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Abstract. Satellite observations of the total column dry-air carbon dioxide, (XCO2) have been proven to
support the monitoring and constraining of fossil fuel COz (ffCO2) emissions at the urban scale. We
utilized the XCO; retrieval data from China’s first laser carbon satellite dedicated to comprehensive
atmospheric environmental monitoring, DQ-1, in conjunction with a high-resolution transport model
and a Bayesian inversion system, to establish a system for quantifying and detecting CO> emissions in
urban areas. Additionally, we quantified the impact of uncertainties from satellite measurements,
transport models, and biospheric fluxes on emission inversions. To address uncertainties from the
transport model, we introduced random wind direction and speed errors to the ffCO> plumes and
conducted 10* simulations to obtain the error distribution. In our pseudo-data experiments, the
inventory, overestimated fossil fuel emissions for Beijing and Riyadh, while underestimating emissions
for Cairo. Specifically, we simulated Beijing and leveraged DQ-1’s active remote sensing capabilities,
utilizing its rapid day-night revisit ability. We assessed the impact of daily biospheric fluxes on ffXCO>
enhancements and further analyzed the diurnal variations of biospheric flux impacts on local XCO>

enhancements using three-hourly average NEE data. The results of a case study indicate, that a

significant proportion of local XCO, enhancements are notably influenced by biospheric COa
variations, potentially leading to substantial biases in ff CO2 emission estimates. Moreover, considering
biospheric flux variations separately under day and night conditions can improve simulation accuracy
by 20-70%. With appropriate representations of uncertainty components and a sufficient number of
satellite tracks, our constructed system can be used to quantify and constrain urban ffCO, emissions

effectively.

1 Introduction

More than 170 countries have signed the Paris Agreement, vowing to keep the global average
temperature increase within 2 degrees Celsius in this century. Accurate carbon accounting is the basis
for any mitigation measures. Over 70% of the anthropogenic CO:» emissions are from urban
areas(Agency, 2009; Birol, 2010). It is thus critical to develop effective means to estimate urban CO;
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emissions accurately. “bottom-up” (inventory) approaches have shown good performances in
developed countries such as U.S.A and E.U(Crippa et al., 2018; Gurney et al., 2009), However, huge
uncertainties in estimation of anthropogenic CO, emissions are inevitable in developing countries such
as China and India because of their rapidly growing, economies and imperfect monitoring systems. For
example, the discrepancy between different estimations of CO> emissions of China exceeded 1,770
million tones (20%) in 2011(Shan et al., 2016), which is approximately equal to the Russian
Federation’s total emissions in 2011(Shan et al., 2018), Therefore, “top-down” (inverse) approaches
could play a more significant role in those countries to estimate and update carbon fluxes. In addition,
carbon emission inventories with a spatial resolution of 0.1° are available at the global scale, however,
Oda et al. (2011) warned that available information is insufficient to fully evaluate the relationship
between CO; emission and the proxy data, such as population and nightlight(Oda and Maksyutov,
2011), Consequently, associated errors would increase at finer resolutions. On the other hand, the
anthropogenic carbon emissions are assumed to be known quantities and are important as reference for

analyzing a budget of the three fluxes (These three fluxes reflect the respective contributions to

atmospheric CO. concentrations from fossil fuel emissions, ocean—atmosphere exchange, and a

terrestrial biosphere assumed to be net carbon neutral.)(Gurney et al., 2005; Gurney et al., 2002),

Therefore, there is an urgent need to develop novel methods to acquire more robust and accurate
surface CO; fluxes with fine resolution in urban areas where the majority of anthropogenic CO:
emissions are located,

The atmospheric inversion technique has been widely used to retrieve carbon fluxes at large
geographic scales(Bakwin et al., 2004; Ballantyne et al., 2012; Bousquet et al., 1999; Gerbig et al.,
2003; Myneni et al., 2001; Stephens et al., 2007; Watson et al., 2009), by using measurements from the

network of ground-based greenhouse gas measurements, Dense and accurate observations of CO»

dry-air mixing ratios (XCOz) are needed to inverse carbon fluxes at a finer geographic scale(Kaminski
et al, 2017; Rayner and O'brien, 2001), enabling smaller-scale sources emitting CO, into the
atmosphere to be better quantified(Eldering et al., 2017a), Remote sensing from space is undoubtedly
the most appropriate means to obtain dense CO, observations rapidly in large extents(Buchwitz et al.,
2017; Ehret et al., 2008), GOSAT and OCO-2 provide us an opportunity to retrieve column-average

CO2 (XCO) globally except in Polar Regions. Recent studies have demonstrated the promising
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potential of OCO-2 to help scientists identify localized CO2 sources(Schwandner et al., 2017), estimate

regional CO: fluxes (Eldering et al., 2017a) and map the net CO2 uptake by the biosphere(Kohler et al.,

2018; Li et al., 2018; Sun et al., 2018), It is still a challenging mission to obtain accurate estimates of
CO; fluxes using XCO, products, especially in urban areas, because the signals received by
OCO-2/GOSAT need to be attributed unambiguously to variations in atmospheric CO2 concentration,
as opposed to variations caused by environmental factors such as aerosols and clouds(Miller et al.,
2014), Along with the success of passive remote sensing of CO2, U.S.A and China ambitiously, planned
to send their LIDAR (Light Detection and Ranging) sensors into the orbit to realize monitoring CO; in
all latitudes and in nights(Abshire et al., 2018; Han et al., 2017), Effect of aerosols and thin clouds on
retrievals of XCO:z can be eliminate through a differential process of signals from two very close
wavelengths(Amediek et al., 2008; Han et al., 2014; Mao et al., 2018), Therefore, a smaller bias of

retrievals of CO2-IPDA (Integrated Path Differential Absorption) LIDAR is expected comparing with

the passive remote sensing, which is beneficial for inversion of CO: fluxes. Previous studies had
focused on performance evaluation of CO2-IPDA LIDAR; in terms of systematic errors, random errors
as well as the coverage(Ehret et al., 2008; Han et al., 2017; Kawa et al., 2010), There are evident
differences between XCOz products of OCO-2 and those of the forthcoming CO,-IPDA LIDAR in
terms of coverage patterns(Kawa et al., 2010; Kiemle et al., 2011),

Though positive relationship between satellite-derived XCO, anomalies/enhancements and CO,

emissions has been witnessed(Hakkarainen et al., 2016), it is by no means a predetermined conclusion

that CO, sources and sinks can now be measured from space at high resolution(Miller et al., 2014).

Atmospheric transport models are indispensable to build a bridge between CO» sources/sinks and

measured concentrations(Rayner and O'brien, 2001). Stochastic Time-Inverted Lagrangian Transport

(STILT) was invented in 2003 (Lin et al., 2003) and soon was utilized to inverse fluxes of trace

gases(Gerbig et al., 2003; Lin et al., 2004). In 2010, Weather Research and Forecasting (WRF) model

was coupled with STILT (WRF-STILT), offering an attractive tool for inverse flux estimates(Nehrkorn

et al., 2010). Since then, several studies used this tool to model CO» distribution and inverse CO» fluxes

using in-situ measurements(Kort et al., 2013; Nehrkorn et al., 2013; Pillai et al., 2012; Vogel et al.,

2013) as well as satellite observations(Reuter et al., 2014; Turner et al., 2018; Wang et al., 2014; Che et

al., 2024). Recently, STILT was further updated to facilitate modeling of trace gases with a fine
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scale(Fasoli et al., 2018). The key product provided by WRF-STILT is the “footprint” which describes

the sensitivity of measurements (receptors) to surface fluxes in upwind regions. Then, the Bayesian

inversion method can be used along with the footprint and a-priori surface fluxes to estimate

a-posterior surface fluxes,

Unlike the passive remote sensing of CO: that can scan perpendicular to the direction of the satellite
orbit, IPDA LIDAR in practice has sensors that only operate in point mode due to the unaffordable
power consumption and cost of implementing a scan mode. Such a difference can be ignored when one
tries to estimate large scale CO; fluxes by using satellite-derived XCO> products with a resolution of
1° (or coarser). However, specific inversion methods, which take the characteristics of LIDAR
products into considerations, are urgently needed for inversion of fine scale CO: fluxes(Kiemle et al.,
2017). Our previous work has already confirmed that it is feasible to retrieve XCO» in urban areas

using the ACDL_(Aecrosols and Carbon Dioxide Lidar) which is onboard, on the Atmospheric

Environment Monitoring Satellite (AEMS) DQ-1 of China(Han et al., 2018). In this work, an inversion
framework is used to inverse fine scale (~1 km/0.01° ) CO; fluxes of urban areas using pseudo XCO»
observations from ACDL. Our main objective is to determing, the ability and potential of ACDL to help
us estimate anthropogenic carbon emission in urban areas. In turn, results of the performance
evaluation will be the justification for improve the configuration of the ongoing ACDL and its
successor which would be sent to the orbit in just 2-3 years after AEMS.

Jn this study, we propose a framework based on DQ-1 XCO; data to periodically assess urban-scale
fossil fuel CO, emissions. We employ Observing System Simulation Experiments (OSSEs) to
investigate the performance of DQ-1's ACDL XCOz products in improving CO: flux estimation at an
enhanced spatial resolution of 0.01° x 0.01° over urban areas. The OSSE consists of a forward
simulation module and an inversion framework. The forward module utilizes WRF modeling for

high-resolution simulations, allowing us to capture fine-scale trace gas transport, characteristics and

variations. We simulate pseudo-measurements and corresponding errors based on hardware
configurations, environmental parameters, and physical process simulations within this module. The
inversion framework relies on footprints calculated, by WRF-STILT to estimate urban-scale emission
scaling factors using Bayesian inversion methods. The study also accounts for the impacts of

measurement errors, transport model uncertainties, and biosphere flux uncertainties on emission
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estimation uncertainty throughout the OSSE. Initially, we evaluate emission estimation uncertainty
related to transport model and measurement errors, focusing on three cities: Beijing, Riyadh, and Cairo,
each with distinct topographical influences. Riyadh and Cairo exhibit negligible local biosphere flux
impacts on emission estimates due to relatively flat terrain and stable wind fields, categorizing them as
"plume cities" where CO2 emissions are typically captured in plume forms due to these conditions(Ye
et al., 2020), Building on these simulations, we conduct OSSEs to assess the potential of using XCO»
data from multiple DQ-1 orbits to track urban emissions regularly. Leveraging DQ-1's unique day-night
revisit capability, we also evaluate uncertainties arising from local biosphere flux variations in Beijing.
Unlike previous inversion studies using OCO-2/3, which primarily sample during daytime, DQ-1's
day-night orbit allows for more evenly distributed temporal sampling. Furthermore, combining DQ-1's
day-night revisit capability, we introduce for the first time an analysis of how biosphere flux variations
between day and night affect emission estimates using forward simulations and Bayesian inversion.

Lastly, we summarize the significance of future satellite observations in monitoring urban emissions.

2 Data and method

2.1 ACDL XCO: products

In order to design a device similar to the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
onboard the CALIPSO satellite, the design of DQ-1 was initially proposed in 2012. It was officially
approved in 2017. Distinct from other environmental monitoring satellites, a notable and innovative
highlight of DQ-1 is the integration of a lidar payload for space-based top-down CO; detection, known
as ACDL. In subsequent developments, ACDL underwent a series of laboratory prototype
developments (Zhu et al., 2019),and airborne prototype testing missions(Wang et al., 2021; Xiang et al.,
2021; Zhu et al., 2020), Finally, ACDL was launched into a near-Earth sun-synchronous orbit at an

altitude of approximately 705 kilometers on April 18, 2022. DQ-1, as a sun-synchronous orbiting

satellite, has a stable daily transit time of approximately 1 p.m. local time during the day and 1 a.m.

local time at night. ACDL began data collection in late May 2022 and officially commenced operations.
This study primarily utilizes data from June 2022 to April 2023 for further research.

ACDL employs standard IPDA lidar technology, using differential absorption methods to acquire *
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149 column concentrations of atmospheric carbon dioxide (CO). A detailed description of the XCO»

150  detection algorithms and products is in preparation. In this paper, we briefly introduce its detection
151 principles. ACDL emits a pair of nearly simultaneous observation signals, one with a wavelength
152 located at the strong absorption position of the R16 line in the CO, spectrum (on-line wavelength
153 1572.024nm) and the other at a weak absorption position of the same line (off-line wavelength
154 1572.085nm). The on-line and off-line wavelengths are stabilized at 6361.225 cm-1 and 6360.981 cm-1,
155 corresponding to 1572.024 nm and 1572.085 nm, respectively. This slight wavelength difference
156  enables ACDL to counteract interference from aerosols and other molecules, excluding water vapor,
157

through the differential process of the reflected signals. The detection of XCO, by ACDL is calculated

158 based on specific algorithms (see Section 2.4.1).
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160 Figure 1: the schematic diagram for DQ-1's detection principle

161 Figure 1 illustrates the detection principle of DQ-1. The XCO: products generated by ACDL are * ‘ Formatted: Indent: First line: 1 ch
162 similar to those of GOSAT, adopting a point sampling mode. The lidar operates in nadir observation

163 mode, with approximately one 70-meter footprint observed every 350 meters along the track.

164 According to Equation 1, we calculate XCO: by directly using the integrated, weighting function ‘ ‘ Deleted: normalized

165 (IWF). Significant differences in XCO, measurements can be observed between ACDL and OCO-2/3.

166 Currently, passive remote sensing satellites like OCO-2/3 and GOSAT estimate XCO: by measuring the

167 solar spectrum and using a priori information guided by optimal estimation theory to derive XCOx(p),

168

ultimately obtaining XCOx(Miller et al., 2014). In contrast to these traditional passive optical remote
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sensing satellites, ACDL does not 'estimate’ xCOx(p) but directly 'calculates' the weighted average
column concentration(Zhang et al., 2024), During the integration phase of ACDL's development, we
evaluated the WF(Weighting Function) shapes of various on-line wavelengths and selected one that
responds strongly near the surface and weakly at higher altitudes(Han et al., 2017), This design allows
changes in surface CO:2 concentration, driven by surface CO: fluxes, to be more prominently reflected
in the column concentration. Therefore, this WF enhances the ability to identify surface CO; variations
and provides more information for subsequent CO2 flux inversion.

Unlike the XCO» products from passive satellites such as OCO-2/3, the XCO» product from DQ-1

(hereafter referred to as XCO2““ to distinguish it from passive satellite XCO» products) is derived using

the differential between on-wavelength (strong CO absorption) and off-wavelength (weak CO»

absorption) measurements. In this context, XC02“" is obtained through the differential of the lidar

signals and integration weighting functions described in equations 1 and 2. Here, WF(p) represents the

lidar signal and Prepresents the pressure:

V.-V
2 . ln( off on—0 )
XC02Lidar — I/:"' ) I/”/f -0 1

£

| WF(p)p

p_surface

Here, V. and v, represent the reflected signal energies at the on-wavelength and off-wavelength,

respectively, while ¥, and v, . denote the transmitted signal energies. p surface indicates the

atmospheric pressure at the laser ground point, and pP_#0p represents the pressure at the TOA of the

atmosphere.

The denominator of Equation 1 represents the integration weighting function, as detailed in the study

by (Refaat et al., 2016):
WE(D)=AG,, (s s D) Ny (D) >

Here. Ao, .(4,,.4,:.p) denote the CO, differential absorption cross-sections at the on-wavelength and

off-wavelength, respectively. N, represents the number of dry air molecules per unit volume in the
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pressure layer. This formula allows for the construction of the relationship between XC02“ and the

CO; profile CO2(p) :

p_toa
) _COXApWF(p) wF WF
XC02" — '[”‘",”"f; EW) cor(p) + PEP) coap,) .. 3
j'p ;meWF(p)dp IWF IWF

2.2 Study Area

Considering the available orbital tracks for DQ-1 inversion, vegetation coverage, and the complexity of
meteorological conditions, this paper selects three cities and regions to highlight the different sources
of uncertainty in emission inversion and the inversion capability of DQ-1. The selected cities share the
following characteristics: 1) high fossil fuel emissions; 2) typical "plume cities," (Ye et al., 2020)
characterized by ffXCOa enhancements distributed in plume forms(Deng et al., 2017), Riyadh, with a
population of 8 million, and Cairo, with a population of 20 million, have significantly weaker biosphere
contributions compared to Beijing. In subsequent research, it is considered that the spatial gradient of
biosphere CO> flux can be ignored compared to local fossil fuel emissions.

To assess the impact of biosphere flux uncertainty on the inversion process and separately evaluate
the impact of daytime and nighttime biosphere flux on the simulated local XCO, enhancement, we
selected Beijing, the capital city of China, with a population of approximately 21.5 million. Beijing is
not only the political center of China but also one of the most populous cities. Compared to its
surrounding areas, Beijing has relatively less vegetation. Surrounding cities might have
better-preserved natural ecological environments and more abundant vegetation cover due to less
industrialization and urbanization(Che et al., 2022). For instance, the mountainous and suburban areas
around Beijing may have more forests, grasslands, and farmlands, whereas green spaces within Beijing
are often limited to parks, green belts, and a few nature reserves. As a city with high fossil fuel
emissions and active biosphere exchange, Beijing is well-suited for studying the impact of biosphere

flux uncertainty on emission estimates.
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2.3 Atmospheric Model Setting

2.3.1 WRF-STILT

The spatial heterogeneity of emissions and dense point sources (such as power plants) lead to a
complex spatial structure of urban emissions, resulting in intricate ffCO, plumes combined with local
atmospheric dynamics. To explore fine-scale urban emission patterns, this study employs the
WRF-STILT model (WRF: Weather Research and Forecasting, STILT: Stochastic Time-Inverted
Lagrangian Transport). The STILT Lagrangian model driven by WRF meteorological fields is
characterized by a realistic treatment of convective fluxes and mass conservation properties, which are
crucial for accurate top-down estimates of CO2 emissions.

In this study's application of STILT, hourly outputs from version 4.0 of WRF are used to provide
high-resolution meteorological fields, with the model grid configured to 51 vertical (eta) layers. The
6-hourly NCEP FNL (Final) global operational analysis data with a resolution of 1° are used as initial
and boundary conditions for meteorological and land surface fields to provide the initial and boundary
conditions for WRF runs. The simulations run for 30 hours, but only the 7th to 30th hours of each
simulation are used to avoid spin-up effects in the first 6 hours.

Each city uses the same one-way WRF nesting at 27 km, 9 km, and 3 km resolutions, with Riyadh
( 23.7625°N,45.7625°E - 25.4375°N,27.4375°E ), Cairo ( 29.1625°N,30.4125°E - 30.8375°N,32.0875°E ), and
Beijing (39.4°N,115.5°E - 41.075°N,117.175°E ) having their innermost regions used to filter DQ-1's orbital
data. The study area for STILT is set to be smaller than the innermost WRF region to eliminate the
marginal effects of WRF. Footprints quantitatively describe the contribution of surface fluxes from
upwind areas to the total mixing ratio at specific measurement locations, with units of mixing ratio per
unit flux. The footprint used in lidar satellite inversions is different from that used in general optical

satellites, as detailed in Section 2.4.1. STILT (In this study, we used the STILT model, version 2, to

simulate atmospheric transport processes.) is configured to release 500 particles per receptor each time,

with forward dispersion over 24 hours. The particle release heights for STILT are set within the range
of 50-1000 m, with releases every 50 m, and 1000-2000 m, with releases every 100 m, the spatial

resolution of the STILT simulations is 1 km x 1 km. Generally, as MAXAGL increases from 1 km to 2

km, the urban enhancement increases and then stabilizes(Wu et al., 2018),,
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2.3.2 Inventory of Fossil Fuel Emissions

This article uses The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) which is a global *
high-resolution fossil fuel carbon dioxide emissions (ffCO2) data product(Tomohiro Oda, 2015), The
2023 version of ODIAC (ODIAC2023, 2000-2022) is based on the Appalachian State University's
Carbon Dioxide Information Analysis Center (CDIAC) team's(Gilfillan and Marland, 2021; Hefner et
al., 2024) ymost recent national ffCO, estimates (2000-2020). The ODIAC emissions inventory ‘
provides lkmxllan global monthly average ffCO,. The spatial decomposition of emissions is
accomplished using a variety of spatial proxy data, such as the geographic location of point sources,
satellite observations of night lights, and airplane and ship tracks. Seasonality of emissions was
obtained from the CDIAC monthly gridded data product(Andres et al., 2011).and supplemented using ‘
the Carbon Monitor product (2020-2022, https://carbonmonitor.org/). In this paper, monthly data from
ODIAC are time-allocated, and neither the subsequent modeling nor the pseudo-data take into account

the daily and weekly time-variation of the ACDL, product. ‘
2.3.3 Background XCO:

To extract the XCO2 enhancement for DQ-1 inversion, we define XCO> enhancement as entirely driven
by fossil fuel emissions. A classic method for extracting orbital background concentrations involves
selecting another "clean" orbit (minimally influenced by fossil fuel emissions) that is spatially and
temporally close, and using averaging or linear regression to approximate a background concentration
for the orbit under study. In this study, due to the fine-scale urban area emissions inversion, the study
area is small, making it challenging to find another clean orbit for calculating the background
concentration.

Previous studies have used inversion methods to derive background concentrations for orbits(Pei et
al., 2022), but these typically yield a background concentration for a region. These methods usually
produce a value unaffected by geographic location within a small area. However, for each orbit we
study, a single, constant background concentration is clearly unreasonable. Therefore, based on
previous research, we designed a simple and quick method to extract background concentrations,
generating a background line for each orbit of interest., .

To derive ffXCO2, which represents the enhancement of XCO2 attributed to fossil fuel emissions
10
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we need to subtract the background XCO2 from the observational data obtained by DQ-1. In the study

(Ye et al., 2020), XCO2 is decomposed into two components: XCO02;,.,y_and XCO02,., . Here

XCO2,,,4_represents the non-local trend, while the standard deviation 0y,._of XC02,,., indicates

variations at the local scale. We filtered the XCO2 samples with XC02 < XCO2,ppq +0.50,cq; -

These filtered data are designated as "background samples" (represented by blue triangles in Figures 3,

5, 7) due to their lower spatial variability at the local scale compared to samples affected by urban

ffCO2 emissions. We then performed linear regression based on the "background samples" to

recalculate the linear regression line, referred to as the "background line." This "background line"

method accounts for spatial trends in the background data. Unlike Ye et al. (2020), we utilized the

low-frequency (approximate) coefficients obtained from DWT to characterize,

2.3.4 Biogenic,Carbon Flux

We specifically considered the influence of biogenic flux on the emission constraints in urban areas for
DQ-1. Two open-source NEE datasets were utilized in our study. The first dataset is derived from the
Carnegie-Ames-Stanford Approach-Global Fire Emissions Database Version 3 (CASA-GFED3)
model(Van Der Werf et al., 2010), which provides 3-hourly average net ecosystem exchange (NEE) of
carbon. This dataset incorporates biogenic fluxes as well as fluxes associated with biomass burning
emissions, offering a global coverage of 3-hourly average NEE.

Additionally, we considered the ODIAC dataset, which provides advanced data-driven products on
global primary production, net ecosystem exchange, and ecosystem respiration(Zeng, 2020). The
ODIAC dataset offers 10-day average global NEE data and utilizes extensive ecosystem indices from
MODIS and ERAS to deliver more precise data.

According to the study by(Ye et al., 2020), to better describe the diurnal variations and spatial
distribution of biogenic fluxes, the MODIS green vegetation fraction (GVF) was used to downscale the
3-hourly NEE from the original grid resolutions (CASA NEE 0.5° x 0.625° and ODIAC NEE 0.1° x
0.1°) to the WRF domain resolutions (27, 9, and 3 km). This method assumes a linear relationship
between carbon uptake and release and the vegetation canopy coverage.

Our application of these datasets and downscaling methods enables a more accurate representation of

biogenic flux contributions to urban carbon emissions. By integrating high-resolution biogenic flux

11
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data, we can improve the precision of emission inventories and enhance our understanding of urban
carbon dynamics. This approach allows us to better inform urban planning and policy-making aimed at

reducing carbon footprints and mitigating climate change impacts.

2.4 Emission Optimization Method

2.4.1 X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”)

XSTILT incorporates satellite profiles and provides comprehensive uncertainty estimates of urban

XCO2 enhancements on a per sounding basis(Wu et al., 2018), The simulated enhancement in CO2
emissions due to fossil fuels, AC0O2 .,,(p)=< ffCO2, foot(h) >, can be interpolated from the modeling
results of CO, fluxes and tracer-tagged footprints. Therefore, a relationship between CO: fluxes

and XCO244" is established:

Lidar _ Lidar _W(pl) WF(pZ)
XCO™ — X0 s = < JCO foor(h) >+ =+ < fFCO2, foor(hy) >+ 4

Here, xco2%, — =xco2" - xco2k“ represents the XCO, enhancement extracted from DQ-1

JCO2.0bs background

observational data, and x co 2 i represents the background concentration selected from the DQ-1

background

orbit (detailed in Section 2.3.3). The symbol <>denotes the inner product operator, ffCO2 is the prior
emission flux, and foot(h,) represents the simulated footprints at different altitude layers. This formula
establishes the mathematical foundation for inversion.

By integrating footprints from different release heights (Section 2.3.1 explains the selection of STILT

release heights), we further simplify the above equation. Here, we define xco2%ir as the XCO;

11CO2 sim

enhancement simulated by the atmospheric transport model.

XCO244,  —< XSTILT™", ffCO2 > E
S WF(p,
XSTILT"* =" 2D oorin,) 6

S wrE
Here, we define XSTILT " as the column-averaged footprint, corresponding to the column-averaged
COz concentration. The inner product of the column-averaged footprint and the prior emission flux
yields the simulated XCO> enhancement. Thus, we can optimize the fossil fuel CO2 (ffCO2) emission
parameters using the simulated and observed XCO, enhancements to achieve the best consistency
between the model and observed increments. By achieving this optimization, we ensure that the model
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accurately reflects the observed data, providing a reliable basis for further studies and policy-making.

Considering previous studies that used OCO-2/3 and GOSAT for inversion(Patra et al., 2021; Roten *

et al., 2022; Wang et al., 2019), we selected one of these inversion methods (Ye et al., 2020) for

comparison with DQ-1 inversions and validation using TCCON site data (see Section 3.2). The

posterior scaling factor was applied to the ODIAC inventory flux to simulate XCO, at TCCON site

locations, and these simulations were compared with TCCON data, assumed to be the true XCO, at

those locations. ACDL observations require the use of the IWF to derive X-STILT footprints, which

differ from those used for TCCON sites. The simulated XCO, for TCCON was obtained using an

integration method provided by TCCON, with 51 altitude levels corresponding to the input levels of

our STILT model. The footprints from these 51 altitude levels were integrated using the integration

operator integration_operator x2019 and the averaging kernel ak_xCO» to obtain the simulated XCO».

50

(b)

40

0

Altitude (km)

(c)

0.002 0.003 0.004
Normalized WF'

Weight Function

v

Figure 2: Schematic diagram of XSTILT, Fig. (a) represents the simulated footprints at each horizontal
altitude level we set (one footprint per 50m below 1000m, one footprint per 100m from 1000m-2000m, where
MAXAGL represents the highest atmospheric altitude we simulate, which is 2000m) and the column

average footprints obtained by integrating using the normalized integration function in Fig. (b). Fig,(c).

2.4.2 Optimization of Emission Constraint Factors

‘We adopted a Bayesian inversion method similar to that used by(Ye et al., 2020), which utilizes OCO-2
observational data to constrain ffXCO, aiming to achieve correlation between the model and observed

ffXCO: increments. Unlike the inversion of individual emission grids, we optimize emissions by
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adjusting a scaling factor (L) for the entire city's prior emissions without modifying each grid's flux
individually. The observational data along the DQ-1 orbit across all regions of interest serve as
constraints for the inversion, which can be expressed as:

Voss = Vi " A+ &y,

‘9

Here, y,, and y,, represent the observed and simulated ffXCO: enhancements, respectively. The

term ¢, denotes the observational error, which consists of DQ-1 measurement error, model error, and

model parameter error, defined as follows:
time2
Yo =mean([ " dXCO2

time2
, o5s 40)s Yiim = mea”("‘: , J1XCo2,,dr) 8
. ime T
Here, dxco2,, represents the DQ-1 XCO; enhancement after removing the background concentration.
[fixcoz,, represents the simulated XCOz enhancement, obtained from the convolution of the fossil fuel

emission inventory and the footprint. We averaged the DQ-1 data over 1 seg intervals (/ km) along the

orbit to obtain #Xc02,, and corresponding simulated data gxcoz2,,, .
According to the Bayesian inversion method, we transform the state vector into a scaling factor (1),
which represents the constraint ability of pseudo-observations on regional emissions. The Jacobian

matrix is given by the simulated XCO2 enhancement y,, . The observation error variance o2 and

measurem ent

model transport error variance 2, are considered. We assume that DQ-1 observations are unbiased

mod

with respect to the true values. Random errors were added to the observations, following a Gaussian

distribution with a standard deviation of 0.5 ppm, representing the lower limit of observational errors.

The transport model error was obtained by perturbing wind speed and wind direction errors; more *

wind observations help reduce atmospheric transport uncertainties. For example, data assimilation
systems have proven useful in reducing atmospheric transport errors in data-rich areas like Los
Angeles(Lauvaux et al., 2016), Besides systematic wind direction errors, some areas exhibit
positive/negative wind direction biases(Ye et al., 2020), The X-STILT model proposed by Wu et al(Wu
et al., 2021),can correct wind biases by rotating model trajectories. the transport model error propagates
by transforming the model ffXCO, plumes with added random wind speed and wind direction errors
(by rotating ffXCO: plumes). To estimate transport model uncertainty in the model ffXCO,, we
performed multiple (10* times) random wind speed and direction perturbations on the model plume and
extracted the uncertainty distribution of ffXCO, using the 25th and 75th percentiles. We establish the

loss function J(x) to calculate the posterior scaling factor:
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J(2) = (P, = y\im/l)rsuh.\'_l Dops = Vin D+ (A= 4, )Zo-ﬁu

o, =0, +0o, 10

measurement

Here, S, represents the observational error covariance matrix. We assume that the observational errors

of different orbits are uncorrelated, so S, is a diagonal matrix with the observational error

variances o,

obs

on the main diagonal. Since the DQ-1 measurement errors and atmospheric transport
model errors are unbiased and uncorrelated, we estimate o), by summing both error
variances. 4, represents the prior value of the scaling factor, uniformly set to 1. o, represents the
uncertainty of prior emissions, derived from previous studies combined with the emission
characteristics of different cities. Since the ODIAC product does not provide uncertainty estimates,
ODIAC was originally designed for atmospheric COz flux calculations to reduce model biases caused
by coarse grid resolution. Considering the simple downscaling based on nightlights in ODIAC, urban
emissions derived from ODIAC are affected by errors related to emission disaggregation. For example,
(Lauvaux et al., 2016)reported a 20% difference compared to Gurney et al.(Gurney et al., 2012), despite
significant differences in emission modeling methods. Gurney et al.(Gurney et al., 2019), further
compared the ODIAC and Hestia products for four US cities (Los Angeles, Salt Lake City, Indianapolis,
and Baltimore), finding city-wide emission differences ranging from -1.5% (Los Angeles) to 20.8%
(Salt Lake City). Empirical values of ODIAC ffCOz uncertainty can be obtained by comparing ODIAC
inventories with other emission fluxes, such as_those created using high-resolution top-down satellite
products. Smaller temporal scales result in greater empirical value deviations. Considering different
city emission characteristics, such as industrial cities like Cairo and Riyadh with irregular emissions
and large uncertainties in industrial emissions, we set prior emission uncertainties for these cities at
45%. For large cities with distinct and regular emission characteristics, the uncertainty is set at 25%, as

their emission estimates are more accurate compared to industrial cities.

By minimizing the loss function, we obtain the posterior scaling factor z and posterior uncertainty o:

A=A+ O-.fim ysTim Yim sobsysTim +8,5 ) Woss = Vi)

2 _ T -l 2 -1
'1 IVO' = (VaimSons Ysim + Osim

12

To evaluate the performance of the scaling factor, we define the mean kernel (AK=04/0A):
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The value of AK closer to 1 indicates a more accurate estimation of the scaling factor.
2.5 OSSEs: Optimization of Emissions using Different DQ-1 Tracks

Given the limited number of DQ-1 overpass tracks and the impact of atmospheric conditions during
overpasses on emission optimization, we implemented Observing System Simulation Experiments
(OSSEs). These experiments were conducted using multiple DQ-1 tracks to constrain urban fossil fuel
emissions repeatedly and to statistically evaluate DQ-1's potential in constraining urban fossil fuel
emissions. Specifically, we initially screened all DQ-1 overpass tracks, selecting those located
downwind of major fossil fuel emission areas to better utilize DQ-1 data for constraining overall
regional fossil fuel emissions. For each city's overpass track, we extracted pseudo-observation data and
modeling data.

DQ-1 is different from other passive remote sensing satellites in that it is not only capable of night
observation, but also less affected by clouds and aerosols. Therefore, we studied the relationship
between daytime and nighttime observations and emission estimation uncertainties, as well as the
impact of different tracks and the number of tracks on emission estimates. We used the ODIAC fossil

fuel emission inventory as the prior emissions for the OSSEs, assuming that the prior emissions are the

true emissions and that emissions remain stable over a short period. It is noteworthy that, in Section 3.3

the prior emissions were constructed by combining ODIAC fossil fuel data with NEE (Net Ecosystem

Exchange).

Pseudo-observation data and modeling data for each city were derived using the same method.
Pseudo-observation data were obtained by averaging the 1-second detection range of the selected DQ-1
overpass tracks, with adjacent pseudo-observation data separated by / km (1 second). This method
helps eliminate some of the background noise and wind speed impacts on emission optimization. We
assumed that DQ-1 observations are unbiased with respect to the true values and added random errors
to each DQ-1 observation, with the error following a Gaussian distribution and a standard deviation of

0.5 ppm. Pseudo-observation data are also unbiased relative to the true values, with random errors

DO-1
I Here, o represents the random error
A A

accumulated over time for each observation data: o(ls) =
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of each pseudo-observation data. Modeling data were obtained by convolving the emission inventory of
the area with the tracer contributions corresponding to the geographic locations.

By using multiple DQ-1 overpass tracks to repeatedly constrain urban fossil fuel emissions and
analyzing the results statistically, we assessed the potential of DQ-1 in constraining fossil fuel
emissions in urban areas. This approach allowed us to examine the effectiveness of daytime and
nighttime observations, the influence of different overpass tracks, and the impact of track quantity on

emission estimates.

3 Results

3.1 Fossil Fuel Enhancement in Urban Areas

In this section, we summarize the prior ffXCO: emissions for each study area. The total monthly

emissions for Beijing, Riyadh, and Cairo during the selected months (The detailed overpass dates are

emissions provided in Table S3) are approximately 2.4-3.5 Mt C/month, 2.3-3.3 Mt C/month, and

1.9-2.4 Mt C/month, respectively. We constrain emissions by comparing observed and simulated
ffXCO, enhancements. Here, ffXCO, enhancement is defined as the increment in XCO; concentration
caused by local fossil fuel emissions, The prior ffXCO> enhancement is simulated using the ODIAC

prior emission inventory and the STILT footprint (a summed 24 hours column integrated footprint)

convolution. The observed ffXCO, enhancement from DQ-1 is obtained by subtracting the background
concentration from the observational data (as detailed in Section 2.3.3 and shown in Figure 3). By
comparing the prior ffXCO, enhancement with the observed XCO, enhancement, we evaluate the
trends in ffXCO: changes along the tracks and explore the sources and detection capabilities of the

ffXCO; signal.

17

‘ Deleted: relative to the background XCO2 412 level

Deleted: the observed ffXCO, enhancement



450
451

452
453
454
455
456
457
458
459
460

461

462

463

464

465

466

467

468

s [[2)2023-03-02_11:00:00 1 (0)2022-06-20_11:00:00

& wamm

Ao 22 2da 246 a8 2s00 2520 254

212 244 246 248 20 22 254
Latitude [°) Latiude ]

8 2

4 (©) 2023/03/02 11:00(UTC,LT=UTC+3,Riyadh,Thu) v (d) 2022/06/20 11:00(UTC,LT=UTC+3,Riyadh,Wed)
w r 10m/s W E 10m/s
4()"’3‘3”]‘: 46°30'0"E 47°0'0"E 46°0'0"C 46°30'0"E 47°0'0"C
25°0'0"N- - 25°0'0"N  25°0'0"] 5°0'0"N
24°30'0"N- T124°30'0"™N 24°30'0"N: -24°30'0"N
2400 N — 'j/ —~ [24°0'0"N 24°0'0"N: 4. 24°0'0"N
46°0'0"E 46°30'0"E 47°0'0"E 46°0'0"E 46°30'0"E 47°0'0"E
DQ-1 observations(ppm) Model XCO2 enhancement(ppm) DQ-1 observations(ppm) Model XCO2 enhancement(ppm)
L] e o
R [ | S P P
S ; » s |
& s s e RS N

Figure 3: Comparison of the simulated and observed ffXCO: enhancements from DQ-1 data over Riyadh on
March 02, 2023 and June 20, 2022 around 11:00 UTC. Figures (a) and (b) show the DQ-1 XCO; (black dots
and blue triangles) and the simulated XCO; (red solid line, sum of simulated ffXCO, and background
concentrations) along the two orbits, averaged over 1 s. The black dots represent the background
concentrations involved in deriving the background. The black dots represent the data involved in the
derivation of the background concentration (black solid line), which are linearly regressed against latitude
after a discrete wavelet transform. Figures (c) and (d) show the simulated ffXCO; and the observed ffXCO,
obtained from the DQ-1 data. background XCO: concentrations have been subtracted. The red boxes in the
Figures (¢) and (d) represent the urban areas. Vectors represent 10 m wind speeds_(average wind speed
simulated by WRF) and reference vectors represent 10 m/s wind speeds.

Figure 3 presents the results of two DQ-1 overpasses over Riyadh on March 2, 2023, and June 20, <

2022, at 11:00 AM. Figures 3a and 3b show the simulated and the observed XCO, enhancement as a

function of latitude for these two overpasses. The maximum ffXCO, enhancements observed along the
two tracks were 8 ppm and 5 ppm, respectively.

In the overpass on March 2, significant ffXCO, enhancements were observed by DQ-1 between
24.8°N and 25.3°N, with the simulated ffXCO: also responding to this enhancement. Although the peak
observed values were narrower than the simulated values, both were of similar magnitudes, with only
slight differences, and their trends were largely consistent. However, the simulated ffXCO: did not
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respond to the observed enhancement in the 24.1°N to 24.3°N range, which may be due to the
sensitivity of the STILT footprint to wind direction.

Lompared to the track on March 2, the track on June 20 shows better agreement between

observations and simulations, along with smaller posterior uncertainties (see Table 1), The observed

peak and the simulated peak were both within the 23.8°N to 24.6°N range, with a difference of less
than 1 ppm. The differences between the results of the two tracks may be because the March 2 track
passed through the city's main emission area and intersected the simulated plume (Figure 3c). In this
case, the observed ffXCO, fluctuations were minimal, with values remaining high relative to the
background concentration, making it difficult to detect significant enhancements. In contrast, the June
20 track was downwind of the main emission area, making it more sensitive to the city's fossil fuel
emissions and resulting in better agreement between the simulated and observed values.

For Cairo, we examined ffXCO, enhancements using six DQ-1 overpasses on July 26, August 2,

August 16, November 8, November 15, and November 22, 2022 (Figure S9-10). In contrast to,Riyadh,

the simulated ffXCO, enhancements over Cairo were mostly below 2 ppm, indicating lower overall
emissions in Cairo than in Riyadh. The simulated ffXCO. enhancements over Cairo were more
dispersed, showing a multi-point distribution rather than the concentrated enhancements observed over
Riyadh.

The observed XCO» enhancement,over Cairo were generally higher and narrower than the simulated
ones, which were smoother. Despite these differences, the trends in ffXCO, enhancements between the

simulations and observations were similar and of the same magnitude (The latitudinal distribution and

magnitude of the simulated enhancement (red line) are generally consistent with those of the observed

enhancement (blue triangles)), except for the July 26 simulation, which did not include, some observed

enhancements between 30.2°N and 30.4°N, and the November 8 overpass, where a spatial shift of
approximately 0.2° was observed between the simulated and observed ffXCO2 enhancements.

Overall, the comparison between DQ-1 observations and WRF-STILT-based simulations suggests
that the DQ-1 satellite is well-suited for fine-scale urban emission optimization. This indicates that

DQ-1 can effectively be used for detailed monitoring and analysis of urban emissions.
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3.2 Comparison of DQ-1 and OCO-2 Restraint Capabilities
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Figure 4: (a) and (b) show the position and XCO: data of two pairs of OCO-2 and DQ-1 orbits that we
selected for transit to Beijing at 05:00 on December 01, 2022 and 05:00 on April 08, 2023, respectively
JTo better compare the inversion results from OCO-2 and DQ-1, we selected tracks that were spatially <

and temporally close and located downwind of major urban emission areas. Figure 4, shows two pairs
of OCO-2 and DQ-1 tracks over Beijing on December 1, 2022, and April 8, 2023, both at 05:00,
passing through the major emission downwind area of the city. Fig. 5 shows ffXCO. enhancements and
wind fields at the time of the satellite overpasses. The results clearly indicate significant ffXCO,
enhancements, exceeding 2 ppm in April, demonstrating that DQ-1 can observe notable ffXCO;
enhancements from space.

Figures 5 (c. d. g, h), show that the ffXCO, enhancements simulated from DQ-1 and OCO-2

overpasses are of similar magnitude and spatial distribution, with strong spatial consistency across
different times due to stable local emissions and wind fields. Beijing's topography, with high elevations
in the northwest and low-lying plains in the southeast, influences the prevailing west-to-east winds, and
the flat terrain of the main urban area means the simulated ffXCO> is minimally affected by topography.
The smaller ffXCO, enhancements observed on December 1 compared to April 8 are primarily due to
wind directions affecting the track within the 40.2°-41° range, making it difficult to simulate emissions.
This comparison highlights the capability of DQ-1 to effectively observe and simulate urban ffXCO,

enhancements, supporting its application in fine-scale emission optimization,,
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Figure 5: Similar to Fig. 3, (a)-(d) show the simulated ffXCO:; and measured ffXCO; for the DQ-1 and
OCO-2 orbits transiting Beijing at 05:00 UTC 01 December 2022 and 05:00 UTC 08 April 2023, and (e)-(h)
represent the comparison of the simulated ffXCO: (colored shadows) with the observed ffXCO:
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enhancement (colored dots, minus background concentrations) from DQ-1 data collected over Beijing at
~05:00 UTC. Each panel is labeled with the date of observation. The red boxes in the Figures (c), (d), (2), (h)
represent the urban areas. Vectors represent 10 m wind speeds and reference vectors represent 10 m/s wind
speeds.

Figure 5 @, b. e, f) illustrates the simulated and observed XCO, for two pairs of DQ-1 and OCO-2
tracks. The simulated XCO: (red line in the figures) is derived by adding the background concentration
to the simulated ffXCO, extracted along the satellite tracks. Overall, both OCO-2 and DQ-1

observations exhibit similar distributions, with high-value points located in the same latitude ranges

(On 1 December, both the DQ-1 and OCO-2 overpasses exhibited similarly strong latitudinal gradients

in_their background baselines, with notable enhancements observed and simulated within the

39.4°-39.6°N range. Although the background latitudinal gradients differed between DQ-1 and OCO-2

on 8 April, both were weak in magnitude, and significant enhancements were nevertheless consistently

detected and simulated between 40.0° and 40.4°N). DQ-1 observations are generally 4-8 ppm higher

than OCO-2, attributed to the inherent characteristics of the satellitess—DQ-1 being an active lidar
satellite, largely unaffected by clouds and aerosols. This systematic difference can be mitigated during
background concentration extraction due to the overall similarity in data distribution.

On December 1 and April 8, DQ-1 and OCO-2 observed ffXCO, enhancements of approximately
~2.5 ppm and ~1.5 ppm, respectively. Although OCO-2 did not capture the ffXCO, enhancement
within the 40.2°-41° range on December 1, and there was a ~0.15° spatial shift between observed and
simulated XCO2 peaks on April 8, the simulated ffXCO, was of the same magnitude as the
observations. This indicates that DQ-1 performs comparably to OCO-2 in urban-scale inversions. The
peak shift in OCO-2 data might be due to errors in the horizontal wind field. The background gradient
on December 1 was more pronounced than on April 8, and the integrated ffXCO2 enhancement along
the track was consistent with DQ-1 measurements, validating the latitude gradient-based background
extraction method for urban-scale inversions.

Figure 6 compares TCCON site observations within the Beijing study area with the simulated results
for December 1 and April 8. The prior ffXCO; (blue bars) represents the simulated ffXCO, at the
TCCON site, obtained using the previously described simulation method. The posterior ffXCO: (light
green and orange bars) is derived by applying the posterior scaling factors from DQ-1 and OCO-2
overpass tracks to the prior ffXCO», with posterior uncertainties indicated. The true value, provided by
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TCCON products, is shown by the dark green bars.

Overall, DQ-1 and OCO-2 inversion results are similar in magnitude, with DQ-1 results closer to
TCCON observations. The differences between DQ-1 results and TCCON observations are 0.9% and
16% for December 1 and April 8, respectively, compared to 10% and 25% for OCO-2. This

demonstrates that DQ-1 can effectively constrain urban fossil fuel emissions, performing comparably to,

or even surpassing, OCO-2 in certain tracks.

B priori fIXCO2

BN TCCON ffXCO2

I DQ-1 posteriori ffXCO2
[ OCO-2 posteriori fIXCO2

ffXCO2[ppm]

S S
o &
F W

Figure 6: TCCON site simulations received ffXCO, (blue columns represent simulations using a priori
ODIAC lists, bright green columns represent simulations using a posteriori lists estimated with DQ-1,
orange columns represent simulations using a posteriori lists estimated with OCO-2, and dark green

columns represent ffXCO; observed by TCCON). The black lines on the columns represent uncertainties.
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3.3 Impact of DQ-1 in Estimating Biotic Fluxes using Daytime vs. Nighttime Tracks
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Figure.7: Orbital simulation results for a pair of diurnal observations of the transit of Beijing on January 09,
2023 at about 23:00 (night) and January 10, 2023 at about 11:00 (day) UTC. The red boxes in the Figures (¢)
and (d) represent the urban areas.

Both biosphere carbon flux and fossil fuel emissions influence XCO; variations. This section *
examines the impact of biosphere flux on emission estimates. When ffXCOx significantly exceeds
biosphere carbon flux, the biosphere's contribution to XCO, changes can be negligible (e.g., in Cairo
and Riyadh, where the spatial gradient of NEE is much smaller than fossil fuel emissions). This study
attributes biosphere carbon flux to vegetation production and human emissions. This part of carbon
emissions varies with the day-night cycle. During the day, vegetation absorbs CO; through
photosynthesis, which significantly outweighs CO: release through respiration. At night, vegetation
only undergoes respiration, releasing CO,.

As the world's first lidar satellite capable of observing XCO; at night, DQ-1 offers groundbreaking
potential in studying diurnal variations in urban emissions. This section leverages this feature to

observe the impact of vegetation rhythm and human activities on XCO2 changes. We compare global
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three-hourly CASA data and ten-day average NEE data from ODIAC. ODIAC's ten-day average data
cannot separate diurnal NEE variations, while the higher temporal resolution of CASA can effectively
capture the time gradient of NEE within the same day. We will illustrate the impact of NEE on
inversion and how this impact changes between day and night. Previous satellite-based urban flux
inversions lacked night-time data, preventing day-night comparisons and separation of nocturnal and
diurnal CO; emissions.

For this study, we selected two tracks on January 9, 2023, at 23:00 and January 10, 2023, at 11:00
(UTC). Given the close timing of these tracks, we assume the total fossil fuel emissions are the same
for both. The January 9 track is approximately 0.5° (about 50 km) downwind from the main urban
emissions, with an average wind speed greater than 3 m/s. Thus, the emissions detected by this track
are considered to originate from the previous five hours. The January 10 track passes through the main
urban emission area, capturing emissions effectively. We simulate the previous 8 hours gas diffusion
before the overflight (sunset on January 9 at 09:00 and sunrise on January 10 at 15:35 UTC). The
simulated enhancement for the January 9 track is assumed to come entirely from night-time emissions,
while the January 10 enhancement comes from daytime emissions. Comparing the simulation results
with observations, both are of the same magnitude, indicating that the forward eight-hour simulation
effectively captures the observed ffXCO; enhancement.

To explore the impact of diurnal biosphere carbon flux on XCO: enhancement, we couple prior
emissions from ODIAC with spatially scaled NEE data as the new prior emissions (For the

three-hourly NEE data, we matched using footprints within the corresponding time period), then

simulate the XCO;_enhancement {In contrast to Sections 3.1 and 3.2, here we used ODIAC emissions

combined with NEE as the prior flux information). Using constant boundary conditions, latitude

changes do not need to be considered for background concentration. Therefore, local XCO»
enhancement is defined as the total XCO2 minus the minimum XCO; value in the track (Unlike Section
2.3.3). The XCO, enhancement measured by DQ-1 is derived using methods outlined in previous
sections.

This approach allows us to accurately account for both daytime and nighttime variations in XCO,

due to biosphere activity, providing a comprehensive view of the urban carbon flux.
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Figure 8: (a)-(d) represent the contribution of orbital XCO, enhancement and biospheric fluxes to the local
XCO: enhancement for two pairs of diurnal observations on 09 and 10 January 2023 and 19 and 20 June
2022, the black dots represent the 1-second averaged observations (subtracted from the background values)
on each orbit, the red solid line represents the simulated ffXCO,, and the green and blue solid lines
represent the simulated AXCO; (fossil fuel and biosphere fluxes) using different NEE data for simulated
AXCO: (fossil fuel and biogenic fluxes), where the green line uses ten-day averaged ODIAC NEE data and
the blue line uses CASA three-hourly NEE data.

Figure 8 presents a comparison of simulated and observed XCO, enhancements for two pairs of day *

and night overpass tracks over Beijing on January 9, 2023, at 23:00, January 10 at 05:00, June 19, 2022,

at 23:00, and June 20 at 05:00. Overall, the simulated XCO, enhancements that include CASA NEE

(blue line) on January 10, June 20, and June 19, show better agreement with the observed AXCO-

(black dots) than simulations driven by fossil fuel emissions alone (red line),

The figure 8 (c) shows that the XCO, enhancements using CASA's diurnal NEE data differ
significantly from those using ODIAC's ten-day average NEE data. The simulation for the June 19
track at 23:00 indicates that using CASA's night-time NEE data (blue line) can accurately simulate the
observed XCO, enhancement, coming closer to the observed XCO; enhancement than the ffXCO,
simulation alone. In contrast, the simulation using ODIAC's ten-day average NEE data (green line)
shows a notable CO uptake in the 40.2°-41° range, starkly different from the CASA results and the ‘
observed XCO> enhancement. This discrepancy arises because ODIAC's ten-day average NEE data are
insensitive to short-term temporal variations and cannot reflect diurnal changes within a day. Moreover,

this period is Beijing's summer, with vigorous daytime vegetation activity leading to CO;uptake and a
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‘ consequent drop in XCOz (as seen in Figure 8 d, where the daytime simulated XCOa enhancement is
much lower than ffXCO:). According to the June 19 simulation results, biosphere flux-induced XCO:

changes account for 21.2% (CASA) and -54.3% (ODIAC) of the observed XCO, enhancement.

‘ For the January 9 track at 23:00, both CASA and ODIAC data show significant XCO, enhancements.

However, the CASA simulation aligns more closely with the observations. This difference may be
because ODIAC's ten-day average data, influenced by daytime data, diminish its accuracy in night-time
scenarios. The simulation results for the January 9 track show that biosphere flux-induced local XCO:
enhancements account for 13.37% (CASA) and 7.73% (ODIAC) of the observed comprehensive XCO,
enhancement.

Overall, the biosphere flux's impact on XCO: enhancement varies significantly between day and
night. In urban-scale inversions, DQ-1's ability to rapidly revisit both day and night can further
optimize the influence of biosphere flux on inversion accuracy. This capability highlights DQ-1's
potential to provide more precise urban-scale fossil fuel emission constraints, especially by

distinguishing diurnal variations in biosphere activity.

3.4 Emission Estimates and a Posteriori Uncertainties

Table 1 Results of inversion of urban emission scaling factors for selected cities using DQ-1 XCO; data
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Prior total Measurement Transport model ] R
Formatted: Font: (Asian) “Kf%, 8 pt, Font color: Auto, Kern
Prior total emission uncertainty uncertainty Scaling factor(}) S¢ at1lpt
emission uncertainty C Cewsurement + (Ortour » units:  + posterior factor/City
City Overpass (Mt C/month) (o, ) units: ppm) ppm) uncertainty ( o) mean factor
Riyadh 02 March 2023 237 45% 1.03 2.53 0.754+0.20
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Cairo 26 June 2022 243 45% 1.08 0.56 1.06£0.20
02 August 2022 2.49 1.45 0.71 0.98+0.12
16 August 2022 2.49 1.67 0.87 1.21£0.14
08 November 2022 1.96 1.22 0.36 1.15+0.16
15 November 2022 1.96 0.98 1.31 1.19+0.11
22 November 2022 1.96 1.11 0.21 1.06£0.13

1.10+0.14

Notes. Scaling factors and their a posteriori uncertainties are shown for each orbit, as well as integrated
information for all selected orbits. Uncertainty components are listed for each track, including the a priori
uncertainty in the scaling factor and the measurement and transport uncertainty in the integral ffXCO2

some specific track data inverted using OCO-2 data are bolded, and the average emission scaling factor

In this section, we present the inversion estimation results for emissions from Riyadh, Cairo, and *
Beijing using the DQ-1 tracks shown in Section 3.1. The inversion process considers uncertainties
arising from both measurement and transport. The inversion yields a scaling factor for the total
emissions for each selected city. Specifically, for Beijing, we compare the inversion results with the
simultaneously passing OCO-2 tracks.

Each selected track underwent inversion. [JTable 1 shows the posterior emission scaling factors for
each track, along with the uncertainties in the measured and simulated ffXCO,. These uncertainties
were determined using the methods described in Section 2.4. Notably, the prior uncertainty in the
emission scaling factors for Beijing was set at 25%, compared to Riyadh and Cairo, reflecting better
knowledge of emissions from such a well characterized, megacity (see Section 2.4.2).

For the selected tracks over Riyadh, Cairo, and Beijing, the posterior scaling factors_(An emission

factor greater than 1 indicates an underestimation by the prior inventory, while a factor less than 1

suggests an_overestimation.) were 0.75-0.86, 0.98-1.21, and 0.53-1.06, respectively (Table 1). The

posterior emission scaling factors exhibit significant temporal variability, influenced by background
conditions. As described in the previous section, the emissions detected by the track depend on its
distance from the major emission regions and the domain-averaged wind speed at the time. The
domain-averaged wind speed for the selected tracks was consistently above 3 m/s. Based on
meteorological conditions, the posterior values represent estimates of city emissions for the hours

preceding the overpass time. The posterior uncertainty in the emission scaling factors was 0.16-0.20 for

28

Deleted: Scaling factors and posteriori uncertainties are
shown for each track, as well as integrated information for
all selected orbits. Uncertainty components are listed for
each track, including the a priori uncertainty in the scaling
factor and the measurement and transport uncertainty in
the integral ffXCO: (some specific track data inverted
using OCO-2 data are bolded, and the average emission
scaling factor and a posteriori uncertainty for all tracks in

each city are in the last column and highlighted in italics).

Formatted: Font: (Asian) {A, 9 pt, Font color: Auto, Kern

at1lpt

Formatted: Indent: First line: 1 ch

‘ Deleted: The table below

‘ Deleted: world-class



667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

Riyadh, 0.11-0.20 for Cairo, and 0.11-0.16 for Beijing. Compared to Beijing, the posterior scaling
factor uncertainties were generally higher for Riyadh and Cairo.

As discussed in Section 2.4, the prior emission uncertainties were set to reflect measurement and
transport errors. Table 1 shows that the relative contributions of observation error and transport error
vary across the three cities. For Riyadh, the transport error was significantly larger than the observation
error, while for Cairo, the transport error was much smaller than the observation error. In Beijing, the
relative sizes of transport error and observation error varied. The posterior scaling factors for Beijing's
two OCO-2 tracks were almost identical to those from DQ-1, with higher posterior uncertainty due to
higher observation error. Overall, Beijing's posterior uncertainty was lower than that of Cairo and
Riyadh, attributable to more stable prior emission characteristics.

Previous research (Ye et al., 2020), highlighted that the scarcity of OCO-2 tracks near many cities
remains a major limitation in regularly quantifying emissions and objectively tracking temporal
variations from space. In contrast, DQ-1's minimal sensitivity to clouds and aerosols allows for more
tracks available for inversion. Our experiments in Beijing, Cairo, and Riyadh found that, on average,
more than six tracks per month were available for inversion, including day and night overpasses on the
same day, further constraining city emissions (see Section 3.3).

Based on the results in Table 1, we averaged the posterior emission scaling factors and uncertainties
for each city's tracks, yielding mean scaling factors and uncertainties of 0.80+0.18 for Riyadh,

1.10£0.14 for Cairo, and 0.83+0.13 for Beijing (Detailed monthly emission information for different

cities is provided in Table S3). This indicates that, for the periods represented by the observations, the

prior monthly ODIAC product overestimates emissions for Beijing and Riyadh, while underestimating

emissions for Cairo, Our findings in Cairo are consistent with earlier research(Shekhar et al., 2020).

4 Discussion

4.1 Atmospheric Transport Model Errors

Systematic errors in model transport and erroneous statistical assumptions can significantly diminish
the improvements in land-based uncertainty by approximately a factor of two(Wang et al., 2014),

Hence, it is essential to control systematic errors and inaccuracies in transport models while
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707 We illustrate these concepts using six tracks over Cairo. The overall ffXCO, distribution was

708 generated by applying random positive and negative wind direction biases (>-10°, <10°) to each track's

709 STILT footprint, rotating it 10*times, and adding positive/negative wind speed biases (>-1 m/s, <I m/s).

710 Overall, the temporal variability in the posterior emission scaling factors and uncertainties can be

711 attributed to transport model errors. The transport model error significantly influenced the observed

712 ffXCO; distribution. Specifically, the track on November 15 was most affected by transport model

713 errors, likely due to its passage through the plume boundary. In contrast, the track on August 16
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Figure 9; Box plots of the modeled integral ffXCO; enhancement (X ffXCO:, m) for selected OCO-2 orbits
over Cairo at the date labeled on the x-axis (2022). For each box, the center line indicates the median (q2),
and the bottom and top edges of the box indicate the 25th and 75th percentiles (q1 and q3), respectively. The
whiskers extend to the maximum and minimum values. The numbers are the ratio of the interquartile

spacing (q3 - q1) to the median (q2).

4.2 The Challenge of Separating Biological Fluxes in Day and Night Orbits

In Section 3.3, we detailed how DQ-1's short-term day-night revisit capability allows for the
consideration of diurnal and nocturnal biogenic fluxes in emission inversions. Typically, large-scale
inversions do not account for uncertainties in fossil fuel emission inventories and treat biogenic fluxes
as uncertainties in prior fluxes(Wang et al., 2014), Studies focused on urban-scale inversions that do
not utilize nocturnal tracks, while directly considering biogenic flux impacts, have not accounted for
the diurnal variation of biogenic fluxes(Ye et al., 2020), In this study, we leveraged DQ-1's nocturnal
observations to provide a method for separately considering biogenic flux effects during day and night.
Our results indicate that using daytime average NEE data and nighttime NEE data can result in

differences of up to 70% in inversion outcomes.

However, this approach has limitations in large-scale inversions. Separating daytime and nighttime «

emissions necessitates a limited transport time due to the constraints of the transport model, which
means that simulated particles cannot travel long distances under limited wind speed and time

conditions. To address this, more frequent overpass tracks, including those from geostationary carbon
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cycle observation satellites such as GeoCarb(Moore Iii et al., 2018), Total Carbon Column Observing ‘ Deleted:  (Moore Iii et al., 2018b: Moore Tii et al, 2018a)

Network (TCCON)(Toon et al., 2009), and MicroCARB, but these instruments are all limited to

‘ Deleted: (Toon et al., 2009b; Toon et al., 2009a)

daylight observations and therefore cannot support day—night inversion analyses, only DQ-1 is capable

of enabling such studies. Therefore, an increased availability of high-precision and

high-spatial-resolution nighttime data is urgently needed, Currently, the number of DQ-1 tracks does

Deleted: , could enhance large-scale day-night
not support large-scale separate day-night inversions. In large-scale flux inversions, biogenic fluxes are cross-observations and support separate daytime and nighttime
inversions

typically used as prior uncertainty over weekly or monthly periods. Such long-term and wide-scale data
assimilation reduces the impact of diurnal biogenic flux variations on inversion results. Unlike other
satellite measurements that are restricted to daytime clear-sky conditions, DQ-1's XCO, measurements
provide uniform temporal sampling, thus allowing effective quantification of diurnal variations in
emissions.

Accurate downscaling methods for biogenic fluxes, such as the Solar-Induced Fluorescence Model
(SMUTIF)(Wu et al., 2021), and advanced vegetation models, like the Vegetation Photosynthesis and ‘ N
Respiration Model (VPRM) (Luo et al., 2022; Mahadevan et al., 2008; Wei et al., 2022; Winbourne et
al., 2022; Gourdji et al., 2022)are crucial for precise biogenic flux calculations. Radiocarbon and land ‘

Deleted: (Luo et al., 2022a; Mahadevan et al., 2008a; Luo et
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surface solar-induced fluorescence (SIF) data aid in distinguishing between fossil fuel CO, and
biogenic COx(Fischer et al., 2017). Recent research indicates that SIF serves as a better indicator or ‘ ‘ Deleted: (Fischer etal., 2017a; Fischer et al., 2017b)

proxy for gross or net primary production compared to other vegetation indices.
4.3 Insights From Results of the OSSEs

In the emission inversion process, prior emissions are considered as fully distributed, optimizing
regional emissions for an entire city using a scaling factor, in contrast to grid-specific inversions. As
noted by previous research, using a single scaling factor for the entire city limits the flexibility to
capture true spatial variations in fluxes compared to grid-specific inversions. Estimating prior emission
uncertainties at the grid scale is challenging because grid-scale emission uncertainties are typically
much larger than those using scaling factors(Andres et al., 2012),
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Apart from uncertainties in the transport model, DQ-1 measurements, and biogenic fluxes, several < o
‘ Formatted: Indent: First line: 1 ch
additional error sources may introduce biases in the inversion results. DQ-1 data's measurement errors

are assumed to be spatially uncorrelated due to the lack of high-resolution correlation data. Additionally,
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random components of nonlinear and interference errors in retrievals may introduce significant errors

in the inversions, In our OSSE, measurement uncertainty is assessed at its lower bound. ‘ Deleted: (Connor et al., 2016b; Connor et ., 2016a)
Simulation results for Riyadh and Beijing indicate that the enhancement of ffXCO, generally

exceeds 1.5 ppm and can reach up to approximately 5 ppm, surpassing the uncertainties in land-based

observations (around 1 ppm)(Eldering et al., 2017a; Eldering et al., 2017b), In contrast, Cairo's ffXCO> Deleted: (Eldering etal., 2017c; Eldering et al., 2017b)

values are mostly below 2.0 ppm, with some hotspots near high-emission industries such as power

plants. Detecting CO2 plumes in smaller cities is challenging due to limited detectability of fossil

fuel-derived CO plumes. Factors limiting detectability include: 1) The number and location of

overpass tracks. 2) Overlap enhancements from nearby cities or point sources. 3) Low ffCO, emissions.

To improve the detection of city plumes, more ground-based in situ measurements and high-altitude

satellites with enhanced detection capabilities are necessary.

4.4 Influence of Planetary Boundary Layer Height on Modeled XCO: Enhancements “

‘ Formatted: Indent: Left: 0 mm, Left Och

Vertical turbulent mixing, as the dominant process governing the vertical transport of air parcels,

regulates the dilution of surface emissions within the planetary boundary layer (PBL). Uncertainties in

vertical mixing or PBL height can influence both the magnitude and spatial distribution of atmospheric

footprints through variations in horizontal advection at different altitudes(Gerbig et al., 2008).

Variations in the STILT-modeled mixed layer height alter the vertical profiles of turbulent statistics that

govern the stochastic motion of Lagrangian air parcels(Lin et al., 2003), thereby yielding distinct air

parcel trajectories under different PBL height.

In this section, we assess the sensitivity of both horizontal footprints and column-averaged footprints

(X-STILT) to variations in the planetary boundary layer height (PBLH) as simulated by STILT. Given

the pronounced diurnal and seasonal variability of terrestrial PBLH across most latitudes(Gu et al.,

2020), we selected three satellite overpasses across Beijing to quantitatively evaluate the impact of

PBLH on footprint estimates: 23:00 on 9 January 2023 (winter nighttime), 05:00 on 10 January 2023

winter daytime), and 23:00 on 19 June 2022 (summer nighttime). For each overpass, the location

(latitude and longitude) corresponding to the largest modeled XCO, enhancement along the track was

selected as the receptor location for STILT, with release heights consistent with prior model

configurations. Backward simulations were conducted from the overpass time until local sunrise or
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sunset (sunset for nighttime passes and sunrise for daytime passes). A range of PBLH values from

300 m to 1500 m, in 200 m increments, was tested.
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Figurel0: Panels a and b illustrate the sensitivity of CO: and XCO: enhancements to variations in planetary *
boundary layer height (PBLH) at different receptor altitudes, quantified by the coefficient of variation (i.e.,
the standard deviation divided by the mean). Panel a presents the simulated results for three satellite
overpasses: 23:00 on 9 January 2023 (winter night, blue line), 05:00 on 10 January 2023 (winter day, orange
line), and 23:00 on 19 June 2022 (summer night, green line). For each case, receptors were placed at the
locations of maximum modeled XCO: enhancement along the satellite track, with release heights consistent
with prior STILT configurations. Panel b shows the corresponding XCO: enhancement simulations for each
date, with the coefficient of variation annotated at the top of the panel to indicate the overall sensitivity
across varying PBLH scenarios.

Figure 10a illustrates the sensitivity of modeled XCO. enhancements—calculated following the <

method in Section 2.4.1—to varying PBLH values at different release heights for three selected

receptors. The x-axis, labeled Delta_XCO. Uncertainty, quantifies this sensitivity as the coefficient of

variation (standard deviation divided by the mean) of XCO- enhancements obtained from simulations

with different PBLH values at the same release height. A higher value indicates a stronger response of

the modeled enhancement to changes in PBLH. Results in Figure 10a show that on the nighttime

overpass of 9 January 2023 (blue line), the relative variation in modeled XCO- enhancements remains
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within ~10% for release heights below 600 m and does not exceed 13%, with a minimum of 3.03% at

50 m. Similarly, for the daytime overpass on 10 January 2023 (orange line), relative variations remain

below 13% up to 950 m, with a minimum of 3.36% at 450 m. Notably, for this pair of consecutive
day—night overpasses. nighttime sensitivity is generally higher than daytime at release heights below

650 m. The nighttime overpass on 19 June 2022 (green line) exhibits a broader vertical range of valid

footprints—unlike the 9 January case, where no valid footprints were simulated above 650 m, possibly

due to seasonal effects. This case also shows a stronger dependence on PBLH at higher altitudes,

particularly between 750-1000 m, with the maximum sensitivity reaching 36.6% at 900 m. Overall, our

findings suggest that within the lower troposphere and across the selected case studies, the influence of

PBLH variability on modeled XCO. enhancements is generally on the order of 10%, increasing with

receptor altitude. As column-averaged observations are less sensitive to the vertical distribution of air

parcels(Lauvaux and Davis, 2014), the sensitivity of modeled column XCO. enhancements to PBLH

variations is notably smaller. This is corroborated by Figure 10b, which shows modeled XCO:

enhancements as a function of PBLH for each overpass, with corresponding coefficients of variation

annotated above the lines: 2.1% (9 January). 2.9% (10 January). and 2.8% (19 June)—all lower than

the minimum values observed in Figure 10a.

Given that ACDL is equipped with an aerosol channel, it can provide extinction coefficient profiles

and planetary boundary layer height (PBLH) products(Dai et al., 2024). In this study, we utilized

ACDL-retrieved PBLH data for forward simulations, which helps to mitigate errors associated with

inaccurate PBLH settings. Moreover, since satellite measurements represent column-averaged

concentrations, they are inherently less sensitive to variations in PBLH. Therefore, we conclude that

PBLH has a negligible impact on the inversion results presented in this study.

5 Conclusions

This study presents the use of DQ-1's XCO, observation data to constrain fossil fuel emissions in
various urban regions and evaluates its capabilities. By coupling WRF and STILT, a high-resolution
forward transport model was developed to simulate and illustrate the structure and details of
urban-scale fossil fuel XCO; plumes and assess the relationship between simulated and observed XCO,.

Throughout the inversion process, we considered DQ-1's observational errors, transport model errors,
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and the impact of DQ-1's day-night observation capability on assessing the temporal variation of
biosphere fluxes in urban emissions. Employing a Bayesian inversion approach, we optimized CO>
emissions from fossil fuels in Beijing, Riyadh, and Cairo using DQ-1 data collected from June 2022 to
April 2023, focusing on downwind tracks in major urban emission areas where significant XCO;
enhancements were detected.

Pseudo-data experiments, based on high-resolution forward simulations from real cases, were
conducted to evaluate the potential of using multiple DQ-1 tracks while considering measurement and
transport model errors. Our results showed that the posterior scaling factors for the three cities ranged
from 0.53 to 1.06, 0.75 to 0.86, and 0.98 to 1.21, respectively, with Riyadh exhibiting the highest
posterior uncertainty. Notably, some simulations revealed that posterior scaling factor uncertainties are
influenced by the relative position of tracks to plumes and positive or negative wind direction biases in
the region.

Our assessment of spatial and temporal gradients in biosphere fluxes revealed that, at certain times in
Beijing, despite significant ffCO, emissions, a notable portion of the local XCO, enhancement (20%
and 13%, respectively) was attributable to local biosphere fluxes. This could lead to an overestimation
of total emissions by approximately 33% + 20% and 13 + 7%. By incorporating CASA and ODIAC
biosphere flux data and examining day-night crossing tracks on the same day, we found that separately
considering day and night biosphere fluxes can improve the accuracy of local XCO2 enhancement
calculations by 30%-70% compared to using daily average biosphere fluxes. This indicates that
leveraging the short-term, rapid day-night crossing capability of DQ-1, along with more accurate
biosphere flux estimation models, has the potential to reduce uncertainties in emission estimates due to

biosphere fluxes.

For biosphere flux cities with similar total CO> emissions but lower fossil fuel emissions, the *

contribution of biosphere fluxes is expected to be higher than indicated. Therefore, for cities in
mid-latitude and equatorial regions with significant local and regional biosphere fluxes, accurately
interpreting XCOz detection results is crucial. Future improvements in constraining urban fossil fuel
CO; emissions using DQ-1 data or other polar orbit measurements should consider the temporal and
spatial correlations of previous emission errors, which were not included in this inversion.

For applying these methods to larger-scale flux inversions, advanced satellites with shorter revisit
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cycles and denser ground-based stations are essential. Additionally, optimizing city emission scaling
factors requires more information on prior emission uncertainties to better understand spatial and
temporal characteristics of urban-scale emissions. The appropriate number of constraints for urban
emissions will depend on the spatial and temporal resolution of target city emissions and the precision
required to support policy decisions. Our results demonstrate that DQ-1 or similar missions have
significant potential to constrain overall emissions from cities with intensified fossil fuel emissions, and
utilizing DQ-1's unique day-night crossing capability, we can establish frameworks for rapid day-night
flux inversions at the urban scale. This will further elucidate the spatial and temporal structure of
biosphere flux contributions to urban emissions and provide valuable insights for policy-making. We
anticipate that DQ-1 data will effectively enhance the accuracy and precision of urban fossil fuel
carbon flux estimates, in conjunction with observations from other platforms to support emission

reduction strategies.

Data availability

The Level 2 OCO-2 XCO2 data used in this study is archived in permanent repository at NASA's

Goddard Space Flight Center's Earth Sciences Data and Information Services Center (GES-DISC)

Chttps://doi.org/10.5067/8E4VLCK 1606Q. The TCCON data used in this study is the GGG2020 data

release of observations from the TCCON station at Xianghe, China

(https://doi.org/10.14291/tccon.ggg2020.xianghe01.R0). The CASA-GFED3 NEE data used in this

study are archived in repository at NASA's Goddard Space Flight Center's Earth Sciences Data and

Information Services Center (GES-DISC) (https://doi.org/10.5067/5MQJ64JTBQ40). NEE data on A

Data-driven Upscale Product of Global Gross Primary Production from National Institute for

Environmental Studies (Japan) is freely available online at https://doi.org/10.17595/20200227.001.

fossil CO2 emission from ODIAC is available online at https://doi.org/10.17595/20170411.001. The

MODIS data used in this study is the Terra Surface Reflectance Daily L2G Global 1km and 500m SIN

Grid V061 (http://doi.org/10.5067/MODIS/MYDO09GA.006). The DQ-1 ACDL productions

underlying the results presented in this paper are not publicly available at this time but may be obtained

from the authors upon reasonable request.
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