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Abstract. Satellite observations of the total column dry-air carbon dioxide (XCO,) have been proven to
support the monitoring and constraining of fossil fuel CO, (ffCO;) emissions at the urban scale. We
utilized the XCO, retrieval data from China’s first laser carbon satellite dedicated to comprehensive
atmospheric environmental monitoring, DQ-1, in conjunction with a high-resolution transport model and
a Bayesian inversion system, to establish a system for quantifying and detecting CO» emissions in urban
areas. Additionally, we quantified the impact of uncertainties from satellite measurements, transport
models, and biospheric fluxes on emission inversions. To address uncertainties from the transport model,
we introduced random wind direction and speed errors to the ffCO, plumes and conducted 10*
simulations to obtain the error distribution. In our pseudo-data experiments, the inventory overestimated
fossil fuel emissions for Beijing and Riyadh, while underestimating emissions for Cairo. Specifically, we
simulated Beijing and leveraged DQ-1’s active remote sensing capabilities, utilizing its rapid day-night
revisit ability. We assessed the impact of daily biospheric fluxes on ffXCO, enhancements and further
analyzed the diurnal variations of biospheric flux impacts on local XCO, enhancements using three-
hourly average NEE data. The results of a case study indicate that a significant proportion of local XCO,
enhancements are notably influenced by biospheric CO; variations, potentially leading to substantial
biases in ff CO, emission estimates. Moreover, considering biospheric flux variations separately under
day and night conditions can improve simulation accuracy by 20-70%. With appropriate representations
of uncertainty components and a sufficient number of satellite tracks, our constructed system can be used

to quantify and constrain urban ffCO, emissions effectively.

1 Introduction

More than 170 countries have signed the Paris Agreement, vowing to keep the global average temperature
increase within 2 degrees Celsius in this century. Accurate carbon accounting is the basis for any
mitigation measures. Over 70% of the anthropogenic CO, emissions are from urban areas(Agency, 2009;
Birol, 2010). It is thus critical to develop effective means to estimate urban CO; emissions accurately.

“bottom-up” (inventory) approaches have shown good performances in developed countries such as
1
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U.S.A and E.U(Crippa et al., 2018; Gurney et al., 2009). However, huge uncertainties in estimation of
anthropogenic CO; emissions are inevitable in developing countries such as China and India because of
their rapidly growing economies and imperfect monitoring systems. For example, the discrepancy
between different estimations of CO, emissions of China exceeded 1,770 million tones (20%) in
2011(Shan et al., 2016), which is approximately equal to the Russian Federation’s total emissions in
2011(Shan et al., 2018). Therefore, “top-down” (inverse) approaches could play a more significant role
in those countries to estimate and update carbon fluxes. In addition, carbon emission inventories with a
spatial resolution of 0.1° are available at the global scale, however, Oda et al. (2011) warned that
available information is insufficient to fully evaluate the relationship between CO, emission and the
proxy data, such as population and nightlight(Oda and Maksyutov, 2011). Consequently, associated
errors would increase at finer resolutions. On the other hand, the anthropogenic carbon emissions are
assumed to be known quantities and are important as reference for analyzing a budget of the three fluxes
(These three fluxes reflect the respective contributions to atmospheric CO- concentrations from fossil
fuel emissions, ocean—atmosphere exchange, and a terrestrial biosphere assumed to be net carbon
neutral.)(Gurney et al., 2005; Gurney et al., 2002). Therefore, there is an urgent need to develop novel
methods to acquire more robust and accurate surface CO; fluxes with fine resolution in urban areas where
the majority of anthropogenic CO; emissions are located.

The atmospheric inversion technique has been widely used to retrieve carbon fluxes at large
geographic scales(Bakwin et al., 2004; Ballantyne et al., 2012; Bousquet et al., 1999; Gerbig et al., 2003;
Myneni et al., 2001; Stephens et al., 2007; Watson et al., 2009), by using measurements from the network
of ground-based greenhouse gas measurements. Dense and accurate observations of CO, dry-air
mixing ratios (XCO,) are needed to inverse carbon fluxes at a finer geographic scale(Kaminski et al.,
2017; Rayner and O'brien, 2001), enabling smaller-scale sources emitting CO; into the atmosphere to be
better quantified(Eldering et al., 2017a). Remote sensing from space is undoubtedly the most appropriate
means to obtain dense CO; observations rapidly in large extents(Buchwitz et al., 2017; Ehret et al., 2008).
GOSAT and OCO-2 provide us an opportunity to retrieve column-average CO, (XCO,) globally except
in Polar Regions. Recent studies have demonstrated the promising potential of OCO-2 to help scientists
identify localized CO; sources(Schwandner et al., 2017) , estimate regional CO, fluxes (Eldering et al.,

2017a) and map the net CO2 uptake by the biosphere(Kohler et al., 2018; Li et al., 2018; Sun et al., 2018).
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It is still a challenging mission to obtain accurate estimates of CO, fluxes using XCO; products,
especially in urban areas, because the signals received by OCO-2/GOSAT need to be attributed
unambiguously to variations in atmospheric CO, concentration, as opposed to variations caused by
environmental factors such as aerosols and clouds(Miller et al., 2014). Along with the success of passive
remote sensing of CO,, U.S.A and China ambitiously planned to send their LIDAR (Light Detection and
Ranging) sensors into the orbit to realize monitoring CO in all latitudes and in nights(Abshire et al.,
2018; Han et al., 2017). Effect of acrosols and thin clouds on retrievals of XCO, can be eliminate through
a differential process of signals from two very close wavelengths(Amediek et al., 2008; Han et al., 2014;
Mao et al., 2018). Therefore, a smaller bias of retrievals of CO2-IPDA (Integrated Path Differential
Absorption) LIDAR is expected comparing with the passive remote sensing, which is beneficial for
inversion of CO; fluxes. Previous studies had focused on performance evaluation of CO,-IPDA LIDAR
in terms of systematic errors, random errors as well as the coverage(Ehret et al., 2008; Han et al., 2017;
Kawa et al., 2010). There are evident differences between XCO, products of OCO-2 and those of the
forthcoming CO,-IPDA LIDAR in terms of coverage patterns(Kawa et al., 2010; Kiemle et al., 2011).
Though positive relationship between satellite-derived XCO, anomalies/enhancements and CO;
emissions has been witnessed(Hakkarainen et al., 2016), it is by no means a predetermined conclusion
that CO; sources and sinks can now be measured from space at high resolution(Miller et al., 2014).
Atmospheric transport models are indispensable to build a bridge between CO, sources/sinks and
measured concentrations(Rayner and O'brien, 2001). Stochastic Time-Inverted Lagrangian Transport
(STILT) was invented in 2003 (Lin et al., 2003) and soon was utilized to inverse fluxes of trace
gases(Gerbig et al., 2003; Lin et al., 2004). In 2010, Weather Research and Forecasting (WRF) model
was coupled with STILT (WRF-STILT), offering an attractive tool for inverse flux estimates(Nehrkorn
et al., 2010). Since then, several studies used this tool to model CO; distribution and inverse CO; fluxes
using in-situ measurements(Kort et al., 2013; Nehrkorn et al., 2013; Pillai et al., 2012; Vogel et al., 2013)
as well as satellite observations(Reuter et al., 2014; Turner et al., 2018; Wang et al., 2014; Che et al.,
2024). Recently, STILT was further updated to facilitate modeling of trace gases with a fine scale(Fasoli
et al., 2018). The key product provided by WRF-STILT is the “footprint” which describes the sensitivity
of measurements (receptors) to surface fluxes in upwind regions. Then, the Bayesian inversion method

can be used along with the footprint and a-priori surface fluxes to estimate a-posterior surface fluxes.
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Unlike the passive remote sensing of CO, that can scan perpendicular to the direction of the satellite orbit,
IPDA LIDAR in practice has sensors that only operate in point mode due to the unaffordable power
consumption and cost of implementing a scan mode. Such a difference can be ignored when one tries to
estimate large scale CO; fluxes by using satellite-derived XCO; products with a resolution of 1° (or
coarser). However, specific inversion methods, which take the characteristics of LIDAR products into
considerations, are urgently needed for inversion of fine scale CO, fluxes(Kiemle et al., 2017). Our
previous work has already confirmed that it is feasible to retrieve XCO, in urban areas using the ACDL
(Aerosols and Carbon Dioxide Lidar) which is onboard on the Atmospheric Environment Monitoring
Satellite (AEMS) DQ-1 of China(Han et al., 2018). In this work, an inversion framework is used to
inverse fine scale (~1 km/0.01° ) CO, fluxes of urban areas using pseudo XCO; observations from
ACDL. Our main objective is to determine the ability and potential of ACDL to help us estimate
anthropogenic carbon emission in urban areas. In turn, results of the performance evaluation will be the
justification for improve the configuration of the ongoing ACDL and its successor which would be sent
to the orbit in just 2-3 years after AEMS.

In this study, we propose a framework based on DQ-1 XCO; data to periodically assess urban-scale
fossil fuel CO, emissions. We employ Observing System Simulation Experiments (OSSEs) to investigate
the performance of DQ-1's ACDL XCO; products in improving CO, flux estimation at an enhanced
spatial resolution of 0.01° x 0.01° over urban areas. The OSSE consists of a forward simulation module
and an inversion framework. The forward module utilizes WRF modeling for high-resolution simulations,
allowing us to capture fine-scale trace gas transport characteristics and variations. We simulate pseudo-
measurements and corresponding errors based on hardware configurations, environmental parameters,
and physical process simulations within this module. The inversion framework relies on footprints
calculated by WRF-STILT to estimate urban-scale emission scaling factors using Bayesian inversion
methods. The study also accounts for the impacts of measurement errors, transport model uncertainties,
and biosphere flux uncertainties on emission estimation uncertainty throughout the OSSE. Initially, we
evaluate emission estimation uncertainty related to transport model and measurement errors, focusing on
three cities: Beijing, Riyadh, and Cairo, each with distinct topographical influences. Riyadh and Cairo
exhibit negligible local biosphere flux impacts on emission estimates due to relatively flat terrain and

stable wind fields, categorizing them as "plume cities" where CO, emissions are typically captured in
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plume forms due to these conditions(Ye et al., 2020). Building on these simulations, we conduct OSSEs
to assess the potential of using XCO, data from multiple DQ-1 orbits to track urban emissions regularly.
Leveraging DQ-1's unique day-night revisit capability, we also evaluate uncertainties arising from local
biosphere flux variations in Beijing. Unlike previous inversion studies using OCO-2/3, which primarily
sample during daytime, DQ-1's day-night orbit allows for more evenly distributed temporal sampling.
Furthermore, combining DQ-1's day-night revisit capability, we introduce for the first time an analysis
of how biosphere flux variations between day and night affect emission estimates using forward
simulations and Bayesian inversion. Lastly, we summarize the significance of future satellite

observations in monitoring urban emissions.

2 Data and method

2.1 ACDL XCO: products

In order to design a device similar to the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
onboard the CALIPSO satellite, the design of DQ-1 was initially proposed in 2012. It was officially
approved in 2017. Distinct from other environmental monitoring satellites, a notable and innovative
highlight of DQ-1 is the integration of a lidar payload for space-based top-down CO> detection, known
as ACDL. In subsequent developments, ACDL underwent a series of laboratory prototype developments
(Zhu et al., 2019) and airborne prototype testing missions(Wang et al., 2021; Xiang et al., 2021; Zhu et
al., 2020). Finally, ACDL was launched into a near-Earth sun-synchronous orbit at an altitude of
approximately 705 kilometers on April 18, 2022. DQ-1, as a sun-synchronous orbiting satellite, has a
stable daily transit time of approximately 1 p.m. local time during the day and 1 a.m. local time at night.
ACDL began data collection in late May 2022 and officially commenced operations. This study primarily
utilizes data from June 2022 to April 2023 for further research.

ACDL employs standard IPDA lidar technology, using differential absorption methods to acquire
column concentrations of atmospheric carbon dioxide (CO). A detailed description of the XCO,
detection algorithms and products is in preparation. In this paper, we briefly introduce its detection
principles. ACDL emits a pair of nearly simultaneous observation signals, one with a wavelength located

at the strong absorption position of the R16 line in the CO; spectrum (on-line wavelength 1572.024nm)
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and the other at a weak absorption position of the same line (off-line wavelength 1572.085nm). The on-
line and off-line wavelengths are stabilized at 6361.225 cm-1 and 6360.981 cm-1, corresponding to
1572.024 nm and 1572.085 nm, respectively. This slight wavelength difference enables ACDL to
counteract interference from aerosols and other molecules, excluding water vapor, through the
differential process of the reflected signals. The detection of XCO, by ACDL is calculated based on

specific algorithms (see Section 2.4.1).
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Figure 1: the schematic diagram for DQ-1's detection principle

Figure 1 illustrates the detection principle of DQ-1. The XCO; products generated by ACDL are
similar to those of GOSAT, adopting a point sampling mode. The lidar operates in nadir observation
mode, with approximately one 70-meter footprint observed every 350 meters along the track.

According to Equation 1, we calculate XCO; by directly using the integrated weighting function (IWF).
Significant differences in XCO, measurements can be observed between ACDL and OCO-2/3. Currently,
passive remote sensing satellites like OCO-2/3 and GOSAT estimate XCO, by measuring the solar
spectrum and using a priori information guided by optimal estimation theory to derive XCOa(p),
ultimately obtaining XCO»(Miller et al., 2014). In contrast to these traditional passive optical remote
sensing satellites, ACDL does not 'estimate' XCOx(p) but directly 'calculates' the weighted average
column concentration(Zhang et al., 2024). During the integration phase of ACDL's development, we

evaluated the WF(Weighting Function) shapes of various on-line wavelengths and selected one that
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responds strongly near the surface and weakly at higher altitudes(Han et al., 2017). This design allows
changes in surface CO» concentration, driven by surface CO» fluxes, to be more prominently reflected in
the column concentration. Therefore, this WF enhances the ability to identify surface CO, variations and
provides more information for subsequent CO; flux inversion.

Unlike the XCO> products from passive satellites such as OCO-2/3, the XCO; product from DQ-1
(hereafter referred to as XCO2“ to distinguish it from passive satellite XCO, products) is derived using
the differential between on-wavelength (strong CO, absorption) and off-wavelength (weak CO,
absorption) measurements. In this context, XC02““ is obtained through the differential of the lidar
signals and integration weighting functions described in equations 1 and 2. Here, WF(p)represents the

lidar signal and Prepresents the pressure:

| ) 4
2-1n(iV”ff V""‘O)
XcozLidar — on off -0 1

[ wF(p)dp

p_surface

Here, v, and v, represent the reflected signal energies at the on-wavelength and off-wavelength,

respectively, while V.

o and v, denote the transmitted signal energies. p_surface indicates the
atmospheric pressure at the laser ground point, and p_#0p represents the pressure at the TOA of the
atmosphere.

The denominator of Equation 1 represents the integration weighting function, as detailed in the study by

(Refaat et al., 2016):

WE(p)=Ac,, (4,5 255 P)* Ny (P) 2

Here, Ao, (4,,,4

- p) denote the CO; differential absorption cross-sections at the on-wavelength and

off-wavelength, respectively. N, represents the number of dry air molecules per unit volume in the

pressure layer. This formula allows for the construction of the relationship between XC02““" and the CO»

profile CO2(p) :
i _Lr e COXPWED) () WF(p,)
XCot =75 piod = .CO2p)+ ——22.CO2p, )+ 3
I P _Slufacg WEF (p)dp IWF TWF
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2.2 Study Area

Considering the available orbital tracks for DQ-1 inversion, vegetation coverage, and the complexity of
meteorological conditions, this paper selects three cities and regions to highlight the different sources of
uncertainty in emission inversion and the inversion capability of DQ-1. The selected cities share the
following characteristics: 1) high fossil fuel emissions; 2) typical "plume cities," (Ye et al., 2020)
characterized by ffXCO, enhancements distributed in plume forms(Deng et al., 2017). Riyadh, with a
population of 8 million, and Cairo, with a population of 20 million, have significantly weaker biosphere
contributions compared to Beijing. In subsequent research, it is considered that the spatial gradient of
biosphere CO> flux can be ignored compared to local fossil fuel emissions.

To assess the impact of biosphere flux uncertainty on the inversion process and separately evaluate the
impact of daytime and nighttime biosphere flux on the simulated local XCO, enhancement, we selected
Beijing, the capital city of China, with a population of approximately 21.5 million. Beijing is not only
the political center of China but also one of the most populous cities. Compared to its surrounding areas,
Beijing has relatively less vegetation. Surrounding cities might have better-preserved natural ecological
environments and more abundant vegetation cover due to less industrialization and urbanization(Che et
al., 2022). For instance, the mountainous and suburban areas around Beijing may have more forests,
grasslands, and farmlands, whereas green spaces within Beijing are often limited to parks, green belts,
and a few nature reserves. As a city with high fossil fuel emissions and active biosphere exchange, Beijing

is well-suited for studying the impact of biosphere flux uncertainty on emission estimates.

2.3 Atmospheric Model Setting

2.3.1 WRF-STILT

The spatial heterogeneity of emissions and dense point sources (such as power plants) lead to a complex
spatial structure of urban emissions, resulting in intricate ffCO, plumes combined with local atmospheric
dynamics. To explore fine-scale urban emission patterns, this study employs the WRF-STILT model
(WRF: Weather Research and Forecasting, STILT: Stochastic Time-Inverted Lagrangian Transport). The
STILT Lagrangian model driven by WRF meteorological fields is characterized by a realistic treatment

of convective fluxes and mass conservation properties, which are crucial for accurate top-down estimates
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of CO; emissions.

In this study's application of STILT, hourly outputs from version 4.0 of WRF are used to provide high-
resolution meteorological fields, with the model grid configured to 51 vertical (eta) layers. The 6-hourly
NCEP FNL (Final) global operational analysis data with a resolution of 1° are used as initial and boundary
conditions for meteorological and land surface fields to provide the initial and boundary conditions for
WREF runs. The simulations run for 30 hours, but only the 7th to 30th hours of each simulation are used
to avoid spin-up effects in the first 6 hours.

Each city uses the same one-way WRF nesting at 27 km, 9 km, and 3 km resolutions, with Riyadh
(23.7625° N,45.7625°E - 25.4375°N,27.4375°E ), Cairo ( 29.1625° N,30.4125°E - 30.8375° N,32.0875°E ), and Beijing
(39.4°N,115.5°E - 41.075° N, 117.175°E ) having their innermost regions used to filter DQ-1's orbital data. The
study area for STILT is set to be smaller than the innermost WRF region to eliminate the marginal effects
of WRF. Footprints quantitatively describe the contribution of surface fluxes from upwind areas to the
total mixing ratio at specific measurement locations, with units of mixing ratio per unit flux. The footprint
used in lidar satellite inversions is different from that used in general optical satellites, as detailed in
Section 2.4.1. STILT (In this study, we used the STILT model, version 2, to simulate atmospheric
transport processes. ) is configured to release 500 particles per receptor each time, with forward dispersion
over 24 hours. The particle release heights for STILT are set within the range of 50-1000 m, with releases
every 50 m, and 1000-2000 m, with releases every 100 m, the spatial resolution of the STILT simulations
is 1 km x 1 km. Generally, as MAXAGL increases from 1 km to 2 km, the urban enhancement increases

and then stabilizes(Wu et al., 2018).

2.3.2 Inventory of Fossil Fuel Emissions

This article uses The Open-source Data Inventory for Anthropogenic CO, (ODIAC) which is a global
high-resolution fossil fuel carbon dioxide emissions (ffCO,) data product(Tomohiro Oda, 2015). The
2023 version of ODIAC (ODIAC2023, 2000-2022) is based on the Appalachian State University's
Carbon Dioxide Information Analysis Center (CDIAC) team's(Gilfillan and Marland, 2021; Hefner et al.,
2024) most recent national ffCO, estimates (2000-2020). The ODIAC emissions inventory provides
llanxlkmglobal monthly average ffCO,. The spatial decomposition of emissions is accomplished using a

variety of spatial proxy data, such as the geographic location of point sources, satellite observations of
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night lights, and airplane and ship tracks. Seasonality of emissions was obtained from the CDIAC
monthly gridded data product(Andres et al., 2011) and supplemented using the Carbon Monitor product
(2020-2022, https://carbonmonitor.org/). In this paper, monthly data from ODIAC are time-allocated, and
neither the subsequent modeling nor the pseudo-data take into account the daily and weekly time-

variation of the ACDL product.

2.3.3 Background XCO:

To extract the XCO, enhancement for DQ-1 inversion, we define XCO, enhancement as entirely driven
by fossil fuel emissions. A classic method for extracting orbital background concentrations involves
selecting another "clean" orbit (minimally influenced by fossil fuel emissions) that is spatially and
temporally close, and using averaging or linear regression to approximate a background concentration
for the orbit under study. In this study, due to the fine-scale urban area emissions inversion, the study
area is small, making it challenging to find another clean orbit for calculating the background
concentration.

Previous studies have used inversion methods to derive background concentrations for orbits(Pei et
al., 2022), but these typically yield a background concentration for a region. These methods usually
produce a value unaffected by geographic location within a small area. However, for each orbit we study,
a single, constant background concentration is clearly unreasonable. Therefore, based on previous
research, we designed a simple and quick method to extract background concentrations, generating a
background line for each orbit of interest.

To derive ffXCO2, which represents the enhancement of XCO2 attributed to fossil fuel emissions,
we need to subtract the background XCO2 from the observational data obtained by DQ-1. In the study
(Ye et al., 2020), XCO2 is decomposed into two components: XCO2;enqg and XCO02,.,;. Here,
XCO024p0nq represents the non-local trend, while the standard deviation ay,.4; of XC02,.,; indicates
variations at the local scale. We filtered the XCO2 samples with XCO02 < XCO2;yeng + 0.50;5c4;- These
filtered data are designated as "background samples" (represented by blue triangles in Figures 3, 5, 7)
due to their lower spatial variability at the local scale compared to samples affected by urban ffCO2
emissions. We then performed linear regression based on the "background samples" to recalculate the

linear regression line, referred to as the "background line." This "background line" method accounts for

10
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spatial trends in the background data. Unlike Ye et al. (2020), we utilized the low-frequency (approximate)

coefficients obtained from DWT to characterize.

2.3.4 Biogenic Carbon Flux

We specifically considered the influence of biogenic flux on the emission constraints in urban areas for
DQ-1. Two open-source NEE datasets were utilized in our study. The first dataset is derived from the
Carnegie-Ames-Stanford Approach-Global Fire Emissions Database Version 3 (CASA-GFED3)
model(Van Der Werf et al., 2010), which provides 3-hourly average net ecosystem exchange (NEE) of
carbon. This dataset incorporates biogenic fluxes as well as fluxes associated with biomass burning
emissions, offering a global coverage of 3-hourly average NEE.

Additionally, we considered the ODIAC dataset, which provides advanced data-driven products on
global primary production, net ecosystem exchange, and ecosystem respiration(Zeng, 2020). The ODIAC
dataset offers 10-day average global NEE data and utilizes extensive ecosystem indices from MODIS
and ERAS to deliver more precise data.

According to the study by(Ye et al., 2020), to better describe the diurnal variations and spatial
distribution of biogenic fluxes, the MODIS green vegetation fraction (GVF) was used to downscale the
3-hourly NEE from the original grid resolutions (CASA NEE 0.5° x 0.625° and ODIAC NEE 0.1° x 0.1°)
to the WRF domain resolutions (27, 9, and 3 km). This method assumes a linear relationship between
carbon uptake and release and the vegetation canopy coverage.

Our application of these datasets and downscaling methods enables a more accurate representation of
biogenic flux contributions to urban carbon emissions. By integrating high-resolution biogenic flux data,
we can improve the precision of emission inventories and enhance our understanding of urban carbon
dynamics. This approach allows us to better inform urban planning and policy-making aimed at reducing

carbon footprints and mitigating climate change impacts.

2.4 Emission Optimization Method

2.4.1 X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”)

XSTILT incorporates satellite profiles and provides comprehensive uncertainty estimates of urban XCO2

enhancements on a per sounding basis(Wu et al., 2018). The simulated enhancement in CO; emissions
11
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due to fossil fuels, ACO2 .,,(p)=< ffCO2, foot(h)> , can be interpolated from the modeling results of

CO; fluxes and tracer-tagged footprints. Therefore, a relationship between CO; fluxes and XCO2L497 js

established:
. . WEF{ WF
Xan' - xoopis | — (p')-<ﬁw2,foot(iq)>+ﬂ-<ﬁw2,foa(@)>+--- 4
WF WF
Here, xco2i . = xco2" - xco2t . represents the XCO, enhancement extracted from DQ-1

observational data, and xco 24 represents the background concentration selected from the DQ-1

backgrou

orbit (detailed in Section 2.3.3). The symbol<>denotes the inner product operator, ffCO2is the prior
emission flux, and foot(h,) represents the simulated footprints at different altitude layers. This formula
establishes the mathematical foundation for inversion.

By integrating footprints from different release heights (Section 2.3.1 explains the selection of STILT

release heights), we further simplify the above equation. Here, we define xco24“, as the XCO;

fCO2,sim

enhancement simulated by the atmospheric transport model.

XC02%%y, ., =< XSTILT ™", ffCO2 > 5
. “WF(p,

XSTILT " =) P fooeh) 6

i=1

Here, we define XSTILT """ as the column-averaged footprint, corresponding to the column-averaged
CO; concentration. The inner product of the column-averaged footprint and the prior emission flux yields
the simulated XCO, enhancement. Thus, we can optimize the fossil fuel CO, (ffCO;) emission
parameters using the simulated and observed XCO, enhancements to achieve the best consistency
between the model and observed increments. By achieving this optimization, we ensure that the model
accurately reflects the observed data, providing a reliable basis for further studies and policy-making.

Considering previous studies that used OCO-2/3 and GOSAT for inversion(Patra et al., 2021; Roten
et al., 2022; Wang et al., 2019), we selected one of these inversion methods (Ye et al., 2020) for
comparison with DQ-1 inversions and validation using TCCON site data (see Section 3.2). The posterior
scaling factor was applied to the ODIAC inventory flux to simulate XCO, at TCCON site locations, and
these simulations were compared with TCCON data, assumed to be the true XCO; at those locations.
ACDL observations require the use of the IWF to derive X-STILT footprints, which differ from those
used for TCCON sites. The simulated XCO, for TCCON was obtained using an integration method

provided by TCCON, with 51 altitude levels corresponding to the input levels of our STILT model. The
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footprints from these 51 altitude levels were integrated using the integration operator

integration_operator x2019 and the averaging kernel ak xCO; to obtain the simulated XCO..
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Figure 2: Schematic diagram of XSTILT, Fig. (a) represents the simulated footprints at each horizontal
altitude level we set (one footprint per S0m below 1000m, one footprint per 100m from 1000m-2000m, where
MAXAGL represents the highest atmospheric altitude we simulate, which is 2000m) and the column average

footprints obtained by integrating using the normalized integration function in Fig. (b). Fig. (c).

2.4.2 Optimization of Emission Constraint Factors

We adopted a Bayesian inversion method similar to that used by(Ye et al., 2020), which utilizes OCO-2
observational data to constrain ffXCO», aiming to achieve correlation between the model and observed
ffXCO, increments. Unlike the inversion of individual emission grids, we optimize emissions by
adjusting a scaling factor (A) for the entire city's prior emissions without modifying each grid's flux
individually. The observational data along the DQ-1 orbit across all regions of interest serve as constraints
for the inversion, which can be expressed as:

Vobs = Vim * A+ Eppy 7
Here, y,, and y,, represent the observed and simulated ffXCO, enhancements, respectively. The term ¢ |
denotes the observational error, which consists of DQ-1 measurement error, model error, and model

parameter error, defined as follows:

Vo = mean([ """ 4XC02,, dr), Vuw = mean([""" 1XC02,,, dr) 8
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Here, dxcoz2,, represents the DQ-1 XCO» enhancement after removing the background concentration.
fixco2,, represents the simulated XCO, enhancement, obtained from the convolution of the fossil fuel
emission inventory and the footprint. We averaged the DQ-1 data over 1 sec intervals (7 km) along the
orbit to obtain #XC02,, and corresponding simulated data fxcoz2,,, .

According to the Bayesian inversion method, we transform the state vector into a scaling factor (1),

which represents the constraint ability of pseudo-observations on regional emissions. The Jacobian

matrix is given by the simulated XCO; enhancement y,, . The observation error variance ¢ 2 and

measurement

model transport error variance ¢ 2, are considered. We assume that DQ-1 observations are unbiased with
respect to the true values. Random errors were added to the observations, following a Gaussian
distribution with a standard deviation of 0.5 ppm, representing the lower limit of observational errors.
The transport model error was obtained by perturbing wind speed and wind direction errors; more
wind observations help reduce atmospheric transport uncertainties. For example, data assimilation
systems have proven useful in reducing atmospheric transport errors in data-rich areas like Los
Angeles(Lauvaux et al., 2016). Besides systematic wind direction errors, some areas exhibit
positive/negative wind direction biases(Ye et al., 2020). The X-STILT model proposed by Wu et al(Wu
et al., 2021) can correct wind biases by rotating model trajectories. the transport model error propagates
by transforming the model ffXCO, plumes with added random wind speed and wind direction errors (by
rotating ffXCO, plumes). To estimate transport model uncertainty in the model ffXCO,, we performed
multiple (10* times) random wind speed and direction perturbations on the model plume and extracted

the uncertainty distribution of ffXCO> using the 25th and 75th percentiles. We establish the loss function

J(x) to calculate the posterior scaling factor:

J(}') = (ynbx - ysimﬂ)r sobx_l(yobx - ysiml) + (/1 - la )zo_v_uzn 9
Ofbs = O-rzneavureinent + szod 10

Here, S, represents the observational error covariance matrix. We assume that the observational errors
of different orbits are uncorrelated, so S,, is a diagonal matrix with the observational error variances o2,
on the main diagonal. Since the DQ-1 measurement errors and atmospheric transport model errors are
unbiased and uncorrelated, we estimate 7, by summing both error variances. 1, represents the prior value

of the scaling factor, uniformly set to 1. o, represents the uncertainty of prior emissions, derived from

previous studies combined with the emission characteristics of different cities. Since the ODIAC product
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does not provide uncertainty estimates, ODIAC was originally designed for atmospheric CO, flux
calculations to reduce model biases caused by coarse grid resolution. Considering the simple
downscaling based on nightlights in ODIAC, urban emissions derived from ODIAC are affected by errors
related to emission disaggregation. For example, (Lauvaux et al., 2016)reported a 20% difference
compared to Gurney et al.(Gurney et al., 2012) despite significant differences in emission modeling
methods. Gurney et al.(Gurney et al., 2019) further compared the ODIAC and Hestia products for four
US cities (Los Angeles, Salt Lake City, Indianapolis, and Baltimore), finding city-wide emission
differences ranging from -1.5% (Los Angeles) to 20.8% (Salt Lake City). Empirical values of ODIAC
ffCO> uncertainty can be obtained by comparing ODIAC inventories with other emission fluxes, such as
those created using high-resolution top-down satellite products. Smaller temporal scales result in greater
empirical value deviations. Considering different city emission characteristics, such as industrial cities
like Cairo and Riyadh with irregular emissions and large uncertainties in industrial emissions, we set
prior emission uncertainties for these cities at 45%. For large cities with distinct and regular emission
characteristics, the uncertainty is set at 25%, as their emission estimates are more accurate compared to
industrial cities.

By minimizing the loss function, we obtain the posterior scaling factor zand posterior uncertainty o

2’ = ﬂ’a + O-ftmyim (ysimsobxyft:m + Sabs)_l (yabs - yximﬂ'a) 11
0-2 = (ysTimSa_blsysim + O-s_nzn B 12

To evaluate the performance of the scaling factor, we define the mean kernel (AK=01/01):
AK =(ysTimsa_b1sysim +O_;fn )_l(yr S_l ysim) 13

sim " obs

The value of AK closer to 1 indicates a more accurate estimation of the scaling factor.

2.5 OSSEs: Optimization of Emissions using Different DQ-1 Tracks

Given the limited number of DQ-1 overpass tracks and the impact of atmospheric conditions during
overpasses on emission optimization, we implemented Observing System Simulation Experiments
(OSSEs). These experiments were conducted using multiple DQ-1 tracks to constrain urban fossil fuel
emissions repeatedly and to statistically evaluate DQ-1's potential in constraining urban fossil fuel

emissions. Specifically, we initially screened all DQ-1 overpass tracks, selecting those located downwind
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of major fossil fuel emission areas to better utilize DQ-1 data for constraining overall regional fossil fuel
emissions. For each city's overpass track, we extracted pseudo-observation data and modeling data.
DQ-1 is different from other passive remote sensing satellites in that it is not only capable of night
observation, but also less affected by clouds and aerosols. Therefore, we studied the relationship between
daytime and nighttime observations and emission estimation uncertainties, as well as the impact of
different tracks and the number of tracks on emission estimates. We used the ODIAC fossil fuel emission
inventory as the prior emissions for the OSSEs, assuming that the prior emissions are the true emissions
and that emissions remain stable over a short period. It is noteworthy that, in Section 3.3, the prior
emissions were constructed by combining ODIAC fossil fuel data with NEE (Net Ecosystem Exchange).
Pseudo-observation data and modeling data for each city were derived using the same method. Pseudo-
observation data were obtained by averaging the 1-second detection range of the selected DQ-1 overpass
tracks, with adjacent pseudo-observation data separated by 7 km (1 second). This method helps eliminate
some of the background noise and wind speed impacts on emission optimization. We assumed that DQ-
1 observations are unbiased with respect to the true values and added random errors to each DQ-1
observation, with the error following a Gaussian distribution and a standard deviation of 0.5 ppm.

Pseudo-observation data are also unbiased relative to the true values, with random errors accumulated

N
2
2 Ti.pg-1

i=l

over time for each observation data: o(ls)= Here, - represents the random error of each

2

pseudo-observation data. Modeling data were obtained by convolving the emission inventory of the area
with the tracer contributions corresponding to the geographic locations.

By using multiple DQ-1 overpass tracks to repeatedly constrain urban fossil fuel emissions and
analyzing the results statistically, we assessed the potential of DQ-1 in constraining fossil fuel emissions
in urban areas. This approach allowed us to examine the effectiveness of daytime and nighttime
observations, the influence of different overpass tracks, and the impact of track quantity on emission

estimates.
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3 Results

3.1 Fossil Fuel Enhancement in Urban Areas

In this section, we summarize the prior ffXCO, emissions for each study area. The total monthly
emissions for Beijing, Riyadh, and Cairo during the selected months (The detailed overpass dates are
emissions provided in Table S3) are approximately 2.4-3.5 Mt C/month, 2.3-3.3 Mt C/month, and 1.9-
2.4 Mt C/month, respectively. We constrain emissions by comparing observed and simulated ffXCO,
enhancements. Here, ffXCO, enhancement is defined as the increment in XCO, concentration caused by
local fossil fuel emissions. The prior ffXCO; enhancement is simulated using the ODIAC prior emission
inventory and the STILT footprint (a summed 24 hours column integrated footprint) convolution. The
observed ffXCO, enhancement from DQ-1 is obtained by subtracting the background concentration from
the observational data (as detailed in Section 2.3.3 and shown in Figure 3). By comparing the prior
ffXCO, enhancement with the observed XCO, enhancement, we evaluate the trends in ffXCO; changes

along the tracks and explore the sources and detection capabilities of the ffXCO, signal.
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Figure 3: Comparison of the simulated and observed ffXCO: enhancements from DQ-1 data over Riyadh on
March 02, 2023 and June 20, 2022 around 11:00 UTC. Figures (a) and (b) show the DQ-1 XCO: (black dots
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and blue triangles) and the simulated XCO: (red solid line, sum of simulated ffXCO: and background
concentrations) along the two orbits, averaged over 1 s. The black dots represent the background
concentrations involved in deriving the background. The black dots represent the data involved in the
derivation of the background concentration (black solid line), which are linearly regressed against latitude
after a discrete wavelet transform. Figures (c¢) and (d) show the simulated ffXCO: and the observed ffXCO:
obtained from the DQ-1 data. background XCO:2 concentrations have been subtracted. The red boxes in the
Figures (¢) and (d) represent the urban areas. Vectors represent 10 m wind speeds (average wind speed

simulated by WRF) and reference vectors represent 10 m/s wind speeds.

Figure 3 presents the results of two DQ-1 overpasses over Riyadh on March 2, 2023, and June 20,
2022, at 11:00 AM. Figures 3a and 3b show the simulated and the observed XCO, enhancement as a
function of latitude for these two overpasses. The maximum ffXCO, enhancements observed along the
two tracks were 8 ppm and 5 ppm, respectively.

In the overpass on March 2, significant ffXCO, enhancements were observed by DQ-1 between 24.8°N
and 25.3°N, with the simulated ffXCO, also responding to this enhancement. Although the peak observed
values were narrower than the simulated values, both were of similar magnitudes, with only slight
differences, and their trends were largely consistent. However, the simulated ffXCO; did not respond to
the observed enhancement in the 24.1°N to 24.3°N range, which may be due to the sensitivity of the
STILT footprint to wind direction.

Compared to the track on March 2, the track on June 20 shows better agreement between observations
and simulations, along with smaller posterior uncertainties (see Table 1). The observed peak and the
simulated peak were both within the 23.8°N to 24.6°N range, with a difference of less than 1 ppm. The
differences between the results of the two tracks may be because the March 2 track passed through the
city's main emission area and intersected the simulated plume (Figure 3c). In this case, the observed
ffXCO; fluctuations were minimal, with values remaining high relative to the background concentration,
making it difficult to detect significant enhancements. In contrast, the June 20 track was downwind of
the main emission area, making it more sensitive to the city's fossil fuel emissions and resulting in better
agreement between the simulated and observed values.

For Cairo, we examined ffXCO, enhancements using six DQ-1 overpasses on July 26, August 2, August
16, November 8, November 15, and November 22, 2022 (Figure S9-10). In contrast to Riyadh, the
simulated ffXCO, enhancements over Cairo were mostly below 2 ppm, indicating lower overall

emissions in Cairo than in Riyadh. The simulated ffXCO, enhancements over Cairo were more dispersed,
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showing a multi-point distribution rather than the concentrated enhancements observed over Riyadh.

The observed XCO, enhancement over Cairo were generally higher and narrower than the simulated
ones, which were smoother. Despite these differences, the trends in ffXCO, enhancements between the
simulations and observations were similar and of the same magnitude (The latitudinal distribution and
magnitude of the simulated enhancement (red line) are generally consistent with those of the observed
enhancement (blue triangles)), except for the July 26 simulation, which did not include some observed
enhancements between 30.2°N and 30.4°N, and the November 8 overpass, where a spatial shift of
approximately 0.2° was observed between the simulated and observed ffXCO, enhancements.

Overall, the comparison between DQ-1 observations and WRF-STILT-based simulations suggests that
the DQ-1 satellite is well-suited for fine-scale urban emission optimization. This indicates that DQ-1 can

effectively be used for detailed monitoring and analysis of urban emissions.

3.2 Comparison of DQ-1 and OCO-2 Restraint Capabilities
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Figure 4: (a) and (b) show the position and XCO: data of two pairs of OCO-2 and DQ-1 orbits that we selected
for transit to Beijing at 05:00 on December 01, 2022 and 05:00 on April 08, 2023, respectively

To better compare the inversion results from OCO-2 and DQ-1, we selected tracks that were spatially
and temporally close and located downwind of major urban emission areas. Figure 4 shows two pairs of
OCO-2 and DQ-1 tracks over Beijing on December 1, 2022, and April 8, 2023, both at 05:00, passing
through the major emission downwind area of the city. Fig. 5 shows ffXCO, enhancements and wind
fields at the time of the satellite overpasses. The results clearly indicate significant ffXCO; enhancements,
exceeding 2 ppm in April, demonstrating that DQ-1 can observe notable ffXCO, enhancements from
space.
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Figures 5 (c, d, g, h) show that the ffXCO, enhancements simulated from DQ-1 and OCO-2 overpasses
are of similar magnitude and spatial distribution, with strong spatial consistency across different times
due to stable local emissions and wind fields. Beijing's topography, with high elevations in the northwest
and low-lying plains in the southeast, influences the prevailing west-to-east winds, and the flat terrain of
the main urban area means the simulated ffXCO, is minimally affected by topography. The smaller
ffXCO, enhancements observed on December 1 compared to April 8 are primarily due to wind directions
affecting the track within the 40.2°-41° range, making it difficult to simulate emissions.

This comparison highlights the capability of DQ-1 to effectively observe and simulate urban ffXCO,

enhancements, supporting its application in fine-scale emission optimization.
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Figure 5: Similar to Fig. 3, (a)-(d) show the simulated ffXCQO: and measured ffXCO: for the DQ-1 and OCO-
2 orbits transiting Beijing at 05:00 UTC 01 December 2022 and 05:00 UTC 08 April 2023, and (e)-(h) represent

the comparison of the simulated ffXCO: (colored shadows) with the observed ffXCO: enhancement (colored
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dots, minus background concentrations) from DQ-1 data collected over Beijing at ~05:00 UTC. Each panel is
labeled with the date of observation. The red boxes in the Figures (c), (d), (g), (h) represent the urban areas.

Vectors represent 10 m wind speeds and reference vectors represent 10 m/s wind speeds.

Figure 5 (a, b, e, f) illustrates the simulated and observed XCO, for two pairs of DQ-1 and OCO-2
tracks. The simulated XCO; (red line in the figures) is derived by adding the background concentration
to the simulated ffXCO; extracted along the satellite tracks. Overall, both OCO-2 and DQ-1 observations
exhibit similar distributions, with high-value points located in the same latitude ranges (On 1 December,
both the DQ-1 and OCO-2 overpasses exhibited similarly strong latitudinal gradients in their background
baselines, with notable enhancements observed and simulated within the 39.4°-39.6°N range. Although
the background latitudinal gradients differed between DQ-1 and OCO-2 on 8 April, both were weak in
magnitude, and significant enhancements were nevertheless consistently detected and simulated between
40.0° and 40.4°N). DQ-1 observations are generally 4-8 ppm higher than OCO-2, attributed to the
inherent characteristics of the satellites—DQ-1 being an active lidar satellite, largely unaffected by
clouds and aerosols. This systematic difference can be mitigated during background concentration
extraction due to the overall similarity in data distribution.

On December 1 and April 8, DQ-1 and OCO-2 observed ffXCO; enhancements of approximately ~2.5
ppm and ~1.5 ppm, respectively. Although OCO-2 did not capture the ffXCO, enhancement within the
40.2°-41° range on December 1, and there was a ~0.15° spatial shift between observed and simulated
XCO; peaks on April 8, the simulated ffXCO, was of the same magnitude as the observations. This
indicates that DQ-1 performs comparably to OCO-2 in urban-scale inversions. The peak shift in OCO-2
data might be due to errors in the horizontal wind field. The background gradient on December 1 was
more pronounced than on April 8, and the integrated ffXCO, enhancement along the track was consistent
with DQ-1 measurements, validating the latitude gradient-based background extraction method for
urban-scale inversions.

Figure 6 compares TCCON site observations within the Beijing study area with the simulated results
for December 1 and April 8. The prior ffXCO; (blue bars) represents the simulated ffXCO, at the TCCON
site, obtained using the previously described simulation method. The posterior ffXCO, (light green and
orange bars) is derived by applying the posterior scaling factors from DQ-1 and OCO-2 overpass tracks
to the prior ffXCO,, with posterior uncertainties indicated. The true value, provided by TCCON products,

is shown by the dark green bars.
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Overall, DQ-1 and OCO-2 inversion results are similar in magnitude, with DQ-1 results closer to
TCCON observations. The differences between DQ-1 results and TCCON observations are 0.9% and 16%
for December 1 and April 8, respectively, compared to 10% and 25% for OCO-2. This demonstrates that
DQ-1 can effectively constrain urban fossil fuel emissions, performing comparably to, or even surpassing,

OCO-2 in certain tracks.
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Figure 6: TCCON site simulations received ffXCO: (blue columns represent simulations using a priori
ODIAC lists, bright green columns represent simulations using a posteriori lists estimated with DQ-1, orange
columns represent simulations using a posteriori lists estimated with OCO-2, and dark green columns

represent ffXCO: observed by TCCON). The black lines on the columns represent uncertainties.
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3.3 Impact of DQ-1 in Estimating Biotic Fluxes using Daytime vs. Nighttime Tracks
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Figure 7: Orbital simulation results for a pair of diurnal observations of the transit of Beijing on January 09,
2023 at about 23:00 (night) and January 10, 2023 at about 11:00 (day) UTC. The red boxes in the Figures (c)

and (d) represent the urban areas.

Both biosphere carbon flux and fossil fuel emissions influence XCO, variations. This section examines
the impact of biosphere flux on emission estimates. When ffXCO» significantly exceeds biosphere carbon
flux, the biosphere's contribution to XCO, changes can be negligible (e.g., in Cairo and Riyadh, where
the spatial gradient of NEE is much smaller than fossil fuel emissions). This study attributes biosphere
carbon flux to vegetation production and human emissions. This part of carbon emissions varies with the
day-night cycle. During the day, vegetation absorbs CO; through photosynthesis, which significantly
outweighs CO; release through respiration. At night, vegetation only undergoes respiration, releasing
COs.

As the world's first lidar satellite capable of observing XCO, at night, DQ-1 offers groundbreaking
potential in studying diurnal variations in urban emissions. This section leverages this feature to observe

the impact of vegetation rhythm and human activities on XCO; changes. We compare global three-hourly
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CASA data and ten-day average NEE data from ODIAC. ODIAC's ten-day average data cannot separate
diurnal NEE variations, while the higher temporal resolution of CASA can effectively capture the time
gradient of NEE within the same day. We will illustrate the impact of NEE on inversion and how this
impact changes between day and night. Previous satellite-based urban flux inversions lacked night-time
data, preventing day-night comparisons and separation of nocturnal and diurnal CO, emissions.

For this study, we selected two tracks on January 9, 2023, at 23:00 and January 10, 2023, at 11:00
(UTC). Given the close timing of these tracks, we assume the total fossil fuel emissions are the same for
both. The January 9 track is approximately 0.5° (about 50 km) downwind from the main urban emissions,
with an average wind speed greater than 3 m/s. Thus, the emissions detected by this track are considered
to originate from the previous five hours. The January 10 track passes through the main urban emission
area, capturing emissions effectively. We simulate the previous 8 hours gas diffusion before the overflight
(sunset on January 9 at 09:00 and sunrise on January 10 at 15:35 UTC). The simulated enhancement for
the January 9 track is assumed to come entirely from night-time emissions, while the January 10
enhancement comes from daytime emissions. Comparing the simulation results with observations, both
are of the same magnitude, indicating that the forward eight-hour simulation effectively captures the
observed ffXCO, enhancement.

To explore the impact of diurnal biosphere carbon flux on XCO, enhancement, we couple prior
emissions from ODIAC with spatially scaled NEE data as the new prior emissions (For the three-hourly
NEE data, we matched using footprints within the corresponding time period), then simulate the XCO,
enhancement (In contrast to Sections 3.1 and 3.2, here we used ODIAC emissions combined with NEE
as the prior flux information). Using constant boundary conditions, latitude changes do not need to be
considered for background concentration. Therefore, local XCO, enhancement is defined as the total
XCO; minus the minimum XCO; value in the track (Unlike Section 2.3.3). The XCO, enhancement
measured by DQ-1 is derived using methods outlined in previous sections.

This approach allows us to accurately account for both daytime and nighttime variations in XCO; due

to biosphere activity, providing a comprehensive view of the urban carbon flux.
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Figure 8: (a)-(d) represent the contribution of orbital XCO: enhancement and biospheric fluxes to the local
XCO: enhancement for two pairs of diurnal observations on 09 and 10 January 2023 and 19 and 20 June 2022,
the black dots represent the 1-second averaged observations (subtracted from the background values) on each
orbit, the red solid line represents the simulated ffXCO:, and the green and blue solid lines represent the
simulated AXCO:z (fossil fuel and biosphere fluxes) using different NEE data for simulated AXCO: (fossil fuel
and biogenic fluxes), where the green line uses ten-day averaged ODIAC NEE data and the blue line uses

CASA three-hourly NEE data.

Figure 8 presents a comparison of simulated and observed XCO; enhancements for two pairs of day
and night overpass tracks over Beijing on January 9, 2023, at 23:00, January 10 at 05:00, June 19, 2022,
at 23:00, and June 20 at 05:00. Overall, the simulated XCO: enhancements that include CASA NEE (blue
line) on January 10, June 20, and June 19, show better agreement with the observed AXCO: (black dots)
than simulations driven by fossil fuel emissions alone (red line).

The figure 8 (c) shows that the XCO, enhancements using CASA's diurnal NEE data differ
significantly from those using ODIAC's ten-day average NEE data. The simulation for the June 19 track
at 23:00 indicates that using CASA's night-time NEE data (blue line) can accurately simulate the
observed XCO, enhancement, coming closer to the observed XCO; enhancement than the ffXCO,
simulation alone. In contrast, the simulation using ODIAC's ten-day average NEE data (green line) shows
a notable CO; uptake in the 40.2°-41° range, starkly different from the CASA results and the observed
XCO; enhancement. This discrepancy arises because ODIAC's ten-day average NEE data are insensitive
to short-term temporal variations and cannot reflect diurnal changes within a day. Moreover, this period
is Beijing's summer, with vigorous daytime vegetation activity leading to CO, uptake and a consequent
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drop in XCO, (as seen in Figure 8 d, where the daytime simulated XCO, enhancement is much lower
than ffXCO,). According to the June 19 simulation results, biosphere flux-induced XCO, changes
account for 21.2% (CASA) and -54.3% (ODIAC) of the observed XCO» enhancement.

For the January 9 track at 23:00, both CASA and ODIAC data show significant XCO, enhancements.
However, the CASA simulation aligns more closely with the observations. This difference may be
because ODIAC's ten-day average data, influenced by daytime data, diminish its accuracy in night-time
scenarios. The simulation results for the January 9 track show that biosphere flux-induced local XCO,
enhancements account for 13.37% (CASA) and 7.73% (ODIAC) of the observed comprehensive XCO,
enhancement.

Overall, the biosphere flux's impact on XCO, enhancement varies significantly between day and night.
In urban-scale inversions, DQ-1's ability to rapidly revisit both day and night can further optimize the
influence of biosphere flux on inversion accuracy. This capability highlights DQ-1's potential to provide
more precise urban-scale fossil fuel emission constraints, especially by distinguishing diurnal variations

in biosphere activity.

3.4 Emission Estimates and a Posteriori Uncertainties

Table 1 Results of inversion of urban emission scaling factors for selected cities using DQ-1 XCO: data

Prior total Measurement Transport model 0CO-2
Prior total emission uncertainty uncertainty Scaling factor(A) Scaling
emission uncertainty O Oreaswroment » (Ortoder » units:  + posterior factor/City
City Overpass (Mt C/month) (o, ) units: ppm) ppm) uncertainty ( o) mean factor
Riyadh 02 March 2023 2.37 45% 1.03 2.53 0.75+0.20 0.80+0.18
20 June 2022 3.49 0.98 2.58 0.8610.16
Beijing 01 December 2022 4.61 25% 1.88/2.11 2.64 0.98+0.15 1.09£0.18
08 April 2023 3.35 1.57/1.93 1.79 0.6510.11 0.70+0.14
09 January 2023 2.40 2.01 3.04 0.91%0.12 0.83+0.13
10 January 2023 2.40 1.99 1.45 1.0040.14
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19 June 2022 3.81 1.78 2.11 0.96+0.16

20 June 2022 3.81 1.52 1.12 0.53+0.11
Cairo 26 June 2022 243 45% 1.08 0.56 1.0610.20
02 August 2022 2.49 1.45 0.71 0.98+0.12
16 August 2022 2.49 1.67 0.87 1.21£0.14
08 November 2022 1.96 1.22 0.36 1.15+0.16
15 November 2022 1.96 0.98 1.31 1.1940.11
22 November 2022 1.96 1.11 0.21 1.06+0.13

1.10+0.14

Notes. Scaling factors and their a posteriori uncertainties are shown for each orbit, as well as integrated
information for all selected orbits. Uncertainty components are listed for each track, including the a priori
uncertainty in the scaling factor and the measurement and transport uncertainty in the integral ffXCO2 (some
specific track data inverted using OCO-2 data are bolded, and the average emission scaling factor and a
posteriori uncertainty for all tracks in each city are in the last column and highlighted in italics).

In this section, we present the inversion estimation results for emissions from Riyadh, Cairo, and
Beijing using the DQ-1 tracks shown in Section 3.1. The inversion process considers uncertainties arising
from both measurement and transport. The inversion yields a scaling factor for the total emissions for
each selected city. Specifically, for Beijing, we compare the inversion results with the simultaneously
passing OCO-2 tracks.

Each selected track underwent inversion. Table 1 shows the posterior emission scaling factors for each
track, along with the uncertainties in the measured and simulated ffXCO,. These uncertainties were
determined using the methods described in Section 2.4. Notably, the prior uncertainty in the emission
scaling factors for Beijing was set at 25%, compared to Riyadh and Cairo, reflecting better knowledge
of emissions from such a well characterized megacity (see Section 2.4.2).

For the selected tracks over Riyadh, Cairo, and Beijing, the posterior scaling factors (An emission
factor greater than 1 indicates an underestimation by the prior inventory, while a factor less than 1
suggests an overestimation.) were 0.75-0.86, 0.98-1.21, and 0.53-1.06, respectively (Table 1). The
posterior emission scaling factors exhibit significant temporal variability, influenced by background
conditions. As described in the previous section, the emissions detected by the track depend on its
distance from the major emission regions and the domain-averaged wind speed at the time. The domain-

averaged wind speed for the selected tracks was consistently above 3 m/s. Based on meteorological
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conditions, the posterior values represent estimates of city emissions for the hours preceding the overpass
time. The posterior uncertainty in the emission scaling factors was 0.16-0.20 for Riyadh, 0.11-0.20 for
Cairo, and 0.11-0.16 for Beijing. Compared to Beijing, the posterior scaling factor uncertainties were
generally higher for Riyadh and Cairo.

As discussed in Section 2.4, the prior emission uncertainties were set to reflect measurement and
transport errors. Table 1 shows that the relative contributions of observation error and transport error vary
across the three cities. For Riyadh, the transport error was significantly larger than the observation error,
while for Cairo, the transport error was much smaller than the observation error. In Beijing, the relative
sizes of transport error and observation error varied. The posterior scaling factors for Beijing's two OCO-
2 tracks were almost identical to those from DQ-1, with higher posterior uncertainty due to higher
observation error. Overall, Beijing's posterior uncertainty was lower than that of Cairo and Riyadh,
attributable to more stable prior emission characteristics.

Previous research (Ye et al., 2020) highlighted that the scarcity of OCO-2 tracks near many cities
remains a major limitation in regularly quantifying emissions and objectively tracking temporal
variations from space. In contrast, DQ-1's minimal sensitivity to clouds and aerosols allows for more
tracks available for inversion. Our experiments in Beijing, Cairo, and Riyadh found that, on average,
more than six tracks per month were available for inversion, including day and night overpasses on the
same day, further constraining city emissions (see Section 3.3).

Based on the results in Table 1, we averaged the posterior emission scaling factors and uncertainties
for each city's tracks, yielding mean scaling factors and uncertainties of 0.80+0.18 for Riyadh, 1.10+0.14
for Cairo, and 0.83+0.13 for Beijing (Detailed monthly emission information for different cities is
provided in Table S3). This indicates that, for the periods represented by the observations, the prior
monthly ODIAC product overestimates emissions for Beijing and Riyadh, while underestimating

emissions for Cairo, Our findings in Cairo are consistent with earlier research(Shekhar et al., 2020).

4 Discussion

4.1 Atmospheric Transport Model Errors

Systematic errors in model transport and erroneous statistical assumptions can significantly diminish the

29



679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

improvements in land-based uncertainty by approximately a factor of two(Wang et al., 2014). Hence, it
is essential to control systematic errors and inaccuracies in transport models while minimizing random
errors in DQ-1 observations. In Observing System Simulation Experiments (OSSEs), we assess the
potential impacts of observational and transport errors on the entire inversion process. Transport errors
of tracers in the atmosphere can lead to inaccuracies in flux estimates derived from concentration
observations. Typically, "inversion" methods either ignore transport errors or only provide a rough
evaluation of their impact(Lin and Gerbig, 2005). This section focuses on how uncertainties in
atmospheric transport model outputs influence CO, flux inversion.

In our experiments, we set the prior flux uncertainty to 25%-45% based on the emission characteristics
of different cities. The uncertainty in DQ-1 XCO, observations was fixed at 0.5 ppm, representing the
lower limit of observational error. We examined the effects of wind speed and direction errors on the
performance of the inversion method. The errors in the transport model were propagated by treating them
as conversions of model ffXCO; plumes. Notably, for the cities studied, errors were assumed to be
unbiased. Wind direction errors were analyzed by rotating the plumes around the emission center and
incorporating random wind speed errors.

We illustrate these concepts using six tracks over Cairo. The overall ffXCO, distribution was generated
by applying random positive and negative wind direction biases (>-10°, <10°) to each track's STILT
footprint, rotating it 10*times, and adding positive/negative wind speed biases (>-1 m/s, <1 m/s). Overall,
the temporal variability in the posterior emission scaling factors and uncertainties can be attributed to
transport model errors. The transport model error significantly influenced the observed ffXCO»
distribution. Specifically, the track on November 15 was most affected by transport model errors, likely
due to its passage through the plume boundary. In contrast, the track on August 16 experienced minimal
transport model errors, as it was further from the simulated ffXCO, plume, making it less sensitive to
small wind direction and speed errors, and The MLH will be higher in summer days and that may reduce

the uncertainties for the footprints.
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Figure 9: Box plots of the modeled integral ffXCO:2 enhancement (X ffXCQOz, m) for selected OCO-2 orbits
over Cairo at the date labeled on the x-axis (2022). For each box, the center line indicates the median (q2),
and the bottom and top edges of the box indicate the 25th and 75th percentiles (q1 and 3), respectively. The
whiskers extend to the maximum and minimum values. The numbers are the ratio of the interquartile spacing

(q3 - q1) to the median (q2).

4.2 The Challenge of Separating Biological Fluxes in Day and Night Orbits

In Section 3.3, we detailed how DQ-1's short-term day-night revisit capability allows for the
consideration of diurnal and nocturnal biogenic fluxes in emission inversions. Typically, large-scale
inversions do not account for uncertainties in fossil fuel emission inventories and treat biogenic fluxes
as uncertainties in prior fluxes(Wang et al., 2014). Studies focused on urban-scale inversions that do not
utilize nocturnal tracks, while directly considering biogenic flux impacts, have not accounted for the
diurnal variation of biogenic fluxes(Ye et al., 2020). In this study, we leveraged DQ-1's nocturnal
observations to provide a method for separately considering biogenic flux effects during day and night.
Our results indicate that using daytime average NEE data and nighttime NEE data can result in
differences of up to 70% in inversion outcomes.

However, this approach has limitations in large-scale inversions. Separating daytime and nighttime
emissions necessitates a limited transport time due to the constraints of the transport model, which means
that simulated particles cannot travel long distances under limited wind speed and time conditions. To

address this, more frequent overpass tracks, including those from geostationary carbon cycle observation
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satellites such as GeoCarb(Moore lii et al., 2018), Total Carbon Column Observing Network
(TCCON)(Toon et al., 2009), and MicroCARB, but these instruments are all limited to daylight
observations and therefore cannot support day—night inversion analyses, only DQ-1 is capable of
enabling such studies. Therefore, an increased availability of high-precision and high-spatial-resolution
nighttime data is urgently needed. Currently, the number of DQ-1 tracks does not support large-scale
separate day-night inversions. In large-scale flux inversions, biogenic fluxes are typically used as prior
uncertainty over weekly or monthly periods. Such long-term and wide-scale data assimilation reduces
the impact of diurnal biogenic flux variations on inversion results. Unlike other satellite measurements
that are restricted to daytime clear-sky conditions, DQ-1's XCO, measurements provide uniform
temporal sampling, thus allowing effective quantification of diurnal variations in emissions.

Accurate downscaling methods for biogenic fluxes, such as the Solar-Induced Fluorescence Model
(SMUTF)(Wu et al., 2021), and advanced vegetation models, like the Vegetation Photosynthesis and
Respiration Model (VPRM) (Luo et al., 2022; Mahadevan et al., 2008; Wei et al., 2022; Winbourne et
al., 2022; Gourdji et al., 2022)are crucial for precise biogenic flux calculations. Radiocarbon and land
surface solar-induced fluorescence (SIF) data aid in distinguishing between fossil fuel CO, and biogenic
COq(Fischer et al., 2017). Recent research indicates that SIF serves as a better indicator or proxy for

gross or net primary production compared to other vegetation indices.

4.3 Insights From Results of the OSSEs

In the emission inversion process, prior emissions are considered as fully distributed, optimizing regional
emissions for an entire city using a scaling factor, in contrast to grid-specific inversions. As noted by
previous research, using a single scaling factor for the entire city limits the flexibility to capture true
spatial variations in fluxes compared to grid-specific inversions. Estimating prior emission uncertainties
at the grid scale is challenging because grid-scale emission uncertainties are typically much larger than
those using scaling factors(Andres et al., 2012).

Apart from uncertainties in the transport model, DQ-1 measurements, and biogenic fluxes, several
additional error sources may introduce biases in the inversion results. DQ-1 data's measurement errors
are assumed to be spatially uncorrelated due to the lack of high-resolution correlation data. Additionally,

random components of nonlinear and interference errors in retrievals may introduce significant errors in
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the inversions . In our OSSE, measurement uncertainty is assessed at its lower bound.

Simulation results for Riyadh and Beijing indicate that the enhancement of ffXCO, generally exceeds
1.5 ppm and can reach up to approximately 5 ppm, surpassing the uncertainties in land-based
observations (around 1 ppm)(Eldering et al., 2017a; Eldering et al., 2017b). In contrast, Cairo's ffXCO,
values are mostly below 2.0 ppm, with some hotspots near high-emission industries such as power plants.
Detecting CO» plumes in smaller cities is challenging due to limited detectability of fossil fuel-derived
CO; plumes. Factors limiting detectability include: 1) The number and location of overpass tracks. 2)
Overlap enhancements from nearby cities or point sources. 3) Low ffCO, emissions. To improve the
detection of city plumes, more ground-based in situ measurements and high-altitude satellites with

enhanced detection capabilities are necessary.

4.4 Influence of Planetary Boundary Layer Height on Modeled XCO: Enhancements

Vertical turbulent mixing, as the dominant process governing the vertical transport of air parcels,
regulates the dilution of surface emissions within the planetary boundary layer (PBL). Uncertainties in
vertical mixing or PBL height can influence both the magnitude and spatial distribution of atmospheric
footprints through variations in horizontal advection at different altitudes(Gerbig et al., 2008). Variations
in the STILT-modeled mixed layer height alter the vertical profiles of turbulent statistics that govern the
stochastic motion of Lagrangian air parcels(Lin et al., 2003), thereby yielding distinct air parcel
trajectories under different PBL height.

In this section, we assess the sensitivity of both horizontal footprints and column-averaged footprints
(X-STILT) to variations in the planetary boundary layer height (PBLH) as simulated by STILT. Given
the pronounced diurnal and seasonal variability of terrestrial PBLH across most latitudes(Gu et al., 2020),
we selected three satellite overpasses across Beijing to quantitatively evaluate the impact of PBLH on
footprint estimates: 23:00 on 9 January 2023 (winter nighttime), 05:00 on 10 January 2023 (winter
daytime), and 23:00 on 19 June 2022 (summer nighttime). For each overpass, the location (latitude and
longitude) corresponding to the largest modeled XCO: enhancement along the track was selected as the
receptor location for STILT, with release heights consistent with prior model configurations. Backward
simulations were conducted from the overpass time until local sunrise or sunset (sunset for nighttime

passes and sunrise for daytime passes). A range of PBLH values from 300 m to 1500 m, in 200 m
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Figurel0: Panels a and b illustrate the sensitivity of CO: and XCO: enhancements to variations in planetary
boundary layer height (PBLH) at different receptor altitudes, quantified by the coefficient of variation (i.e.,
the standard deviation divided by the mean). Panel a presents the simulated results for three satellite
overpasses: 23:00 on 9 January 2023 (winter night, blue line), 05:00 on 10 January 2023 (winter day, orange
line), and 23:00 on 19 June 2022 (summer night, green line). For each case, receptors were placed at the
locations of maximum modeled XCO: enhancement along the satellite track, with release heights consistent
with prior STILT configurations. Panel b shows the corresponding XCO: enhancement simulations for each
date, with the coefficient of variation annotated at the top of the panel to indicate the overall sensitivity across
varying PBLH scenarios.

Figure 10a illustrates the sensitivity of modeled XCO: enhancements—calculated following the
method in Section 2.4.1—to varying PBLH values at different release heights for three selected receptors.
The x-axis, labeled Delta XCO: Uncertainty, quantifies this sensitivity as the coefficient of variation
(standard deviation divided by the mean) of XCO: enhancements obtained from simulations with
different PBLH values at the same release height. A higher value indicates a stronger response of the
modeled enhancement to changes in PBLH. Results in Figure 10a show that on the nighttime overpass
of 9 January 2023 (blue line), the relative variation in modeled XCO: enhancements remains within ~10%
for release heights below 600 m and does not exceed 13%, with a minimum of 3.03% at 50 m. Similarly,

for the daytime overpass on 10 January 2023 (orange line), relative variations remain below 13% up to
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950 m, with a minimum of 3.36% at 450 m. Notably, for this pair of consecutive day—night overpasses,
nighttime sensitivity is generally higher than daytime at release heights below 650 m. The nighttime
overpass on 19 June 2022 (green line) exhibits a broader vertical range of valid footprints—unlike the 9
January case, where no valid footprints were simulated above 650 m, possibly due to seasonal effects.
This case also shows a stronger dependence on PBLH at higher altitudes, particularly between 750-
1000 m, with the maximum sensitivity reaching 36.6% at 900 m. Overall, our findings suggest that within
the lower troposphere and across the selected case studies, the influence of PBLH variability on modeled
XCO: enhancements is generally on the order of 10%, increasing with receptor altitude. As column-
averaged observations are less sensitive to the vertical distribution of air parcels(Lauvaux and Davis,
2014), the sensitivity of modeled column XCO: enhancements to PBLH variations is notably smaller.
This is corroborated by Figure 10b, which shows modeled XCO: enhancements as a function of PBLH
for each overpass, with corresponding coefficients of variation annotated above the lines: 2.1% (9
January), 2.9% (10 January), and 2.8% (19 June)—all lower than the minimum values observed in Figure
10a.

Given that ACDL is equipped with an aerosol channel, it can provide extinction coefficient profiles
and planetary boundary layer height (PBLH) products(Dai et al., 2024). In this study, we utilized ACDL-
retrieved PBLH data for forward simulations, which helps to mitigate errors associated with inaccurate
PBLH settings. Moreover, since satellite measurements represent column-averaged concentrations, they
are inherently less sensitive to variations in PBLH. Therefore, we conclude that PBLH has a negligible

impact on the inversion results presented in this study.

5 Conclusions

This study presents the use of DQ-1's XCO, observation data to constrain fossil fuel emissions in various
urban regions and evaluates its capabilities. By coupling WRF and STILT, a high-resolution forward
transport model was developed to simulate and illustrate the structure and details of urban-scale fossil
fuel XCO; plumes and assess the relationship between simulated and observed XCO». Throughout the
inversion process, we considered DQ-1's observational errors, transport model errors, and the impact of
DQ-1's day-night observation capability on assessing the temporal variation of biosphere fluxes in urban

emissions. Employing a Bayesian inversion approach, we optimized CO; emissions from fossil fuels in
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Beijing, Riyadh, and Cairo using DQ-1 data collected from June 2022 to April 2023, focusing on
downwind tracks in major urban emission areas where significant XCO, enhancements were detected.
Pseudo-data experiments, based on high-resolution forward simulations from real cases, were conducted
to evaluate the potential of using multiple DQ-1 tracks while considering measurement and transport
model errors. Our results showed that the posterior scaling factors for the three cities ranged from 0.53
to 1.06, 0.75 to 0.86, and 0.98 to 1.21, respectively, with Riyadh exhibiting the highest posterior
uncertainty. Notably, some simulations revealed that posterior scaling factor uncertainties are influenced
by the relative position of tracks to plumes and positive or negative wind direction biases in the region.
Our assessment of spatial and temporal gradients in biosphere fluxes revealed that, at certain times in
Beijing, despite significant ffCO; emissions, a notable portion of the local XCO; enhancement (20% and
13%, respectively) was attributable to local biosphere fluxes. This could lead to an overestimation of
total emissions by approximately 33% + 20% and 13 = 7%. By incorporating CASA and ODIAC
biosphere flux data and examining day-night crossing tracks on the same day, we found that separately
considering day and night biosphere fluxes can improve the accuracy of local XCO, enhancement
calculations by 30%-70% compared to using daily average biosphere fluxes. This indicates that
leveraging the short-term, rapid day-night crossing capability of DQ-1, along with more accurate
biosphere flux estimation models, has the potential to reduce uncertainties in emission estimates due to
biosphere fluxes.

For biosphere flux cities with similar total CO, emissions but lower fossil fuel emissions, the
contribution of biosphere fluxes is expected to be higher than indicated. Therefore, for cities in mid-
latitude and equatorial regions with significant local and regional biosphere fluxes, accurately
interpreting XCO, detection results is crucial. Future improvements in constraining urban fossil fuel CO,
emissions using DQ-1 data or other polar orbit measurements should consider the temporal and spatial
correlations of previous emission errors, which were not included in this inversion.

For applying these methods to larger-scale flux inversions, advanced satellites with shorter revisit
cycles and denser ground-based stations are essential. Additionally, optimizing city emission scaling
factors requires more information on prior emission uncertainties to better understand spatial and
temporal characteristics of urban-scale emissions. The appropriate number of constraints for urban

emissions will depend on the spatial and temporal resolution of target city emissions and the precision

36



857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

required to support policy decisions. Our results demonstrate that DQ-1 or similar missions have
significant potential to constrain overall emissions from cities with intensified fossil fuel emissions, and
utilizing DQ-1's unique day-night crossing capability, we can establish frameworks for rapid day-night
flux inversions at the urban scale. This will further elucidate the spatial and temporal structure of
biosphere flux contributions to urban emissions and provide valuable insights for policy-making. We
anticipate that DQ-1 data will effectively enhance the accuracy and precision of urban fossil fuel carbon
flux estimates, in conjunction with observations from other platforms to support emission reduction

strategies.

Data availability

The Level 2 OCO-2 XCO2 data used in this study is archived in permanent repository at NASA's
Goddard Space Flight Center's Earth Sciences Data and Information Services Center (GES-DISC)

(https://doi.org/10.5067/8E4AVLCK1606Q. The TCCON data used in this study is the GGG2020 data
release of  observations from the TCCON station at Xianghe, China
(https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0). The CASA-GFED3 NEE data used in this
study are archived in repository at NASA's Goddard Space Flight Center's Earth Sciences Data and
Information Services Center (GES-DISC) (https://doi.org/10.5067/5MQJ64JTBQ40). NEE data on A
Data-driven Upscale Product of Global Gross Primary Production from National Institute for
Environmental Studies (Japan) is freely available online at https://doi.org/10.17595/20200227.001. fossil
CO2 emission from ODIAC is available online at https://doi.org/10.17595/20170411.001. The MODIS
data used in this study is the Terra Surface Reflectance Daily L2G Global 1km and 500m SIN Grid
V061 (http://doi.org/10.5067/MODIS/MYDO09GA.006). The DQ-1 ACDL productions underlying the
results presented in this paper are not publicly available at this time but may be obtained from the authors

upon reasonable request.
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