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Abstract. Satellite observations of the total column dry-air carbon dioxide (XCO2) have been proven to10

support the monitoring and constraining of fossil fuel CO2 (ffCO2) emissions at the urban scale. We11

utilized the XCO2 retrieval data from China’s first laser carbon satellite dedicated to comprehensive12

atmospheric environmental monitoring, DQ-1, in conjunction with a high-resolution transport model13

and a Bayesian inversion system, to establish a system for quantifying and detecting CO2 emissions in14

urban areas. Additionally, we quantified the impact of uncertainties from satellite measurements,15

transport models, and biospheric fluxes on emission inversions. To address uncertainties from the16

transport model, we introduced random wind direction and speed errors to the ffCO2 plumes and17

conducted 104 simulations to obtain the error distribution. In our pseudo-data experiments, the18

inventory overestimated fossil fuel emissions for Beijing and Riyadh, while underestimating emissions19

for Cairo. Specifically, we simulated Beijing and leveraged DQ-1’s active remote sensing capabilities,20

utilizing its rapid day-night revisit ability. We assessed the impact of daily biospheric fluxes on ffXCO221

enhancements and further analyzed the diurnal variations of biospheric flux impacts on local XCO222

enhancements using three-hourly average NEE data. The results of a case study indicate that a23

significant proportion of local XCO2 enhancements are notably influenced by biospheric CO224

variations, potentially leading to substantial biases in ff CO2 emission estimates. Moreover, considering25

biospheric flux variations separately under day and night conditions can improve simulation accuracy26

by 20-70%. With appropriate representations of uncertainty components and a sufficient number of27

satellite tracks, our constructed system can be used to quantify and constrain urban ffCO2 emissions28

effectively.29

1 Introduction30

More than 170 countries have signed the Paris Agreement, vowing to keep the global average31

temperature increase within 2 degrees Celsius in this century. Accurate carbon accounting is the basis32

for any mitigation measures. Over 70% of the anthropogenic CO2 emissions are from urban33

areas(Agency, 2009; Birol, 2010). It is thus critical to develop effective means to estimate urban CO234
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emissions accurately. “bottom-up” (inventory) approaches have shown good performances in35

developed countries such as U.S.A and E.U(Crippa et al., 2018; Gurney et al., 2009). However, huge36

uncertainties in estimation of anthropogenic CO2 emissions are inevitable in developing countries such37

as China and India because of their rapidly growing economies and imperfect monitoring systems. For38

example, the discrepancy between different estimations of CO2 emissions of China exceeded 1,77039

million tones (20%) in 2011(Shan et al., 2016), which is approximately equal to the Russian40

Federation’s total emissions in 2011(Shan et al., 2018). Therefore, “top-down” (inverse) approaches41

could play a more significant role in those countries to estimate and update carbon fluxes. In addition,42

carbon emission inventories with a spatial resolution of 0.1°are available at the global scale, however,43

Oda et al. (2011) warned that available information is insufficient to fully evaluate the relationship44

between CO2 emission and the proxy data, such as population and nightlight(Oda and Maksyutov,45

2011). Consequently, associated errors would increase at finer resolutions. On the other hand, the46

anthropogenic carbon emissions are assumed to be known quantities and are important as reference for47

analyzing a budget of the three fluxes (These three fluxes reflect the respective contributions to48

atmospheric CO₂ concentrations from fossil fuel emissions, ocean–atmosphere exchange, and a49

terrestrial biosphere assumed to be net carbon neutral.)(Gurney et al., 2005; Gurney et al., 2002).50

Therefore, there is an urgent need to develop novel methods to acquire more robust and accurate51

surface CO2 fluxes with fine resolution in urban areas where the majority of anthropogenic CO252

emissions are located.53

The atmospheric inversion technique has been widely used to retrieve carbon fluxes at large54

geographic scales(Bakwin et al., 2004; Ballantyne et al., 2012; Bousquet et al., 1999; Gerbig et al.,55

2003; Myneni et al., 2001; Stephens et al., 2007; Watson et al., 2009), by using measurements from the56

network of ground-based greenhouse gas measurements. Dense and accurate observations of CO257

dry-air mixing ratios (XCO2) are needed to inverse carbon fluxes at a finer geographic scale(Kaminski58

et al., 2017; Rayner and O'brien, 2001), enabling smaller-scale sources emitting CO2 into the59

atmosphere to be better quantified(Eldering et al., 2017a). Remote sensing from space is undoubtedly60

the most appropriate means to obtain dense CO2 observations rapidly in large extents(Buchwitz et al.,61

2017; Ehret et al., 2008). GOSAT and OCO-2 provide us an opportunity to retrieve column-average62

CO2 (XCO2) globally except in Polar Regions. Recent studies have demonstrated the promising63
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potential of OCO-2 to help scientists identify localized CO2 sources(Schwandner et al., 2017) , estimate64

regional CO2 fluxes (Eldering et al., 2017a) and map the net CO2 uptake by the biosphere(Köhler et al.,65

2018; Li et al., 2018; Sun et al., 2018). It is still a challenging mission to obtain accurate estimates of66

CO2 fluxes using XCO2 products, especially in urban areas, because the signals received by67

OCO-2/GOSAT need to be attributed unambiguously to variations in atmospheric CO2 concentration,68

as opposed to variations caused by environmental factors such as aerosols and clouds(Miller et al.,69

2014). Along with the success of passive remote sensing of CO2, U.S.A and China ambitiously planned70

to send their LIDAR (Light Detection and Ranging) sensors into the orbit to realize monitoring CO2 in71

all latitudes and in nights(Abshire et al., 2018; Han et al., 2017). Effect of aerosols and thin clouds on72

retrievals of XCO2 can be eliminate through a differential process of signals from two very close73

wavelengths(Amediek et al., 2008; Han et al., 2014; Mao et al., 2018). Therefore, a smaller bias of74

retrievals of CO2-IPDA (Integrated Path Differential Absorption) LIDAR is expected comparing with75

the passive remote sensing, which is beneficial for inversion of CO2 fluxes. Previous studies had76

focused on performance evaluation of CO2-IPDA LIDAR in terms of systematic errors, random errors77

as well as the coverage(Ehret et al., 2008; Han et al., 2017; Kawa et al., 2010). There are evident78

differences between XCO2 products of OCO-2 and those of the forthcoming CO2-IPDA LIDAR in79

terms of coverage patterns(Kawa et al., 2010; Kiemle et al., 2011).80

Though positive relationship between satellite-derived XCO2 anomalies/enhancements and CO281

emissions has been witnessed(Hakkarainen et al., 2016), it is by no means a predetermined conclusion82

that CO2 sources and sinks can now be measured from space at high resolution(Miller et al., 2014).83

Atmospheric transport models are indispensable to build a bridge between CO2 sources/sinks and84

measured concentrations(Rayner and O'brien, 2001). Stochastic Time-Inverted Lagrangian Transport85

(STILT) was invented in 2003 (Lin et al., 2003) and soon was utilized to inverse fluxes of trace86

gases(Gerbig et al., 2003; Lin et al., 2004). In 2010, Weather Research and Forecasting (WRF) model87

was coupled with STILT (WRF-STILT), offering an attractive tool for inverse flux estimates(Nehrkorn88

et al., 2010). Since then, several studies used this tool to model CO2 distribution and inverse CO2 fluxes89

using in-situ measurements(Kort et al., 2013; Nehrkorn et al., 2013; Pillai et al., 2012; Vogel et al.,90

2013) as well as satellite observations(Reuter et al., 2014; Turner et al., 2018; Wang et al., 2014; Che et91

al., 2024). Recently, STILT was further updated to facilitate modeling of trace gases with a fine92
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scale(Fasoli et al., 2018). The key product provided by WRF-STILT is the “footprint” which describes93

the sensitivity of measurements (receptors) to surface fluxes in upwind regions. Then, the Bayesian94

inversion method can be used along with the footprint and a-priori surface fluxes to estimate95

a-posterior surface fluxes.96

Unlike the passive remote sensing of CO2 that can scan perpendicular to the direction of the satellite97

orbit, IPDA LIDAR in practice has sensors that only operate in point mode due to the unaffordable98

power consumption and cost of implementing a scan mode. Such a difference can be ignored when one99

tries to estimate large scale CO2 fluxes by using satellite-derived XCO2 products with a resolution of100

1 ° (or coarser). However, specific inversion methods, which take the characteristics of LIDAR101

products into considerations, are urgently needed for inversion of fine scale CO2 fluxes(Kiemle et al.,102

2017). Our previous work has already confirmed that it is feasible to retrieve XCO2 in urban areas103

using the ACDL (Aerosols and Carbon Dioxide Lidar) which is onboard on the Atmospheric104

Environment Monitoring Satellite (AEMS) DQ-1 of China(Han et al., 2018). In this work, an inversion105

framework is used to inverse fine scale (~1 km/0.01°) CO2 fluxes of urban areas using pseudo XCO2106

observations from ACDL. Our main objective is to determine the ability and potential of ACDL to help107

us estimate anthropogenic carbon emission in urban areas. In turn, results of the performance108

evaluation will be the justification for improve the configuration of the ongoing ACDL and its109

successor which would be sent to the orbit in just 2-3 years after AEMS.110

In this study, we propose a framework based on DQ-1 XCO2 data to periodically assess urban-scale111

fossil fuel CO2 emissions. We employ Observing System Simulation Experiments (OSSEs) to112

investigate the performance of DQ-1's ACDL XCO2 products in improving CO2 flux estimation at an113

enhanced spatial resolution of 0.01° × 0.01° over urban areas. The OSSE consists of a forward114

simulation module and an inversion framework. The forward module utilizes WRF modeling for115

high-resolution simulations, allowing us to capture fine-scale trace gas transport characteristics and116

variations. We simulate pseudo-measurements and corresponding errors based on hardware117

configurations, environmental parameters, and physical process simulations within this module. The118

inversion framework relies on footprints calculated by WRF-STILT to estimate urban-scale emission119

scaling factors using Bayesian inversion methods. The study also accounts for the impacts of120

measurement errors, transport model uncertainties, and biosphere flux uncertainties on emission121
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estimation uncertainty throughout the OSSE. Initially, we evaluate emission estimation uncertainty122

related to transport model and measurement errors, focusing on three cities: Beijing, Riyadh, and Cairo,123

each with distinct topographical influences. Riyadh and Cairo exhibit negligible local biosphere flux124

impacts on emission estimates due to relatively flat terrain and stable wind fields, categorizing them as125

"plume cities" where CO2 emissions are typically captured in plume forms due to these conditions(Ye126

et al., 2020). Building on these simulations, we conduct OSSEs to assess the potential of using XCO2127

data from multiple DQ-1 orbits to track urban emissions regularly. Leveraging DQ-1's unique day-night128

revisit capability, we also evaluate uncertainties arising from local biosphere flux variations in Beijing.129

Unlike previous inversion studies using OCO-2/3, which primarily sample during daytime, DQ-1's130

day-night orbit allows for more evenly distributed temporal sampling. Furthermore, combining DQ-1's131

day-night revisit capability, we introduce for the first time an analysis of how biosphere flux variations132

between day and night affect emission estimates using forward simulations and Bayesian inversion.133

Lastly, we summarize the significance of future satellite observations in monitoring urban emissions.134

2 Data and method135

2.1 ACDLXCO2 products136

In order to design a device similar to the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)137

onboard the CALIPSO satellite, the design of DQ-1 was initially proposed in 2012. It was officially138

approved in 2017. Distinct from other environmental monitoring satellites, a notable and innovative139

highlight of DQ-1 is the integration of a lidar payload for space-based top-down CO2 detection, known140

as ACDL. In subsequent developments, ACDL underwent a series of laboratory prototype141

developments (Zhu et al., 2019) and airborne prototype testing missions(Wang et al., 2021; Xiang et al.,142

2021; Zhu et al., 2020). Finally, ACDL was launched into a near-Earth sun-synchronous orbit at an143

altitude of approximately 705 kilometers on April 18, 2022. DQ-1, as a sun-synchronous orbiting144

satellite, has a stable daily transit time of approximately 1 p.m. local time during the day and 1 a.m.145

local time at night. ACDL began data collection in late May 2022 and officially commenced operations.146

This study primarily utilizes data from June 2022 to April 2023 for further research.147

ACDL employs standard IPDA lidar technology, using differential absorption methods to acquire148

(Ye et al., 2020a; Ye et al., 2020b)Deleted:

(Zhu et al., 2019a; Zhu et al., 2019b)Deleted:

(Wang et al., 2021a; Xiang et al., 2021a; Zhu et al.,

2019; Wang et al., 2021b; Xiang et al., 2021b; Zhu et al., 2020)

Deleted:

Indent: First line: 1 chFormatted:



6

column concentrations of atmospheric carbon dioxide (CO2). A detailed description of the XCO2149

detection algorithms and products is in preparation. In this paper, we briefly introduce its detection150

principles. ACDL emits a pair of nearly simultaneous observation signals, one with a wavelength151

located at the strong absorption position of the R16 line in the CO2 spectrum (on-line wavelength152

1572.024nm) and the other at a weak absorption position of the same line (off-line wavelength153

1572.085nm). The on-line and off-line wavelengths are stabilized at 6361.225 cm-1 and 6360.981 cm-1,154

corresponding to 1572.024 nm and 1572.085 nm, respectively. This slight wavelength difference155

enables ACDL to counteract interference from aerosols and other molecules, excluding water vapor,156

through the differential process of the reflected signals. The detection of XCO2 by ACDL is calculated157

based on specific algorithms (see Section 2.4.1).158

XCO2

ACDL

λon λoff

70m

footprint

Range to
surface

City’s CO2 
emissions

CO2 plume

159
Figure 1：the schematic diagram for DQ-1's detection principle160

Figure 1 illustrates the detection principle of DQ-1. The XCO2 products generated by ACDL are161

similar to those of GOSAT, adopting a point sampling mode. The lidar operates in nadir observation162

mode, with approximately one 70-meter footprint observed every 350 meters along the track.163

According to Equation 1, we calculate XCO2 by directly using the integrated weighting function164

(IWF). Significant differences in XCO2 measurements can be observed between ACDL and OCO-2/3.165

Currently, passive remote sensing satellites like OCO-2/3 and GOSAT estimate XCO2 by measuring the166

solar spectrum and using a priori information guided by optimal estimation theory to derive XCO2(p),167

ultimately obtaining XCO2(Miller et al., 2014). In contrast to these traditional passive optical remote168
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sensing satellites, ACDL does not 'estimate' xCO2(p) but directly 'calculates' the weighted average169

column concentration(Zhang et al., 2024). During the integration phase of ACDL's development, we170

evaluated the WF(Weighting Function) shapes of various on-line wavelengths and selected one that171

responds strongly near the surface and weakly at higher altitudes(Han et al., 2017). This design allows172

changes in surface CO2 concentration, driven by surface CO2 fluxes, to be more prominently reflected173

in the column concentration. Therefore, this WF enhances the ability to identify surface CO2 variations174

and provides more information for subsequent CO2 flux inversion.175

Unlike the XCO2 products from passive satellites such as OCO-2/3, the XCO2 product from DQ-1176

(hereafter referred to as 2LidarXCO to distinguish it from passive satellite XCO2 products) is derived using177

the differential between on-wavelength (strong CO2 absorption) and off-wavelength (weak CO2178

absorption) measurements. In this context, 2LidarXCO is obtained through the differential of the lidar179

signals and integration weighting functions described in equations 1 and 2. Here, ( )WF p represents the180

lidar signal and prepresents the pressure:181

0

0

2

2 _

_

ln( )

( )

off on

on offLidar
p toa

p surface

V V

V V
XCO

WF p dp












1182

Here, onV  and offV represent the reflected signal energies at the on-wavelength and off-wavelength,183

respectively, while 0onV  and 0offV  denote the transmitted signal energies. _p surface indicates the184

atmospheric pressure at the laser ground point, and _p top represents the pressure at the TOA of the185

atmosphere.186

The denominator of Equation 1 represents the integration weighting function, as detailed in the study187

by (Refaat et al., 2016):188

( ) ( , , ) ( )wf on off dryWF p p N p    2189

Here, ( , , )wf on off p   denote the CO2 differential absorption cross-sections at the on-wavelength and190

off-wavelength, respectively. dryN represents the number of dry air molecules per unit volume in the191
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pressure layer. This formula allows for the construction of the relationship between 2LidarXCO and the192

CO2 profile 2( )CO p :193

1 2
1 2

2
2 2 2

_

_

_

_

( ) ( ) ( ) ( )
( ) ( )

( )

p toa

p surfaceLidar
p toa

p surface

CO p WF p WF p WF p
XCO CO p CO p

IWF IWFWF p dp
        



3194

2.2 Study Area195

Considering the available orbital tracks for DQ-1 inversion, vegetation coverage, and the complexity of196

meteorological conditions, this paper selects three cities and regions to highlight the different sources197

of uncertainty in emission inversion and the inversion capability of DQ-1. The selected cities share the198

following characteristics: 1) high fossil fuel emissions; 2) typical "plume cities," (Ye et al., 2020)199

characterized by ffXCO2 enhancements distributed in plume forms(Deng et al., 2017). Riyadh, with a200

population of 8 million, and Cairo, with a population of 20 million, have significantly weaker biosphere201

contributions compared to Beijing. In subsequent research, it is considered that the spatial gradient of202

biosphere CO2 flux can be ignored compared to local fossil fuel emissions.203

To assess the impact of biosphere flux uncertainty on the inversion process and separately evaluate204

the impact of daytime and nighttime biosphere flux on the simulated local XCO2 enhancement, we205

selected Beijing, the capital city of China, with a population of approximately 21.5 million. Beijing is206

not only the political center of China but also one of the most populous cities. Compared to its207

surrounding areas, Beijing has relatively less vegetation. Surrounding cities might have208

better-preserved natural ecological environments and more abundant vegetation cover due to less209

industrialization and urbanization(Che et al., 2022). For instance, the mountainous and suburban areas210

around Beijing may have more forests, grasslands, and farmlands, whereas green spaces within Beijing211

are often limited to parks, green belts, and a few nature reserves. As a city with high fossil fuel212

emissions and active biosphere exchange, Beijing is well-suited for studying the impact of biosphere213

flux uncertainty on emission estimates.214
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2.3 Atmospheric Model Setting215

2.3.1 WRF-STILT216

The spatial heterogeneity of emissions and dense point sources (such as power plants) lead to a217

complex spatial structure of urban emissions, resulting in intricate ffCO2 plumes combined with local218

atmospheric dynamics. To explore fine-scale urban emission patterns, this study employs the219

WRF-STILT model (WRF: Weather Research and Forecasting, STILT: Stochastic Time-Inverted220

Lagrangian Transport). The STILT Lagrangian model driven by WRF meteorological fields is221

characterized by a realistic treatment of convective fluxes and mass conservation properties, which are222

crucial for accurate top-down estimates of CO2 emissions.223

In this study's application of STILT, hourly outputs from version 4.0 of WRF are used to provide224

high-resolution meteorological fields, with the model grid configured to 51 vertical (eta) layers. The225

6-hourly NCEP FNL (Final) global operational analysis data with a resolution of 1° are used as initial226

and boundary conditions for meteorological and land surface fields to provide the initial and boundary227

conditions for WRF runs. The simulations run for 30 hours, but only the 7th to 30th hours of each228

simulation are used to avoid spin-up effects in the first 6 hours.229

Each city uses the same one-way WRF nesting at 27 km, 9 km, and 3 km resolutions, with Riyadh230

( 23 7625 5 7625. , . EN 4 - 25 4375 27 4375. , . EN  ), Cairo ( 29 1625 30 4125. , . EN  - 30 8375 32 0875. , . EN  ), and231

Beijing ( 39 4 115 5. , . EN  - 41 075 117 175. , . EN  ) having their innermost regions used to filter DQ-1's orbital232

data. The study area for STILT is set to be smaller than the innermost WRF region to eliminate the233

marginal effects of WRF. Footprints quantitatively describe the contribution of surface fluxes from234

upwind areas to the total mixing ratio at specific measurement locations, with units of mixing ratio per235

unit flux. The footprint used in lidar satellite inversions is different from that used in general optical236

satellites, as detailed in Section 2.4.1. STILT (In this study, we used the STILT model, version 2, to237

simulate atmospheric transport processes.) is configured to release 500 particles per receptor each time,238

with forward dispersion over 24 hours. The particle release heights for STILT are set within the range239

of 50-1000 m, with releases every 50 m, and 1000-2000 m, with releases every 100 m, the spatial240

resolution of the STILT simulations is 1 km × 1 km. Generally, as MAXAGL increases from 1 km to 2241

km, the urban enhancement increases and then stabilizes(Wu et al., 2018).242
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2.3.2 Inventory of Fossil Fuel Emissions243

This article uses The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) which is a global244

high-resolution fossil fuel carbon dioxide emissions (ffCO2) data product(Tomohiro Oda, 2015). The245

2023 version of ODIAC (ODIAC2023, 2000-2022) is based on the Appalachian State University's246

Carbon Dioxide Information Analysis Center (CDIAC) team's(Gilfillan and Marland, 2021; Hefner et247

al., 2024) most recent national ffCO2 estimates (2000-2020). The ODIAC emissions inventory248

provides 1 1km km global monthly average ffCO2. The spatial decomposition of emissions is249

accomplished using a variety of spatial proxy data, such as the geographic location of point sources,250

satellite observations of night lights, and airplane and ship tracks. Seasonality of emissions was251

obtained from the CDIAC monthly gridded data product(Andres et al., 2011) and supplemented using252

the Carbon Monitor product (2020-2022, https://carbonmonitor.org/). In this paper, monthly data from253

ODIAC are time-allocated, and neither the subsequent modeling nor the pseudo-data take into account254

the daily and weekly time-variation of the ACDL product.255

2.3.3 Background XCO2256

To extract the XCO2 enhancement for DQ-1 inversion, we define XCO2 enhancement as entirely driven257

by fossil fuel emissions. A classic method for extracting orbital background concentrations involves258

selecting another "clean" orbit (minimally influenced by fossil fuel emissions) that is spatially and259

temporally close, and using averaging or linear regression to approximate a background concentration260

for the orbit under study. In this study, due to the fine-scale urban area emissions inversion, the study261

area is small, making it challenging to find another clean orbit for calculating the background262

concentration.263

Previous studies have used inversion methods to derive background concentrations for orbits(Pei et264

al., 2022), but these typically yield a background concentration for a region. These methods usually265

produce a value unaffected by geographic location within a small area. However, for each orbit we266

study, a single, constant background concentration is clearly unreasonable. Therefore, based on267

previous research, we designed a simple and quick method to extract background concentrations,268

generating a background line for each orbit of interest.269

To derive 𝑓𝑓𝑋𝐶𝑂2, which represents the enhancement of 𝑋𝐶𝑂2 attributed to fossil fuel emissions,270
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we need to subtract the background 𝑋𝐶𝑂2 from the observational data obtained by DQ-1. In the study271

(Ye et al., 2020), XCO2 is decomposed into two components: 𝑋𝐶𝑂2𝑡𝑟𝑒𝑛𝑑 and 𝑋𝐶𝑂2𝑙𝑜𝑐𝑎𝑙 . Here,272

𝑋𝐶𝑂2𝑡𝑟𝑒𝑛𝑑 represents the non-local trend, while the standard deviation 𝜎𝑙𝑜𝑐𝑎𝑙 of 𝑋𝐶𝑂2𝑙𝑜𝑐𝑎𝑙 indicates273

variations at the local scale. We filtered the XCO2 samples with 𝑋𝐶𝑂2 < 𝑋𝐶𝑂2𝑡𝑟𝑒𝑛𝑑 +0.5𝜎𝑙𝑜𝑐𝑎𝑙 .274

These filtered data are designated as "background samples" (represented by blue triangles in Figures 3,275

5, 7) due to their lower spatial variability at the local scale compared to samples affected by urban276

ffCO2 emissions. We then performed linear regression based on the "background samples" to277

recalculate the linear regression line, referred to as the "background line." This "background line"278

method accounts for spatial trends in the background data. Unlike Ye et al. (2020), we utilized the279

low-frequency (approximate) coefficients obtained from DWT to characterize.280

2.3.4 Biogenic Carbon Flux281

We specifically considered the influence of biogenic flux on the emission constraints in urban areas for282

DQ-1. Two open-source NEE datasets were utilized in our study. The first dataset is derived from the283

Carnegie-Ames-Stanford Approach-Global Fire Emissions Database Version 3 (CASA-GFED3)284

model(Van Der Werf et al., 2010), which provides 3-hourly average net ecosystem exchange (NEE) of285

carbon. This dataset incorporates biogenic fluxes as well as fluxes associated with biomass burning286

emissions, offering a global coverage of 3-hourly average NEE.287

Additionally, we considered the ODIAC dataset, which provides advanced data-driven products on288

global primary production, net ecosystem exchange, and ecosystem respiration(Zeng, 2020). The289

ODIAC dataset offers 10-day average global NEE data and utilizes extensive ecosystem indices from290

MODIS and ERA5 to deliver more precise data.291

According to the study by(Ye et al., 2020), to better describe the diurnal variations and spatial292

distribution of biogenic fluxes, the MODIS green vegetation fraction (GVF) was used to downscale the293

3-hourly NEE from the original grid resolutions (CASA NEE 0.5° × 0.625° and ODIAC NEE 0.1° ×294

0.1°) to the WRF domain resolutions (27, 9, and 3 km). This method assumes a linear relationship295

between carbon uptake and release and the vegetation canopy coverage.296

Our application of these datasets and downscaling methods enables a more accurate representation of297

biogenic flux contributions to urban carbon emissions. By integrating high-resolution biogenic flux298

First, we perform a wavelet transform on DQ-1's

XCO2 data: 2 2( )Lidar Lidar
DWTXCO DWT XCO .

Here, DWT represents the discrete wavelet transform. The

discrete wavelet transform can compress the DQ-1 data,

retaining the larger XCO2 enhancements caused by fossil fuel

emissions while attenuating enhancements due to other factors.

After the discrete wavelet transform, we assume that data

exceeding a certain

threshold 2 0 5 2( ) . ( )Lidar Lidar
DWT DWTmean XCO XCO is due to fossil fuel

emissions and do not include these in the background line

calculation(Ye et al., 2020a). We then perform a linear

regression on the remaining data to extract the background

line.(Ye et al., 2020)
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data, we can improve the precision of emission inventories and enhance our understanding of urban299

carbon dynamics. This approach allows us to better inform urban planning and policy-making aimed at300

reducing carbon footprints and mitigating climate change impacts.301

2.4 Emission Optimization Method302

2.4.1 X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”)303

XSTILT incorporates satellite profiles and provides comprehensive uncertainty estimates of urban304

XCO2 enhancements on a per sounding basis(Wu et al., 2018). The simulated enhancement in CO2305

emissions due to fossil fuels,
22 2( ) , ( )ffCOCO p ffCO foot h   , can be interpolated from the modeling306

results of CO2 fluxes and tracer-tagged footprints. Therefore, a relationship between CO2 fluxes307

and 𝑋𝐶𝑂2𝐿𝑖𝑑𝑎𝑟 is established:308

1 2
1 22 2 2 2

( ) ( )
, ( ) , ( )Lidar Lidar

background

WF p WF p
XCO XCO ffCO foot h ffCO foot h

IWF IWF
      4309

Here, 22 2 2,
Lidar Lidar Lidar
ffCO obs backgroundXCO XCO XCO  represents the XCO2 enhancement extracted from DQ-1310

observational data, and 2 Lidar
backgroundXCO  represents the background concentration selected from the DQ-1311

orbit (detailed in Section 2.3.3). The symbol ,denotes the inner product operator, 2ffCO is the prior312

emission flux, and ( )nfoot h represents the simulated footprints at different altitude layers. This formula313

establishes the mathematical foundation for inversion.314

By integrating footprints from different release heights (Section 2.3.1 explains the selection of STILT315

release heights), we further simplify the above equation. Here, we define
22 ,

Lidar
ffCO simXCO  as the XCO2316

enhancement simulated by the atmospheric transport model.317

22 2, ,Lidar Liadr
ffCO simXCO XSTILT ffCO  5318

1

( )
( )

n
Lidar i

i
i

WF p
XSTILT foot h

IWF

  6319

Here, we define LidarXSTILT as the column-averaged footprint, corresponding to the column-averaged320

CO2 concentration. The inner product of the column-averaged footprint and the prior emission flux321

yields the simulated XCO2 enhancement. Thus, we can optimize the fossil fuel CO2 (ffCO2) emission322

parameters using the simulated and observed XCO2 enhancements to achieve the best consistency323

between the model and observed increments. By achieving this optimization, we ensure that the model324

LidarMeasurements as a Function of Flux：

XSTILT-Lidar

Deleted:

Unlike the XCO2 products from passive satellites

such as OCO-2/3, the XCO2 product from DQ-1 (hereafter

referred to as 2LidarXCO to distinguish it from passive satellite

XCO2 products) is derived using the differential between

on-wavelength (strong CO2 absorption) and off-wavelength

Deleted:

tDeleted:

Deleted:



13

accurately reflects the observed data, providing a reliable basis for further studies and policy-making.325

Considering previous studies that used OCO-2/3 and GOSAT for inversion(Patra et al., 2021; Roten326

et al., 2022; Wang et al., 2019), we selected one of these inversion methods (Ye et al., 2020) for327

comparison with DQ-1 inversions and validation using TCCON site data (see Section 3.2). The328

posterior scaling factor was applied to the ODIAC inventory flux to simulate XCO2 at TCCON site329

locations, and these simulations were compared with TCCON data, assumed to be the true XCO2 at330

those locations. ACDL observations require the use of the IWF to derive X-STILT footprints, which331

differ from those used for TCCON sites. The simulated XCO2 for TCCON was obtained using an332

integration method provided by TCCON, with 51 altitude levels corresponding to the input levels of333

our STILT model. The footprints from these 51 altitude levels were integrated using the integration334

operator integration_operator_x2019 and the averaging kernel ak_xCO2 to obtain the simulated XCO2.335

336

Figure 2: Schematic diagram of XSTILT, Fig. (a) represents the simulated footprints at each horizontal337

altitude level we set (one footprint per 50m below 1000m, one footprint per 100m from 1000m-2000m, where338

MAXAGL represents the highest atmospheric altitude we simulate, which is 2000m) and the column339

average footprints obtained by integrating using the normalized integration function in Fig. (b). Fig. (c).340

2.4.2 Optimization of Emission Constraint Factors341

We adopted a Bayesian inversion method similar to that used by(Ye et al., 2020), which utilizes OCO-2342

observational data to constrain ffXCO2, aiming to achieve correlation between the model and observed343

ffXCO2 increments. Unlike the inversion of individual emission grids, we optimize emissions by344
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adjusting a scaling factor (λ) for the entire city's prior emissions without modifying each grid's flux345

individually. The observational data along the DQ-1 orbit across all regions of interest serve as346

constraints for the inversion, which can be expressed as:347

obs sim obsy y     7348

Here, obsy and simy represent the observed and simulated ffXCO2 enhancements, respectively. The349

term
p denotes the observational error, which consists of DQ-1 measurement error, model error, and350

model parameter error, defined as follows:351

2 2

1 1
2 2( ), ( )

time time

obs obs sim simtime time
y mean dXCO dt y mean ffXCO dt   8352

Here, 2obsdXCO represents the DQ-1 XCO2 enhancement after removing the background concentration.353

2simffXCO represents the simulated XCO2 enhancement, obtained from the convolution of the fossil fuel354

emission inventory and the footprint. We averaged the DQ-1 data over 1 sec intervals (7 km) along the355

orbit to obtain 2obsffXCO and corresponding simulated data 2simffXCO .356

According to the Bayesian inversion method, we transform the state vector into a scaling factor (λ),357

which represents the constraint ability of pseudo-observations on regional emissions. The Jacobian358

matrix is given by the simulated XCO2 enhancement simy . The observation error variance 2
m easurem ent and359

model transport error variance 2
mod are considered. We assume that DQ-1 observations are unbiased360

with respect to the true values. Random errors were added to the observations, following a Gaussian361

distribution with a standard deviation of 0.5 ppm, representing the lower limit of observational errors.362

The transport model error was obtained by perturbing wind speed and wind direction errors; more363

wind observations help reduce atmospheric transport uncertainties. For example, data assimilation364

systems have proven useful in reducing atmospheric transport errors in data-rich areas like Los365

Angeles(Lauvaux et al., 2016). Besides systematic wind direction errors, some areas exhibit366

positive/negative wind direction biases(Ye et al., 2020). The X-STILT model proposed by Wu et al(Wu367

et al., 2021) can correct wind biases by rotating model trajectories. the transport model error propagates368

by transforming the model ffXCO2 plumes with added random wind speed and wind direction errors369

(by rotating ffXCO2 plumes). To estimate transport model uncertainty in the model ffXCO2, we370

performed multiple (104 times) random wind speed and direction perturbations on the model plume and371

extracted the uncertainty distribution of ffXCO2 using the 25th and 75th percentiles. We establish the372

loss function ( )J x to calculate the posterior scaling factor:373
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1 2 2( ) ( ) ( ) ( )T
obs sim obs obs sim a simJ y y S y y           9374

2 2 2
modobs measurement    10375

Here, obsS represents the observational error covariance matrix. We assume that the observational errors376

of different orbits are uncorrelated, so obsS is a diagonal matrix with the observational error377

variances 2
obs on the main diagonal. Since the DQ-1 measurement errors and atmospheric transport378

model errors are unbiased and uncorrelated, we estimate 2
obs by summing both error379

variances. a represents the prior value of the scaling factor, uniformly set to 1. sim represents the380

uncertainty of prior emissions, derived from previous studies combined with the emission381

characteristics of different cities. Since the ODIAC product does not provide uncertainty estimates,382

ODIAC was originally designed for atmospheric CO2 flux calculations to reduce model biases caused383

by coarse grid resolution. Considering the simple downscaling based on nightlights in ODIAC, urban384

emissions derived from ODIAC are affected by errors related to emission disaggregation. For example,385

(Lauvaux et al., 2016)reported a 20% difference compared to Gurney et al.(Gurney et al., 2012) despite386

significant differences in emission modeling methods. Gurney et al.(Gurney et al., 2019) further387

compared the ODIAC and Hestia products for four US cities (Los Angeles, Salt Lake City, Indianapolis,388

and Baltimore), finding city-wide emission differences ranging from -1.5% (Los Angeles) to 20.8%389

(Salt Lake City). Empirical values of ODIAC ffCO2 uncertainty can be obtained by comparing ODIAC390

inventories with other emission fluxes, such as those created using high-resolution top-down satellite391

products. Smaller temporal scales result in greater empirical value deviations. Considering different392

city emission characteristics, such as industrial cities like Cairo and Riyadh with irregular emissions393

and large uncertainties in industrial emissions, we set prior emission uncertainties for these cities at394

45%. For large cities with distinct and regular emission characteristics, the uncertainty is set at 25%, as395

their emission estimates are more accurate compared to industrial cities.396

By minimizing the loss function, we obtain the posterior scaling factor
^

 and posterior uncertainty
^

 :397

2 1
^

( ) ( )T T
a sim sim sim obs sim obs obs sim ay y S y S y y      398

11 2 1 2 1
^

( )T
sim obs sim simy S y    399

12400

To evaluate the performance of the scaling factor, we define the mean kernel (
^

/AK     ):401
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1 2 1 1( ) ( )T T
sim obs sim sim sim obs simAK y S y y S y     13402

The value of AK closer to 1 indicates a more accurate estimation of the scaling factor.403

2.5 OSSEs: Optimization of Emissions using Different DQ-1 Tracks404

Given the limited number of DQ-1 overpass tracks and the impact of atmospheric conditions during405

overpasses on emission optimization, we implemented Observing System Simulation Experiments406

(OSSEs). These experiments were conducted using multiple DQ-1 tracks to constrain urban fossil fuel407

emissions repeatedly and to statistically evaluate DQ-1's potential in constraining urban fossil fuel408

emissions. Specifically, we initially screened all DQ-1 overpass tracks, selecting those located409

downwind of major fossil fuel emission areas to better utilize DQ-1 data for constraining overall410

regional fossil fuel emissions. For each city's overpass track, we extracted pseudo-observation data and411

modeling data.412

DQ-1 is different from other passive remote sensing satellites in that it is not only capable of night413

observation, but also less affected by clouds and aerosols. Therefore, we studied the relationship414

between daytime and nighttime observations and emission estimation uncertainties, as well as the415

impact of different tracks and the number of tracks on emission estimates. We used the ODIAC fossil416

fuel emission inventory as the prior emissions for the OSSEs, assuming that the prior emissions are the417

true emissions and that emissions remain stable over a short period. It is noteworthy that, in Section 3.3,418

the prior emissions were constructed by combining ODIAC fossil fuel data with NEE (Net Ecosystem419

Exchange).420

Pseudo-observation data and modeling data for each city were derived using the same method.421

Pseudo-observation data were obtained by averaging the 1-second detection range of the selected DQ-1422

overpass tracks, with adjacent pseudo-observation data separated by 7 km (1 second). This method423

helps eliminate some of the background noise and wind speed impacts on emission optimization. We424

assumed that DQ-1 observations are unbiased with respect to the true values and added random errors425

to each DQ-1 observation, with the error following a Gaussian distribution and a standard deviation of426

0.5 ppm. Pseudo-observation data are also unbiased relative to the true values, with random errors427

accumulated over time for each observation data:

2
1

1
21
,

( )

N

i DQ
is
N








Here,  represents the random error428
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of each pseudo-observation data. Modeling data were obtained by convolving the emission inventory of429

the area with the tracer contributions corresponding to the geographic locations.430

By using multiple DQ-1 overpass tracks to repeatedly constrain urban fossil fuel emissions and431

analyzing the results statistically, we assessed the potential of DQ-1 in constraining fossil fuel432

emissions in urban areas. This approach allowed us to examine the effectiveness of daytime and433

nighttime observations, the influence of different overpass tracks, and the impact of track quantity on434

emission estimates.435

3 Results436

3.1 Fossil Fuel Enhancement in UrbanAreas437

In this section, we summarize the prior ffXCO2 emissions for each study area. The total monthly438

emissions for Beijing, Riyadh, and Cairo during the selected months (The detailed overpass dates are439

emissions provided in Table S3) are approximately 2.4-3.5 Mt C/month, 2.3-3.3 Mt C/month, and440

1.9-2.4 Mt C/month, respectively. We constrain emissions by comparing observed and simulated441

ffXCO2 enhancements. Here, ffXCO2 enhancement is defined as the increment in XCO2 concentration442

caused by local fossil fuel emissions. The prior ffXCO2 enhancement is simulated using the ODIAC443

prior emission inventory and the STILT footprint (a summed 24 hours column integrated footprint)444

convolution. The observed ffXCO2 enhancement from DQ-1 is obtained by subtracting the background445

concentration from the observational data (as detailed in Section 2.3.3 and shown in Figure 3). By446

comparing the prior ffXCO2 enhancement with the observed XCO2 enhancement, we evaluate the447

trends in ffXCO2 changes along the tracks and explore the sources and detection capabilities of the448

ffXCO2 signal.449
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450
Figure 3: Comparison of the simulated and observed ffXCO2 enhancements from DQ-1 data over Riyadh on451

March 02, 2023 and June 20, 2022 around 11:00 UTC. Figures (a) and (b) show the DQ-1 XCO2 (black dots452

and blue triangles) and the simulated XCO2 (red solid line, sum of simulated ffXCO2 and background453

concentrations) along the two orbits, averaged over 1 s. The black dots represent the background454

concentrations involved in deriving the background. The black dots represent the data involved in the455

derivation of the background concentration (black solid line), which are linearly regressed against latitude456

after a discrete wavelet transform. Figures (c) and (d) show the simulated ffXCO2 and the observed ffXCO2457

obtained from the DQ-1 data. background XCO2 concentrations have been subtracted. The red boxes in the458

Figures (c) and (d) represent the urban areas. Vectors represent 10 m wind speeds (average wind speed459

simulated byWRF) and reference vectors represent 10 m/s wind speeds.460

Figure 3 presents the results of two DQ-1 overpasses over Riyadh on March 2, 2023, and June 20,461

2022, at 11:00 AM. Figures 3a and 3b show the simulated and the observed XCO2 enhancement as a462

function of latitude for these two overpasses. The maximum ffXCO2 enhancements observed along the463

two tracks were 8 ppm and 5 ppm, respectively.464

In the overpass on March 2, significant ffXCO2 enhancements were observed by DQ-1 between465

24.8°N and 25.3°N, with the simulated ffXCO2 also responding to this enhancement. Although the peak466

observed values were narrower than the simulated values, both were of similar magnitudes, with only467

slight differences, and their trends were largely consistent. However, the simulated ffXCO2 did not468
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respond to the observed enhancement in the 24.1°N to 24.3°N range, which may be due to the469

sensitivity of the STILT footprint to wind direction.470

Compared to the track on March 2, the track on June 20 shows better agreement between471

observations and simulations, along with smaller posterior uncertainties (see Table 1). The observed472

peak and the simulated peak were both within the 23.8°N to 24.6°N range, with a difference of less473

than 1 ppm. The differences between the results of the two tracks may be because the March 2 track474

passed through the city's main emission area and intersected the simulated plume (Figure 3c). In this475

case, the observed ffXCO2 fluctuations were minimal, with values remaining high relative to the476

background concentration, making it difficult to detect significant enhancements. In contrast, the June477

20 track was downwind of the main emission area, making it more sensitive to the city's fossil fuel478

emissions and resulting in better agreement between the simulated and observed values.479

For Cairo, we examined ffXCO2 enhancements using six DQ-1 overpasses on July 26, August 2,480

August 16, November 8, November 15, and November 22, 2022 (Figure S9-10). In contrast to Riyadh,481

the simulated ffXCO2 enhancements over Cairo were mostly below 2 ppm, indicating lower overall482

emissions in Cairo than in Riyadh. The simulated ffXCO2 enhancements over Cairo were more483

dispersed, showing a multi-point distribution rather than the concentrated enhancements observed over484

Riyadh.485

The observed XCO2 enhancement over Cairo were generally higher and narrower than the simulated486

ones, which were smoother. Despite these differences, the trends in ffXCO2 enhancements between the487

simulations and observations were similar and of the same magnitude (The latitudinal distribution and488

magnitude of the simulated enhancement (red line) are generally consistent with those of the observed489

enhancement (blue triangles)), except for the July 26 simulation, which did not include some observed490

enhancements between 30.2°N and 30.4°N, and the November 8 overpass, where a spatial shift of491

approximately 0.2° was observed between the simulated and observed ffXCO2 enhancements.492

Overall, the comparison between DQ-1 observations and WRF-STILT-based simulations suggests493

that the DQ-1 satellite is well-suited for fine-scale urban emission optimization. This indicates that494

DQ-1 can effectively be used for detailed monitoring and analysis of urban emissions.495
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3.2 Comparison of DQ-1 and OCO-2 Restraint Capabilities496

497

Figure 4: (a) and (b) show the position and XCO2 data of two pairs of OCO-2 and DQ-1 orbits that we498

selected for transit to Beijing at 05:00 on December 01, 2022 and 05:00 on April 08, 2023, respectively499

To better compare the inversion results from OCO-2 and DQ-1, we selected tracks that were spatially500

and temporally close and located downwind of major urban emission areas. Figure 4 shows two pairs501

of OCO-2 and DQ-1 tracks over Beijing on December 1, 2022, and April 8, 2023, both at 05:00,502

passing through the major emission downwind area of the city. Fig. 5 shows ffXCO2 enhancements and503

wind fields at the time of the satellite overpasses. The results clearly indicate significant ffXCO2504

enhancements, exceeding 2 ppm in April, demonstrating that DQ-1 can observe notable ffXCO2505

enhancements from space.506

Figures 5 (c, d, g, h) show that the ffXCO2 enhancements simulated from DQ-1 and OCO-2507

overpasses are of similar magnitude and spatial distribution, with strong spatial consistency across508

different times due to stable local emissions and wind fields. Beijing's topography, with high elevations509

in the northwest and low-lying plains in the southeast, influences the prevailing west-to-east winds, and510

the flat terrain of the main urban area means the simulated ffXCO2 is minimally affected by topography.511

The smaller ffXCO2 enhancements observed on December 1 compared to April 8 are primarily due to512

wind directions affecting the track within the 40.2°-41° range, making it difficult to simulate emissions.513

This comparison highlights the capability of DQ-1 to effectively observe and simulate urban ffXCO2514

enhancements, supporting its application in fine-scale emission optimization.515
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516

Figure 5: Similar to Fig. 3, (a)-(d) show the simulated ffXCO2 and measured ffXCO2 for the DQ-1 and517

OCO-2 orbits transiting Beijing at 05:00 UTC 01 December 2022 and 05:00 UTC 08 April 2023, and (e)-(h)518

represent the comparison of the simulated ffXCO2 (colored shadows) with the observed ffXCO2519
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enhancement (colored dots, minus background concentrations) from DQ-1 data collected over Beijing at520

~05:00 UTC. Each panel is labeled with the date of observation. The red boxes in the Figures (c), (d), (g), (h)521

represent the urban areas. Vectors represent 10 m wind speeds and reference vectors represent 10 m/s wind522

speeds.523

Figure 5 (a, b, e, f) illustrates the simulated and observed XCO2 for two pairs of DQ-1 and OCO-2524

tracks. The simulated XCO2 (red line in the figures) is derived by adding the background concentration525

to the simulated ffXCO2 extracted along the satellite tracks. Overall, both OCO-2 and DQ-1526

observations exhibit similar distributions, with high-value points located in the same latitude ranges527

(On 1 December, both the DQ-1 and OCO-2 overpasses exhibited similarly strong latitudinal gradients528

in their background baselines, with notable enhancements observed and simulated within the529

39.4°–39.6°N range. Although the background latitudinal gradients differed between DQ-1 and OCO-2530

on 8 April, both were weak in magnitude, and significant enhancements were nevertheless consistently531

detected and simulated between 40.0° and 40.4°N). DQ-1 observations are generally 4-8 ppm higher532

than OCO-2, attributed to the inherent characteristics of the satellites—DQ-1 being an active lidar533

satellite, largely unaffected by clouds and aerosols. This systematic difference can be mitigated during534

background concentration extraction due to the overall similarity in data distribution.535

On December 1 and April 8, DQ-1 and OCO-2 observed ffXCO2 enhancements of approximately536

~2.5 ppm and ~1.5 ppm, respectively. Although OCO-2 did not capture the ffXCO2 enhancement537

within the 40.2°-41° range on December 1, and there was a ~0.15° spatial shift between observed and538

simulated XCO2 peaks on April 8, the simulated ffXCO2 was of the same magnitude as the539

observations. This indicates that DQ-1 performs comparably to OCO-2 in urban-scale inversions. The540

peak shift in OCO-2 data might be due to errors in the horizontal wind field. The background gradient541

on December 1 was more pronounced than on April 8, and the integrated ffXCO2 enhancement along542

the track was consistent with DQ-1 measurements, validating the latitude gradient-based background543

extraction method for urban-scale inversions.544

Figure 6 compares TCCON site observations within the Beijing study area with the simulated results545

for December 1 and April 8. The prior ffXCO2 (blue bars) represents the simulated ffXCO2 at the546

TCCON site, obtained using the previously described simulation method. The posterior ffXCO2 (light547

green and orange bars) is derived by applying the posterior scaling factors from DQ-1 and OCO-2548

overpass tracks to the prior ffXCO2, with posterior uncertainties indicated. The true value, provided by549
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TCCON products, is shown by the dark green bars.550

Overall, DQ-1 and OCO-2 inversion results are similar in magnitude, with DQ-1 results closer to551

TCCON observations. The differences between DQ-1 results and TCCON observations are 0.9% and552

16% for December 1 and April 8, respectively, compared to 10% and 25% for OCO-2. This553

demonstrates that DQ-1 can effectively constrain urban fossil fuel emissions, performing comparably to,554

or even surpassing, OCO-2 in certain tracks.555

556

Figure 6: TCCON site simulations received ffXCO2 (blue columns represent simulations using a priori557

ODIAC lists, bright green columns represent simulations using a posteriori lists estimated with DQ-1,558

orange columns represent simulations using a posteriori lists estimated with OCO-2, and dark green559

columns represent ffXCO2 observed by TCCON). The black lines on the columns represent uncertainties.560
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3.3 Impact of DQ-1 in Estimating Biotic Fluxes using Daytime vs. Nighttime Tracks561

562

Figure 7: Orbital simulation results for a pair of diurnal observations of the transit of Beijing on January 09,563

2023 at about 23:00 (night) and January 10, 2023 at about 11:00 (day) UTC. The red boxes in the Figures (c)564

and (d) represent the urban areas.565

Both biosphere carbon flux and fossil fuel emissions influence XCO2 variations. This section566

examines the impact of biosphere flux on emission estimates. When ffXCO2 significantly exceeds567

biosphere carbon flux, the biosphere's contribution to XCO2 changes can be negligible (e.g., in Cairo568

and Riyadh, where the spatial gradient of NEE is much smaller than fossil fuel emissions). This study569

attributes biosphere carbon flux to vegetation production and human emissions. This part of carbon570

emissions varies with the day-night cycle. During the day, vegetation absorbs CO2 through571

photosynthesis, which significantly outweighs CO2 release through respiration. At night, vegetation572

only undergoes respiration, releasing CO2.573

As the world's first lidar satellite capable of observing XCO2 at night, DQ-1 offers groundbreaking574

potential in studying diurnal variations in urban emissions. This section leverages this feature to575

observe the impact of vegetation rhythm and human activities on XCO2 changes. We compare global576
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three-hourly CASA data and ten-day average NEE data from ODIAC. ODIAC's ten-day average data577

cannot separate diurnal NEE variations, while the higher temporal resolution of CASA can effectively578

capture the time gradient of NEE within the same day. We will illustrate the impact of NEE on579

inversion and how this impact changes between day and night. Previous satellite-based urban flux580

inversions lacked night-time data, preventing day-night comparisons and separation of nocturnal and581

diurnal CO2 emissions.582

For this study, we selected two tracks on January 9, 2023, at 23:00 and January 10, 2023, at 11:00583

(UTC). Given the close timing of these tracks, we assume the total fossil fuel emissions are the same584

for both. The January 9 track is approximately 0.5° (about 50 km) downwind from the main urban585

emissions, with an average wind speed greater than 3 m/s. Thus, the emissions detected by this track586

are considered to originate from the previous five hours. The January 10 track passes through the main587

urban emission area, capturing emissions effectively. We simulate the previous 8 hours gas diffusion588

before the overflight (sunset on January 9 at 09:00 and sunrise on January 10 at 15:35 UTC). The589

simulated enhancement for the January 9 track is assumed to come entirely from night-time emissions,590

while the January 10 enhancement comes from daytime emissions. Comparing the simulation results591

with observations, both are of the same magnitude, indicating that the forward eight-hour simulation592

effectively captures the observed ffXCO2 enhancement.593

To explore the impact of diurnal biosphere carbon flux on XCO2 enhancement, we couple prior594

emissions from ODIAC with spatially scaled NEE data as the new prior emissions (For the595

three-hourly NEE data, we matched using footprints within the corresponding time period), then596

simulate the XCO2 enhancement (In contrast to Sections 3.1 and 3.2, here we used ODIAC emissions597

combined with NEE as the prior flux information). Using constant boundary conditions, latitude598

changes do not need to be considered for background concentration. Therefore, local XCO2599

enhancement is defined as the total XCO2 minus the minimum XCO2 value in the track (Unlike Section600

2.3.3). The XCO2 enhancement measured by DQ-1 is derived using methods outlined in previous601

sections.602

This approach allows us to accurately account for both daytime and nighttime variations in XCO2603

due to biosphere activity, providing a comprehensive view of the urban carbon flux.604
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605

Figure 8: (a)-(d) represent the contribution of orbital XCO2 enhancement and biospheric fluxes to the local606

XCO2 enhancement for two pairs of diurnal observations on 09 and 10 January 2023 and 19 and 20 June607

2022, the black dots represent the 1-second averaged observations (subtracted from the background values)608

on each orbit, the red solid line represents the simulated ffXCO2, and the green and blue solid lines609

represent the simulated ΔXCO2 (fossil fuel and biosphere fluxes) using different NEE data for simulated610

ΔXCO2 (fossil fuel and biogenic fluxes), where the green line uses ten-day averaged ODIAC NEE data and611

the blue line uses CASA three-hourly NEE data.612

Figure 8 presents a comparison of simulated and observed XCO2 enhancements for two pairs of day613

and night overpass tracks over Beijing on January 9, 2023, at 23:00, January 10 at 05:00, June 19, 2022,614

at 23:00, and June 20 at 05:00. Overall, the simulated XCO₂ enhancements that include CASA NEE615

(blue line) on January 10, June 20, and June 19, show better agreement with the observed ΔXCO₂616

(black dots) than simulations driven by fossil fuel emissions alone (red line).617

The figure 8 (c) shows that the XCO2 enhancements using CASA's diurnal NEE data differ618

significantly from those using ODIAC's ten-day average NEE data. The simulation for the June 19619

track at 23:00 indicates that using CASA's night-time NEE data (blue line) can accurately simulate the620

observed XCO2 enhancement, coming closer to the observed XCO2 enhancement than the ffXCO2621

simulation alone. In contrast, the simulation using ODIAC's ten-day average NEE data (green line)622

shows a notable CO2 uptake in the 40.2°-41° range, starkly different from the CASA results and the623

observed XCO2 enhancement. This discrepancy arises because ODIAC's ten-day average NEE data are624

insensitive to short-term temporal variations and cannot reflect diurnal changes within a day. Moreover,625

this period is Beijing's summer, with vigorous daytime vegetation activity leading to CO2 uptake and a626
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consequent drop in XCO2 (as seen in Figure 8 d, where the daytime simulated XCO2 enhancement is627

much lower than ffXCO2). According to the June 19 simulation results, biosphere flux-induced XCO2628

changes account for 21.2% (CASA) and -54.3% (ODIAC) of the observed XCO2 enhancement.629

For the January 9 track at 23:00, both CASA and ODIAC data show significant XCO2 enhancements.630

However, the CASA simulation aligns more closely with the observations. This difference may be631

because ODIAC's ten-day average data, influenced by daytime data, diminish its accuracy in night-time632

scenarios. The simulation results for the January 9 track show that biosphere flux-induced local XCO2633

enhancements account for 13.37% (CASA) and 7.73% (ODIAC) of the observed comprehensive XCO2634

enhancement.635

Overall, the biosphere flux's impact on XCO2 enhancement varies significantly between day and636

night. In urban-scale inversions, DQ-1's ability to rapidly revisit both day and night can further637

optimize the influence of biosphere flux on inversion accuracy. This capability highlights DQ-1's638

potential to provide more precise urban-scale fossil fuel emission constraints, especially by639

distinguishing diurnal variations in biosphere activity.640

3.4 Emission Estimates and a Posteriori Uncertainties641

Table 1 Results of inversion of urban emission scaling factors for selected cities using DQ-1 XCO2 data642

City Overpass

Prior total

emission

(Mt C/month)

Prior total

emission

uncertainty

( a )

Measurement

uncertainty

( measurement ,

units: ppm)

Transport model

uncertainty

( Model , units:

ppm)

Scaling factor(λ)

± posterior

uncertainty（ ̂）

OCO-2

Scaling

factor/City

mean factor

Riyadh 02 March 2023 2.37 45% 1.03 2.53 0.75±0.20 0.80±0.18

20 June 2022 3.49 0.98 2.58 0.86±0.16

Beijing 01 December 2022 4.61 25% 1.88/2.11 2.64 0.98±0.15 1.09±0.18

08 April 2023 3.35 1.57/1.93 1.79 0.65±0.11 0.70±0.14

09 January 2023

10 January 2023

2.40

2.40

2.01

1.99

3.04

1.45

0.91±0.12

1.00±0.14

0.83±0.13

19 June 2022

20 June 2022

3.81

3.81

1.78

1.52

2.11

1.12

0.96±0.16

0.53±0.11
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Cairo 26 June 2022

02 August 2022

16 August 2022

08 November 2022

15 November 2022

22 November 2022

2.43

2.49

2.49

1.96

1.96

1.96

45% 1.08

1.45

1.67

1.22

0.98

1.11

0.56

0.71

0.87

0.36

1.31

0.21

1.06±0.20

0.98±0.12

1.21±0.14

1.15±0.16

1.19±0.11

1.06±0.13

1.10±0.14

Notes. Scaling factors and their a posteriori uncertainties are shown for each orbit, as well as integrated643

information for all selected orbits. Uncertainty components are listed for each track, including the a priori644

uncertainty in the scaling factor and the measurement and transport uncertainty in the integral ffXCO2645

(some specific track data inverted using OCO-2 data are bolded, and the average emission scaling factor646

and a posteriori uncertainty for all tracks in each city are in the last column and highlighted in italics).647

In this section, we present the inversion estimation results for emissions from Riyadh, Cairo, and648

Beijing using the DQ-1 tracks shown in Section 3.1. The inversion process considers uncertainties649

arising from both measurement and transport. The inversion yields a scaling factor for the total650

emissions for each selected city. Specifically, for Beijing, we compare the inversion results with the651

simultaneously passing OCO-2 tracks.652

Each selected track underwent inversion. Table 1 shows the posterior emission scaling factors for653

each track, along with the uncertainties in the measured and simulated ffXCO2. These uncertainties654

were determined using the methods described in Section 2.4. Notably, the prior uncertainty in the655

emission scaling factors for Beijing was set at 25%, compared to Riyadh and Cairo, reflecting better656

knowledge of emissions from such a well characterized megacity (see Section 2.4.2).657

For the selected tracks over Riyadh, Cairo, and Beijing, the posterior scaling factors (An emission658

factor greater than 1 indicates an underestimation by the prior inventory, while a factor less than 1659

suggests an overestimation.) were 0.75-0.86, 0.98-1.21, and 0.53-1.06, respectively (Table 1). The660

posterior emission scaling factors exhibit significant temporal variability, influenced by background661

conditions. As described in the previous section, the emissions detected by the track depend on its662

distance from the major emission regions and the domain-averaged wind speed at the time. The663

domain-averaged wind speed for the selected tracks was consistently above 3 m/s. Based on664

meteorological conditions, the posterior values represent estimates of city emissions for the hours665

preceding the overpass time. The posterior uncertainty in the emission scaling factors was 0.16-0.20 for666

Scaling factors and posteriori uncertainties are

shown for each track, as well as integrated information for

all selected orbits. Uncertainty components are listed for

each track, including the a priori uncertainty in the scaling

factor and the measurement and transport uncertainty in

the integral ffXCO2 (some specific track data inverted

using OCO-2 data are bolded, and the average emission

scaling factor and a posteriori uncertainty for all tracks in

each city are in the last column and highlighted in italics).
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Riyadh, 0.11-0.20 for Cairo, and 0.11-0.16 for Beijing. Compared to Beijing, the posterior scaling667

factor uncertainties were generally higher for Riyadh and Cairo.668

As discussed in Section 2.4, the prior emission uncertainties were set to reflect measurement and669

transport errors. Table 1 shows that the relative contributions of observation error and transport error670

vary across the three cities. For Riyadh, the transport error was significantly larger than the observation671

error, while for Cairo, the transport error was much smaller than the observation error. In Beijing, the672

relative sizes of transport error and observation error varied. The posterior scaling factors for Beijing's673

two OCO-2 tracks were almost identical to those from DQ-1, with higher posterior uncertainty due to674

higher observation error. Overall, Beijing's posterior uncertainty was lower than that of Cairo and675

Riyadh, attributable to more stable prior emission characteristics.676

Previous research (Ye et al., 2020) highlighted that the scarcity of OCO-2 tracks near many cities677

remains a major limitation in regularly quantifying emissions and objectively tracking temporal678

variations from space. In contrast, DQ-1's minimal sensitivity to clouds and aerosols allows for more679

tracks available for inversion. Our experiments in Beijing, Cairo, and Riyadh found that, on average,680

more than six tracks per month were available for inversion, including day and night overpasses on the681

same day, further constraining city emissions (see Section 3.3).682

Based on the results in Table 1, we averaged the posterior emission scaling factors and uncertainties683

for each city's tracks, yielding mean scaling factors and uncertainties of 0.80±0.18 for Riyadh,684

1.10±0.14 for Cairo, and 0.83±0.13 for Beijing (Detailed monthly emission information for different685

cities is provided in Table S3). This indicates that, for the periods represented by the observations, the686

prior monthly ODIAC product overestimates emissions for Beijing and Riyadh, while underestimating687

emissions for Cairo, Our findings in Cairo are consistent with earlier research(Shekhar et al., 2020).688

4 Discussion689

4.1 Atmospheric Transport Model Errors690

Systematic errors in model transport and erroneous statistical assumptions can significantly diminish691

the improvements in land-based uncertainty by approximately a factor of two(Wang et al., 2014).692

Hence, it is essential to control systematic errors and inaccuracies in transport models while693
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minimizing random errors in DQ-1 observations. In Observing System Simulation Experiments694

(OSSEs), we assess the potential impacts of observational and transport errors on the entire inversion695

process. Transport errors of tracers in the atmosphere can lead to inaccuracies in flux estimates derived696

from concentration observations. Typically, "inversion" methods either ignore transport errors or only697

provide a rough evaluation of their impact(Lin and Gerbig, 2005). This section focuses on how698

uncertainties in atmospheric transport model outputs influence CO2 flux inversion.699

In our experiments, we set the prior flux uncertainty to 25%-45% based on the emission700

characteristics of different cities. The uncertainty in DQ-1 XCO2 observations was fixed at 0.5 ppm,701

representing the lower limit of observational error. We examined the effects of wind speed and702

direction errors on the performance of the inversion method. The errors in the transport model were703

propagated by treating them as conversions of model ffXCO2 plumes. Notably, for the cities studied,704

errors were assumed to be unbiased. Wind direction errors were analyzed by rotating the plumes around705

the emission center and incorporating random wind speed errors.706

We illustrate these concepts using six tracks over Cairo. The overall ffXCO2 distribution was707

generated by applying random positive and negative wind direction biases (>-10°, <10°) to each track's708

STILT footprint, rotating it 104 times, and adding positive/negative wind speed biases (>-1 m/s, <1 m/s).709

Overall, the temporal variability in the posterior emission scaling factors and uncertainties can be710

attributed to transport model errors. The transport model error significantly influenced the observed711

ffXCO2 distribution. Specifically, the track on November 15 was most affected by transport model712

errors, likely due to its passage through the plume boundary. In contrast, the track on August 16713

experienced minimal transport model errors, as it was further from the simulated ffXCO2 plume,714

making it less sensitive to small wind direction and speed errors, and The MLH will be higher in715

summer days and that may reduce the uncertainties for the footprints.716
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717
Figure 9: Box plots of the modeled integral ffXCO2 enhancement (∑ffXCO2, m) for selected OCO-2 orbits718

over Cairo at the date labeled on the x-axis (2022). For each box, the center line indicates the median (q2),719

and the bottom and top edges of the box indicate the 25th and 75th percentiles (q1 and q3), respectively. The720

whiskers extend to the maximum and minimum values. The numbers are the ratio of the interquartile721

spacing (q3 - q1) to the median (q2).722

4.2 The Challenge of Separating Biological Fluxes in Day and Night Orbits723

In Section 3.3, we detailed how DQ-1's short-term day-night revisit capability allows for the724

consideration of diurnal and nocturnal biogenic fluxes in emission inversions. Typically, large-scale725

inversions do not account for uncertainties in fossil fuel emission inventories and treat biogenic fluxes726

as uncertainties in prior fluxes(Wang et al., 2014). Studies focused on urban-scale inversions that do727

not utilize nocturnal tracks, while directly considering biogenic flux impacts, have not accounted for728

the diurnal variation of biogenic fluxes(Ye et al., 2020). In this study, we leveraged DQ-1's nocturnal729

observations to provide a method for separately considering biogenic flux effects during day and night.730

Our results indicate that using daytime average NEE data and nighttime NEE data can result in731

differences of up to 70% in inversion outcomes.732

However, this approach has limitations in large-scale inversions. Separating daytime and nighttime733

emissions necessitates a limited transport time due to the constraints of the transport model, which734

means that simulated particles cannot travel long distances under limited wind speed and time735

conditions. To address this, more frequent overpass tracks, including those from geostationary carbon736
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cycle observation satellites such as GeoCarb(Moore Iii et al., 2018), Total Carbon Column Observing737

Network (TCCON)(Toon et al., 2009), and MicroCARB, but these instruments are all limited to738

daylight observations and therefore cannot support day–night inversion analyses, only DQ-1 is capable739

of enabling such studies. Therefore, an increased availability of high-precision and740

high-spatial-resolution nighttime data is urgently needed. Currently, the number of DQ-1 tracks does741

not support large-scale separate day-night inversions. In large-scale flux inversions, biogenic fluxes are742

typically used as prior uncertainty over weekly or monthly periods. Such long-term and wide-scale data743

assimilation reduces the impact of diurnal biogenic flux variations on inversion results. Unlike other744

satellite measurements that are restricted to daytime clear-sky conditions, DQ-1's XCO2 measurements745

provide uniform temporal sampling, thus allowing effective quantification of diurnal variations in746

emissions.747

Accurate downscaling methods for biogenic fluxes, such as the Solar-Induced Fluorescence Model748

(SMUrF)(Wu et al., 2021), and advanced vegetation models, like the Vegetation Photosynthesis and749

Respiration Model (VPRM) (Luo et al., 2022; Mahadevan et al., 2008; Wei et al., 2022; Winbourne et750

al., 2022; Gourdji et al., 2022)are crucial for precise biogenic flux calculations. Radiocarbon and land751

surface solar-induced fluorescence (SIF) data aid in distinguishing between fossil fuel CO2 and752

biogenic CO2(Fischer et al., 2017). Recent research indicates that SIF serves as a better indicator or753

proxy for gross or net primary production compared to other vegetation indices.754

4.3 Insights From Results of the OSSEs755

In the emission inversion process, prior emissions are considered as fully distributed, optimizing756

regional emissions for an entire city using a scaling factor, in contrast to grid-specific inversions. As757

noted by previous research, using a single scaling factor for the entire city limits the flexibility to758

capture true spatial variations in fluxes compared to grid-specific inversions. Estimating prior emission759

uncertainties at the grid scale is challenging because grid-scale emission uncertainties are typically760

much larger than those using scaling factors(Andres et al., 2012).761

Apart from uncertainties in the transport model, DQ-1 measurements, and biogenic fluxes, several762

additional error sources may introduce biases in the inversion results. DQ-1 data's measurement errors763

are assumed to be spatially uncorrelated due to the lack of high-resolution correlation data. Additionally,764
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random components of nonlinear and interference errors in retrievals may introduce significant errors765

in the inversions . In our OSSE, measurement uncertainty is assessed at its lower bound.766

Simulation results for Riyadh and Beijing indicate that the enhancement of ffXCO2 generally767

exceeds 1.5 ppm and can reach up to approximately 5 ppm, surpassing the uncertainties in land-based768

observations (around 1 ppm)(Eldering et al., 2017a; Eldering et al., 2017b). In contrast, Cairo's ffXCO2769

values are mostly below 2.0 ppm, with some hotspots near high-emission industries such as power770

plants. Detecting CO2 plumes in smaller cities is challenging due to limited detectability of fossil771

fuel-derived CO2 plumes. Factors limiting detectability include: 1) The number and location of772

overpass tracks. 2) Overlap enhancements from nearby cities or point sources. 3) Low ffCO2 emissions.773

To improve the detection of city plumes, more ground-based in situ measurements and high-altitude774

satellites with enhanced detection capabilities are necessary.775

4.4 Influence of Planetary Boundary Layer Height on Modeled XCO₂ Enhancements776

Vertical turbulent mixing, as the dominant process governing the vertical transport of air parcels,777

regulates the dilution of surface emissions within the planetary boundary layer (PBL). Uncertainties in778

vertical mixing or PBL height can influence both the magnitude and spatial distribution of atmospheric779

footprints through variations in horizontal advection at different altitudes(Gerbig et al., 2008).780

Variations in the STILT-modeled mixed layer height alter the vertical profiles of turbulent statistics that781

govern the stochastic motion of Lagrangian air parcels(Lin et al., 2003), thereby yielding distinct air782

parcel trajectories under different PBL height.783

In this section, we assess the sensitivity of both horizontal footprints and column-averaged footprints784

(X-STILT) to variations in the planetary boundary layer height (PBLH) as simulated by STILT. Given785

the pronounced diurnal and seasonal variability of terrestrial PBLH across most latitudes(Gu et al.,786

2020), we selected three satellite overpasses across Beijing to quantitatively evaluate the impact of787

PBLH on footprint estimates: 23:00 on 9 January 2023 (winter nighttime), 05:00 on 10 January 2023788

(winter daytime), and 23:00 on 19 June 2022 (summer nighttime). For each overpass, the location789

(latitude and longitude) corresponding to the largest modeled XCO₂ enhancement along the track was790

selected as the receptor location for STILT, with release heights consistent with prior model791

configurations. Backward simulations were conducted from the overpass time until local sunrise or792
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sunset (sunset for nighttime passes and sunrise for daytime passes). A range of PBLH values from793

300 m to 1500 m, in 200 m increments, was tested.794

795

Figure10: Panels a and b illustrate the sensitivity of CO₂ and XCO₂ enhancements to variations in planetary796

boundary layer height (PBLH) at different receptor altitudes, quantified by the coefficient of variation (i.e.,797

the standard deviation divided by the mean). Panel a presents the simulated results for three satellite798

overpasses: 23:00 on 9 January 2023 (winter night, blue line), 05:00 on 10 January 2023 (winter day, orange799

line), and 23:00 on 19 June 2022 (summer night, green line). For each case, receptors were placed at the800

locations of maximum modeled XCO₂ enhancement along the satellite track, with release heights consistent801

with prior STILT configurations. Panel b shows the corresponding XCO₂ enhancement simulations for each802

date, with the coefficient of variation annotated at the top of the panel to indicate the overall sensitivity803

across varying PBLH scenarios.804

Figure 10a illustrates the sensitivity of modeled XCO₂ enhancements—calculated following the805

method in Section 2.4.1—to varying PBLH values at different release heights for three selected806

receptors. The x-axis, labeled Delta_XCO₂ Uncertainty, quantifies this sensitivity as the coefficient of807

variation (standard deviation divided by the mean) of XCO₂ enhancements obtained from simulations808

with different PBLH values at the same release height. A higher value indicates a stronger response of809

the modeled enhancement to changes in PBLH. Results in Figure 10a show that on the nighttime810

overpass of 9 January 2023 (blue line), the relative variation in modeled XCO₂ enhancements remains811
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within ~10% for release heights below 600 m and does not exceed 13%, with a minimum of 3.03% at812

50 m. Similarly, for the daytime overpass on 10 January 2023 (orange line), relative variations remain813

below 13% up to 950 m, with a minimum of 3.36% at 450 m. Notably, for this pair of consecutive814

day–night overpasses, nighttime sensitivity is generally higher than daytime at release heights below815

650 m. The nighttime overpass on 19 June 2022 (green line) exhibits a broader vertical range of valid816

footprints—unlike the 9 January case, where no valid footprints were simulated above 650 m, possibly817

due to seasonal effects. This case also shows a stronger dependence on PBLH at higher altitudes,818

particularly between 750–1000 m, with the maximum sensitivity reaching 36.6% at 900 m. Overall, our819

findings suggest that within the lower troposphere and across the selected case studies, the influence of820

PBLH variability on modeled XCO₂ enhancements is generally on the order of 10%, increasing with821

receptor altitude. As column-averaged observations are less sensitive to the vertical distribution of air822

parcels(Lauvaux and Davis, 2014), the sensitivity of modeled column XCO₂ enhancements to PBLH823

variations is notably smaller. This is corroborated by Figure 10b, which shows modeled XCO₂824

enhancements as a function of PBLH for each overpass, with corresponding coefficients of variation825

annotated above the lines: 2.1% (9 January), 2.9% (10 January), and 2.8% (19 June)—all lower than826

the minimum values observed in Figure 10a.827

Given that ACDL is equipped with an aerosol channel, it can provide extinction coefficient profiles828

and planetary boundary layer height (PBLH) products(Dai et al., 2024). In this study, we utilized829

ACDL-retrieved PBLH data for forward simulations, which helps to mitigate errors associated with830

inaccurate PBLH settings. Moreover, since satellite measurements represent column-averaged831

concentrations, they are inherently less sensitive to variations in PBLH. Therefore, we conclude that832

PBLH has a negligible impact on the inversion results presented in this study.833

5 Conclusions834

This study presents the use of DQ-1's XCO2 observation data to constrain fossil fuel emissions in835

various urban regions and evaluates its capabilities. By coupling WRF and STILT, a high-resolution836

forward transport model was developed to simulate and illustrate the structure and details of837

urban-scale fossil fuel XCO2 plumes and assess the relationship between simulated and observed XCO2.838

Throughout the inversion process, we considered DQ-1's observational errors, transport model errors,839
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and the impact of DQ-1's day-night observation capability on assessing the temporal variation of840

biosphere fluxes in urban emissions. Employing a Bayesian inversion approach, we optimized CO2841

emissions from fossil fuels in Beijing, Riyadh, and Cairo using DQ-1 data collected from June 2022 to842

April 2023, focusing on downwind tracks in major urban emission areas where significant XCO2843

enhancements were detected.844

Pseudo-data experiments, based on high-resolution forward simulations from real cases, were845

conducted to evaluate the potential of using multiple DQ-1 tracks while considering measurement and846

transport model errors. Our results showed that the posterior scaling factors for the three cities ranged847

from 0.53 to 1.06, 0.75 to 0.86, and 0.98 to 1.21, respectively, with Riyadh exhibiting the highest848

posterior uncertainty. Notably, some simulations revealed that posterior scaling factor uncertainties are849

influenced by the relative position of tracks to plumes and positive or negative wind direction biases in850

the region.851

Our assessment of spatial and temporal gradients in biosphere fluxes revealed that, at certain times in852

Beijing, despite significant ffCO2 emissions, a notable portion of the local XCO2 enhancement (20%853

and 13%, respectively) was attributable to local biosphere fluxes. This could lead to an overestimation854

of total emissions by approximately 33% ± 20% and 13 ± 7%. By incorporating CASA and ODIAC855

biosphere flux data and examining day-night crossing tracks on the same day, we found that separately856

considering day and night biosphere fluxes can improve the accuracy of local XCO2 enhancement857

calculations by 30%-70% compared to using daily average biosphere fluxes. This indicates that858

leveraging the short-term, rapid day-night crossing capability of DQ-1, along with more accurate859

biosphere flux estimation models, has the potential to reduce uncertainties in emission estimates due to860

biosphere fluxes.861

For biosphere flux cities with similar total CO2 emissions but lower fossil fuel emissions, the862

contribution of biosphere fluxes is expected to be higher than indicated. Therefore, for cities in863

mid-latitude and equatorial regions with significant local and regional biosphere fluxes, accurately864

interpreting XCO2 detection results is crucial. Future improvements in constraining urban fossil fuel865

CO2 emissions using DQ-1 data or other polar orbit measurements should consider the temporal and866

spatial correlations of previous emission errors, which were not included in this inversion.867

For applying these methods to larger-scale flux inversions, advanced satellites with shorter revisit868
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cycles and denser ground-based stations are essential. Additionally, optimizing city emission scaling869

factors requires more information on prior emission uncertainties to better understand spatial and870

temporal characteristics of urban-scale emissions. The appropriate number of constraints for urban871

emissions will depend on the spatial and temporal resolution of target city emissions and the precision872

required to support policy decisions. Our results demonstrate that DQ-1 or similar missions have873

significant potential to constrain overall emissions from cities with intensified fossil fuel emissions, and874

utilizing DQ-1's unique day-night crossing capability, we can establish frameworks for rapid day-night875

flux inversions at the urban scale. This will further elucidate the spatial and temporal structure of876

biosphere flux contributions to urban emissions and provide valuable insights for policy-making. We877

anticipate that DQ-1 data will effectively enhance the accuracy and precision of urban fossil fuel878

carbon flux estimates, in conjunction with observations from other platforms to support emission879

reduction strategies.880
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Information Services Center (GES-DISC) (https://doi.org/10.5067/5MQJ64JTBQ40). NEE data on A888

Data-driven Upscale Product of Global Gross Primary Production from National Institute for889

Environmental Studies (Japan) is freely available online at https://doi.org/10.17595/20200227.001.890

fossil CO2 emission from ODIAC is available online at https://doi.org/10.17595/20170411.001. The891

MODIS data used in this study is the Terra Surface Reflectance Daily L2G Global 1km and 500m SIN892

Grid V061(http://doi.org/10.5067/MODIS/MYD09GA.006). The DQ-1 ACDL productions893

underlying the results presented in this paper are not publicly available at this time but may be obtained894

from the authors upon reasonable request.895

Heading 1, Space Before: 0 ptFormatted:

Default Paragraph FontFormatted:



38

Competing interests896

The contact author has declared that none of the authors has any competing interests897

References898

Abshire, J. B., Ramanathan, A. K., Riris, H., Allan, G. R., Sun, X., Hasselbrack, W. E., Mao, J., Wu, S.,899

Chen, J., and Numata, K.: Airborne measurements of CO 2 column concentrations made with900

a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector,901

Atmospheric Measurement Techniques, 11, 2001-2025, 2018.902

Agency, I. E.: World energy outlook, OECD/IEA Paris2009.903

Amediek, A., Fix, A., Wirth, M., and Ehret, G.: Development of an OPO system at 1.57 μm for904

integrated path DIAL measurement of atmospheric carbon dioxide, Applied Physics B, 92,905

295-302, 2008.906

Andres, R. J., Gregg, J. S., Losey, L., Marland, G., and Boden, T. A.: Monthly, global emissions of907

carbon dioxide from fossil fuel consumption, Tellus B: Chemical and Physical Meteorology,908

63, 309-327, 2011.909

Andres, R. J., Boden, T. A., Bréon, F.-M., Ciais, P., Davis, S., Erickson, D., Gregg, J. S., Jacobson, A.,910

Marland, G., and Miller, J.: A synthesis of carbon dioxide emissions from fossil-fuel911

combustion, Biogeosciences, 9, 1845-1871, 2012.912

Bakwin, P., Davis, K., Yi, C., Wofsy, S., Munger, J., Haszpra, L., and Barcza, Z.: Regional carbon913

dioxide fluxes from mixing ratio data, Tellus B: Chemical and Physical Meteorology, 56,914

301-311, 2004.915

Ballantyne, A. á., Alden, C. á., Miller, J. á., Tans, P. á., and White, J.: Increase in observed net carbon916

dioxide uptake by land and oceans during the past 50 years, Nature, 488, 70-72, 2012.917

Birol, F.: World energy outlook 2010, International Energy Agency, 2010.918

Bousquet, P., Ciais, P., Peylin, P., Ramonet, M., and Monfray, P.: Inverse modeling of annual919

atmospheric CO2 sources and sinks: 1. Method and control inversion, Journal of Geophysical920

Research: Atmospheres, 104, 26161-26178, 1999.921

Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H., Hasekamp, O. P.,922

Aben, I., Bovensmann, H., and Burrows, J. P.: Global satellite observations of923

column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3924

data set, Remote Sensing of Environment, 203, 276-295, 2017.925

Che, K., Cai, Z., Liu, Y., Wu, L., Yang, D., Chen, Y., Meng, X., Zhou, M., Wang, J., Yao, L., and Wang,926

P.: Lagrangian inversion of anthropogenic CO2 emissions from Beijing using differential927

column measurements, Environmental Research Letters, 17, 075001,928

10.1088/1748-9326/ac7477, 2022.929

Che, K., Lauvaux, T., Taquet, N., Stremme, W., Xu, Y., Alberti, C., Lopez, M., García-Reynoso, A.,930

Ciais, P., Liu, Y., Ramonet, M., and Grutter, M.: CO2 Emissions Estimate From Mexico City931

Using Ground- and Space-Based Remote Sensing, Journal of Geophysical Research:932

Atmospheres, 129, e2024JD041297, https://doi.org/10.1029/2024JD041297, 2024.933

Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Van Aardenne, J. A., Monni, S.,934

Indent: Hanging: 4 chFormatted:

Indent: Hanging: 4 chFormatted:



39

Doering, U., Olivier, J. G., and Pagliari, V.: Gridded emissions of air pollutants for the period935

1970–2012 within EDGAR v4. 3.2, Earth Syst. Sci. Data, 10, 1987-2013, 2018.936

Dai, G., Wu, S., Long, W., Liu, J., Xie, Y., Sun, K., Meng, F., Song, X., Huang, Z., and Chen, W.:937

Aerosol and cloud data processing and optical property retrieval algorithms for the938

spaceborne ACDL/DQ-1, Atmos. Meas. Tech., 17, 1879-1890, 10.5194/amt-17-1879-2024,939

2024.940

Deng, A., Lauvaux, T., Davis, K. J., Gaudet, B. J., Miles, N., Richardson, S. J., Wu, K., Sarmiento, D.941

P., Hardesty, R. M., and Bonin, T. A.: Toward reduced transport errors in a high resolution942

urban CO2 inversion system, Elem Sci Anth, 5, 20, 2017.943

Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A., and Houweling, S.: Space-borne remote sensing944

of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,945

Applied Physics B, 90, 593-608, 2008.946

Eldering, A., O'Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman,947

A., Castano, R., and Chang, A.: The Orbiting Carbon Observatory-2: First 18 months of948

science data products, Atmospheric Measurement Techniques, 10, 549-563, 2017a.949

Eldering, A., Wennberg, P., Crisp, D., Schimel, D., Gunson, M., Chatterjee, A., Liu, J., Schwandner, F.,950

Sun, Y., and O’dell, C.: The Orbiting Carbon Observatory-2 early science investigations of951

regional carbon dioxide fluxes, Science, 358, eaam5745, 2017b.952

Fasoli, B., Lin, J. C., Bowling, D. R., Mitchell, L., and Mendoza, D.: Simulating atmospheric tracer953

concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted954

Lagrangian Transport model's R interface (STILT-R version 2), Geoscientific Model955

Development, 11, 2813-2824, 10.5194/gmd-11-2813-2018, 2018.956

Fischer, M. L., Parazoo, N., Brophy, K., Cui, X., Jeong, S., Liu, J., Keeling, R., Taylor, T. E., Gurney,957

K., and Oda, T.: Simulating estimation of California fossil fuel and biosphere carbon dioxide958

exchanges combining in situ tower and satellite column observations, Journal of Geophysical959

Research: Atmospheres, 122, 3653-3671, 2017.960

Gerbig, C., Körner, S., and Lin, J. C.: Vertical mixing in atmospheric tracer transport models: error961

characterization and propagation, Atmos. Chem. Phys., 8, 591-602, 10.5194/acp-8-591-2008,962

2008.963

Gerbig, C., Lin, J., Wofsy, S., Daube, B., Andrews, A., Stephens, B., Bakwin, P., and Grainger, C.:964

Toward constraining regional‐ scale fluxes of CO2 with atmospheric observations over a965

continent: 1. Observed spatial variability from airborne platforms, Journal of Geophysical966

Research: Atmospheres, 108, 2003.967

Gilfillan, D. and Marland, G.: CDIAC-FF: global and national CO 2 emissions from fossil fuel968

combustion and cement manufacture: 1751–2017, Earth System Science Data, 13, 1667-1680,969

2021.970

Gourdji, S. M., Karion, A., Lopez-Coto, I., Ghosh, S., Mueller, K. L., Zhou, Y., Williams, C. A., Baker,971

I. T., Haynes, K. D., and Whetstone, J. R.: A Modified Vegetation Photosynthesis and972

Respiration Model (VPRM) for the Eastern USA and Canada, Evaluated With Comparison to973

Atmospheric Observations and Other Biospheric Models, Journal of Geophysical Research:974

Biogeosciences, 127, e2021JG006290, https://doi.org/10.1029/2021JG006290, 2022.975

Gu, J., Zhang, Y., Yang, N., and Wang, R.: Diurnal variability of the planetary boundary layer height976

estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492,977

https://doi.org/10.26464/epp2020042, 2020.978



40

Gurney, K. R., Chen, Y. H., Maki, T., Kawa, S. R., Andrews, A., and Zhu, Z.: Sensitivity of979

atmospheric CO2 inversions to seasonal and interannual variations in fossil fuel emissions,980

Journal of Geophysical Research: Atmospheres, 110, 2005.981

Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., and Abdul-Massih, M.: Quantification of982

fossil fuel CO2 emissions on the building/street scale for a large US city, Environmental983

science & technology, 46, 12194-12202, 2012.984

Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and de la Rue985

du Can, S.: High resolution fossil fuel combustion CO2 emission fluxes for the United States,986

Environmental science & technology, 43, 5535-5541, 2009.987

Gurney, K. R., Liang, J., O'keeffe, D., Patarasuk, R., Hutchins, M., Huang, J., Rao, P., and Song, Y.:988

Comparison of global downscaled versus bottom‐up fossil fuel CO2 emissions at the urban989

scale in four US urban areas, Journal of Geophysical Research: Atmospheres, 124,990

2823-2840, 2019.991

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen,992

Y.-H., Ciais, P., and Fan, S.: Towards robust regional estimates of CO2 sources and sinks993

using atmospheric transport models, Nature, 415, 626-630, 2002.994

Hakkarainen, J., Ialongo, I., and Tamminen, J.: Direct space‐based observations of anthropogenic995

CO2 emission areas from OCO‐2, Geophysical Research Letters, 43, 11,400-411,406, 2016.996

Han, G., Gong, W., Lin, H., Ma, X., and Xiang, Z.: Study on Influences of Atmospheric Factors on997

Vertical CO2 Profile Retrieving From Ground-Based DIAL at 1.6 μm, IEEE Transactions on998

Geoscience and Remote Sensing, 53, 3221-3234, 2014.999

Han, G., Ma, X., Liang, A., Zhang, T., Zhao, Y., Zhang, M., and Gong, W.: Performance evaluation for1000

China’s planned CO2-IPDA, Remote Sensing, 9, 768, 2017.1001

Han, G., Xu, H., Gong, W., Liu, J., Du, J., Ma, X., and Liang, A.: Feasibility Study on Measuring1002

Atmospheric CO2 in Urban Areas Using Spaceborne CO2-IPDA LIDAR, Remote Sensing,1003

10, 985, 2018.1004

Hefner, M., Marland, G., and Oda, T.: The changing mix of fossil fuels used and the related evolution1005

of CO2 emissions, Mitigation and Adaptation Strategies for Global Change, 29, 56,1006

10.1007/s11027-024-10149-x, 2024.1007

Kaminski, T., Scholze, M., Vossbeck, M., Knorr, W., Buchwitz, M., and Reuter, M.: Constraining a1008

terrestrial biosphere model with remotely sensed atmospheric carbon dioxide, Remote1009

Sensing of Environment, 203, 109-124, https://doi.org/10.1016/j.rse.2017.08.017, 2017.1010

Kawa, S. R., Mao, J., Abshire, J. B., Collatz, G. J., Sun, X., and Weaver, C. J.: Simulation studies for a1011

space-based CO2 lidar mission, Tellus B: Chemical and Physical Meteorology, 62, 759-769,1012

10.1111/j.1600-0889.2010.00486.x, 2010.1013

Kiemle, C., Ehret, G., Amediek, A., Fix, A., Quatrevalet, M., and Wirth, M.: Potential of Spaceborne1014

Lidar Measurements of Carbon Dioxide and Methane Emissions from Strong Point Sources,1015

Remote Sensing, 9, 1137, 2017.1016

Kiemle, C., Quatrevalet, M., Ehret, G., Amediek, A., Fix, A., and Wirth, M.: Sensitivity studies for a1017

space-based methane lidar mission, Atmos. Meas. Tech., 4, 2195-2211,1018

10.5194/amt-4-2195-2011, 2011.1019

Köhler, P., Guanter, L., Kobayashi, H., Walther, S., and Yang, W.: Assessing the potential of1020

sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation1021

dynamics in Amazon forests, Remote Sensing of Environment, 204, 769-785,1022



41

https://doi.org/10.1016/j.rse.2017.09.025, 2018.1023

Kort, E. A., Angevine, W. M., Duren, R., and Miller, C. E.: Surface observations for monitoring urban1024

fossil fuel CO2 emissions: Minimum site location requirements for the Los Angeles megacity,1025

Journal of Geophysical Research: Atmospheres, 118, 1577-1584,1026

https://doi.org/10.1002/jgrd.50135, 2013.1027

Lauvaux, T. and Davis, K. J.: Planetary boundary layer errors in mesoscale inversions of1028

column-integrated CO2 measurements, Journal of Geophysical Research: Atmospheres, 119,1029

490-508, https://doi.org/10.1002/2013JD020175, 2014.1030

Lauvaux, T., Miles, N. L., Deng, A., Richardson, S. J., Cambaliza, M. O., Davis, K. J., Gaudet, B.,1031

Gurney, K. R., Huang, J., O'Keefe, D., Song, Y., Karion, A., Oda, T., Patarasuk, R.,1032

Razlivanov, I., Sarmiento, D., Shepson, P., Sweeney, C., Turnbull, J., and Wu, K.:1033

High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of1034

the Indianapolis Flux Experiment (INFLUX), Journal of Geophysical Research: Atmospheres,1035

121, 5213-5236, https://doi.org/10.1002/2015JD024473, 2016.1036

Li, X., Xiao, J., and He, B.: Chlorophyll fluorescence observed by OCO-2 is strongly related to gross1037

primary productivity estimated from flux towers in temperate forests, Remote Sensing of1038

Environment, 204, 659-671, https://doi.org/10.1016/j.rse.2017.09.034, 2018.1039

Lin, J. C. and Gerbig, C.: Accounting for the effect of transport errors on tracer inversions, Geophysical1040

Research Letters, 32, https://doi.org/10.1029/2004GL021127, 2005.1041

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A1042

near-field tool for simulating the upstream influence of atmospheric observations: The1043

Stochastic Time-Inverted Lagrangian Transport (STILT) model, Journal of Geophysical1044

Research: Atmospheres, 108, https://doi.org/10.1029/2002JD003161, 2003.1045

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Grainger, C. A., Stephens, B. B.,1046

Bakwin, P. S., and Hollinger, D. Y.: Measuring fluxes of trace gases at regional scales by1047

Lagrangian observations: Application to the CO2 Budget and Rectification Airborne1048

(COBRA) study, Journal of Geophysical Research: Atmospheres, 109,1049

https://doi.org/10.1029/2004JD004754, 2004.1050

Luo, B., Yang, J., Song, S., Shi, S., Gong, W., Wang, A., and Du, L.: Target Classification of Similar1051

Spatial Characteristics in Complex Urban Areas by Using Multispectral LiDAR, Remote1052

Sensing, 14, 238, 2022.1053

Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., Gerbig, C., Munger, J.1054

W., Chow, V. Y., and Gottlieb, E. W.: A satellite-based biosphere parameterization for net1055

ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM),1056

Global Biogeochemical Cycles, 22, https://doi.org/10.1029/2006GB002735, 2008.1057

Mao, J., Ramanathan, A., Abshire, J. B., Kawa, S. R., Riris, H., Allan, G. R., Rodriguez, M.,1058

Hasselbrack, W. E., Sun, X., Numata, K., Chen, J., Choi, Y., and Yang, M. Y. M.:1059

Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed1060

multi-wavelength airborne lidar, Atmos. Meas. Tech., 11, 127-140, 10.5194/amt-11-127-2018,1061

2018.1062

Miller, J. B., Tans, P. P., and Gloor, M.: Steps for success of OCO-2, Nature Geoscience, 7, 691-691,1063

10.1038/ngeo2255, 2014.1064

Moore III, B., Crowell, S. M. R., Rayner, P. J., Kumer, J., O'Dell, C. W., O'Brien, D., Utembe, S.,1065

Polonsky, I., Schimel, D., and Lemen, J.: The Potential of the Geostationary Carbon Cycle1066



42

Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the1067

Americas, Frontiers in Environmental Science, Volume 6 - 2018, 10.3389/fenvs.2018.00109,1068

2018.1069

Myneni, R. B., Dong, J., Tucker, C. J., Kaufmann, R. K., Kauppi, P. E., Liski, J., Zhou, L., Alexeyev, V.,1070

and Hughes, M. K.: A large carbon sink in the woody biomass of Northern forests,1071

Proceedings of the National Academy of Sciences, 98, 14784-14789,1072

doi:10.1073/pnas.261555198, 2001.1073

Nehrkorn, T., Eluszkiewicz, J., Wofsy, S. C., Lin, J. C., Gerbig, C., Longo, M., and Freitas, S.: Coupled1074

weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT)1075

model, Meteorology and Atmospheric Physics, 107, 51-64, 10.1007/s00703-010-0068-x,1076

2010.1077

Nehrkorn, T., Henderson, J., Leidner, M., Mountain, M., Eluszkiewicz, J., McKain, K., and Wofsy, S.:1078

WRF Simulations of the Urban Circulation in the Salt Lake City Area for CO2 Modeling,1079

Journal of Applied Meteorology and Climatology, 52, 323-340,1080

https://doi.org/10.1175/JAMC-D-12-061.1, 2013.1081

Oda, T. and Maksyutov, S.: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission1082

inventory derived using a point source database and satellite observations of nighttime lights,1083

Atmos. Chem. Phys., 11, 543-556, 10.5194/acp-11-543-2011, 2011.1084

Patra, P. K., Hajima, T., Saito, R., Chandra, N., Yoshida, Y., Ichii, K., Kawamiya, M., Kondo, M., Ito,1085

A., and Crisp, D.: Evaluation of earth system model and atmospheric inversion using total1086

column CO2 observations from GOSAT and OCO-2, Progress in Earth and Planetary Science,1087

8, 25, 10.1186/s40645-021-00420-z, 2021.1088

Pei, Z., Han, G., Ma, X., Shi, T., and Gong, W.: A Method for Estimating the Background Column1089

Concentration of CO2 Using the Lagrangian Approach, IEEE Transactions on Geoscience1090

and Remote Sensing, 60, 1-12, 10.1109/TGRS.2022.3176134, 2022.1091

Pillai, D., Gerbig, C., Kretschmer, R., Beck, V., Karstens, U., Neininger, B., and Heimann, M.:1092

Comparing Lagrangian and Eulerian models for CO2 transport – a step towards Bayesian1093

inverse modeling using WRF/STILT-VPRM, Atmos. Chem. Phys., 12, 8979-8991,1094

10.5194/acp-12-8979-2012, 2012.1095

Rayner, P. J. and O'Brien, D. M.: The utility of remotely sensed CO2 concentration data in surface1096

source inversions, Geophysical Research Letters, 28, 175-178,1097

https://doi.org/10.1029/2000GL011912, 2001.1098

Refaat, T. F., Singh, U. N., Yu, J., Petros, M., Remus, R., and Ismail, S. J. A. O.: Double-pulse 2-μm1099

integrated path differential absorption lidar airborne validation for atmospheric carbon1100

dioxide measurement, 55, 4232-4246, 2016.1101

Reuter, M., Buchwitz, M., Hilker, M., Heymann, J., Schneising, O., Pillai, D., Bovensmann, H.,1102

Burrows, J. P., Bösch, H., Parker, R., Butz, A., Hasekamp, O., O'Dell, C. W., Yoshida, Y.,1103

Gerbig, C., Nehrkorn, T., Deutscher, N. M., Warneke, T., Notholt, J., Hase, F., Kivi, R.,1104

Sussmann, R., Machida, T., Matsueda, H., and Sawa, Y.: Satellite-inferred European carbon1105

sink larger than expected, Atmos. Chem. Phys., 14, 13739-13753,1106

10.5194/acp-14-13739-2014, 2014.1107

Roten, D., Lin, J. C., Kunik, L., Mallia, D., Wu, D., Oda, T., and Kort, E. A.: The Information Content1108

of Dense Carbon Dioxide Measurements from Space: A High-Resolution Inversion Approach1109

with Synthetic Data from the OCO-3 Instrument, Atmos. Chem. Phys. Discuss., 2022, 1-43,1110



43

10.5194/acp-2022-315, 2022.1111

Schwandner, F. M., Gunson, M. R., Miller, C. E., Carn, S. A., Eldering, A., Krings, T., Verhulst, K. R.,1112

Schimel, D. S., Nguyen, H. M., Crisp, D., O’Dell, C. W., Osterman, G. B., Iraci, L. T., and1113

Podolske, J. R.: Spaceborne detection of localized carbon dioxide sources, Science, 358,1114

eaam5782, doi:10.1126/science.aam5782, 2017.1115

Shan, Y., Liu, J., Liu, Z., Xu, X., Shao, S., Wang, P., and Guan, D.: New provincial CO2 emission1116

inventories in China based on apparent energy consumption data and updated emission1117

factors, Applied Energy, 184, 742-750, 2016.1118

Shan, Y., Guan, D., Zheng, H., Ou, J., Li, Y., Meng, J., Mi, Z., Liu, Z., and Zhang, Q.: China CO21119

emission accounts 1997–2015, Scientific Data, 5, 170201, 10.1038/sdata.2017.201, 2018.1120

Shekhar, A., Chen, J., Paetzold, J. C., Dietrich, F., Zhao, X., Bhattacharjee, S., Ruisinger, V., and Wofsy,1121

S. C.: Anthropogenic CO2 emissions assessment of Nile Delta using XCO2 and SIF data1122

from OCO-2 satellite, Environmental Research Letters, 15, 095010,1123

10.1088/1748-9326/ab9cfe, 2020.1124

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet,1125

M., Bousquet, P., Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko, N., Lloyd, J.,1126

Jordan, A., Heimann, M., Shibistova, O., Langenfelds, R. L., Steele, L. P., Francey, R. J., and1127

Denning, A. S.: Weak Northern and Strong Tropical Land Carbon Uptake from Vertical1128

Profiles of Atmospheric CO2, Science, 316, 1732-1735, doi:10.1126/science.1137004, 2007.1129

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., and Magney, T.: Overview of1130

Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2:1131

Retrieval, cross-mission comparison, and global monitoring for GPP, Remote Sensing of1132

Environment, 209, 808-823, https://doi.org/10.1016/j.rse.2018.02.016, 2018.1133

Tomohiro Oda, S. M.: ODIAC Fossil Fuel CO2 Emissions Dataset(Version ODIAC2024), Center for1134

Global Environmental Research, National Institute for Environmental Studies,1135

DOI:10.17595/20170411.001. (Reference date: 2022/06-2023/04), 2015.1136

Toon, G., Blavier, J.-F., Washenfelder, R., Wunch, D., Keppel-Aleks, G., Wennberg, P., Connor, B.,1137

Sherlock, V., Griffith, D., Deutscher, N., and Notholt, J.: Total Column Carbon Observing1138

Network (TCCON), Advances in Imaging, Vancouver, 2009/04/26, JMA3,1139

Turner, A. J., Jacob, D. J., Benmergui, J., Brandman, J., White, L., and Randles, C. A.: Assessing the1140

capability of different satellite observing configurations to resolve the distribution of methane1141

emissions at kilometer scales, Atmos. Chem. Phys., 18, 8265-8278,1142

10.5194/acp-18-8265-2018, 2018.1143

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D.1144

C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution1145

of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem.1146

Phys., 10, 11707-11735, 10.5194/acp-10-11707-2010, 2010.1147

Vogel, F. R., Thiruchittampalam, B., Theloke, J., Kretschmer, R., Gerbig, C., Hammer, S., and Levin, I.:1148

Can we evaluate a fine-grained emission model using high-resolution atmospheric transport1149

modelling and regional fossil fuel CO2 observations?, Tellus B: Chemical and Physical1150

Meteorology, 65, 18681, 10.3402/tellusb.v65i0.18681, 2013.1151

Wang, H., Jiang, F., Wang, J., Ju, W., and Chen, J. M.: Terrestrial ecosystem carbon flux estimated1152

using GOSAT and OCO-2 XCO2 retrievals, Atmos. Chem. Phys., 19, 12067-12082,1153

10.5194/acp-19-12067-2019, 2019.1154



44

Wang, J. S., Kawa, S. R., Eluszkiewicz, J., Baker, D. F., Mountain, M., Henderson, J., Nehrkorn, T.,1155

and Zaccheo, T. S.: A regional CO2 observing system simulation experiment for the1156

ASCENDS satellite mission, Atmos. Chem. Phys., 14, 12897-12914,1157

10.5194/acp-14-12897-2014, 2014.1158

Wang, Q., Mustafa, F., Bu, L., Zhu, S., Liu, J., and Chen, W.: Atmospheric carbon dioxide1159

measurement from aircraft and comparison with OCO-2 and CarbonTracker model data,1160

Atmos. Meas. Tech., 14, 6601-6617, 10.5194/amt-14-6601-2021, 2021.1161

Watson, A. J., Schuster, U., Bakker, D. C. E., Bates, N. R., Corbière, A., González-Dávila, M.,1162

Friedrich, T., Hauck, J., Heinze, C., Johannessen, T., Körtzinger, A., Metzl, N., Olafsson, J.,1163

Olsen, A., Oschlies, A., Padin, X. A., Pfeil, B., Santana-Casiano, J. M., Steinhoff, T.,1164

Telszewski, M., Rios, A. F., Wallace, D. W. R., and Wanninkhof, R.: Tracking the Variable1165

North Atlantic Sink for Atmospheric CO2, Science, 326, 1391-1393,1166

doi:10.1126/science.1177394, 2009.1167

Wei, D., Reinmann, A., Schiferl, L. D., and Commane, R.: High resolution modeling of vegetation1168

reveals large summertime biogenic CO2 fluxes in New York City, Environmental Research1169

Letters, 17, 124031, 10.1088/1748-9326/aca68f, 2022.1170

Winbourne, J. B., Smith, I. A., Stoynova, H., Kohler, C., Gately, C. K., Logan, B. A., Reblin, J.,1171

Reinmann, A., Allen, D. W., and Hutyra, L. R.: Quantification of Urban Forest and Grassland1172

Carbon Fluxes Using Field Measurements and a Satellite-Based Model in Washington1173

DC/Baltimore Area, Journal of Geophysical Research: Biogeosciences, 127, e2021JG006568,1174

https://doi.org/10.1029/2021JG006568, 2022.1175

Wu, D., Lin, J. C., Duarte, H. F., Yadav, V., Parazoo, N. C., Oda, T., and Kort, E. A.: A model for urban1176

biogenic CO2 fluxes: Solar-Induced Fluorescence for Modeling Urban biogenic Fluxes1177

(SMUrF v1), Geosci. Model Dev., 14, 3633-3661, 10.5194/gmd-14-3633-2021, 2021.1178

Wu, D., Lin, J. C., Fasoli, B., Oda, T., Ye, X., Lauvaux, T., Yang, E. G., and Kort, E. A.: A Lagrangian1179

approach towards extracting signals of urban CO2 emissions from satellite observations of1180

atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model1181

(“X-STILT v1”), Geosci. Model Dev., 11, 4843-4871, 10.5194/gmd-11-4843-2018, 2018.1182

Xiang, C., Ma, X., Zhang, X., Han, G., Zhang, W., Chen, B., Liang, A., and Gong, W.: Design of1183

Inversion Procedure for the Airborne CO2-IPDA LIDAR: A Preliminary Study, IEEE Journal1184

of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 11840-11852,1185

10.1109/JSTARS.2021.3127564, 2021.1186

Ye, X., Lauvaux, T., Kort, E. A., Oda, T., Feng, S., Lin, J. C., Yang, E. G., and Wu, D.: Constraining1187

Fossil Fuel CO2 Emissions From Urban Area Using OCO-2 Observations of Total Column1188

CO2, Journal of Geophysical Research: Atmospheres, 125, e2019JD030528,1189

https://doi.org/10.1029/2019JD030528, 2020.1190

Zeng, J.: A Data-driven Upscale Product of Global Gross Primary Production, Net Ecosystem1191

Exchange and Ecosystem Respiration, ver.2020.2, Center for Global Environmental Research,1192

NIES, DOI:10.17595/20200227.001, (Reference date: 2019/01-2019/12), 2020.1193

Zhang, H., Han, G., Chen, W., Pei, Z., Liu, B., Liu, J., Zhang, T., Li, S., and Gong, W.: Validation1194

Method for Spaceborne IPDA LIDAR XCO2 Products via TCCON, IEEE Journal of Selected1195

Topics in Applied Earth Observations and Remote Sensing, 17, 16984-16992,1196

10.1109/JSTARS.2024.3418028, 2024.1197

Zhu, Y., Liu, J., Chen, X., Zhu, X., Bi, D., and Chen, W.: Sensitivity analysis and correction algorithms1198



45

for atmospheric CO2 measurements with 1.57-µm airborne double-pulse IPDA LIDAR, Opt.1199

Express, 27, 32679-32699, 10.1364/OE.27.032679, 2019.1200

Zhu, Y., Yang, J., Chen, X., Zhu, X., Zhang, J., Li, S., Sun, Y., Hou, X., Bi, D., Bu, L., Zhang, Y., Liu, J.,1201

and Chen, W.: Airborne Validation Experiment of 1.57-μm Double-Pulse IPDA LIDAR for1202

Atmospheric Carbon Dioxide Measurement, Remote Sensing, 12, 1999, 2020.1203

1204


