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Abstract. Satellite observations of the total column dry-air carbon dioxide (XCO2) have been proven to 10 

support the monitoring and constraining of fossil fuel CO2 (ffCO2) emissions at the urban scale. We 11 

utilized the XCO2 retrieval data from China’s first laser carbon satellite dedicated to comprehensive 12 

atmospheric environmental monitoring, DQ-1, in conjunction with a high-resolution transport model and 13 

a Bayesian inversion system, to establish a system for quantifying and detecting CO2 emissions in urban 14 

areas. Additionally, we quantified the impact of uncertainties from satellite measurements, transport 15 

models, and biospheric fluxes on emission inversions. To address uncertainties from the transport model, 16 

we introduced random wind direction and speed errors to the ffCO2 plumes and conducted 104 17 

simulations to obtain the error distribution. In our pseudo-data experiments, the inventory overestimated 18 

fossil fuel emissions for Beijing and Riyadh, while underestimating emissions for Cairo. Specifically, we 19 

simulated Beijing and leveraged DQ-1’s active remote sensing capabilities, utilizing its rapid day-night 20 

revisit ability. We assessed the impact of daily biospheric fluxes on ffXCO2 enhancements and further 21 

analyzed the diurnal variations of biospheric flux impacts on local XCO2 enhancements using three-22 

hourly average NEE data. The results of a case study indicate that a significant proportion of local XCO2 23 

enhancements are notably influenced by biospheric CO2 variations, potentially leading to substantial 24 

biases in ff CO2 emission estimates. Moreover, considering biospheric flux variations separately under 25 

day and night conditions can improve simulation accuracy by 20-70%. With appropriate representations 26 

of uncertainty components and a sufficient number of satellite tracks, our constructed system can be used 27 

to quantify and constrain urban ffCO2 emissions effectively. 28 

1 Introduction 29 

More than 170 countries have signed the Paris Agreement, vowing to keep the global average temperature 30 

increase within 2 degrees Celsius in this century. Accurate carbon accounting is the basis for any 31 

mitigation measures. Over 70% of the anthropogenic CO2 emissions are from urban areas(Agency, 2009; 32 

Birol, 2010). It is thus critical to develop effective means to estimate urban CO2 emissions accurately. 33 

“bottom-up” (inventory) approaches have shown good performances in developed countries such as 34 
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U.S.A and E.U(Crippa et al., 2018; Gurney et al., 2009). However, huge uncertainties in estimation of 35 

anthropogenic CO2 emissions are inevitable in developing countries such as China and India because of 36 

their rapidly growing economies and imperfect monitoring systems. For example, the discrepancy 37 

between different estimations of CO2 emissions of China exceeded 1,770 million tones (20%) in 38 

2011(Shan et al., 2016), which is approximately equal to the Russian Federation’s total emissions in 39 

2011(Shan et al., 2018). Therefore, “top-down” (inverse) approaches could play a more significant role 40 

in those countries to estimate and update carbon fluxes. In addition, carbon emission inventories with a 41 

spatial resolution of 0.1°are available at the global scale, however, Oda et al. (2011) warned that 42 

available information is insufficient to fully evaluate the relationship between CO2 emission and the 43 

proxy data, such as population and nightlight(Oda and Maksyutov, 2011). Consequently, associated 44 

errors would increase at finer resolutions. On the other hand, the anthropogenic carbon emissions are 45 

assumed to be known quantities and are important as reference for analyzing a budget of the three fluxes 46 

(These three fluxes reflect the respective contributions to atmospheric CO₂ concentrations from fossil 47 

fuel emissions, ocean–atmosphere exchange, and a terrestrial biosphere assumed to be net carbon 48 

neutral.)(Gurney et al., 2005; Gurney et al., 2002). Therefore, there is an urgent need to develop novel 49 

methods to acquire more robust and accurate surface CO2 fluxes with fine resolution in urban areas where 50 

the majority of anthropogenic CO2 emissions are located. 51 

The atmospheric inversion technique has been widely used to retrieve carbon fluxes at large 52 

geographic scales(Bakwin et al., 2004; Ballantyne et al., 2012; Bousquet et al., 1999; Gerbig et al., 2003; 53 

Myneni et al., 2001; Stephens et al., 2007; Watson et al., 2009), by using measurements from the network 54 

of ground-based greenhouse gas measurements. Dense and accurate observations of CO2 dry-air 55 

mixing ratios (XCO2) are needed to inverse carbon fluxes at a finer geographic scale(Kaminski et al., 56 

2017; Rayner and O'brien, 2001), enabling smaller-scale sources emitting CO2 into the atmosphere to be 57 

better quantified(Eldering et al., 2017a). Remote sensing from space is undoubtedly the most appropriate 58 

means to obtain dense CO2 observations rapidly in large extents(Buchwitz et al., 2017; Ehret et al., 2008). 59 

GOSAT and OCO-2 provide us an opportunity to retrieve column-average CO2 (XCO2) globally except 60 

in Polar Regions. Recent studies have demonstrated the promising potential of OCO-2 to help scientists 61 

identify localized CO2 sources(Schwandner et al., 2017) , estimate regional CO2 fluxes (Eldering et al., 62 

2017a) and map the net CO2 uptake by the biosphere(Köhler et al., 2018; Li et al., 2018; Sun et al., 2018). 63 
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It is still a challenging mission to obtain accurate estimates of CO2 fluxes using XCO2 products, 64 

especially in urban areas, because the signals received by OCO-2/GOSAT need to be attributed 65 

unambiguously to variations in atmospheric CO2 concentration, as opposed to variations caused by 66 

environmental factors such as aerosols and clouds(Miller et al., 2014). Along with the success of passive 67 

remote sensing of CO2, U.S.A and China ambitiously planned to send their LIDAR (Light Detection and 68 

Ranging) sensors into the orbit to realize monitoring CO2 in all latitudes and in nights(Abshire et al., 69 

2018; Han et al., 2017). Effect of aerosols and thin clouds on retrievals of XCO2 can be eliminate through 70 

a differential process of signals from two very close wavelengths(Amediek et al., 2008; Han et al., 2014; 71 

Mao et al., 2018). Therefore, a smaller bias of retrievals of CO2-IPDA (Integrated Path Differential 72 

Absorption) LIDAR is expected comparing with the passive remote sensing, which is beneficial for 73 

inversion of CO2 fluxes. Previous studies had focused on performance evaluation of CO2-IPDA LIDAR 74 

in terms of systematic errors, random errors as well as the coverage(Ehret et al., 2008; Han et al., 2017; 75 

Kawa et al., 2010). There are evident differences between XCO2 products of OCO-2 and those of the 76 

forthcoming CO2-IPDA LIDAR in terms of coverage patterns(Kawa et al., 2010; Kiemle et al., 2011).  77 

Though positive relationship between satellite-derived XCO2 anomalies/enhancements and CO2 78 

emissions has been witnessed(Hakkarainen et al., 2016), it is by no means a predetermined conclusion 79 

that CO2 sources and sinks can now be measured from space at high resolution(Miller et al., 2014). 80 

Atmospheric transport models are indispensable to build a bridge between CO2 sources/sinks and 81 

measured concentrations(Rayner and O'brien, 2001). Stochastic Time-Inverted Lagrangian Transport 82 

(STILT) was invented in 2003 (Lin et al., 2003) and soon was utilized to inverse fluxes of trace 83 

gases(Gerbig et al., 2003; Lin et al., 2004). In 2010, Weather Research and Forecasting (WRF) model 84 

was coupled with STILT (WRF-STILT), offering an attractive tool for inverse flux estimates(Nehrkorn 85 

et al., 2010). Since then, several studies used this tool to model CO2 distribution and inverse CO2 fluxes 86 

using in-situ measurements(Kort et al., 2013; Nehrkorn et al., 2013; Pillai et al., 2012; Vogel et al., 2013) 87 

as well as satellite observations(Reuter et al., 2014; Turner et al., 2018; Wang et al., 2014; Che et al., 88 

2024). Recently, STILT was further updated to facilitate modeling of trace gases with a fine scale(Fasoli 89 

et al., 2018). The key product provided by WRF-STILT is the “footprint” which describes the sensitivity 90 

of measurements (receptors) to surface fluxes in upwind regions. Then, the Bayesian inversion method 91 

can be used along with the footprint and a-priori surface fluxes to estimate a-posterior surface fluxes. 92 
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Unlike the passive remote sensing of CO2 that can scan perpendicular to the direction of the satellite orbit, 93 

IPDA LIDAR in practice has sensors that only operate in point mode due to the unaffordable power 94 

consumption and cost of implementing a scan mode. Such a difference can be ignored when one tries to 95 

estimate large scale CO2 fluxes by using satellite-derived XCO2 products with a resolution of 1°(or 96 

coarser). However, specific inversion methods, which take the characteristics of LIDAR products into 97 

considerations, are urgently needed for inversion of fine scale CO2 fluxes(Kiemle et al., 2017). Our 98 

previous work has already confirmed that it is feasible to retrieve XCO2 in urban areas using the ACDL 99 

(Aerosols and Carbon Dioxide Lidar) which is onboard on the Atmospheric Environment Monitoring 100 

Satellite (AEMS) DQ-1 of China(Han et al., 2018). In this work, an inversion framework is used to 101 

inverse fine scale (~1 km/0.01°) CO2 fluxes of urban areas using pseudo XCO2 observations from 102 

ACDL. Our main objective is to determine the ability and potential of ACDL to help us estimate 103 

anthropogenic carbon emission in urban areas. In turn, results of the performance evaluation will be the 104 

justification for improve the configuration of the ongoing ACDL and its successor which would be sent 105 

to the orbit in just 2-3 years after AEMS.  106 

In this study, we propose a framework based on DQ-1 XCO2 data to periodically assess urban-scale 107 

fossil fuel CO2 emissions. We employ Observing System Simulation Experiments (OSSEs) to investigate 108 

the performance of DQ-1's ACDL XCO2 products in improving CO2 flux estimation at an enhanced 109 

spatial resolution of 0.01° × 0.01° over urban areas. The OSSE consists of a forward simulation module 110 

and an inversion framework. The forward module utilizes WRF modeling for high-resolution simulations, 111 

allowing us to capture fine-scale trace gas transport characteristics and variations. We simulate pseudo-112 

measurements and corresponding errors based on hardware configurations, environmental parameters, 113 

and physical process simulations within this module. The inversion framework relies on footprints 114 

calculated by WRF-STILT to estimate urban-scale emission scaling factors using Bayesian inversion 115 

methods. The study also accounts for the impacts of measurement errors, transport model uncertainties, 116 

and biosphere flux uncertainties on emission estimation uncertainty throughout the OSSE. Initially, we 117 

evaluate emission estimation uncertainty related to transport model and measurement errors, focusing on 118 

three cities: Beijing, Riyadh, and Cairo, each with distinct topographical influences. Riyadh and Cairo 119 

exhibit negligible local biosphere flux impacts on emission estimates due to relatively flat terrain and 120 

stable wind fields, categorizing them as "plume cities" where CO2 emissions are typically captured in 121 
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plume forms due to these conditions(Ye et al., 2020). Building on these simulations, we conduct OSSEs 122 

to assess the potential of using XCO2 data from multiple DQ-1 orbits to track urban emissions regularly. 123 

Leveraging DQ-1's unique day-night revisit capability, we also evaluate uncertainties arising from local 124 

biosphere flux variations in Beijing. Unlike previous inversion studies using OCO-2/3, which primarily 125 

sample during daytime, DQ-1's day-night orbit allows for more evenly distributed temporal sampling. 126 

Furthermore, combining DQ-1's day-night revisit capability, we introduce for the first time an analysis 127 

of how biosphere flux variations between day and night affect emission estimates using forward 128 

simulations and Bayesian inversion. Lastly, we summarize the significance of future satellite 129 

observations in monitoring urban emissions. 130 

2 Data and method 131 

2.1 ACDL XCO2 products 132 

In order to design a device similar to the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 133 

onboard the CALIPSO satellite, the design of DQ-1 was initially proposed in 2012. It was officially 134 

approved in 2017. Distinct from other environmental monitoring satellites, a notable and innovative 135 

highlight of DQ-1 is the integration of a lidar payload for space-based top-down CO2 detection, known 136 

as ACDL. In subsequent developments, ACDL underwent a series of laboratory prototype developments 137 

(Zhu et al., 2019) and airborne prototype testing missions(Wang et al., 2021; Xiang et al., 2021; Zhu et 138 

al., 2020). Finally, ACDL was launched into a near-Earth sun-synchronous orbit at an altitude of 139 

approximately 705 kilometers on April 18, 2022. DQ-1, as a sun-synchronous orbiting satellite, has a 140 

stable daily transit time of approximately 1 p.m. local time during the day and 1 a.m. local time at night. 141 

ACDL began data collection in late May 2022 and officially commenced operations. This study primarily 142 

utilizes data from June 2022 to April 2023 for further research. 143 

ACDL employs standard IPDA lidar technology, using differential absorption methods to acquire 144 

column concentrations of atmospheric carbon dioxide (CO2). A detailed description of the XCO2 145 

detection algorithms and products is in preparation. In this paper, we briefly introduce its detection 146 

principles. ACDL emits a pair of nearly simultaneous observation signals, one with a wavelength located 147 

at the strong absorption position of the R16 line in the CO2 spectrum (on-line wavelength 1572.024nm) 148 
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and the other at a weak absorption position of the same line (off-line wavelength 1572.085nm). The on-149 

line and off-line wavelengths are stabilized at 6361.225 cm-1 and 6360.981 cm-1, corresponding to 150 

1572.024 nm and 1572.085 nm, respectively. This slight wavelength difference enables ACDL to 151 

counteract interference from aerosols and other molecules, excluding water vapor, through the 152 

differential process of the reflected signals. The detection of XCO2 by ACDL is calculated based on 153 

specific algorithms (see Section 2.4.1).  154 

 155 

Figure 1：the schematic diagram for DQ-1's detection principle 156 

Figure 1 illustrates the detection principle of DQ-1. The XCO2 products generated by ACDL are 157 

similar to those of GOSAT, adopting a point sampling mode. The lidar operates in nadir observation 158 

mode, with approximately one 70-meter footprint observed every 350 meters along the track. 159 

According to Equation 1, we calculate XCO2 by directly using the integrated weighting function (IWF). 160 

Significant differences in XCO2 measurements can be observed between ACDL and OCO-2/3. Currently, 161 

passive remote sensing satellites like OCO-2/3 and GOSAT estimate XCO2 by measuring the solar 162 

spectrum and using a priori information guided by optimal estimation theory to derive XCO2(p), 163 

ultimately obtaining XCO2(Miller et al., 2014). In contrast to these traditional passive optical remote 164 

sensing satellites, ACDL does not 'estimate' xCO2(p) but directly 'calculates' the weighted average 165 

column concentration(Zhang et al., 2024). During the integration phase of ACDL's development, we 166 

evaluated the WF(Weighting Function) shapes of various on-line wavelengths and selected one that 167 
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responds strongly near the surface and weakly at higher altitudes(Han et al., 2017). This design allows 168 

changes in surface CO2 concentration, driven by surface CO2 fluxes, to be more prominently reflected in 169 

the column concentration. Therefore, this WF enhances the ability to identify surface CO2 variations and 170 

provides more information for subsequent CO2 flux inversion. 171 

Unlike the XCO2 products from passive satellites such as OCO-2/3, the XCO2 product from DQ-1 172 

(hereafter referred to as 2LidarXCO to distinguish it from passive satellite XCO2 products) is derived using 173 

the differential between on-wavelength (strong CO2 absorption) and off-wavelength (weak CO2 174 

absorption) measurements. In this context, 2LidarXCO  is obtained through the differential of the lidar 175 

signals and integration weighting functions described in equations 1 and 2. Here, ( )WF p represents the 176 

lidar signal and prepresents the pressure: 177 
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Here, onV and
offV  represent the reflected signal energies at the on-wavelength and off-wavelength, 179 

respectively, while 0onV   and
0offV   denote the transmitted signal energies. _p surface  indicates the 180 

atmospheric pressure at the laser ground point, and _p top  represents the pressure at the TOA of the 181 

atmosphere. 182 

The denominator of Equation 1 represents the integration weighting function, as detailed in the study by 183 

(Refaat et al., 2016): 184 
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Here, ( , , )wf on off p    denote the CO2 differential absorption cross-sections at the on-wavelength and 186 

off-wavelength, respectively.
dryN  represents the number of dry air molecules per unit volume in the 187 

pressure layer. This formula allows for the construction of the relationship between 2LidarXCO and the CO2 188 

profile 2( )CO p : 189 
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2.2 Study Area 191 

Considering the available orbital tracks for DQ-1 inversion, vegetation coverage, and the complexity of 192 

meteorological conditions, this paper selects three cities and regions to highlight the different sources of 193 

uncertainty in emission inversion and the inversion capability of DQ-1. The selected cities share the 194 

following characteristics: 1) high fossil fuel emissions; 2) typical "plume cities," (Ye et al., 2020) 195 

characterized by ffXCO2 enhancements distributed in plume forms(Deng et al., 2017). Riyadh, with a 196 

population of 8 million, and Cairo, with a population of 20 million, have significantly weaker biosphere 197 

contributions compared to Beijing. In subsequent research, it is considered that the spatial gradient of 198 

biosphere CO2 flux can be ignored compared to local fossil fuel emissions. 199 

To assess the impact of biosphere flux uncertainty on the inversion process and separately evaluate the 200 

impact of daytime and nighttime biosphere flux on the simulated local XCO2 enhancement, we selected 201 

Beijing, the capital city of China, with a population of approximately 21.5 million. Beijing is not only 202 

the political center of China but also one of the most populous cities. Compared to its surrounding areas, 203 

Beijing has relatively less vegetation. Surrounding cities might have better-preserved natural ecological 204 

environments and more abundant vegetation cover due to less industrialization and urbanization(Che et 205 

al., 2022). For instance, the mountainous and suburban areas around Beijing may have more forests, 206 

grasslands, and farmlands, whereas green spaces within Beijing are often limited to parks, green belts, 207 

and a few nature reserves. As a city with high fossil fuel emissions and active biosphere exchange, Beijing 208 

is well-suited for studying the impact of biosphere flux uncertainty on emission estimates. 209 

2.3 Atmospheric Model Setting 210 

2.3.1 WRF-STILT 211 

The spatial heterogeneity of emissions and dense point sources (such as power plants) lead to a complex 212 

spatial structure of urban emissions, resulting in intricate ffCO2 plumes combined with local atmospheric 213 

dynamics. To explore fine-scale urban emission patterns, this study employs the WRF-STILT model 214 

(WRF: Weather Research and Forecasting, STILT: Stochastic Time-Inverted Lagrangian Transport). The 215 

STILT Lagrangian model driven by WRF meteorological fields is characterized by a realistic treatment 216 

of convective fluxes and mass conservation properties, which are crucial for accurate top-down estimates 217 
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of CO2 emissions. 218 

In this study's application of STILT, hourly outputs from version 4.0 of WRF are used to provide high-219 

resolution meteorological fields, with the model grid configured to 51 vertical (eta) layers. The 6-hourly 220 

NCEP FNL (Final) global operational analysis data with a resolution of 1° are used as initial and boundary 221 

conditions for meteorological and land surface fields to provide the initial and boundary conditions for 222 

WRF runs. The simulations run for 30 hours, but only the 7th to 30th hours of each simulation are used 223 

to avoid spin-up effects in the first 6 hours. 224 

Each city uses the same one-way WRF nesting at 27 km, 9 km, and 3 km resolutions, with Riyadh 225 

( 23 7625 5 7625. , . EN 4 - 25 4375 27 4375. , . EN  ), Cairo ( 29 1625 30 4125. , . EN  - 30 8375 32 0875. , . EN  ), and Beijing 226 

( 39 4 115 5. , . EN  - 41 075 117 175. , . EN  ) having their innermost regions used to filter DQ-1's orbital data. The 227 

study area for STILT is set to be smaller than the innermost WRF region to eliminate the marginal effects 228 

of WRF. Footprints quantitatively describe the contribution of surface fluxes from upwind areas to the 229 

total mixing ratio at specific measurement locations, with units of mixing ratio per unit flux. The footprint 230 

used in lidar satellite inversions is different from that used in general optical satellites, as detailed in 231 

Section 2.4.1. STILT (In this study, we used the STILT model, version 2, to simulate atmospheric 232 

transport processes.) is configured to release 500 particles per receptor each time, with forward dispersion 233 

over 24 hours. The particle release heights for STILT are set within the range of 50-1000 m, with releases 234 

every 50 m, and 1000-2000 m, with releases every 100 m, the spatial resolution of the STILT simulations 235 

is 1ௗkm × 1ௗkm. Generally, as MAXAGL increases from 1 km to 2 km, the urban enhancement increases 236 

and then stabilizes(Wu et al., 2018). 237 

2.3.2 Inventory of Fossil Fuel Emissions 238 

This article uses The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) which is a global 239 

high-resolution fossil fuel carbon dioxide emissions (ffCO2) data product(Tomohiro Oda, 2015). The 240 

2023 version of ODIAC (ODIAC2023, 2000-2022) is based on the Appalachian State University's 241 

Carbon Dioxide Information Analysis Center (CDIAC) team's(Gilfillan and Marland, 2021; Hefner et al., 242 

2024) most recent national ffCO2 estimates (2000-2020). The ODIAC emissions inventory provides243 

1 1km km global monthly average ffCO2. The spatial decomposition of emissions is accomplished using a 244 

variety of spatial proxy data, such as the geographic location of point sources, satellite observations of 245 
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night lights, and airplane and ship tracks. Seasonality of emissions was obtained from the CDIAC 246 

monthly gridded data product(Andres et al., 2011) and supplemented using the Carbon Monitor product 247 

(2020-2022, https://carbonmonitor.org/). In this paper, monthly data from ODIAC are time-allocated, and 248 

neither the subsequent modeling nor the pseudo-data take into account the daily and weekly time-249 

variation of the ACDL product. 250 

2.3.3 Background XCO2 251 

To extract the XCO2 enhancement for DQ-1 inversion, we define XCO2 enhancement as entirely driven 252 

by fossil fuel emissions. A classic method for extracting orbital background concentrations involves 253 

selecting another "clean" orbit (minimally influenced by fossil fuel emissions) that is spatially and 254 

temporally close, and using averaging or linear regression to approximate a background concentration 255 

for the orbit under study. In this study, due to the fine-scale urban area emissions inversion, the study 256 

area is small, making it challenging to find another clean orbit for calculating the background 257 

concentration. 258 

Previous studies have used inversion methods to derive background concentrations for orbits(Pei et 259 

al., 2022), but these typically yield a background concentration for a region. These methods usually 260 

produce a value unaffected by geographic location within a small area. However, for each orbit we study, 261 

a single, constant background concentration is clearly unreasonable. Therefore, based on previous 262 

research, we designed a simple and quick method to extract background concentrations, generating a 263 

background line for each orbit of interest. 264 

To derive 𝑓𝑓𝑋𝐶𝑂2, which represents the enhancement of 𝑋𝐶𝑂2 attributed to fossil fuel emissions, 265 

we need to subtract the background 𝑋𝐶𝑂2 from the observational data obtained by DQ-1. In the study 266 

(Ye et al., 2020),  XCO2 is decomposed into two components: 𝑋𝐶𝑂2௧௥௘௡ௗ  and 𝑋𝐶𝑂2௟௢௖௔௟  . Here, 267 

𝑋𝐶𝑂2௧௥௘௡ௗ represents the non-local trend, while the standard deviation 𝜎௟௢௖௔௟  of 𝑋𝐶𝑂2௟௢௖௔௟  indicates 268 

variations at the local scale. We filtered the XCO2 samples with 𝑋𝐶𝑂2 < 𝑋𝐶𝑂2௧௥௘௡ௗ + 0.5𝜎௟௢௖௔௟ . These 269 

filtered data are designated as "background samples" (represented by blue triangles in Figures 3, 5, 7) 270 

due to their lower spatial variability at the local scale compared to samples affected by urban ffCO2 271 

emissions. We then performed linear regression based on the "background samples" to recalculate the 272 

linear regression line, referred to as the "background line." This "background line" method accounts for 273 
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spatial trends in the background data. Unlike Ye et al. (2020), we utilized the low-frequency (approximate) 274 

coefficients obtained from DWT to characterize. 275 

2.3.4 Biogenic Carbon Flux 276 

We specifically considered the influence of biogenic flux on the emission constraints in urban areas for 277 

DQ-1. Two open-source NEE datasets were utilized in our study. The first dataset is derived from the 278 

Carnegie-Ames-Stanford Approach-Global Fire Emissions Database Version 3 (CASA-GFED3) 279 

model(Van Der Werf et al., 2010), which provides 3-hourly average net ecosystem exchange (NEE) of 280 

carbon. This dataset incorporates biogenic fluxes as well as fluxes associated with biomass burning 281 

emissions, offering a global coverage of 3-hourly average NEE. 282 

Additionally, we considered the ODIAC dataset, which provides advanced data-driven products on 283 

global primary production, net ecosystem exchange, and ecosystem respiration(Zeng, 2020). The ODIAC 284 

dataset offers 10-day average global NEE data and utilizes extensive ecosystem indices from MODIS 285 

and ERA5 to deliver more precise data. 286 

According to the study by(Ye et al., 2020), to better describe the diurnal variations and spatial 287 

distribution of biogenic fluxes, the MODIS green vegetation fraction (GVF) was used to downscale the 288 

3-hourly NEE from the original grid resolutions (CASA NEE 0.5° × 0.625° and ODIAC NEE 0.1° × 0.1°) 289 

to the WRF domain resolutions (27, 9, and 3 km). This method assumes a linear relationship between 290 

carbon uptake and release and the vegetation canopy coverage. 291 

Our application of these datasets and downscaling methods enables a more accurate representation of 292 

biogenic flux contributions to urban carbon emissions. By integrating high-resolution biogenic flux data, 293 

we can improve the precision of emission inventories and enhance our understanding of urban carbon 294 

dynamics. This approach allows us to better inform urban planning and policy-making aimed at reducing 295 

carbon footprints and mitigating climate change impacts. 296 

2.4 Emission Optimization Method 297 

2.4.1 X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”) 298 

XSTILT incorporates satellite profiles and provides comprehensive uncertainty estimates of urban XCO2 299 

enhancements on a per sounding basis(Wu et al., 2018). The simulated enhancement in CO2 emissions 300 
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due to fossil fuels, 
22 2( ) , ( )ffCOCO p ffCO foot h   , can be interpolated from the modeling results of 301 

CO2 fluxes and tracer-tagged footprints. Therefore, a relationship between CO2 fluxes and 𝑋𝐶𝑂2௅௜ௗ௔௥  is 302 

established: 303 

1 2
1 22 2 2 2

( ) ( )
, ( ) , ( )Lidar Lidar

background

WF p WF p
XCO XCO ffCO foot h ffCO foot h

IWF IWF
                  4 304 

Here,
22 2 2,

Lidar Lidar Lidar
ffCO obs backgroundXCO XCO XCO    represents the XCO2 enhancement extracted from DQ-1 305 

observational data, and 2 Lidar
backgroundXCO represents the background concentration selected from the DQ-1 306 

orbit (detailed in Section 2.3.3). The symbol ,denotes the inner product operator, 2ffCO is the prior 307 

emission flux, and ( )nfoot h represents the simulated footprints at different altitude layers. This formula 308 

establishes the mathematical foundation for inversion. 309 

By integrating footprints from different release heights (Section 2.3.1 explains the selection of STILT 310 

release heights), we further simplify the above equation. Here, we define
22 ,

Lidar
ffCO simXCO as the XCO2 311 

enhancement simulated by the atmospheric transport model. 312 

22 2, ,Lidar Liadr
ffCO simXCO XSTILT ffCO                                            5 313 
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( )
( )

n
Lidar i

i
i

WF p
XSTILT foot h

IWF

                                                     6 314 

Here, we define LidarXSTILT as the column-averaged footprint, corresponding to the column-averaged 315 

CO2 concentration. The inner product of the column-averaged footprint and the prior emission flux yields 316 

the simulated XCO2 enhancement. Thus, we can optimize the fossil fuel CO2 (ffCO2) emission 317 

parameters using the simulated and observed XCO2 enhancements to achieve the best consistency 318 

between the model and observed increments. By achieving this optimization, we ensure that the model 319 

accurately reflects the observed data, providing a reliable basis for further studies and policy-making. 320 

Considering previous studies that used OCO-2/3 and GOSAT for inversion(Patra et al., 2021; Roten 321 

et al., 2022; Wang et al., 2019), we selected one of these inversion methods (Ye et al., 2020) for 322 

comparison with DQ-1 inversions and validation using TCCON site data (see Section 3.2). The posterior 323 

scaling factor was applied to the ODIAC inventory flux to simulate XCO2 at TCCON site locations, and 324 

these simulations were compared with TCCON data, assumed to be the true XCO2 at those locations. 325 

ACDL observations require the use of the IWF to derive X-STILT footprints, which differ from those 326 

used for TCCON sites. The simulated XCO2 for TCCON was obtained using an integration method 327 

provided by TCCON, with 51 altitude levels corresponding to the input levels of our STILT model. The 328 
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footprints from these 51 altitude levels were integrated using the integration operator 329 

integration_operator_x2019 and the averaging kernel ak_xCO2 to obtain the simulated XCO2. 330 

 331 

Figure 2: Schematic diagram of XSTILT, Fig. (a) represents the simulated footprints at each horizontal 332 

altitude level we set (one footprint per 50m below 1000m, one footprint per 100m from 1000m-2000m, where 333 

MAXAGL represents the highest atmospheric altitude we simulate, which is 2000m) and the column average 334 

footprints obtained by integrating using the normalized integration function in Fig. (b). Fig. (c). 335 

2.4.2 Optimization of Emission Constraint Factors 336 

We adopted a Bayesian inversion method similar to that used by(Ye et al., 2020), which utilizes OCO-2 337 

observational data to constrain ffXCO2, aiming to achieve correlation between the model and observed 338 

ffXCO2 increments. Unlike the inversion of individual emission grids, we optimize emissions by 339 

adjusting a scaling factor (λ) for the entire city's prior emissions without modifying each grid's flux 340 

individually. The observational data along the DQ-1 orbit across all regions of interest serve as constraints 341 

for the inversion, which can be expressed as: 342 

obs sim obsy y                                                                       7 343 

Here, obsy and simy represent the observed and simulated ffXCO2 enhancements, respectively. The term
p344 

denotes the observational error, which consists of DQ-1 measurement error, model error, and model 345 

parameter error, defined as follows: 346 

2 2

1 1
2 2( ), ( )

time time

obs obs sim simtime time
y mean dXCO dt y mean ffXCO dt                          8 347 
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Here, 2obsdXCO represents the DQ-1 XCO2 enhancement after removing the background concentration. 348 

2simffXCO represents the simulated XCO2 enhancement, obtained from the convolution of the fossil fuel 349 

emission inventory and the footprint. We averaged the DQ-1 data over 1 sec intervals (7 km) along the 350 

orbit to obtain 2obsffXCO and corresponding simulated data 2simffXCO . 351 

According to the Bayesian inversion method, we transform the state vector into a scaling factor (λ), 352 

which represents the constraint ability of pseudo-observations on regional emissions. The Jacobian 353 

matrix is given by the simulated XCO2 enhancement simy . The observation error variance 2
m easurem en t and 354 

model transport error variance 2
m od are considered. We assume that DQ-1 observations are unbiased with 355 

respect to the true values. Random errors were added to the observations, following a Gaussian 356 

distribution with a standard deviation of 0.5 ppm, representing the lower limit of observational errors.  357 

The transport model error was obtained by perturbing wind speed and wind direction errors; more 358 

wind observations help reduce atmospheric transport uncertainties. For example, data assimilation 359 

systems have proven useful in reducing atmospheric transport errors in data-rich areas like Los 360 

Angeles(Lauvaux et al., 2016). Besides systematic wind direction errors, some areas exhibit 361 

positive/negative wind direction biases(Ye et al., 2020). The X-STILT model proposed by Wu et al(Wu 362 

et al., 2021) can correct wind biases by rotating model trajectories. the transport model error propagates 363 

by transforming the model ffXCO2 plumes with added random wind speed and wind direction errors (by 364 

rotating ffXCO2 plumes). To estimate transport model uncertainty in the model ffXCO2, we performed 365 

multiple (104 times) random wind speed and direction perturbations on the model plume and extracted 366 

the uncertainty distribution of ffXCO2 using the 25th and 75th percentiles. We establish the loss function367 

( )J x to calculate the posterior scaling factor: 368 

1 2 2( ) ( ) ( ) ( )T
obs sim obs obs sim a simJ y y S y y                                               9 369 

2 2 2
modobs measurement                                                              10 370 

Here, obsS represents the observational error covariance matrix. We assume that the observational errors 371 

of different orbits are uncorrelated, so obsS is a diagonal matrix with the observational error variances 2
obs372 

on the main diagonal. Since the DQ-1 measurement errors and atmospheric transport model errors are 373 

unbiased and uncorrelated, we estimate 2
obs by summing both error variances. a represents the prior value 374 

of the scaling factor, uniformly set to 1. sim represents the uncertainty of prior emissions, derived from 375 

previous studies combined with the emission characteristics of different cities. Since the ODIAC product 376 
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does not provide uncertainty estimates, ODIAC was originally designed for atmospheric CO2 flux 377 

calculations to reduce model biases caused by coarse grid resolution. Considering the simple 378 

downscaling based on nightlights in ODIAC, urban emissions derived from ODIAC are affected by errors 379 

related to emission disaggregation. For example, (Lauvaux et al., 2016)reported a 20% difference 380 

compared to Gurney et al.(Gurney et al., 2012) despite significant differences in emission modeling 381 

methods. Gurney et al.(Gurney et al., 2019) further compared the ODIAC and Hestia products for four 382 

US cities (Los Angeles, Salt Lake City, Indianapolis, and Baltimore), finding city-wide emission 383 

differences ranging from -1.5% (Los Angeles) to 20.8% (Salt Lake City). Empirical values of ODIAC 384 

ffCO2 uncertainty can be obtained by comparing ODIAC inventories with other emission fluxes, such as 385 

those created using high-resolution top-down satellite products. Smaller temporal scales result in greater 386 

empirical value deviations. Considering different city emission characteristics, such as industrial cities 387 

like Cairo and Riyadh with irregular emissions and large uncertainties in industrial emissions, we set 388 

prior emission uncertainties for these cities at 45%. For large cities with distinct and regular emission 389 

characteristics, the uncertainty is set at 25%, as their emission estimates are more accurate compared to 390 

industrial cities. 391 

By minimizing the loss function, we obtain the posterior scaling factor
^

 and posterior uncertainty 
^

 : 392 

2 1
^

( ) ( )T T
a sim sim sim obs sim obs obs sim ay y S y S y y                                            11393 

2 1 2 1
^

( )T
sim obs sim simy S y                                                               12 394 

To evaluate the performance of the scaling factor, we define the mean kernel (
^

/AK    ): 395 

1 2 1 1( ) ( )T T
sim obs sim sim sim obs simAK y S y y S y                                                   13 396 

The value of AK closer to 1 indicates a more accurate estimation of the scaling factor. 397 

2.5 OSSEs: Optimization of Emissions using Different DQ-1 Tracks 398 

Given the limited number of DQ-1 overpass tracks and the impact of atmospheric conditions during 399 

overpasses on emission optimization, we implemented Observing System Simulation Experiments 400 

(OSSEs). These experiments were conducted using multiple DQ-1 tracks to constrain urban fossil fuel 401 

emissions repeatedly and to statistically evaluate DQ-1's potential in constraining urban fossil fuel 402 

emissions. Specifically, we initially screened all DQ-1 overpass tracks, selecting those located downwind 403 
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of major fossil fuel emission areas to better utilize DQ-1 data for constraining overall regional fossil fuel 404 

emissions. For each city's overpass track, we extracted pseudo-observation data and modeling data. 405 

DQ-1 is different from other passive remote sensing satellites in that it is not only capable of night 406 

observation, but also less affected by clouds and aerosols. Therefore, we studied the relationship between 407 

daytime and nighttime observations and emission estimation uncertainties, as well as the impact of 408 

different tracks and the number of tracks on emission estimates. We used the ODIAC fossil fuel emission 409 

inventory as the prior emissions for the OSSEs, assuming that the prior emissions are the true emissions 410 

and that emissions remain stable over a short period. It is noteworthy that, in Section 3.3, the prior 411 

emissions were constructed by combining ODIAC fossil fuel data with NEE (Net Ecosystem Exchange). 412 

Pseudo-observation data and modeling data for each city were derived using the same method. Pseudo-413 

observation data were obtained by averaging the 1-second detection range of the selected DQ-1 overpass 414 

tracks, with adjacent pseudo-observation data separated by 7 km (1 second). This method helps eliminate 415 

some of the background noise and wind speed impacts on emission optimization. We assumed that DQ-416 

1 observations are unbiased with respect to the true values and added random errors to each DQ-1 417 

observation, with the error following a Gaussian distribution and a standard deviation of 0.5 ppm. 418 

Pseudo-observation data are also unbiased relative to the true values, with random errors accumulated 419 

over time for each observation data:

2
1

1
21
,

( )

N

i DQ
is
N








 Here,    represents the random error of each 420 

pseudo-observation data. Modeling data were obtained by convolving the emission inventory of the area 421 

with the tracer contributions corresponding to the geographic locations. 422 

By using multiple DQ-1 overpass tracks to repeatedly constrain urban fossil fuel emissions and 423 

analyzing the results statistically, we assessed the potential of DQ-1 in constraining fossil fuel emissions 424 

in urban areas. This approach allowed us to examine the effectiveness of daytime and nighttime 425 

observations, the influence of different overpass tracks, and the impact of track quantity on emission 426 

estimates. 427 



17 

 

3 Results 428 

3.1 Fossil Fuel Enhancement in Urban Areas 429 

In this section, we summarize the prior ffXCO2 emissions for each study area. The total monthly 430 

emissions for Beijing, Riyadh, and Cairo during the selected months (The detailed overpass dates are 431 

emissions provided in Table S3) are approximately 2.4-3.5 Mt C/month, 2.3-3.3 Mt C/month, and 1.9-432 

2.4 Mt C/month, respectively. We constrain emissions by comparing observed and simulated ffXCO2 433 

enhancements. Here, ffXCO2 enhancement is defined as the increment in XCO2 concentration caused by 434 

local fossil fuel emissions. The prior ffXCO2 enhancement is simulated using the ODIAC prior emission 435 

inventory and the STILT footprint (a summed 24 hours column integrated footprint) convolution. The 436 

observed ffXCO2 enhancement from DQ-1 is obtained by subtracting the background concentration from 437 

the observational data (as detailed in Section 2.3.3 and shown in Figure 3). By comparing the prior 438 

ffXCO2 enhancement with the observed XCO2 enhancement, we evaluate the trends in ffXCO2 changes 439 

along the tracks and explore the sources and detection capabilities of the ffXCO2 signal. 440 

 441 
Figure 3: Comparison of the simulated and observed ffXCO2 enhancements from DQ-1 data over Riyadh on 442 

March 02, 2023 and June 20, 2022 around 11:00 UTC. Figures (a) and (b) show the DQ-1 XCO2 (black dots 443 
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and blue triangles) and the simulated XCO2 (red solid line, sum of simulated ffXCO2 and background 444 

concentrations) along the two orbits, averaged over 1 s. The black dots represent the background 445 

concentrations involved in deriving the background. The black dots represent the data involved in the 446 

derivation of the background concentration (black solid line), which are linearly regressed against latitude 447 

after a discrete wavelet transform. Figures (c) and (d) show the simulated ffXCO2 and the observed ffXCO2 448 

obtained from the DQ-1 data. background XCO2 concentrations have been subtracted. The red boxes in the 449 

Figures (c) and (d) represent the urban areas. Vectors represent 10 m wind speeds (average wind speed 450 

simulated by WRF) and reference vectors represent 10 m/s wind speeds. 451 

Figure 3 presents the results of two DQ-1 overpasses over Riyadh on March 2, 2023, and June 20, 452 

2022, at 11:00 AM. Figures 3a and 3b show the simulated and the observed XCO2 enhancement as a 453 

function of latitude for these two overpasses. The maximum ffXCO2 enhancements observed along the 454 

two tracks were 8 ppm and 5 ppm, respectively. 455 

In the overpass on March 2, significant ffXCO2 enhancements were observed by DQ-1 between 24.8°N 456 

and 25.3°N, with the simulated ffXCO2 also responding to this enhancement. Although the peak observed 457 

values were narrower than the simulated values, both were of similar magnitudes, with only slight 458 

differences, and their trends were largely consistent. However, the simulated ffXCO2 did not respond to 459 

the observed enhancement in the 24.1°N to 24.3°N range, which may be due to the sensitivity of the 460 

STILT footprint to wind direction. 461 

Compared to the track on March 2, the track on June 20 shows better agreement between observations 462 

and simulations, along with smaller posterior uncertainties (see Table 1). The observed peak and the 463 

simulated peak were both within the 23.8°N to 24.6°N range, with a difference of less than 1 ppm. The 464 

differences between the results of the two tracks may be because the March 2 track passed through the 465 

city's main emission area and intersected the simulated plume (Figure 3c). In this case, the observed 466 

ffXCO2 fluctuations were minimal, with values remaining high relative to the background concentration, 467 

making it difficult to detect significant enhancements. In contrast, the June 20 track was downwind of 468 

the main emission area, making it more sensitive to the city's fossil fuel emissions and resulting in better 469 

agreement between the simulated and observed values. 470 

For Cairo, we examined ffXCO2 enhancements using six DQ-1 overpasses on July 26, August 2, August 471 

16, November 8, November 15, and November 22, 2022 (Figure S9-10). In contrast to Riyadh, the 472 

simulated ffXCO2 enhancements over Cairo were mostly below 2 ppm, indicating lower overall 473 

emissions in Cairo than in Riyadh. The simulated ffXCO2 enhancements over Cairo were more dispersed, 474 
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showing a multi-point distribution rather than the concentrated enhancements observed over Riyadh. 475 

The observed XCO2 enhancement over Cairo were generally higher and narrower than the simulated 476 

ones, which were smoother. Despite these differences, the trends in ffXCO2 enhancements between the 477 

simulations and observations were similar and of the same magnitude (The latitudinal distribution and 478 

magnitude of the simulated enhancement (red line) are generally consistent with those of the observed 479 

enhancement (blue triangles)), except for the July 26 simulation, which did not include some observed 480 

enhancements between 30.2°N and 30.4°N, and the November 8 overpass, where a spatial shift of 481 

approximately 0.2° was observed between the simulated and observed ffXCO2 enhancements. 482 

Overall, the comparison between DQ-1 observations and WRF-STILT-based simulations suggests that 483 

the DQ-1 satellite is well-suited for fine-scale urban emission optimization. This indicates that DQ-1 can 484 

effectively be used for detailed monitoring and analysis of urban emissions. 485 

3.2 Comparison of DQ-1 and OCO-2 Restraint Capabilities 486 

 487 

Figure 4: (a) and (b) show the position and XCO2 data of two pairs of OCO-2 and DQ-1 orbits that we selected 488 

for transit to Beijing at 05:00 on December 01, 2022 and 05:00 on April 08, 2023, respectively 489 

To better compare the inversion results from OCO-2 and DQ-1, we selected tracks that were spatially 490 

and temporally close and located downwind of major urban emission areas. Figure 4 shows two pairs of 491 

OCO-2 and DQ-1 tracks over Beijing on December 1, 2022, and April 8, 2023, both at 05:00, passing 492 

through the major emission downwind area of the city. Fig. 5 shows ffXCO2 enhancements and wind 493 

fields at the time of the satellite overpasses. The results clearly indicate significant ffXCO2 enhancements, 494 

exceeding 2 ppm in April, demonstrating that DQ-1 can observe notable ffXCO2 enhancements from 495 

space. 496 
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Figures 5 (c, d, g, h) show that the ffXCO2 enhancements simulated from DQ-1 and OCO-2 overpasses 497 

are of similar magnitude and spatial distribution, with strong spatial consistency across different times 498 

due to stable local emissions and wind fields. Beijing's topography, with high elevations in the northwest 499 

and low-lying plains in the southeast, influences the prevailing west-to-east winds, and the flat terrain of 500 

the main urban area means the simulated ffXCO2 is minimally affected by topography. The smaller 501 

ffXCO2 enhancements observed on December 1 compared to April 8 are primarily due to wind directions 502 

affecting the track within the 40.2°-41° range, making it difficult to simulate emissions. 503 

This comparison highlights the capability of DQ-1 to effectively observe and simulate urban ffXCO2 504 

enhancements, supporting its application in fine-scale emission optimization. 505 
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 506 

Figure 5: Similar to Fig. 3, (a)-(d) show the simulated ffXCO2 and measured ffXCO2 for the DQ-1 and OCO-507 

2 orbits transiting Beijing at 05:00 UTC 01 December 2022 and 05:00 UTC 08 April 2023, and (e)-(h) represent 508 

the comparison of the simulated ffXCO2 (colored shadows) with the observed ffXCO2 enhancement (colored 509 
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dots, minus background concentrations) from DQ-1 data collected over Beijing at ~05:00 UTC. Each panel is 510 

labeled with the date of observation. The red boxes in the Figures (c), (d), (g), (h) represent the urban areas. 511 

Vectors represent 10 m wind speeds and reference vectors represent 10 m/s wind speeds. 512 

Figure 5 (a, b, e, f) illustrates the simulated and observed XCO2 for two pairs of DQ-1 and OCO-2 513 

tracks. The simulated XCO2 (red line in the figures) is derived by adding the background concentration 514 

to the simulated ffXCO2 extracted along the satellite tracks. Overall, both OCO-2 and DQ-1 observations 515 

exhibit similar distributions, with high-value points located in the same latitude ranges (On 1 December, 516 

both the DQ-1 and OCO-2 overpasses exhibited similarly strong latitudinal gradients in their background 517 

baselines, with notable enhancements observed and simulated within the 39.4°–39.6°N range. Although 518 

the background latitudinal gradients differed between DQ-1 and OCO-2 on 8 April, both were weak in 519 

magnitude, and significant enhancements were nevertheless consistently detected and simulated between 520 

40.0° and 40.4°N). DQ-1 observations are generally 4-8 ppm higher than OCO-2, attributed to the 521 

inherent characteristics of the satellites—DQ-1 being an active lidar satellite, largely unaffected by 522 

clouds and aerosols. This systematic difference can be mitigated during background concentration 523 

extraction due to the overall similarity in data distribution. 524 

On December 1 and April 8, DQ-1 and OCO-2 observed ffXCO2 enhancements of approximately ~2.5 525 

ppm and ~1.5 ppm, respectively. Although OCO-2 did not capture the ffXCO2 enhancement within the 526 

40.2°-41° range on December 1, and there was a ~0.15° spatial shift between observed and simulated 527 

XCO2 peaks on April 8, the simulated ffXCO2 was of the same magnitude as the observations. This 528 

indicates that DQ-1 performs comparably to OCO-2 in urban-scale inversions. The peak shift in OCO-2 529 

data might be due to errors in the horizontal wind field. The background gradient on December 1 was 530 

more pronounced than on April 8, and the integrated ffXCO2 enhancement along the track was consistent 531 

with DQ-1 measurements, validating the latitude gradient-based background extraction method for 532 

urban-scale inversions. 533 

Figure 6 compares TCCON site observations within the Beijing study area with the simulated results 534 

for December 1 and April 8. The prior ffXCO2 (blue bars) represents the simulated ffXCO2 at the TCCON 535 

site, obtained using the previously described simulation method. The posterior ffXCO2 (light green and 536 

orange bars) is derived by applying the posterior scaling factors from DQ-1 and OCO-2 overpass tracks 537 

to the prior ffXCO2, with posterior uncertainties indicated. The true value, provided by TCCON products, 538 

is shown by the dark green bars. 539 
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Overall, DQ-1 and OCO-2 inversion results are similar in magnitude, with DQ-1 results closer to 540 

TCCON observations. The differences between DQ-1 results and TCCON observations are 0.9% and 16% 541 

for December 1 and April 8, respectively, compared to 10% and 25% for OCO-2. This demonstrates that 542 

DQ-1 can effectively constrain urban fossil fuel emissions, performing comparably to, or even surpassing, 543 

OCO-2 in certain tracks. 544 

 545 

Figure 6: TCCON site simulations received ffXCO2 (blue columns represent simulations using a priori 546 

ODIAC lists, bright green columns represent simulations using a posteriori lists estimated with DQ-1, orange 547 

columns represent simulations using a posteriori lists estimated with OCO-2, and dark green columns 548 

represent ffXCO2 observed by TCCON). The black lines on the columns represent uncertainties. 549 
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3.3 Impact of DQ-1 in Estimating Biotic Fluxes using Daytime vs. Nighttime Tracks 550 

 551 

Figure 7: Orbital simulation results for a pair of diurnal observations of the transit of Beijing on January 09, 552 

2023 at about 23:00 (night) and January 10, 2023 at about 11:00 (day) UTC. The red boxes in the Figures (c) 553 

and (d) represent the urban areas. 554 

Both biosphere carbon flux and fossil fuel emissions influence XCO2 variations. This section examines 555 

the impact of biosphere flux on emission estimates. When ffXCO2 significantly exceeds biosphere carbon 556 

flux, the biosphere's contribution to XCO2 changes can be negligible (e.g., in Cairo and Riyadh, where 557 

the spatial gradient of NEE is much smaller than fossil fuel emissions). This study attributes biosphere 558 

carbon flux to vegetation production and human emissions. This part of carbon emissions varies with the 559 

day-night cycle. During the day, vegetation absorbs CO2 through photosynthesis, which significantly 560 

outweighs CO2 release through respiration. At night, vegetation only undergoes respiration, releasing 561 

CO2. 562 

As the world's first lidar satellite capable of observing XCO2 at night, DQ-1 offers groundbreaking 563 

potential in studying diurnal variations in urban emissions. This section leverages this feature to observe 564 

the impact of vegetation rhythm and human activities on XCO2 changes. We compare global three-hourly 565 
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CASA data and ten-day average NEE data from ODIAC. ODIAC's ten-day average data cannot separate 566 

diurnal NEE variations, while the higher temporal resolution of CASA can effectively capture the time 567 

gradient of NEE within the same day. We will illustrate the impact of NEE on inversion and how this 568 

impact changes between day and night. Previous satellite-based urban flux inversions lacked night-time 569 

data, preventing day-night comparisons and separation of nocturnal and diurnal CO2 emissions. 570 

For this study, we selected two tracks on January 9, 2023, at 23:00 and January 10, 2023, at 11:00 571 

(UTC). Given the close timing of these tracks, we assume the total fossil fuel emissions are the same for 572 

both. The January 9 track is approximately 0.5° (about 50 km) downwind from the main urban emissions, 573 

with an average wind speed greater than 3 m/s. Thus, the emissions detected by this track are considered 574 

to originate from the previous five hours. The January 10 track passes through the main urban emission 575 

area, capturing emissions effectively. We simulate the previous 8 hours gas diffusion before the overflight 576 

(sunset on January 9 at 09:00 and sunrise on January 10 at 15:35 UTC). The simulated enhancement for 577 

the January 9 track is assumed to come entirely from night-time emissions, while the January 10 578 

enhancement comes from daytime emissions. Comparing the simulation results with observations, both 579 

are of the same magnitude, indicating that the forward eight-hour simulation effectively captures the 580 

observed ffXCO2 enhancement. 581 

To explore the impact of diurnal biosphere carbon flux on XCO2 enhancement, we couple prior 582 

emissions from ODIAC with spatially scaled NEE data as the new prior emissions (For the three-hourly 583 

NEE data, we matched using footprints within the corresponding time period), then simulate the XCO2 584 

enhancement (In contrast to Sections 3.1 and 3.2, here we used ODIAC emissions combined with NEE 585 

as the prior flux information). Using constant boundary conditions, latitude changes do not need to be 586 

considered for background concentration. Therefore, local XCO2 enhancement is defined as the total 587 

XCO2 minus the minimum XCO2 value in the track (Unlike Section 2.3.3). The XCO2 enhancement 588 

measured by DQ-1 is derived using methods outlined in previous sections. 589 

This approach allows us to accurately account for both daytime and nighttime variations in XCO2 due 590 

to biosphere activity, providing a comprehensive view of the urban carbon flux. 591 
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 592 

Figure 8: (a)-(d) represent the contribution of orbital XCO2 enhancement and biospheric fluxes to the local 593 

XCO2 enhancement for two pairs of diurnal observations on 09 and 10 January 2023 and 19 and 20 June 2022, 594 

the black dots represent the 1-second averaged observations (subtracted from the background values) on each 595 

orbit, the red solid line represents the simulated ffXCO2, and the green and blue solid lines represent the 596 

simulated ΔXCO2 (fossil fuel and biosphere fluxes) using different NEE data for simulated ΔXCO2 (fossil fuel 597 

and biogenic fluxes), where the green line uses ten-day averaged ODIAC NEE data and the blue line uses 598 

CASA three-hourly NEE data. 599 

Figure 8 presents a comparison of simulated and observed XCO2 enhancements for two pairs of day 600 

and night overpass tracks over Beijing on January 9, 2023, at 23:00, January 10 at 05:00, June 19, 2022, 601 

at 23:00, and June 20 at 05:00. Overall, the simulated XCO₂ enhancements that include CASA NEE (blue 602 

line) on January 10, June 20, and June 19, show better agreement with the observed ΔXCO₂ (black dots) 603 

than simulations driven by fossil fuel emissions alone (red line). 604 

The figure 8 (c) shows that the XCO2 enhancements using CASA's diurnal NEE data differ 605 

significantly from those using ODIAC's ten-day average NEE data. The simulation for the June 19 track 606 

at 23:00 indicates that using CASA's night-time NEE data (blue line) can accurately simulate the 607 

observed XCO2 enhancement, coming closer to the observed XCO2 enhancement than the ffXCO2 608 

simulation alone. In contrast, the simulation using ODIAC's ten-day average NEE data (green line) shows 609 

a notable CO2 uptake in the 40.2°-41° range, starkly different from the CASA results and the observed 610 

XCO2 enhancement. This discrepancy arises because ODIAC's ten-day average NEE data are insensitive 611 

to short-term temporal variations and cannot reflect diurnal changes within a day. Moreover, this period 612 

is Beijing's summer, with vigorous daytime vegetation activity leading to CO2 uptake and a consequent 613 
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drop in XCO2 (as seen in Figure 8 d, where the daytime simulated XCO2 enhancement is much lower 614 

than ffXCO2). According to the June 19 simulation results, biosphere flux-induced XCO2 changes 615 

account for 21.2% (CASA) and -54.3% (ODIAC) of the observed XCO2 enhancement. 616 

For the January 9 track at 23:00, both CASA and ODIAC data show significant XCO2 enhancements. 617 

However, the CASA simulation aligns more closely with the observations. This difference may be 618 

because ODIAC's ten-day average data, influenced by daytime data, diminish its accuracy in night-time 619 

scenarios. The simulation results for the January 9 track show that biosphere flux-induced local XCO2 620 

enhancements account for 13.37% (CASA) and 7.73% (ODIAC) of the observed comprehensive XCO2 621 

enhancement. 622 

Overall, the biosphere flux's impact on XCO2 enhancement varies significantly between day and night. 623 

In urban-scale inversions, DQ-1's ability to rapidly revisit both day and night can further optimize the 624 

influence of biosphere flux on inversion accuracy. This capability highlights DQ-1's potential to provide 625 

more precise urban-scale fossil fuel emission constraints, especially by distinguishing diurnal variations 626 

in biosphere activity. 627 

3.4 Emission Estimates and a Posteriori Uncertainties 628 

Table 1 Results of inversion of urban emission scaling factors for selected cities using DQ-1 XCO2 data 629 

 

 

 

City 

 

 

 

Overpass 

 

Prior total  

emission  

(Mt C/month) 

Prior total 

emission 

uncertainty 

( a ) 

Measurement 

uncertainty  

( measurement  , 

units: ppm) 

Transport model 

uncertainty 

( Model  , units: 

ppm) 

 

Scaling factor(λ) 

± posterior 

uncertainty（̂） 

OCO-2 

Scaling 

factor/City 

mean factor 

Riyadh 02 March 2023 2.37 45% 1.03 2.53 0.75±0.20 0.80±0.18 

 20 June 2022 3.49  0.98 2.58 0.86±0.16  

Beijing 01 December 2022 4.61 25% 1.88/2.11 2.64 0.98±0.15 1.09±0.18 

 08 April 2023 3.35  1.57/1.93 1.79 0.65±0.11 0.70±0.14 

 09 January 2023 

10 January 2023 

2.40 

2.40 

 2.01 

1.99 

3.04 

1.45 

0.91±0.12 

1.00±0.14 

0.83±0.13 
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Cairo 

 

 

 

 

19 June 2022 

20 June 2022 

26 June 2022 

02 August 2022 

16 August 2022 

08 November 2022 

15 November 2022 

22 November 2022 

3.81 

3.81 

2.43 

2.49 

2.49 

1.96 

1.96 

1.96 

 

 

45% 

1.78 

1.52 

1.08 

1.45 

1.67 

1.22 

0.98 

1.11 

2.11 

1.12 

0.56 

0.71 

0.87 

0.36 

1.31 

0.21 

0.96±0.16 

0.53±0.11 

1.06±0.20 

0.98±0.12 

1.21±0.14 

1.15±0.16 

1.19±0.11 

1.06±0.13 

 

 

1.10±0.14 

Notes. Scaling factors and their a posteriori uncertainties are shown for each orbit, as well as integrated 630 

information for all selected orbits. Uncertainty components are listed for each track, including the a priori 631 

uncertainty in the scaling factor and the measurement and transport uncertainty in the integral ffXCO2 (some 632 

specific track data inverted using OCO-2 data are bolded, and the average emission scaling factor and a 633 

posteriori uncertainty for all tracks in each city are in the last column and highlighted in italics). 634 

In this section, we present the inversion estimation results for emissions from Riyadh, Cairo, and 635 

Beijing using the DQ-1 tracks shown in Section 3.1. The inversion process considers uncertainties arising 636 

from both measurement and transport. The inversion yields a scaling factor for the total emissions for 637 

each selected city. Specifically, for Beijing, we compare the inversion results with the simultaneously 638 

passing OCO-2 tracks. 639 

Each selected track underwent inversion. Table 1 shows the posterior emission scaling factors for each 640 

track, along with the uncertainties in the measured and simulated ffXCO2. These uncertainties were 641 

determined using the methods described in Section 2.4. Notably, the prior uncertainty in the emission 642 

scaling factors for Beijing was set at 25%, compared to Riyadh and Cairo, reflecting better knowledge 643 

of emissions from such a well characterized megacity (see Section 2.4.2). 644 

For the selected tracks over Riyadh, Cairo, and Beijing, the posterior scaling factors (An emission 645 

factor greater than 1 indicates an underestimation by the prior inventory, while a factor less than 1 646 

suggests an overestimation.) were 0.75-0.86, 0.98-1.21, and 0.53-1.06, respectively (Table 1). The 647 

posterior emission scaling factors exhibit significant temporal variability, influenced by background 648 

conditions. As described in the previous section, the emissions detected by the track depend on its 649 

distance from the major emission regions and the domain-averaged wind speed at the time. The domain-650 

averaged wind speed for the selected tracks was consistently above 3 m/s. Based on meteorological 651 
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conditions, the posterior values represent estimates of city emissions for the hours preceding the overpass 652 

time. The posterior uncertainty in the emission scaling factors was 0.16-0.20 for Riyadh, 0.11-0.20 for 653 

Cairo, and 0.11-0.16 for Beijing. Compared to Beijing, the posterior scaling factor uncertainties were 654 

generally higher for Riyadh and Cairo. 655 

As discussed in Section 2.4, the prior emission uncertainties were set to reflect measurement and 656 

transport errors. Table 1 shows that the relative contributions of observation error and transport error vary 657 

across the three cities. For Riyadh, the transport error was significantly larger than the observation error, 658 

while for Cairo, the transport error was much smaller than the observation error. In Beijing, the relative 659 

sizes of transport error and observation error varied. The posterior scaling factors for Beijing's two OCO-660 

2 tracks were almost identical to those from DQ-1, with higher posterior uncertainty due to higher 661 

observation error. Overall, Beijing's posterior uncertainty was lower than that of Cairo and Riyadh, 662 

attributable to more stable prior emission characteristics. 663 

Previous research (Ye et al., 2020) highlighted that the scarcity of OCO-2 tracks near many cities 664 

remains a major limitation in regularly quantifying emissions and objectively tracking temporal 665 

variations from space. In contrast, DQ-1's minimal sensitivity to clouds and aerosols allows for more 666 

tracks available for inversion. Our experiments in Beijing, Cairo, and Riyadh found that, on average, 667 

more than six tracks per month were available for inversion, including day and night overpasses on the 668 

same day, further constraining city emissions (see Section 3.3). 669 

Based on the results in Table 1, we averaged the posterior emission scaling factors and uncertainties 670 

for each city's tracks, yielding mean scaling factors and uncertainties of 0.80±0.18 for Riyadh, 1.10±0.14 671 

for Cairo, and 0.83±0.13 for Beijing (Detailed monthly emission information for different cities is 672 

provided in Table S3). This indicates that, for the periods represented by the observations, the prior 673 

monthly ODIAC product overestimates emissions for Beijing and Riyadh, while underestimating 674 

emissions for Cairo, Our findings in Cairo are consistent with earlier research(Shekhar et al., 2020). 675 

4 Discussion 676 

4.1 Atmospheric Transport Model Errors 677 

Systematic errors in model transport and erroneous statistical assumptions can significantly diminish the 678 
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improvements in land-based uncertainty by approximately a factor of two(Wang et al., 2014). Hence, it 679 

is essential to control systematic errors and inaccuracies in transport models while minimizing random 680 

errors in DQ-1 observations. In Observing System Simulation Experiments (OSSEs), we assess the 681 

potential impacts of observational and transport errors on the entire inversion process. Transport errors 682 

of tracers in the atmosphere can lead to inaccuracies in flux estimates derived from concentration 683 

observations. Typically, "inversion" methods either ignore transport errors or only provide a rough 684 

evaluation of their impact(Lin and Gerbig, 2005). This section focuses on how uncertainties in 685 

atmospheric transport model outputs influence CO2 flux inversion. 686 

In our experiments, we set the prior flux uncertainty to 25%-45% based on the emission characteristics 687 

of different cities. The uncertainty in DQ-1 XCO2 observations was fixed at 0.5 ppm, representing the 688 

lower limit of observational error. We examined the effects of wind speed and direction errors on the 689 

performance of the inversion method. The errors in the transport model were propagated by treating them 690 

as conversions of model ffXCO2 plumes. Notably, for the cities studied, errors were assumed to be 691 

unbiased. Wind direction errors were analyzed by rotating the plumes around the emission center and 692 

incorporating random wind speed errors. 693 

We illustrate these concepts using six tracks over Cairo. The overall ffXCO2 distribution was generated 694 

by applying random positive and negative wind direction biases (>-10°, <10°) to each track's STILT 695 

footprint, rotating it 104 times, and adding positive/negative wind speed biases (>-1 m/s, <1 m/s). Overall, 696 

the temporal variability in the posterior emission scaling factors and uncertainties can be attributed to 697 

transport model errors. The transport model error significantly influenced the observed ffXCO2 698 

distribution. Specifically, the track on November 15 was most affected by transport model errors, likely 699 

due to its passage through the plume boundary. In contrast, the track on August 16 experienced minimal 700 

transport model errors, as it was further from the simulated ffXCO2 plume, making it less sensitive to 701 

small wind direction and speed errors, and The MLH will be higher in summer days and that may reduce 702 

the uncertainties for the footprints. 703 
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 704 
Figure 9: Box plots of the modeled integral ffXCO2 enhancement (∑ffXCO2, m) for selected OCO-2 orbits 705 

over Cairo at the date labeled on the x-axis (2022). For each box, the center line indicates the median (q2), 706 

and the bottom and top edges of the box indicate the 25th and 75th percentiles (q1 and q3), respectively. The 707 

whiskers extend to the maximum and minimum values. The numbers are the ratio of the interquartile spacing 708 

(q3 - q1) to the median (q2). 709 

4.2 The Challenge of Separating Biological Fluxes in Day and Night Orbits 710 

In Section 3.3, we detailed how DQ-1's short-term day-night revisit capability allows for the 711 

consideration of diurnal and nocturnal biogenic fluxes in emission inversions. Typically, large-scale 712 

inversions do not account for uncertainties in fossil fuel emission inventories and treat biogenic fluxes 713 

as uncertainties in prior fluxes(Wang et al., 2014). Studies focused on urban-scale inversions that do not 714 

utilize nocturnal tracks, while directly considering biogenic flux impacts, have not accounted for the 715 

diurnal variation of biogenic fluxes(Ye et al., 2020). In this study, we leveraged DQ-1's nocturnal 716 

observations to provide a method for separately considering biogenic flux effects during day and night. 717 

Our results indicate that using daytime average NEE data and nighttime NEE data can result in 718 

differences of up to 70% in inversion outcomes. 719 

However, this approach has limitations in large-scale inversions. Separating daytime and nighttime 720 

emissions necessitates a limited transport time due to the constraints of the transport model, which means 721 

that simulated particles cannot travel long distances under limited wind speed and time conditions. To 722 

address this, more frequent overpass tracks, including those from geostationary carbon cycle observation 723 
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satellites such as GeoCarb(Moore Iii et al., 2018), Total Carbon Column Observing Network 724 

(TCCON)(Toon et al., 2009), and MicroCARB, but these instruments are all limited to daylight 725 

observations and therefore cannot support day–night inversion analyses, only DQ-1 is capable of 726 

enabling such studies. Therefore, an increased availability of high-precision and high-spatial-resolution 727 

nighttime data is urgently needed. Currently, the number of DQ-1 tracks does not support large-scale 728 

separate day-night inversions. In large-scale flux inversions, biogenic fluxes are typically used as prior 729 

uncertainty over weekly or monthly periods. Such long-term and wide-scale data assimilation reduces 730 

the impact of diurnal biogenic flux variations on inversion results. Unlike other satellite measurements 731 

that are restricted to daytime clear-sky conditions, DQ-1's XCO2 measurements provide uniform 732 

temporal sampling, thus allowing effective quantification of diurnal variations in emissions. 733 

Accurate downscaling methods for biogenic fluxes, such as the Solar-Induced Fluorescence Model 734 

(SMUrF)(Wu et al., 2021), and advanced vegetation models, like the Vegetation Photosynthesis and 735 

Respiration Model (VPRM) (Luo et al., 2022; Mahadevan et al., 2008; Wei et al., 2022; Winbourne et 736 

al., 2022; Gourdji et al., 2022)are crucial for precise biogenic flux calculations. Radiocarbon and land 737 

surface solar-induced fluorescence (SIF) data aid in distinguishing between fossil fuel CO2 and biogenic 738 

CO2(Fischer et al., 2017). Recent research indicates that SIF serves as a better indicator or proxy for 739 

gross or net primary production compared to other vegetation indices. 740 

4.3 Insights From Results of the OSSEs 741 

In the emission inversion process, prior emissions are considered as fully distributed, optimizing regional 742 

emissions for an entire city using a scaling factor, in contrast to grid-specific inversions. As noted by 743 

previous research, using a single scaling factor for the entire city limits the flexibility to capture true 744 

spatial variations in fluxes compared to grid-specific inversions. Estimating prior emission uncertainties 745 

at the grid scale is challenging because grid-scale emission uncertainties are typically much larger than 746 

those using scaling factors(Andres et al., 2012). 747 

Apart from uncertainties in the transport model, DQ-1 measurements, and biogenic fluxes, several 748 

additional error sources may introduce biases in the inversion results. DQ-1 data's measurement errors 749 

are assumed to be spatially uncorrelated due to the lack of high-resolution correlation data. Additionally, 750 

random components of nonlinear and interference errors in retrievals may introduce significant errors in 751 
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the inversions . In our OSSE, measurement uncertainty is assessed at its lower bound. 752 

Simulation results for Riyadh and Beijing indicate that the enhancement of ffXCO2 generally exceeds 753 

1.5 ppm and can reach up to approximately 5 ppm, surpassing the uncertainties in land-based 754 

observations (around 1 ppm)(Eldering et al., 2017a; Eldering et al., 2017b). In contrast, Cairo's ffXCO2 755 

values are mostly below 2.0 ppm, with some hotspots near high-emission industries such as power plants. 756 

Detecting CO2 plumes in smaller cities is challenging due to limited detectability of fossil fuel-derived 757 

CO2 plumes. Factors limiting detectability include: 1) The number and location of overpass tracks. 2) 758 

Overlap enhancements from nearby cities or point sources. 3) Low ffCO2 emissions. To improve the 759 

detection of city plumes, more ground-based in situ measurements and high-altitude satellites with 760 

enhanced detection capabilities are necessary. 761 

4.4 Influence of Planetary Boundary Layer Height on Modeled XCO₂ Enhancements 762 

Vertical turbulent mixing, as the dominant process governing the vertical transport of air parcels, 763 

regulates the dilution of surface emissions within the planetary boundary layer (PBL). Uncertainties in 764 

vertical mixing or PBL height can influence both the magnitude and spatial distribution of atmospheric 765 

footprints through variations in horizontal advection at different altitudes(Gerbig et al., 2008). Variations 766 

in the STILT-modeled mixed layer height alter the vertical profiles of turbulent statistics that govern the 767 

stochastic motion of Lagrangian air parcels(Lin et al., 2003), thereby yielding distinct air parcel 768 

trajectories under different PBL height. 769 

In this section, we assess the sensitivity of both horizontal footprints and column-averaged footprints 770 

(X-STILT) to variations in the planetary boundary layer height (PBLH) as simulated by STILT. Given 771 

the pronounced diurnal and seasonal variability of terrestrial PBLH across most latitudes(Gu et al., 2020), 772 

we selected three satellite overpasses across Beijing to quantitatively evaluate the impact of PBLH on 773 

footprint estimates: 23:00 on 9 January 2023 (winter nighttime), 05:00 on 10 January 2023 (winter 774 

daytime), and 23:00 on 19 June 2022 (summer nighttime). For each overpass, the location (latitude and 775 

longitude) corresponding to the largest modeled XCO₂ enhancement along the track was selected as the 776 

receptor location for STILT, with release heights consistent with prior model configurations. Backward 777 

simulations were conducted from the overpass time until local sunrise or sunset (sunset for nighttime 778 

passes and sunrise for daytime passes). A range of PBLH values from 300ௗm to 1500ௗm, in 200ௗm 779 
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increments, was tested. 780 

 781 
Figure10: Panels a and b illustrate the sensitivity of CO₂ and XCO₂ enhancements to variations in planetary 782 

boundary layer height (PBLH) at different receptor altitudes, quantified by the coefficient of variation (i.e., 783 

the standard deviation divided by the mean). Panel a presents the simulated results for three satellite 784 

overpasses: 23:00 on 9 January 2023 (winter night, blue line), 05:00 on 10 January 2023 (winter day, orange 785 

line), and 23:00 on 19 June 2022 (summer night, green line). For each case, receptors were placed at the 786 

locations of maximum modeled XCO₂ enhancement along the satellite track, with release heights consistent 787 

with prior STILT configurations. Panel b shows the corresponding XCO₂ enhancement simulations for each 788 

date, with the coefficient of variation annotated at the top of the panel to indicate the overall sensitivity across 789 

varying PBLH scenarios. 790 

Figure 10a illustrates the sensitivity of modeled XCO₂ enhancements—calculated following the 791 

method in Section 2.4.1—to varying PBLH values at different release heights for three selected receptors. 792 

The x-axis, labeled Delta_XCO₂ Uncertainty, quantifies this sensitivity as the coefficient of variation 793 

(standard deviation divided by the mean) of XCO₂ enhancements obtained from simulations with 794 

different PBLH values at the same release height. A higher value indicates a stronger response of the 795 

modeled enhancement to changes in PBLH. Results in Figure 10a show that on the nighttime overpass 796 

of 9 January 2023 (blue line), the relative variation in modeled XCO₂ enhancements remains within ~10% 797 

for release heights below 600ௗm and does not exceed 13%, with a minimum of 3.03% at 50ௗm. Similarly, 798 

for the daytime overpass on 10 January 2023 (orange line), relative variations remain below 13% up to 799 
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950ௗm, with a minimum of 3.36% at 450ௗm. Notably, for this pair of consecutive day–night overpasses, 800 

nighttime sensitivity is generally higher than daytime at release heights below 650ௗm. The nighttime 801 

overpass on 19 June 2022 (green line) exhibits a broader vertical range of valid footprints—unlike the 9 802 

January case, where no valid footprints were simulated above 650ௗm, possibly due to seasonal effects. 803 

This case also shows a stronger dependence on PBLH at higher altitudes, particularly between 750–804 

1000ௗm, with the maximum sensitivity reaching 36.6% at 900ௗm. Overall, our findings suggest that within 805 

the lower troposphere and across the selected case studies, the influence of PBLH variability on modeled 806 

XCO₂ enhancements is generally on the order of 10%, increasing with receptor altitude. As column-807 

averaged observations are less sensitive to the vertical distribution of air parcels(Lauvaux and Davis, 808 

2014), the sensitivity of modeled column XCO₂ enhancements to PBLH variations is notably smaller. 809 

This is corroborated by Figure 10b, which shows modeled XCO₂ enhancements as a function of PBLH 810 

for each overpass, with corresponding coefficients of variation annotated above the lines: 2.1% (9 811 

January), 2.9% (10 January), and 2.8% (19 June)—all lower than the minimum values observed in Figure 812 

10a. 813 

Given that ACDL is equipped with an aerosol channel, it can provide extinction coefficient profiles 814 

and planetary boundary layer height (PBLH) products(Dai et al., 2024). In this study, we utilized ACDL-815 

retrieved PBLH data for forward simulations, which helps to mitigate errors associated with inaccurate 816 

PBLH settings. Moreover, since satellite measurements represent column-averaged concentrations, they 817 

are inherently less sensitive to variations in PBLH. Therefore, we conclude that PBLH has a negligible 818 

impact on the inversion results presented in this study. 819 

5 Conclusions 820 

This study presents the use of DQ-1's XCO2 observation data to constrain fossil fuel emissions in various 821 

urban regions and evaluates its capabilities. By coupling WRF and STILT, a high-resolution forward 822 

transport model was developed to simulate and illustrate the structure and details of urban-scale fossil 823 

fuel XCO2 plumes and assess the relationship between simulated and observed XCO2. Throughout the 824 

inversion process, we considered DQ-1's observational errors, transport model errors, and the impact of 825 

DQ-1's day-night observation capability on assessing the temporal variation of biosphere fluxes in urban 826 

emissions. Employing a Bayesian inversion approach, we optimized CO2 emissions from fossil fuels in 827 
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Beijing, Riyadh, and Cairo using DQ-1 data collected from June 2022 to April 2023, focusing on 828 

downwind tracks in major urban emission areas where significant XCO2 enhancements were detected. 829 

Pseudo-data experiments, based on high-resolution forward simulations from real cases, were conducted 830 

to evaluate the potential of using multiple DQ-1 tracks while considering measurement and transport 831 

model errors. Our results showed that the posterior scaling factors for the three cities ranged from 0.53 832 

to 1.06, 0.75 to 0.86, and 0.98 to 1.21, respectively, with Riyadh exhibiting the highest posterior 833 

uncertainty. Notably, some simulations revealed that posterior scaling factor uncertainties are influenced 834 

by the relative position of tracks to plumes and positive or negative wind direction biases in the region. 835 

Our assessment of spatial and temporal gradients in biosphere fluxes revealed that, at certain times in 836 

Beijing, despite significant ffCO2 emissions, a notable portion of the local XCO2 enhancement (20% and 837 

13%, respectively) was attributable to local biosphere fluxes. This could lead to an overestimation of 838 

total emissions by approximately 33% ± 20% and 13 ± 7%. By incorporating CASA and ODIAC 839 

biosphere flux data and examining day-night crossing tracks on the same day, we found that separately 840 

considering day and night biosphere fluxes can improve the accuracy of local XCO2 enhancement 841 

calculations by 30%-70% compared to using daily average biosphere fluxes. This indicates that 842 

leveraging the short-term, rapid day-night crossing capability of DQ-1, along with more accurate 843 

biosphere flux estimation models, has the potential to reduce uncertainties in emission estimates due to 844 

biosphere fluxes. 845 

For biosphere flux cities with similar total CO2 emissions but lower fossil fuel emissions, the 846 

contribution of biosphere fluxes is expected to be higher than indicated. Therefore, for cities in mid-847 

latitude and equatorial regions with significant local and regional biosphere fluxes, accurately 848 

interpreting XCO2 detection results is crucial. Future improvements in constraining urban fossil fuel CO2 849 

emissions using DQ-1 data or other polar orbit measurements should consider the temporal and spatial 850 

correlations of previous emission errors, which were not included in this inversion. 851 

For applying these methods to larger-scale flux inversions, advanced satellites with shorter revisit 852 

cycles and denser ground-based stations are essential. Additionally, optimizing city emission scaling 853 

factors requires more information on prior emission uncertainties to better understand spatial and 854 

temporal characteristics of urban-scale emissions. The appropriate number of constraints for urban 855 

emissions will depend on the spatial and temporal resolution of target city emissions and the precision 856 
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required to support policy decisions. Our results demonstrate that DQ-1 or similar missions have 857 

significant potential to constrain overall emissions from cities with intensified fossil fuel emissions, and 858 

utilizing DQ-1's unique day-night crossing capability, we can establish frameworks for rapid day-night 859 

flux inversions at the urban scale. This will further elucidate the spatial and temporal structure of 860 

biosphere flux contributions to urban emissions and provide valuable insights for policy-making. We 861 

anticipate that DQ-1 data will effectively enhance the accuracy and precision of urban fossil fuel carbon 862 

flux estimates, in conjunction with observations from other platforms to support emission reduction 863 

strategies. 864 
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