0.75-0.86, 624 

0.98-1.21, and 0.53-1.06, respectively (Table 1). The posterior emission scaling factors exhibit significant 625 

temporal variability, influenced by background conditions. As described in the previous section, the 626 

emissions detected by the track depend on its distance from the major emission regions and the domain-627 

averaged wind speed at the time. The domain-averaged wind speed for the selected tracks was 628 

consistently above 3 m/s. Based on meteorological conditions, the posterior values represent estimates 629 

of city emissions for the hours preceding the overpass time. The posterior uncertainty in the emission 630 

scaling factors was 0.16-0.20 for Riyadh, 0.11-0.20 for Cairo, and 0.11-0.16 for Beijing. Compared to 631 

Beijing, the posterior scaling factor uncertainties were generally higher for Riyadh and Cairo. 632 
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As discussed in Section 2.4, the prior emission uncertainties were set to reflect measurement and 633 

transport errors. Table 1 shows that the relative contributions of observation error and transport error vary 634 

across the three cities. For Riyadh, the transport error was significantly larger than the observation error, 635 

while for Cairo, the transport error was much smaller than the observation error. In Beijing, the relative 636 

sizes of transport error and observation error varied. The posterior scaling factors for Beijing's two OCO-637 

2 tracks were almost identical to those from DQ-1, with higher posterior uncertainty due to higher 638 

observation error. Overall, Beijing's posterior uncertainty was lower than that of Cairo and Riyadh, 639 

attributable to more stable prior emission characteristics. 640 

Previous research (Ye et al., 2020) highlighted that the scarcity of OCO-2 tracks near many cities remains 641 

a major limitation in regularly quantifying emissions and objectively tracking temporal variations from 642 

space. In contrast, DQ-1's minimal sensitivity to clouds and aerosols allows for more tracks available for 643 

inversion. Our experiments in Beijing, Cairo, and Riyadh found that, on average, more than six tracks 644 

per month were available for inversion, including day and night overpasses on the same day, further 645 

constraining city emissions (see Section 3.3). 646 

Based on the results in Table 1, we averaged the posterior emission scaling factors and uncertainties for 647 

each city's tracks, yielding mean scaling factors and uncertainties of 0.80±0.18 for Riyadh, 1.10±0.14 for 648 

Cairo, and 0.83±0.13 for Beijing. This indicates that, for the periods represented by the observations, the 649 

prior monthly ODIAC product overestimates emissions for Beijing and Riyadh, while underestimating 650 

emissions for Cairo. 651 

4 Discussion 652 

4.1 Atmospheric Transport Model Errors 653 

Systematic errors in model transport and erroneous statistical assumptions can significantly diminish the 654 

improvements in land-based uncertainty by approximately a factor of two (J. Wang et al., 2014). Hence, 655 

it is essential to control systematic errors and inaccuracies in transport models while minimizing random 656 

errors in DQ-1 observations. In Observing System Simulation Experiments (OSSEs), we assess the 657 

potential impacts of observational and transport errors on the entire inversion process. Transport errors 658 

of tracers in the atmosphere can lead to inaccuracies in flux estimates derived from concentration 659 
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observations. Typically, "inversion" methods either ignore transport errors or only provide a rough 660 

evaluation of their impact (J. Lin & Gerbig, 2005). This section focuses on how uncertainties in 661 

atmospheric transport model outputs influence CO2 flux inversion. 662 

In our experiments, we set the prior flux uncertainty to 25%-40% based on the emission characteristics 663 

of different cities. The uncertainty in DQ-1 XCO2 observations was fixed at 0.5 ppm, representing the 664 

lower limit of observational error. We examined the effects of wind speed and direction errors on the 665 

performance of the inversion method. The errors in the transport model were propagated by treating them 666 

as conversions of model ffXCO2 plumes. Notably, for the cities studied, errors were assumed to be 667 

unbiased. Wind direction errors were analyzed by rotating the plumes around the emission center and 668 

incorporating random wind speed errors. 669 

We illustrate these concepts using six tracks over Cairo. The overall ffXCO2 distribution was generated 670 

by applying random positive and negative wind direction biases (>-10°, <10°) to each track's STILT 671 

footprint, rotating it 104 times, and adding positive/negative wind speed biases (>-1 m/s, <1 m/s). Overall, 672 

the temporal variability in the posterior emission scaling factors and uncertainties can be attributed to 673 

transport model errors. The transport model error significantly influenced the observed ffXCO2 674 

distribution. Specifically, the track on November 15 was most affected by transport model errors, likely 675 

due to its passage through the plume boundary. In contrast, the track on August 16 experienced minimal 676 

transport model errors, as it was further from the simulated ffXCO2 plume, making it less sensitive to 677 

small wind direction and speed errors. 678 
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 679 
Figure 10: Box plots of the modeled integral ffXCO2 enhancement (∑ffXCO2, m) for selected OCO-2 orbits 680 

over Cairo at the date labeled on the x-axis (2022). For each box, the center line indicates the median (q2), 681 

and the bottom and top edges of the box indicate the 25th and 75th percentiles (q1 and q3), respectively. The 682 

whiskers extend to the maximum and minimum values. The numbers are the ratio of the interquartile spacing 683 

(q3 - q1) to the median (q2). 684 

4.2 The Challenge of Separating Biological Fluxes in Day and Night Orbits 685 

In Section 3.3, we detailed how DQ-1's short-term day-night revisit capability allows for the 686 

consideration of diurnal and nocturnal biogenic fluxes in emission inversions. Typically, large-scale 687 

inversions do not account for uncertainties in fossil fuel emission inventories and treat biogenic fluxes 688 

as uncertainties in prior fluxes (J. Wang et al., 2014). Studies focused on urban-scale inversions that do 689 

not utilize nocturnal tracks, while directly considering biogenic flux impacts, have not accounted for the 690 

diurnal variation of biogenic fluxes (Ye et al., 2020). In this study, we leveraged DQ-1's nocturnal 691 

observations to provide a method for separately considering biogenic flux effects during day and night. 692 

Our results indicate that using daytime average NEE data and nighttime NEE data can result in 693 

differences of up to 70% in inversion outcomes. 694 

However, this approach has limitations in large-scale inversions. Separating daytime and nighttime 695 

emissions necessitates a limited transport time due to the constraints of the transport model, which means 696 

that simulated particles cannot travel long distances under limited wind speed and time conditions. To 697 

address this, more frequent overpass tracks, including those from geostationary carbon cycle observation 698 
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satellites such as GeoCarb (Moore III et al., 2018), Total Carbon Column Observing Network 699 

(TCCON)(Toon et al., 2009), and MicroCARB, could enhance large-scale day-night cross-observations 700 

and support separate daytime and nighttime inversions. Currently, the number of DQ-1 tracks does not 701 

support large-scale separate day-night inversions. In large-scale flux inversions, biogenic fluxes are 702 

typically used as prior uncertainty over weekly or monthly periods. Such long-term and wide-scale data 703 

assimilation reduces the impact of diurnal biogenic flux variations on inversion results. Unlike other 704 

satellite measurements that are restricted to daytime clear-sky conditions, DQ-1's XCO2 measurements 705 

provide uniform temporal sampling, thus allowing effective quantification of diurnal variations in 706 

emissions. 707 

Accurate downscaling methods for biogenic fluxes, such as the Solar-Induced Fluorescence Model 708 

(SMUrF) (Wu et al., 2021), and advanced vegetation models, like the Vegetation Photosynthesis and 709 

Respiration Model (VPRM) (Luo et al., 2022; Mahadevan et al., 2008) are crucial for precise biogenic 710 

flux calculations. Radiocarbon and land surface solar-induced fluorescence (SIF) data aid in 711 

distinguishing between fossil fuel CO2 and biogenic CO2 (Fischer et al., 2017). Recent research indicates 712 

that SIF serves as a better indicator or proxy for gross or net primary production compared to other 713 

vegetation indices. 714 

4.3 Insights From Results of the OSSEs 715 

In the emission inversion process, prior emissions are considered as fully distributed, optimizing regional 716 

emissions for an entire city using a scaling factor, in contrast to grid-specific inversions. As noted by 717 

previous research, using a single scaling factor for the entire city limits the flexibility to capture true 718 

spatial variations in fluxes compared to grid-specific inversions. Estimating prior emission uncertainties 719 

at the grid scale is challenging because grid-scale emission uncertainties are typically much larger than 720 

those using scaling factors (Andres et al., 2012). 721 

Apart from uncertainties in the transport model, DQ-1 measurements, and biogenic fluxes, several 722 

additional error sources may introduce biases in the inversion results. DQ-1 data's measurement errors 723 

are assumed to be spatially uncorrelated due to the lack of high-resolution correlation data. Additionally, 724 

random components of nonlinear and interference errors in retrievals may introduce significant errors in 725 

the inversions (Connor et al., 2016). In our OSSE, measurement uncertainty is assessed at its lower bound. 726 
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Simulation results for Riyadh and Beijing indicate that the enhancement of ffXCO2 generally exceeds 727 

1.5 ppm and can reach up to approximately 5 ppm, surpassing the uncertainties in land-based 728 

observations (around 1 ppm) (Annmarie Eldering et al., 2017). In contrast, Cairo's ffXCO2 values are 729 

mostly below 2.0 ppm, with some hotspots near high-emission industries such as power plants. Detecting 730 

CO2 plumes in smaller cities is challenging due to limited detectability of fossil fuel-derived CO2 plumes. 731 

Factors limiting detectability include: 1) The number and location of overpass tracks. 2) Overlap 732 

enhancements from nearby cities or point sources. 3) Low ffCO2 emissions. To improve the detection of 733 

city plumes, more ground-based in situ measurements and high-altitude satellites with enhanced 734 

detection capabilities are necessary. 735 

5 Conclusions 736 

This study presents the use of DQ-1's XCO2 observation data to constrain fossil fuel emissions in various 737 

urban regions and evaluates its capabilities. By coupling WRF and STILT, a high-resolution forward 738 

transport model was developed to simulate and illustrate the structure and details of urban-scale fossil 739 

fuel XCO2 plumes and assess the relationship between simulated and observed XCO2. Throughout the 740 

inversion process, we considered DQ-1's observational errors, transport model errors, and the impact of 741 

DQ-1's day-night observation capability on assessing the temporal variation of biosphere fluxes in urban 742 

emissions. Employing a Bayesian inversion approach, we optimized CO2 emissions from fossil fuels in 743 

Beijing, Riyadh, and Cairo using DQ-1 data collected from March to December 2022, focusing on 744 

downwind tracks in major urban emission areas where significant XCO2 enhancements were detected. 745 

Pseudo-data experiments, based on high-resolution forward simulations from real cases, were conducted 746 

to evaluate the potential of using multiple DQ-1 tracks while considering measurement and transport 747 

model errors. Our results showed that the posterior scaling factors for the three cities ranged from 0.53 748 

to 1.06, 0.75 to 0.86, and 0.98 to 1.21, respectively, with Riyadh exhibiting the highest posterior 749 

uncertainty. Notably, some simulations revealed that posterior scaling factor uncertainties are influenced 750 

by the relative position of tracks to plumes and positive or negative wind direction biases in the region. 751 

Our assessment of spatial and temporal gradients in biosphere fluxes revealed that, at certain times in 752 

Beijing, despite significant ffCO2 emissions, a notable portion of the local XCO2 enhancement (20% 753 

and 13%, respectively) was attributable to local biosphere fluxes. This could lead to an overestimation 754 
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of total emissions by approximately 33% ± 20% and 13 ± 7%. By incorporating CASA and ODIAC 755 

biosphere flux data and examining day-night crossing tracks on the same day, we found that separately 756 

considering day and night biosphere fluxes can improve the accuracy of local XCO2 enhancement 757 

calculations by 30%-70% compared to using daily average biosphere fluxes. This indicates that 758 

leveraging the short-term, rapid day-night crossing capability of DQ-1, along with more accurate 759 

biosphere flux estimation models, has the potential to reduce uncertainties in emission estimates due to 760 

biosphere fluxes. 761 

For biosphere flux cities with similar total CO2 emissions but lower fossil fuel emissions, the contribution 762 

of biosphere fluxes is expected to be higher than indicated. Therefore, for cities in mid-latitude and 763 

equatorial regions with significant local and regional biosphere fluxes, accurately interpreting XCO2 764 

detection results is crucial. Future improvements in constraining urban fossil fuel CO2 emissions using 765 

DQ-1 data or other polar orbit measurements should consider the temporal and spatial correlations of 766 

previous emission errors, which were not included in this inversion. 767 

For applying these methods to larger-scale flux inversions, advanced satellites with shorter revisit cycles 768 

and denser ground-based stations are essential. Additionally, optimizing city emission scaling factors 769 

requires more information on prior emission uncertainties to better understand spatial and temporal 770 

characteristics of urban-scale emissions. The appropriate number of constraints for urban emissions will 771 

depend on the spatial and temporal resolution of target city emissions and the precision required to 772 

support policy decisions. Our results demonstrate that DQ-1 or similar missions have significant potential 773 

to constrain overall emissions from cities with intensified fossil fuel emissions, and utilizing DQ-1's 774 

unique day-night crossing capability, we can establish frameworks for rapid day-night flux inversions at 775 

the urban scale. This will further elucidate the spatial and temporal structure of biosphere flux 776 

contributions to urban emissions and provide valuable insights for policy-making. We anticipate that DQ-777 

1 data will effectively enhance the accuracy and precision of urban fossil fuel carbon flux estimates, in 778 

conjunction with observations from other platforms to support emission reduction strategies. 779 
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