

1 **Accurate Elucidation of Oxidation Under Heavy Ozone**
2 **Pollution: A Full Suite of Radical Measurement In the**
3 **Chemical-complex Atmosphere**

4 Renzhi Hu¹, Guoxian Zhang^{1,2,×}, Haotian Cai¹, Jingyi Guo¹, Keding Lu⁴, Xin Li⁴,
5 Shengrong Lou⁵, Zhaofeng Tan⁴, Changjin Hu¹, Pinhua Xie^{1,3, **}, Wenqing Liu^{1,3}

6 ¹ Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine
7 Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China

8 ² School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China

9 ³ College of Resources and Environment, University of Chinese Academy of Science, Beijing, China

10 ⁴ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
11 Environmental Sciences and Engineering, Peking University, Beijing, China

12 ⁵ State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air
13 Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China

14 **×Correspondence to:** Guoxian Zhang, School of Physics and New Energy, Xuzhou
15 University of Technology, Xuzhou, China

16 ****Correspondence to:** Pinhua Xie, Key Laboratory of Environment Optics and
17 Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of
18 Sciences, Hefei, China

19 **Email addresses:** gxzhang@aiofm.ac.cn (Guoxian Zhang); phxie@aiofm.ac.cn (Pinhua
20 Xie)

21
22

23 **Abstract:** The Yangze River Delta (YRD) in China encountered with prolonged ozone
24 pollution in September 2020. To accurately elucidate the limitations of oxidation
25 processes in the chemical-complex atmosphere, a full suite of radical measurements (OH,
26 HO₂, RO₂, and k_{OH}) was established in YRD region for the first time. The diurnal peaks
27 of radicals exhibited considerable variation due to environmental factors, showing ranges
28 of 3.6 to $27.1 \times 10^6 \text{ cm}^{-3}$ for OH, 2.1 to $33.2 \times 10^8 \text{ cm}^{-3}$ for HO₂, and 4.9 to $30.5 \times 10^8 \text{ cm}^{-3}$
29 for RO₂. The simulated results provided by the RACM2-LIM1 mechanism failed to
30 adequately match the observed data both in radical concentration and experimental
31 budget at a heavy ozone pollution episode. Sensitivity tests utilizing a comprehensive set
32 of radical measurements revealed that the higher aldehyde mechanism (HAM) effectively
33 complements the regeneration of OH radicals, yielding enhancements of 4.4% - 6.0%
34 compared to the base scenario, while the concentrations of HO₂ and RO₂ radicals have
35 shown increments of about 7.4% and 12.5%, respectively. It is noteworthy that under the
36 constraints of k_{OH} measurement, the inclusion of OVOCs and larger alkoxy radicals
37 derived from monoterpenes improved the model-measurement consistency for ozone
38 formation, reducing the discrepancy under high NO conditions from 4.17 to 2.39. This
39 outcome corroborates the hypothesis of sensitivity analysis as it pertains to ozone
40 formation. Moving forward, by implementing a comprehensive radical detection
41 approach, further investigations should concentrate on a broader range of OVOCs to
42 rectify the imbalance associated with RO₂ radicals, thereby providing a more precise
43 understanding of oxidation processes during severe ozone pollution episodes.

44

45 **Keywords:** FAGE-LIF; Full-chain detection; Radical; P(Ox); OVOCs;

46

47 1 Introduction

48 In recent years, China's rapid economic development has led to severe environmental
49 pollution problems, which significantly impacted the respiratory, dermatological, and visual
50 health of local residents (Wang et al., 2022c; Huang et al., 2018). This has raised
51 concerns about the coexistence of regional primary and secondary pollution, making air
52 quality improvement efforts a focal point (Liu et al., 2021; Wang et al., 2022a). In the
53 complex atmosphere, near-surface ozone (O_3) is formed through continuous
54 photochemical reactions between nitrogen oxides ($NO_x \equiv NO + NO_2$) and volatile
55 organic compounds (VOCs) under light conditions, while hydroxyl radicals (OH) serve
56 as the main oxidant in the troposphere, converting VOCs into hydroperoxy (HO_2) and
57 organic peroxy (RO_2) radicals (Rohrer et al., 2014; Hofzumahaus et al., 2009).
58 Additionally, the oxidation of nitric oxide (NO) and peroxy radicals produce nitrogen
59 dioxide (NO_2), which is the sole photochemical source of ozone (Lu et al., 2012; Stone et
60 al., 2012).

61 Despite numerous experimental and theoretical explorations to establish the
62 radical-cored photooxidation mechanism in the troposphere, field observations were
63 primarily focused on HO_x ($HO_x \equiv OH + HO_2$) radicals due to the limitations of detection
64 technology (Kanaya et al., 2012; Lu et al., 2012; Hofzumahaus et al., 2009; Yugo Kanaya
65 and Tanimoto, 2007; Ren et al., 2008; Stone et al., 2012; Levy, 1971). Recent
66 advancements in detection technology, such as the application of a new LIF technique
67 (RO_x LIF), have made the detection of RO_2 radicals possible (Whalley et al., 2013; Tan et
68 al., 2017a). Moreover, the union of comprehensive field campaigns and box model, has
69 proven to be an effective method for verifying the integrity of radical chemistry at local
70 to global scales (Lu et al., 2019b; Tan et al., 2018). Several experiments have indicated
71 that the existing atmospheric chemical mechanism posted challenges in deepening the
72 understanding of the regional pollution explosion (Whalley et al., 2021; Slater et al., 2020;
73 Tan et al., 2017a; Woodward-Massey et al., 2023). For instance, the observation of up to
74 $4 \times 10^9 \text{ cm}^{-3}$ of RO_2 radical in the center of Beijing in 2017 (APHH) was significantly
75 underestimated by the MCM v3.3.1 mechanism (Whalley et al., 2021). Further exploring
76 the unrepeatable concentration and the oxidation process in the chemical-complex
77 atmosphere is deemed necessary (Whalley et al., 2021; Woodward-Massey et al., 2023).

78 The YRD region, situated between the North China Plain (NCP) and Pearl River
79 Delta (PRD), is highly prone to regional transport interactions and aerosol-boundary layer
80 feedback (Jia et al., 2021; Huang et al., 2020). In an effort to gain a better understanding
81 between the complex radical chemistry and the intensive oxidation level in the Yangze
82 River Delta, TROPSTECT-YRD (The experiment on Radical chemistry and Ozone
83 Pollution perSpectively: long-Term Elucidation of the photochemiCal oxidaTion in the
84 Yangze River Delta) was conducted in Hefei during September 2020. Accurate
85 elucidation of the oxidation process under heavy ozone pollution was provided by a full
86 suite of radical measurement (OH , HO_2 , RO_2 and k_{OH}) in the chemical-complex
87 atmosphere.

88 **2 Materials and methods**

89 **2.1 Site description and instrumentation**

90 The TROPSTECT observation was conducted from 1 to 20 September 2020 at the
91 Science Island background station (31.9° N, 117.2° E) in Hefei, a typical megacity located
92 in the central region of Anhui Province within the Yangtze River Delta. The station is
93 situated on a peninsula with abundant vegetation to the northwest of urban areas and is in
94 close proximity to Dongpu Lake, which is only 200 meters away, and the main road,
95 positioned 250 meters southward (Fig. 1). Consequently, the relatively enclosed
96 environment exhibits typical suburban characteristics of anthropogenic emissions. The
97 station is located in the transition region between urban and suburban areas, reflecting the
98 regional transpor of pollution in Hefei and its surrounding areas.

99
100 **Fig. 1.** (a) The location of the measurement site (source: © Google Earth).
101 (b) The close shot of the measurement site location (source: © Google Earth).
102 (c) The actual image for the LIF-Box.

103 Regarding the instrumentation, a group of oxidation-related instruments were
104 installed on the 7th floor of the Comprehensive Building at the Anhui Institute of Optics

105 and Fine Mechanics (AIOFM), with all sampling outlets positioned more than 20 meters
106 above the ground. The details of the instruments measuring various parameters such as
107 meteorological factors (WS, WD, T, RH, P, Jvalues), gas pollutants (O₃, CO, SO₂, NO,
108 NO₂, HONO, HCHO, PAN), and non-methane hydrocarbons (NMHCs) are provided in
109 Table S1.

110 The measurement of NO, NO₂, O₃, CO, and SO₂ was carried out using commercial
111 Thermo Electron model series instruments. Thereof, NO and NO₂ were measured using a
112 chemical luminescence method (CL) with an enhanced trace-level NO-NO₂-NO_x
113 analyzer (PKU-PL), which achieved a detection limit of 50 ppt (Tan et al., 2017a). The
114 detection of O₃ and SO₂ was conducted through Thermo Electron model 49i and 43i,
115 respectively, while Thermo Electron model 48i was utilized for CO detection. Cavity
116 ring-down spectroscopy (CRDS, Picarro-G2401) was employed for CO detection in
117 parallel, and another ultraviolet absorption instrument (Ecotech EC9810B) was for ozone
118 detection. The instrument inlets were placed within 5 meters of each other for
119 comparison.

120 All Thermo series gas analyzers were equipped with individual sampling inlet tubing,
121 which was made of Polyfluoroalkoxy (PFA, with 6.35 mm outer-diameter), and the flow
122 rate was operated at 1.5 L/min. The total length of the inlet tubing from the sampling tip
123 to the instrument inlet was 2.5 m, with the entire line wrapped with insulation material to
124 prevent condensation of water vapor. To ensure measurement accuracy, the instruments in
125 the campaign underwent zero point calibration procedures during the early (August 31st)
126 and late (September 21st) observation periods. Furthermore, additional zero calibration
127 for Thermo 48i CO detection was undertaken daily from 0:00-0:30 to minimize shift
128 correction. Zero-point calibration includes the instrument and the complete inlet system.
129 Cross-calibrations for O₃ and CO measurements were carried out during the middle
130 (September 9th). The comparison results revealed high consistency within the instrument
131 accuracy range for both CO and O₃ measurements (Fig. S1(a)(b)).

132 HONO was detected using a home-built instrument by cavity-enhanced absorption
133 spectroscopy (CEAS), while formaldehyde was determined by the Hantzsch method
134 (SDL MODEL 4050) (Duan et al., 2018; Yang et al., 2021a). An automated gas
135 chromatograph equipped with a mass spectrometer and flame ionization detector

136 (GC-FID/MS) was employed for the online measurement of 99 VOCs species.
137 Information table for parts of the VOC monitoring species by online GC-MS/FID was
138 listed in Table S2.

139 The eight crucial photolysis frequencies ($j(\text{NO}_2)$, $j(\text{H}_2\text{O}_2)$, $j(\text{HCHO}_\text{M})$, $j(\text{HCHO}_\text{R})$,
140 $j(\text{HONO})$, $j(\text{NO}_3_\text{M})$, $j(\text{NO}_3_\text{R})$, $j(\text{O}^1\text{D})$) were directly measured by a photolysis
141 spectrometer (Metcon, Germany). The unmeasured photolysis frequencies of the
142 remaining active species were computed using Eq.(1):

$$j = l \cdot \cos(\chi)^m \cdot e^{-n \cdot \sec(\chi)} \quad (1)$$

143 The variations in photolysis frequency due to solar zenith angle (χ) were adjusted based
144 on the ratio of observed and simulated $j(\text{NO}_2)$. The optimal values for parameters (l , m ,
145 and n) for different photolysis frequencies were extensively detailed by the MCM v3.3.1
146 (http://mcm.york.ac.uk/parameters/photolysis_param.htm) (Jenkin et al., 2003; Jenkin et
147 al., 1997).

148 **2.2 Radical measurement**

149 **2.2.1 OH, HO₂, RO₂ Concentrations**

150 The laser-induced fluorescence instrument developed by the Anhui Institute of Optics
151 and Fine Mechanics (AIOFM-LIF) was used to simultaneously detect the concentrations
152 of OH, HO₂, and RO₂ radicals, along with OH reactivity (k_{OH}). The OH radical was
153 directly measured by detecting on-resonance fluorescence excited by a 308 nm laser. An
154 indirect measurement for HO₂ was carried out after converting it to OH at a fixed
155 efficiency (Heard and Pilling, 2003).

156 The laser utilized for fluorescence excitation is a high-frequency tunable dye laser
157 that emits a 308 nm laser, with the laser power divided into a ratio of 0.45:0.45:0.08:0.02.
158 Of this power, 90% is directed towards fluorescence cells for concentration and reactivity
159 detection via optical fibers, respectively. 8% of the laser power is directed to a reference
160 cell, while the remaining 2% is used to monitor real-time power fluctuations. The laser is
161 transmitted through HO₂, OH, and RO₂ cells in turn via a coaxial optical path. Two
162 photodiodes are set up at the end of the reference cell and RO₂ detection cell, respectively.
163 The voltage signals and power fluctuations are compared synchronously to diagnose the
164 laser stability. To maintain detection efficiency, the power inside the measurement cells
165 should not be less than 10 mW. Sampling nozzles of 0.4 mm are deployed above OH and

166 HO₂ cells for efficient sampling at a flow rate of approximately 1.1 SLM, and the
167 pressure for all fluorescence cells are maintained at 400 Pa. The micro-channel plate
168 (MCP) detects the weak fluorescence signal collected by lens systems with low noise and
169 high gain. Additionally, a digital delay generator (DG645) optimizes the timing control
170 between the laser output, signal detection, and data acquisition. All of these modules are
171 integrated into a sampling box with constant air conditioning, except for the laser.

172 The detection of RO₂ radicals is more complex compared to the integrated detection
173 of OH and HO₂ radicals (Whalley et al., 2013). To achieve the complete chemical
174 conversion from RO_x to HO₂, a crucial role is played by a 66 mm×830 mm aluminium
175 flow tube, whose performance has been confirmed through the CHOOSE-2019 field
176 campaign (Li et al., 2020). A mixture of 0.17% CO and 0.7 ppm NO injected into the
177 flow tube facilitates the reduction of heterogeneous radical loss and enhancement of
178 conversion efficiency. The sampling flow is limited to 7 SLM by a 1 mm nozzle, and the
179 tube pressure is maintained at 25 hPa. In contrast to the HO_x cells, the large-diameter
180 nozzle (4 mm) is equipped above the cell, and a high concentration of NO (~300 ppm)
181 facilitates the full magnitude HO₂→OH conversion.

182 The observation data (H₂O, O₃) is combined with experimental characterization to
183 eliminate ozone photolysis interference, and most interference signals are excluded by
184 utilizing wavelength modulation (Zhang et al., 2022a). A comparison experiment with
185 PKU-LIF demonstrated the consistency of OH measurement in complex atmosphere
186 (Zhang et al., 2022b). An additional atmospheric oxidation observation was conducted in
187 the same location and season in 2022 with a chemical modulation method to determine
188 the chemical background of OH radicals (Fig. S2). During the ozone pollution
189 (2022.9.29-2022.10.3), the daytime peaks of ozone concentration above 75 ppb,
190 accompanied by alkene species approaching ~10 ppb. The diurnal concentration of
191 isoprene was also a high level (>1 ppb). The chemical conditions are more favourable to
192 induce OH interference than in the TROPSTECT campaign, while the OH concentrations
193 achieved by chemical modulation (OH_{chem}) and wavelength modulation (OH_{wav}) were in
194 good agreement. No obvious chemical background was observed by deploying an inlet
195 pre-injector. While it was not anticipated that OH measurements would be influenced by
196 internal interference, the possibility of unknown interferences cannot be excluded since

197 titration tests were not employed during the campaign. Consequently, the OH
198 measurements represent an upper bound to the actual values.

199 For HO₂ measurement, lower NO concentration ($\sim 1.6 \times 10^{12} \text{ cm}^{-3}$, corresponding to
200 $\sim 15\%$ conversion efficiency) are selected to limit the RO₂→HO₂ interference to less than
201 5% (Wang et al., 2021). Since only the total-RO₂ mode is used for the campaign, the
202 additional uncertainty introduced by RO₂/R(OH)O₂ classification is negligible (Tan et al.,
203 2017b). The observed maximum daily PAN (11:00-14:00) is only 1.15 ± 0.67 ppb,
204 resulting in a calculated PAN-pyrolytic interference for RO₂ measurement of less than 1
205 ppt (Fuchs et al., 2008). The general applicability of AIOFM-LIF in complex atmosphere
206 has been demonstrated through various campaigns (Zhang et al., 2022b; Wang et al.,
207 2021; Wang et al., 2019a).

208 To complete the calibration task, a standard source stably generates equal amounts
209 of OH and HO₂ radicals (Wang et al., 2020). The radical source is also capable of
210 yielding specific RO₂ by titrating hydrocarbon with OH. It is noteworthy that CH₃O₂ has
211 the highest mixing ratio in the RO₂ species, thus it was chosen to represent for sensitivity
212 calibration. The instrument is calibrated every two days, except during rainy weather. The
213 limit of detection (LOD) for OH, HO₂, and RO₂ in different cells with a typical laser
214 power of 10 mW is measured at $3.3 \times 10^5 \text{ cm}^{-3}$, $1.1 \times 10^6 \text{ cm}^{-3}$, and $2.5 \times 10^6 \text{ cm}^{-3}$,
215 respectively (60 s, 1σ). Measurement accuracy for OH, HO₂, and RO₂ radicals are
216 reported to be 13%, 17%, and 21%, respectively.

217 **2.2.2 OH reactivity(k_{OH})**

218 The detection of k_{OH} in the atmosphere, defined as the reciprocal of OH lifetime, was
219 conducted using a laser flash photolysis laser-induced fluorescence (LP-LIF) instrument
220 (Lou et al., 2010). The configuration structure for k_{OH} measurement has been detailed in a
221 previous study(Liu et al., 2019). The flow tube in the OH production-reaction unit is at
222 ambient pressure, with a gas flow rate of 17 SLM. A pulsed laser beam (266 nm with an
223 average power of 15 mJ) is output from a frequency-quadrupled Nd:YAG laser, which
224 generates stable OH radical through flash photolysis of ambient ozone in the flow tube.
225 Consistent and stable production of OH radicals is ensured by maintaining a stable
226 concentration of reactants, flow field, and laser energy. Under conditions of 80 ppb O₃
227 and 8000 ppm water vapor concentration, OH radicals produced in the flow tube remains

228 at the concentration order of 10^9 cm $^{-3}$. Subsequently, the OH radicals are sampled through
229 a nozzle into a fluorescence cell. The OH fluorescence signal is then detected using laser
230 pump and probe techniques and is fitted to calculate the slope of OH decay (k_{OH}). The
231 detection accuracy, achieved with an integration time of 180 s, is 0.3 s $^{-1}$ (1 σ).

232 **2.3 Observation-Based Model**

233 The Regional Atmospheric Chemical Mechanism version 2 (RACM2) incorporating
234 the latest Leuven isoprene mechanism (LIM) was utilized to simulate the concentrations
235 and reactions of OH, HO $_2$, and RO $_2$ radicals (Stockwell et al., 1997; Griffith et al., 2013;
236 Peeters et al., 2014). The RACM2-LIM1 mechanism was specifically involved with
237 fewer species compared to the explicit MCM mechanism, thus ensuring higher
238 operational efficiency (Liu et al., 2022). The comprehensive list of model constraints was
239 provided in Table S3. The measured NMHCs include 29 alkanes, 11 alkenes, 15
240 aromatics, as well as acetylene and isoprene. For the base scenario, boundary conditions
241 were established using the observed species, with assumed concentrations of hydrogen
242 (H $_2$) and methane (CH $_4$) at 550 ppb and 1900 ppb, respectively. An ozone-simulation test
243 was conducted to determine the suitable depositional lifetime (τ_D) for the species
244 involved in the base model. At the lifetime of 24 hours, with a corresponding first-order
245 loss rate of 1.1 cm/s (assuming a boundary layer height of 1 km), the simulated ozone
246 concentration closely matched the observed values (Fig. S3). The time resolution of all
247 constraints was uniformly set to 15 minutes through averaging or linear interpolation. To
248 reinitialize unconstrained species to a steady-state, three days of data were input in
249 advance as the spin-up time.

250 To improve the model-measurement consistency between OH, HO $_2$ and RO $_2$ radicals,
251 a series of sensitivity analyses were performed to evaluate the impacts of potential
252 mechanisms, as detailed in Table 1. The HAM mechanism was introduced to discuss the
253 influence of reactive aldehyde chemistry, and additional monoterpene species (MTS) was
254 employed to represent the complex isomerization steps experienced by RO $_2$ radicals
255 derived from other unmeasured VOCs. Reactions involving monoterpene and HAM
256 mechanism have been listed in Table S4&S5. Furthermore, under the framework of the
257 base model, another investigation on the photochemical role of unmeasured OVOCs
258 species in the atmosphere was conducted by the MCM v3.3.1 mechanism.

259 **Table 1.** The sensitive test scenarios utilized to improve the model-measurement consistency between
 260 OH, HO₂ and RO₂ radicals.

Scenario	Configuration	Purpose
Base	RACM2 updated with isoprene reaction scheme (LIM)	The base case with the species involved in Table S3 are constrained as boundary conditions.
MCM on	As the base scenario, but the reaction scheme was replaced by the MCM v3.3.1 mechanism.	To assess the photochemical role of unmeasured OVOCs species in the atmosphere.
HAM on (4 × ALD)	As the base scenario, but add the reactive aldehyde chemistry, and the concentration of ALD was amplified by a factor of 4.	To quantify the impact of missing aldehyde primary emissions on RO _x chemistry.
HAM on (4 × ALD+MTS)	As the HAM on (4 × ALD) scenario, but add a monoterpene source, and the monoterpene level is ~0.4 ppb.	Utilizing monoterpene-derived RO ₂ to represent the alkoxy radicals with rather complex chemical structures.
Ozone simulation	As the base scenario, but remove the constraints of the observed ozone and NO concentrations.	To test the suitable lifetime for the base model.
HCHO simulation	As the base scenario, but remove the constraint of the observed HCHO concentration.	To test the simulation effect of the existing mechanism on formaldehyde concentration.

261

262 The local formation of ozone can be accurately quantified through the online
 263 measurement of RO_x radicals (Tan et al., 2018). To overcome the interference from NO,
 264 the total oxidant (Ox), which is defined as the sum of NO₂ and O₃, can serve as a reliable
 265 parameter to indicate the level of oxidation. Eq.(2) shows that the rate of NO oxidation
 266 by peroxy radicals is equivalent to the production of O₃, denoted as F(Ox):

$$267 \quad F(O_x) = k_{HO_2+NO}[NO][HO_2] + \sum_i k_{RO_2^i+NO}[NO]RO_2^i \quad (2)$$

268 The major loss pathways for Ox encompass ozone photolysis, ozonolysis reactions,
 269 and radical-related reactions (OH/HO₂+O₃, OH+NO₂), represented as D(Ox) in Eq.(3):

$$270 \quad D(O_x) = \varphi_{OH}j(O^1D)[O_3] + \sum_i \{\varphi_{OH}^i k_{Alkenes+O_3}^i [Alkenes][O_3]\} + (k_{O_3+OH}[OH] + \\ 271 \quad k_{O_3+HO_2}[HO_2])[O_3] + k_{OH+NO_2}[OH][NO_2] \quad (3)$$

272 Here, the OH yields from ozone photolysis and ozonolysis reactions are denoted as φ_{OH}
 273 and φ_{OH}^i , respectively.

274 The net photochemical Ox production rate in the troposphere, denoted as P(Ox) in
 275 Eq.(4), can therefore be calculated as the difference between Eqs. (2) and (3):

$$276 \quad P(O_x) = F(O_x) - D(O_x) \quad (4)$$

277 **2.4 Experimental budget analysis**

278 In this study, an experimental radical budget analysis was also conducted (Eqs. (5)
 279 - (12)). Unlike model studies, this method relies solely on field measurements

280 (concentrations and photolysis rates) and chemical kinetic data, without depending on
 281 concentrations calculated by models(Whalley et al., 2021; Tan et al., 2019b). Given the
 282 short-lived characteristics of OH, HO₂, and RO₂ radicals, it is expected that the
 283 concentrations are in a steady state, with total production and loss rates being
 284 balanced(Lu et al., 2019a). By comparing the known sources and sinks for radicals,
 285 unknown processes for initiation, transformation and termination can be determined.

$$P(OH) = j_{HONO}[HONO] + \varphi_{OH}j(O^1D)[O_3] + \sum i \{ \varphi_{OH}^i k_{Alkenes+O_3}^i [Alkenes][O_3] \} + (k_{HO_2+NO}[NO] + k_{HO_2+O_3}[O_3])[HO_2] \quad (5)$$

$$D(OH) = [OH] \times k_{OH} \quad (6)$$

$$P(HO_2) = 2 \times j_{HCHO_R}[HCHO] + \sum i \{ \varphi_{HO_2}^i k_{Alkenes+O_3}^i [Alkenes][O_3] \} + (k_{HCHO+OH}[HCHO] + k_{CO+OH}[CO])[OH] + \alpha k_{RO_2+NO}[NO][RO_2] \quad (7)$$

$$D(HO_2) = (k_{HO_2+NO}[NO] + k_{HO_2+O_3}[O_3] + k_{HO_2+RO_2}[RO_2] + 2 \times k_{HO_2+HO_2}[HO_2])[HO_2] \quad (8)$$

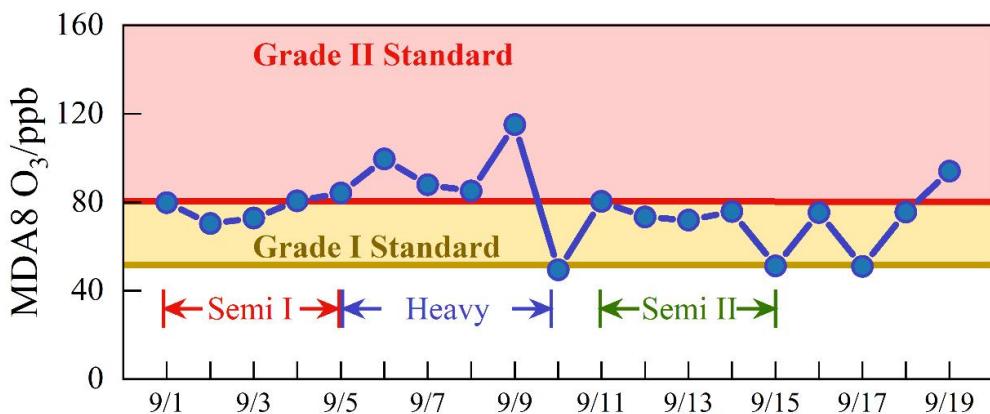
$$P(RO_2) = \sum i \{ \varphi_{RO_2}^i k_{Alkenes+O_3}^i [Alkenes][O_3] \} + k_{OH}[VOCs][OH] \quad (9)$$

$$D(RO_2) = \{(\alpha + \beta)k_{RO_2+NO}[NO] + (2 \times k_{RO_2+RO_2}[RO_2] + k_{HO_2+RO_2}[HO_2])[RO_2]\} [RO_2] \quad (10)$$

$$P(RO_x) = \sum i \{ (\varphi_{OH}^i + \varphi_{HO_2}^i + \varphi_{RO_2}^i) k_{Alkenes+O_3}^i [Alkenes][O_3] \} + j_{HONO}[HONO] + \varphi_{OH}j(O^1D)[O_3] + 2 \times j_{HCHO_R}[HCHO] \quad (11)$$

$$D(RO_x) = (k_{OH+NO_2}[NO_2] + k_{OH+NO}[NO])[OH] + \beta k_{RO_2+NO}[NO] + 2 \times (k_{RO_2+RO_2}[RO_2][RO_2] + k_{HO_2+RO_2}[HO_2][RO_2] + k_{HO_2+HO_2}[HO_2][HO_2]) \quad (12)$$

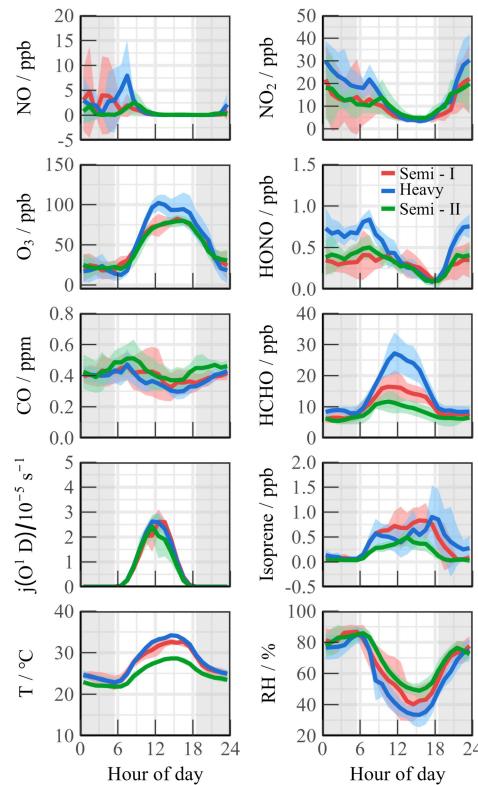
286 In which, j(HONO), j(O¹D) are the measured photolysis rates of HONO and O₃,
 287 respectively, and jHCHO_R is the measured photolysis rate for the channel of
 288 formaldehyde photolysis generating HO₂. φ_{OH} represent the OH yield in the O₃
 289 photolysis reaction. φ_{OH}^i , $\varphi_{HO_2}^i$ and $\varphi_{RO_2}^i$ are the yields for the ozonolysis reaction
 290 producing OH, HO₂, and RO₂, respectively. α is the proportion of RO₂ radicals reacting
 291 with NO that are converted to HO₂, and β is the proportion of alkyl nitrates formation,
 292 which are set to 1 and 0.05, respectively(Tan et al., 2019b).


293

3 Results

294

3.1 Overview of Measurement


295 During the observation period, the meteorological parameters and trace gas
296 concentrations were plotted in Fig. S4. The timeseries revealed that the peak temperature
297 exceeded 30°C, and the humidity levels remained between 30 – 50% during the daytime.
298 The photolysis rates were observed to peak at noon (11:00 – 13:00), with $j(O^1D)$ and
299 $j(NO_2)$ reaching approximately $3 \times 10^{-5} \text{ s}^{-1}$ and $8 \times 10^{-3} \text{ s}^{-1}$, respectively. Brief rainfall events
300 temporarily happened on September 10th, 15th, and 17th, but totally favorable
301 meteorologies induced the prolonged ozone pollution. The daily maximum 8-hour
302 average ozone concentration (MDA8), as depicted in Fig. 2, consistently exceeded the
303 Chinese Grade I national air quality standard (GB3095-2012) throughout the observation,
304 with nine days exceeding the Grade II standard.

305
306 **Fig. 2.** The daily maximum 8 h average O₃ during the campaign. The yellow and red lines denote the Grade I and
307 Grade II national standards for O₃, respectively. Brief rainfall events temporarily happened on 10, 15, and 17 Sep.
308

309 The ozone pollution can be categorized into three continuous periods based on
310 pollution levels, which disclose transitional ‘Semi - Heavy - Semi’ pollution
311 characteristics. Fig. 3 depicts daily variations in meteorological and trace gas
312 concentrations for different periods. During the Semi I (1 to 5 September) and Semi II (11
313 to 14 September) periods, the MDA8 levels exceeded Grade I standard, with an average
314 value of 75.92 ± 5.14 ppb and 75.45 ± 3.73 ppb, respectively. Notably, NO levels peaked
315 around 9:00 and rapidly decreased to a few hundred ppt due to photochemistry. In
316 addition, HONO and NO₂ exhibited bimodal variations, with diurnal concentration ranges
317 of 0.09 – 0.50 ppb and 3.35 – 13.77 ppb, respectively. The HONO/NO₂ ratios during both
318 Semi periods were consistent with previous urban/suburban observations, with daytime

values of 0.049 ± 0.014 and 0.035 ± 0.012 , respectively (Yang et al., 2021b; Shi et al., 2020; Hu et al., 2022). Isoprene levels accumulated during the day and decreased at night during both Semi pollution episodes, with a diurnal average concentration in Semi II only 49.3% of that in Semi I (0.71 ± 0.087 ppb vs 0.35 ± 0.073 ppb). Formaldehyde, as the key oxidation species, exhibited a concentration profile mirroring that of isoprene, with significantly higher concentrations ranging from 1.20 to 36.34 ppb compared to other urban regions (Ma et al., 2022; Yang et al., 2022; Tan et al., 2017b; Yang et al., 2021a). Heavy pollution episodes from 5 to 9 September resulted in daytime ozone concentration as high as 129.9 ppb, and oxidation-related species such as HCHO, HONO, NO_x, and VOCs increased synchronously compared to other days.

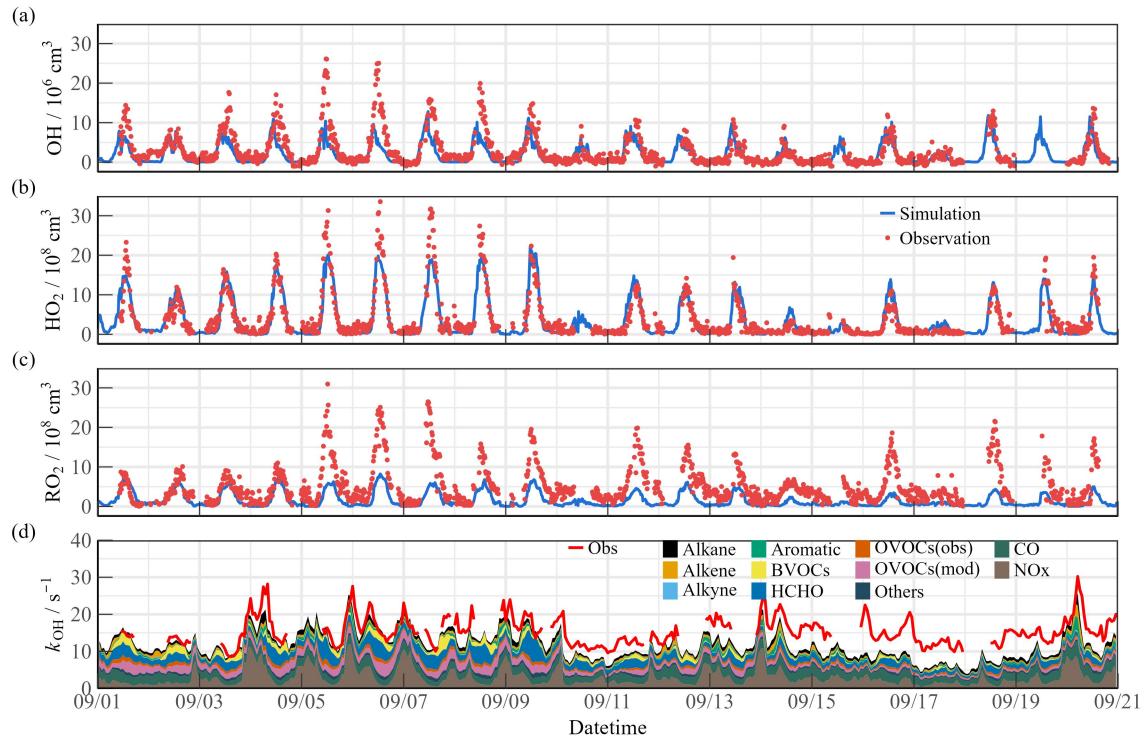


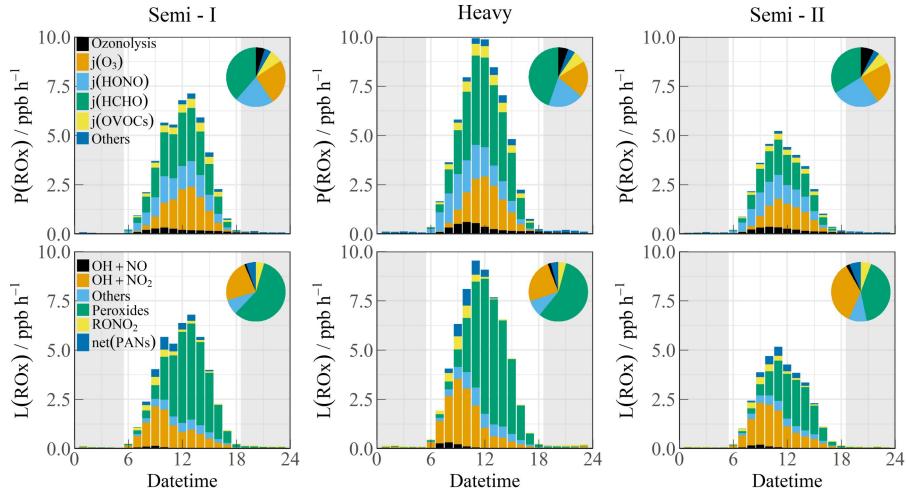
Fig. 3. Mean diurnal profiles of observed meteorological and chemical parameters during the campaign. Three periods were divided for subsequent study (Semi I, Heavy, and Semi II).

3.2 ROx radical concentrations and budgets

The observed and modeled timeseries for OH, HO₂, RO₂, and k_{OH} during the observation time are depicted in Fig. 4. The diurnal peaks of radicals exhibited a wide span due to changes in environmental conditions, with ranges of $3.6 - 27.1 \times 10^6 \text{ cm}^{-3}$ for OH, $2.1 - 33.2 \times 10^8 \text{ cm}^{-3}$ for HO₂, and $4.9 - 30.5 \times 10^8 \text{ cm}^{-3}$ for RO₂. Continuous data for

336 k_{OH} observation were acquired within a range of $8.6 - 30.2 \text{ s}^{-1}$. Fig. S5 presents the
337 diurnal profiles of the observed and modeled values during different episodes. The
338 diurnal maximum of OH radical at noon differed between Semi I and Semi II, with
339 $9.28 \times 10^6 \text{ cm}^{-3}$ and $5.08 \times 10^6 \text{ cm}^{-3}$, respectively, while total peroxy radicals ($\text{HO}_2 + \text{RO}_2$)
340 remained at similar levels with $19.43 \times 10^8 \text{ cm}^{-3}$ and $18.38 \times 10^8 \text{ cm}^{-3}$. Additionally, the
341 distribution of peroxy radicals are not similar in the two Semi periods, with HO_2/RO_2
342 ratios of 1.69:1 and 0.76:1, respectively, which reflects the uneven oxidation levels
343 between Semi I and Semi II. During the Heavy ozone pollution, the averaged OH, HO_2 ,
344 and RO_2 concentrations were 1.90, 2.15, and 1.98 times higher than those in the Semi
345 periods, suggesting a stronger oxidation capacity, with k_{OH} in Heavy being 26.43% and
346 9.56% higher than in Semi I and Semi II, respectively. Limited anthropogenic emissions
347 in the suburban environment reduced the oxidation contribution by NO_x and CO
348 (27.59%). During the heavy pollution, organic species exhibited dominant behavior
349 regarding diurnal reactivity (9.22 s^{-1} for 69.79%), and anthropogenic hydrocarbons were
350 not major k_{OH} sources. With an abundant level ($\sim 1 \text{ ppb}$), isoprene contributed more than
351 10% of the reactivity in the diurnal cycle. Therefore, the effect of BVOCs species (such
352 as monoterpenes, limonene, etc.) on radical chemistry cannot be ignored (Ma et al., 2022;
353 Wang et al., 2022b). k_{OVOCs} are categorized into three groups: $k_{\text{OVOCs(Obs)}}$, $k_{\text{OVOCs(Model)}}$, and
354 k_{HCHO} . Given the significance of formaldehyde photolysis, the contribution of HCHO to
355 k_{OVOCs} is distinguished. $k_{\text{OVOCs(Obs)}}$ encompasses species observed in addition to
356 formaldehyde, such as acetaldehyde (ACD) and the oxidation products of isoprene
357 (MACR and MVK). Intermediates generated by the model, including glyoxal (GLY),
358 methylglyoxal (MGLY), higher aldehydes (ALD), ketones (KET), methyl ethyl ketone
359 (MEK), and methanol (MOH), are classified as $k_{\text{OVOCs(Model)}}$. Upon considering
360 $k_{\text{OVOCs(Model)}}$ calculated by RACM2-LIM1 mechanism, the reactivity calculated prior to
361 September 10th aligns quite well with the observed OH reactivity.

362


363 **Fig. 4.** Timeseries of the observed and modelled parameters for OH, HO₂ and k_{OH} during the observation period.
 364 (a) OH, (b) HO₂, (c) k_{OH} .

365 The significant variations in oxidation can be inferred from the disparities during
 366 different pollution periods (Fig. S5). During Semi I, there was a good agreement between
 367 the measurement and model for peroxy radicals during the daytime. The RACM2-LIM1
 368 mechanism effectively replicated the morning OH radical concentration. However,
 369 following 10:00, NO gradually declined, and the increasing OH concentration could not
 370 be accounted for by the HO₂+NO formation channel, resulting in a maximum
 371 underestimation of $5.85 \times 10^6 \text{ cm}^{-3}$ (Hofzumahaus et al., 2009; Lu et al., 2012). In the
 372 Semi II episode, OH was not underestimated in the low-NO regime, with a slight
 373 overestimation of HO₂ concentration. However, the simulated RO₂ concentration was
 374 only $3.78 \times 10^8 \text{ cm}^{-3}$, whereas observations were 2.77 times larger than the simulation,
 375 indicating the existence of additional reaction pathways that likely propagated the
 376 OH→RO₂ conversion efficiency. A significant discrepancy of radicals existed in the
 377 heavy ozone concentration, with OH, HO₂, and RO₂ radicals concurrently underestimated
 378 at noon by $8.23 \times 10^6 \text{ cm}^{-3}$, $3.94 \times 10^8 \text{ cm}^{-3}$ and $11.59 \times 10^8 \text{ cm}^{-3}$, respectively. The observed
 379 HO₂/RO₂ ratio approached 1:1, while the model reflected an unreasonable ratio of 3:1,
 380 indicating deficiencies in both primary sources and secondary propagation. The

381 calculated reactivity seems to compare well with the observed OH reactivity at the start
382 of the measurement period, but then there is evidence of missing OH reactivity after
383 September 10th (Fig. 4(d)). Due to the limitations of available instruments, this
384 observation only measured a limited number of OVOCs species, making it difficult to
385 accurately quantify the contribution of larger aldehydes and ketones, carboxylic acids,
386 nitrophenols, and other multifunctional species to k_{OH} (Wang et al., 2024). Since the
387 MCM mechanism considers more secondary formation reactions than the RACM2
388 mechanism, it can qualitatively assess the photochemical role of unmeasured OVOCs
389 species in the atmosphere (Wang et al., 2022d). The additional modeled OVOCs by the
390 MCM v3.3.1 mechanism contributed $\sim 2.4 \text{ s}^{-1}$ to the missing OH reactivity (Fig. S6).
391 During Heavy period, the reactivity of more model oxidation products increased the
392 daytime k_{OH} by about 5.1 s^{-1} . Therefore, the observed k_{OH} can serve as an upper limit for
393 sensitivity tests, thereby the full suite of radical measurement can be performed to
394 explore the missing oxidation properties and ozone formation (Section 4.1).

395 Fig. 5 displays the diurnal profiles of the ROx budget during different episodes. In
396 Semi I, formaldehyde photolysis showed a higher contribution (38.6%), while HONO
397 photolysis (21.0%) and ozone photolysis (24.7%) accounted for similar proportions in
398 primary sources. The contribution of photolysis from other OVOCs was comparable to
399 that of ozonolysis reactions (7.2% vs. 4.8%). However, in Semi II, the decreased
400 oxidation level was attributed to lower ROx sources, despite the similar proportions.
401 During the Heavy period, the primary sources dramatically increased (up to $\sim 10 \text{ ppb/h}$),
402 with HCHO photolysis contributing the most, alongside other sources at common levels
403 (ranging between $1.74 - 2.66 \text{ ppb/h}$) in the YRD region (Ma et al., 2022). Fast HCHO
404 oxidation dominated the radical primary source during heavy ozone pollution, which
405 contrasts with the dominant role of HONO/O₃ in other megacities (Yang et al., 2022; Tan
406 et al., 2017b; Yang et al., 2021a).

407 The radical removal rate during the daytime was generally balanced with production
408 contributions. In the morning, owing to high NOx concentrations, radical termination was
409 mainly dominated by OH+NO₂, OH+NO, RO₂+NO, and RO₂+NO₂. Furthermore, the
410 formation of peroxy nitrate accounted for a certain proportion ($\sim 5\%$). As NOx
411 concentrations decreased after 10:00, self-reactions in peroxy radicals became significant.

412
413 **Fig. 5.** The diurnal profiles of ROx budget during different polluted episodes (Semi I, Heavy, and Semi II). The
414 pie chart denotes proportions in different parts during the daytime (10:00-15:00). The grey areas denote nighttime.
415

416 By comparing the known sources and sinks for radicals, unknown processes for
417 initiation, transformation and termination can be determined in the experimental budget
418 analysis (Fig. S7). During the Semi I period, the production and destruction rates of HO₂,
419 RO₂, and total ROx radicals were very consistent, but a significant lack of a source term
420 for OH radicals was existed after 10:00. This missing source became more pronounced
421 during the Heavy period, reaching 16 ppb/h at noon, which is close to the results
422 observed by APHH, but three times that observed by Heshan in PRD region(Tan et al.,
423 2019b; Whalley et al., 2021). The ratio of OH production-to-destruction rate during the
424 Semi II period was close to 1, indicating consistency between the observed results of OH,
425 HO₂, *k*_{OH}, and other precursors(Whalley et al., 2018). However, the generation of HO₂
426 radicals in the morning was about twice as high as the removal rate, suggesting that there
427 are contributions from unconsidered HO₂ radical removal channels (such as
428 heterogeneous reactions)(Song et al., 2021). During the Heavy period, there was a rapid
429 total removal rate of RO₂ radicals, reflecting the dominated HO₂ generation by the
430 reaction of RO₂ radicals with NO. Although the P(HO₂) and D(HO₂) were quite in
431 balance, the removal rate of RO₂ radicals far exceeded the known production rate
432 (especially before 12:00). Previous work has shown that halogen chemistry (such as
433 photolysis of nitryl chloride (ClNO₂)) could be an important source in the morning time,
434 but this was not included in the calculation of ROx or RO₂ budget in this campaign(Tan
435 et al., 2017b). The steady-state analysis for HO₂ radical in the London campaign
emphasized that only by significantly reducing the observed RO₂-to-HO₂ propagation

436 rate to just 15% could balance both P(HO₂) and D(HO₂), indicating that the RO₂-related
437 mechanism for propagation to other radical species may not be fully understood(Whalley
438 et al., 2018). Therefore, based on the current knowledge seems unlikely to explain the
439 required source-sink difference of nearly 25 ppb/h in the RO₂ budget. Sensitivity analysis
440 is needed to further infer the causes of the difference for the experimental budget
441 analysis.

442 **3.3 Oxidation comparison**

443 The concentration of OH radicals during the daytime is a crucial indicator of
444 atmospheric oxidation levels (Liu et al., 2021). Table 2 summarized radicals and related
445 parameters for regions with similar latitudes ($32.0^\circ \pm 2^\circ$ N, $j(O^1D) \approx 2.5 \pm 0.5 \times 10^{-5} \text{ s}^{-1}$).
446 The joint influence of solar radiation and local photochemistry resulted in megacities
447 exhibiting intense oxidation levels in summer/autumn, characterized by OH radicals
448 being maintained at approximately $10.0 \times 10^6 \text{ cm}^{-3}$ at noon. Notably, an observation in
449 Houston revealed an OH concentration of nearly $20.0 \times 10^6 \text{ cm}^{-3}$, with k_{OH} of 10 s^{-1} (Mao
450 et al., 2010). In areas such as Los Angeles, Pasadena, and Tokyo, the propagation
451 efficiency of radicals was restricted due to fresh anthropogenic emissions. OH
452 concentrations were only half of those observed in other megacities, with higher
453 inorganic-dominated k_{OH} recorded (Pasadena, $\sim 20 \text{ s}^{-1}$) (George et al., 1999; Griffith et al.,
454 2016; Yugo Kanaya et al., 2007). In the TROPSTECT observation, the observed k_{OH}
455 exceeded the mean value at the same latitude ($> 15 \text{ s}^{-1}$). Additionally, during the Heavy
456 episode, higher OH concentration ($13.5 \times 10^6 \text{ cm}^{-3}$) was found, comparable to the highest
457 level at regions with similar latitude (Houston 2000/2006, (Mao et al., 2010)).
458 Synchronous elevation in radical concentration and reactivity indicated a strong oxidation
459 level in the YRD region.

460 The observations in the YRD region showed a stable conversion factor (OH- $j(O^1D)$)
461 of $4 \pm 1 \times 10^{11} \text{ cm}^{-3} \text{ s}$, which was comparable to other megacities in the PRD, NCP, and
462 SCB regions (Ma et al., 2022; Tan et al., 2019a). The corresponding slope between OH
463 concentration and solar radiation was used to quantify the oxidation efficiency from
464 photolysis, and it was observed that a higher slope of $5.3 \times 10^{11} \text{ cm}^{-3} \text{ s}$ during the Heavy
465 period indicated an active radical chemistry. This implies that there is a strong oxidation
466 efficiency from photolysis in the YRD region.

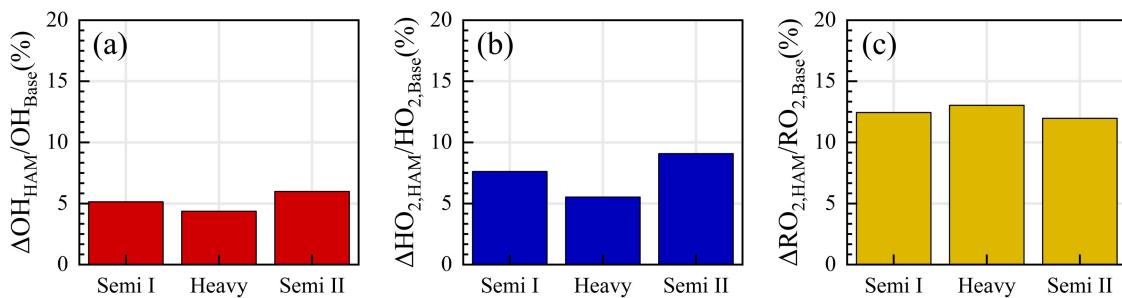
467 During summer and autumn seasons, photochemical pollution is a common
 468 occurrence, as noted by (Tan et al., 2021). Analysis of radical concentration across
 469 different regions reveals that the YRD region exhibited concentrations higher than 10^7
 470 cm^{-3} , slightly lower than in Guangzhou in 2006 but consistent with observations in other
 471 megacities (Ma et al., 2022; Tan et al., 2017a; Lu et al., 2012; Yang et al., 2021a).
 472 Conversely, winter is characterized by haze pollution (Ma et al., 2019). An urban site in
 473 Shanghai reported a peak OH concentration of $2.6 \times 10^6 \text{ cm}^{-3}$, closely resembling the $1.7 - 3.1 \times 10^6 \text{ cm}^{-3}$ range found in polluted winter atmospheres (Zhang et al., 2022a). Although
 475 no significant regional disparities in oxidation levels were detected in agglomerations,
 476 attention should be directed to the YRD region due to its elevated radical concentration,
 477 reactivity, and photolysis efficiency, signaling the need to investigate its role in radical
 478 chemistry.

479 **Table 2.** Summary of radical concentrations and related species concentrations at regions with similar latitude and
 480 megapolitan areas in China. All data are listed as the average in noontime (11:00~13:00).

Location	Latitude	Year	OH (10^6 cm^{-3})	k_{OH} (s^{-1})	$j(\text{O}^1\text{D})$ (10^{-5} s^{-1})	Slope ($10^{11} \text{ cm}^{-3} \text{ s}$)	References
Regions with similar latitude							
Los Angeles	34.1° N	Sep 1993	6.0	-	-	-	(George et al., 1999)
Nashville	36.2° N	Jun-Jul 1999	10.0	10.2	3.0	3.3 ^c	(Martinez et al., 2003)
Houston	29.7° N	Aug 2000	20.0	9.0 ^b	3.0	6.7 ^c	(Mao et al., 2010)
Tokyo	35.6° N	Jul-Aug 2004	6.3	-	2.5	3.0	(Yugo Kanaya et al., 2007)
Houston	29.7° N	Sep 2006	15.0	11.0	3.1	5.0 ^c	(Mao et al., 2010)
Pasadena	34.1° N	May-Jun 2010	4.0	20.0	2.5	1.6 ^c	(Griffith et al., 2016)
Taizhou	32.6° N	May-Jun 2018	10.6	10.8 ^a	2.1	4.8	(Ma et al., 2022)
Chengdu	30.7° N	Aug 2019	10.0	8.0	2.2	4.1	(Yang et al., 2021a)
TROPSTECT (Heavy)	31.9° N	Sep 2020	13.5	16.0	2.6	5.3	This work
TROPSTECT (Semi)	31.9° N	Sep 2020	7.2	14.2	2.4	3.1	This work
Regions in megapolitan areas in China							
Guangzhou (PRD)	23.5° N	Jul 2006	12.6	17.9	3.5 ^b	4.5	(Lu et al., 2012)
Wangdu (NCP)	38.7° N	Jun-Jul 2014	8.3	15.0	1.8	4.5	(Tan et al., 2017b)
Beijing (NCP)	39.9° N	May-Jun 2017	9.0	30.0	2.4	3.8 ^c	(Whalley et al., 2021)
Taizhou (YRD)	32.6° N	May-Jun 2018	10.6	10.8 ^a	2.1	4.8	(Ma et al., 2022)
Shenzhen (PRD)	22.6° N	Sep-Oct 2018	4.5	21.0	1.8	2.4	(Yang et al., 2022)
Chengdu (SCB)	30.7° N	Aug 2019	9.0	8.0	2.2	4.0	(Yang et al., 2021a)
Hefei (YRD)	31.9° N	Sep 2020	10.4	14.3	2.4	4.4	This work

481 ^a The modeled k_{OH} .

482 ^b Value only in the afternoon.


483 ^c Using the ratio of OH / $j(\text{O}^1\text{D})$

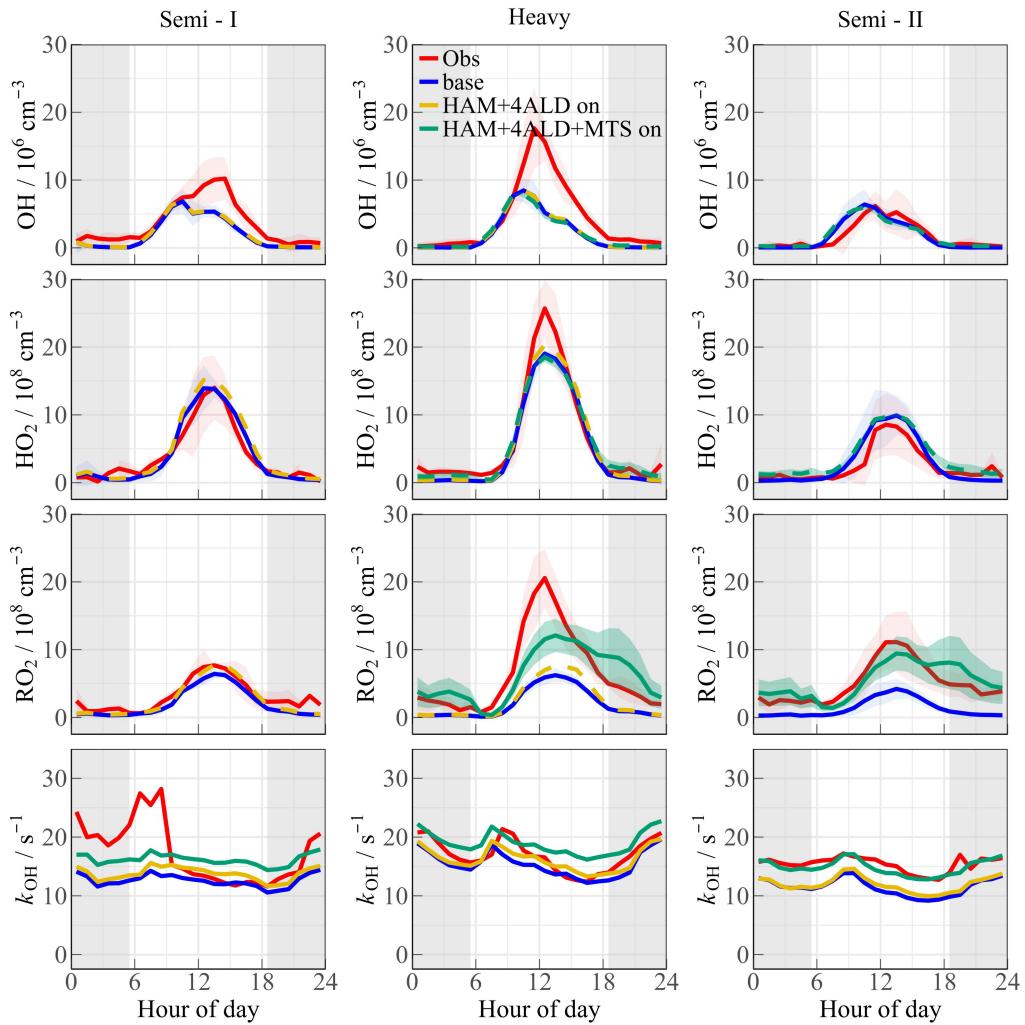
484 **4 Discussion**

485 **4.1 Measurement–model reconciliation for radicals**

486 **4.1.1 OH underestimation**

487 Full suite of OH, HO₂, RO₂ and k_{OH} was utilized in the TROPSTECT campaign to
488 untangle a thorough understanding of oxidation mechanisms where base model failed.
489 One specific phenomenon was the absence of an OH source in situations where NO
490 levels gradually decreased after 10:00. Missing OH sources are closely related to the
491 chemistry of OVOCs(Yang et al., 2024a; Qu et al., 2021). Reactive aldehyde chemistry,
492 particularly the autoxidation of carbonyl organic peroxy radicals (R(CO)O₂) derived from
493 higher aldehydes, is a significant OH regeneration mechanism that has been shown to
494 contribute importantly to OH sources in regions with abundant natural and anthropogenic
495 emissions during warm seasons(Yang et al., 2024b). In this study, the higher aldehyde
496 mechanism (HAM) by Yang et al was parameterized into the base model to test new
497 insights into the potential missing radical chemistry (Fig. 6). The results indicate that the
498 contribution of the HAM mechanism to OH radicals in different episodes ranged between
499 4.4% - 6.0% (Fig. 6(a)). The additional HAM mechanism seems to have a small effect on
500 the measured OH radical concentration. Thus, an empirical hypothesis is proposed in the
501 'HAM+4ALD on' scenario to increase the concentration of higher-order aldehydes by
502 approximately fourfold, thereby replicating the effect of missing OVOCs sources on
503 radicals. Detailed description is presented in Section 4.3.

504
505 **Fig. 6.** The response of (a) OH, (b) HO₂ and (c) RO₂ radicals to the Higher Aldehyde Mechanism (HAM) in
506 different episodes (Semi I, Heavy, and Semi II) in diurnal time (10:00-15:00).

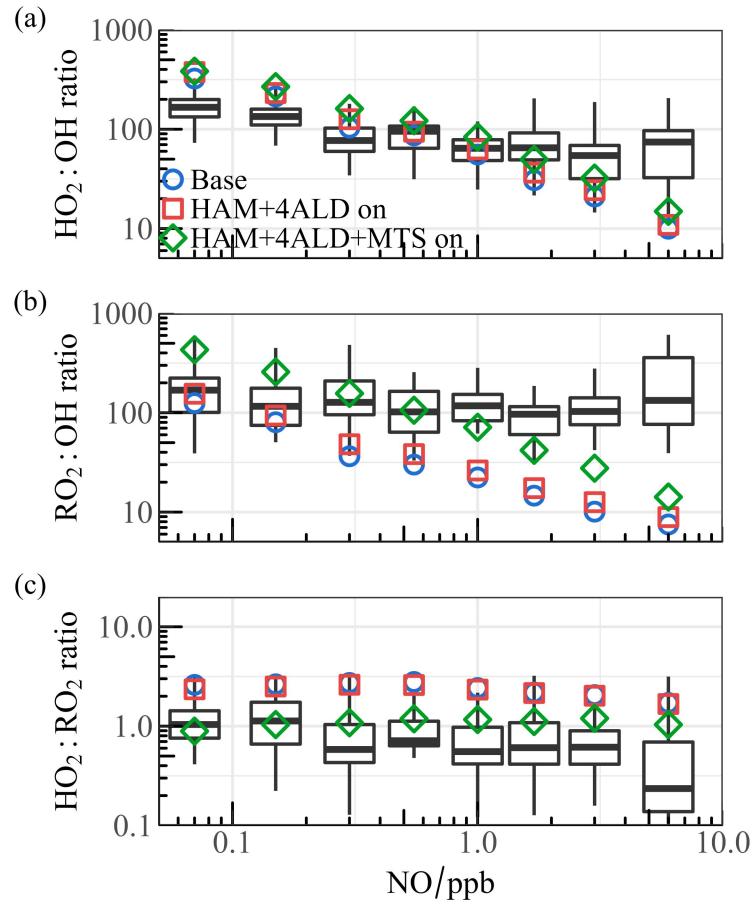

507 **4.1.2 RO₂ underestimation**

508 The base scenario in Semi II is capable of accurately reproducing the concentrations
509 of OH and HO₂ radicals within the data uncertainty. However, the simulated RO₂
510 concentration by the base model is only $3.78 \times 10^8 \text{ cm}^{-3}$, which does not align with the

511 observed oxidation levels in YRD, indicating a clear discrepancy. This underestimation is
512 similarly evident in the APHH observation in Beijing, as the highest observed
513 concentration of RO_2 radicals reached $5.5 \times 10^9 \text{ cm}^{-3}$, far exceeding the level predicted by
514 the MCM v3.3.1 mechanism (Whalley et al., 2021). The failure to reproduce the RO_2
515 concentration reflects the inadequacy of the mechanisms related to RO_2 radicals due to
516 diverse oxidation reactions. This issue is further elucidated by previous studies, which
517 highlighted the possibility of certain VOCs undergoing more intricate isomerization or
518 fragmentation steps to sustain the long lifetime of RO_2 radicals (Whalley et al., 2018;
519 Whalley et al., 2021). Higher aldehyde chemistry is a concrete manifestation of verifying
520 the aforementioned hypothesis for RO_2 sources (Yang et al., 2024b). The autoxidation
521 process of $\text{R}(\text{CO})\text{O}_2$, encompasses a hydrogen migration process that transforms it into
522 the $\cdot\text{OOR}(\text{CO})\text{OOH}$ radical (Wang et al., 2019b). This radical subsequently reacts with
523 NO to yield the $\cdot\text{OR}(\text{CO})\text{OOH}$ radical. The $\cdot\text{OR}(\text{CO})\text{OOH}$ radical predominantly
524 undergoes two successive rapid hydrogen migration reactionss, ultimately resulting in the
525 formation of HO_2 radicals and hydroperoxy carbonyl (HPC). Consequently, the HAM
526 mechanism extends the lifetime of the RO_2 radical, providing a valuable complement to
527 the unaccounted sources of RO_2 radicals. As depicted in Fig. 6, the incorporation of the
528 HAM mechanism results in an approximate 7.4% and 12.5% increase in the
529 concentrations of HO_2 and RO_2 radicals, respectively.

530 It is important to note that the total concentrations of primary emitted aldehydes and
531 the HPC group may be underestimated, which could lead to the aforementioned analysis
532 being conservative in nature. The union of k_{OH} and RO_2 measurement can help reveal the
533 magnitude of missing RO_2 as a hypothesis of sensitivity analysis. Discrepancy of OH
534 reactivity ($\sim 3 - 5 \text{ s}^{-1}$) between measurement and model suggested that an additional
535 driving force was necessary to complete the OH to RO_2 step. Additional monoterpene
536 species (MTS) was employed to represent the complex isomerization steps experienced
537 by RO_2 radicals derived from other unmeasured VOCs. In the ‘HAM+4ALD+MTS’
538 scenario, approximately 0.4 ppb of monoterpenes are introduced as as the reactive
539 BVOCs. The 0.4 ppb monoterpene level aligns with another observation from the
540 EXPLORE-2018 campaign conducted in a suburban environment of YRD region, and
541 can better reconcile the missing k_{OH} between observation and simulation (Fig. 7) (Wang et

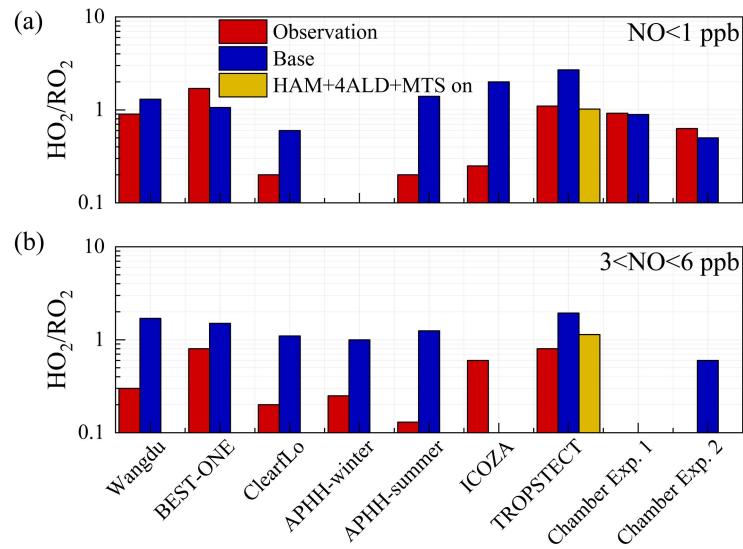
542 al., 2022b). The RACM2 mechanism identified α -pinene (API) and limonene (LIM) as
 543 representative of monoterpenes, and the mean of the species was considered the average
 544 effect of monoterpenes chemistry (the green line in Fig. 7). The ‘HAM +4ALD+MTS on’
 545 scenario can reasonably reproduce the measured reactivity, and the chemistry of peroxy
 546 radicals in Semi II was reasonably described by introducing the source of complex
 547 alkoxy radicals, decreasing the obs-to-mod ratio from 2.2 to 1.3. Furthermore, the
 548 introduction of additional complex alkoxy radicals had minimal impact on HO_x
 549 chemistry, with changes in daytime OH and HO₂ concentrations of less than $5 \times 10^5 \text{ cm}^{-3}$
 550 and $2.5 \times 10^7 \text{ cm}^{-3}$, respectively. This demonstrates the robustness of HO_x radical in
 551 response to potential monoterpene.


552
 553 **Fig. 7.** The mean diurnal profiles of measured and modeled OH, HO₂, RO₂ and k_{OH} at different scenarios. Among
 554 them, the red, blue, and dotted yellow lines represent the observed values, simulated values under base model and
 555 ‘HAM+4ALD’ scenario, respectively. The green line and its shaded area represent the results under the
 556 ‘HAM+4ALD+MTS’ scenario. The grey areas denote nighttime.

557 **4.2 Effect of mechanism reconciliation on oxidation**

558 Upon completing the hypothetical investigation into the radical underestimation,
559 both radical concentration and oxidation coordinating deficiency are worthy of examine
560 (Fig. S8). To eliminate the influence of non-photolytic processes, only the daytime
561 concentration range with $j(O^1D)$ greater than $5 \times 10^{-6} \text{ s}^{-1}$ was selected. The boxplots
562 illustrate the ratio of observation to simulation (base model), with the circles representing
563 the average values after integrating different mechanisms into the base scenario. In the
564 low NO regime ($\text{NO} < 1 \text{ ppb}$), the OH underestimation was consistently prominent as NO
565 concentration decreased, and the base model was able to reasonably reflect the HO_2
566 distribution contrastly. As NO levels increased, the simulated OH concentration aligned
567 well with the observation, but both HO_2 and RO_2 concentrations exhibited
568 underprediction. RO_2 underestimation extended across the entire NO range, and could
569 rise to over 10 times when NO levels reached about 10 ppb. Sensitivity tests based on the
570 full suite of radical measurement revealed that the introduction of larger RO_2 alleviated
571 the absence of certain sources by 2 to 4 times.

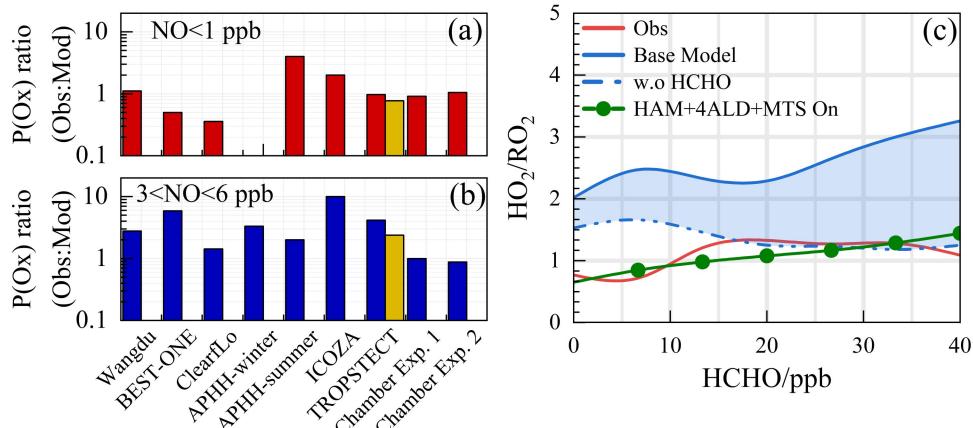
572 The coordinate ratios of radical serves as another test for ROx propagation (Fig. 8).
573 The observed HO_2/OH ratio is approximately 100, declining to some extent as the
574 concentration of NO increases, which is consistent with previous studies (Griffith et al.,
575 2016; Griffith et al., 2013). However, the base model does not accurately replicate the
576 curve depicting the change in HO_2/OH ratio, as shown in Fig. 8 (a). At low NO levels, the
577 ratio significantly overestimated and shows a steeper decline compared to the base
578 scenario as NO levels increase. Furthermore, the observed RO_2/OH ratios remain around
579 100, whereas the predicted values are significantly underestimated when NO exceeds 1
580 ppb (refer to Fig. 8(b)). In terms of the observed HO_2/RO_2 ratio, it maintains a relatively
581 constant trend within the range of 0.5 – 1.5, while the model overestimated by more than
582 twice, highlighting an inconsistency between the conversion of $\text{RO}_2 \rightarrow \text{HO}_2$. The
583 incorporation of the HAM mechanism has proven to slightly balance the HO_2/OH ratio as
584 illustrated in Fig. 8(a), and altered the coordination between RO_2 and OH across the
585 entire NO range (Fig. 8(b)). The larger RO_2 isomerization associated with HAM
586 mechanism in chemically complex environments is key to fully understanding
587 tropospheric chemistry, and a better coordination of HO_2/OH , RO_2/OH , and HO_2/RO_2


588 ratios are established by incorporating additional mechanisms.

589
 590 **Fig. 8.** The ratios for (a) HO₂/OH, (b) RO₂/OH, and (c) HO₂/RO₂ show a correlation with NO levels. Boxplot
 591 diagrams are used to illustrate the minimum, 25th percentile, median, 75th percentile, and maximum values of the
 592 observed dataset. The point styles (circular, square, diamond-shaped) represent the median values for the base model as
 593 well as for different mechanisms added to the model within various ranges.

594 The HO₂/RO₂ parameter was utilized to explore the transformation relationship
 595 between HO₂ and RO₂ radicals. If HO₂ is formed from an RO₂ radical, it would result in
 596 an HO₂/RO₂ radical concentration ratio of approximately 1. The HO₂/RO₂ ratios derived
 597 from radical concentrations measured by laser-induced fluorescence instruments and
 598 calculated using the MCM or RACM models were summarized in Fig. 9. In field studies,
 599 the observed HO₂/RO₂ ratios were between 0.2 - 1.7 under low-NO conditions (NO < 1
 600 ppb) and only 0.1 - 0.8 under high-NO conditions (3 < NO < 6 ppb). From the
 601 perspective of model-observation matching, except for three measurements in ClearfLo,
 602 ICOZA and APHH-summer campaigns, the HO₂/RO₂ ratios in other regions could be
 603 reasonably reflected by the MCM or RACM2 mechanisms(Woodward-Massey et al.,
 604 2023; Whalley et al., 2021; Whalley et al., 2018; Färber et al., 2024). However, the ratio

605 is generally underestimated under high NO conditions, reaching up to 5 times in ClearfLo.
 606 According to the latest chamber experiments, the HO₂/RO₂ radical concentration ratios
 607 for VOCs forming HO₂ are 0.6 for both one-step and two-step reactions. Therefore, the
 608 extremely low HO₂/RO₂ ratios observed in field campaigns can only be explained if
 609 almost all RO₂ radicals undergo multiple-step reactions before forming HO₂. During the
 610 TROPSTECT campaign, the observed HO₂/RO₂ remains at 1.1 and 0.8 under low-NO
 611 and high-NO conditions, respectively. After considering the sources of complex alkoxy
 612 radicals in the 'HAM +4ALD+MTS on' scenario, the simulated values of HO₂/RO₂ in
 613 both low-NO and high-NO regions match the observed values well.

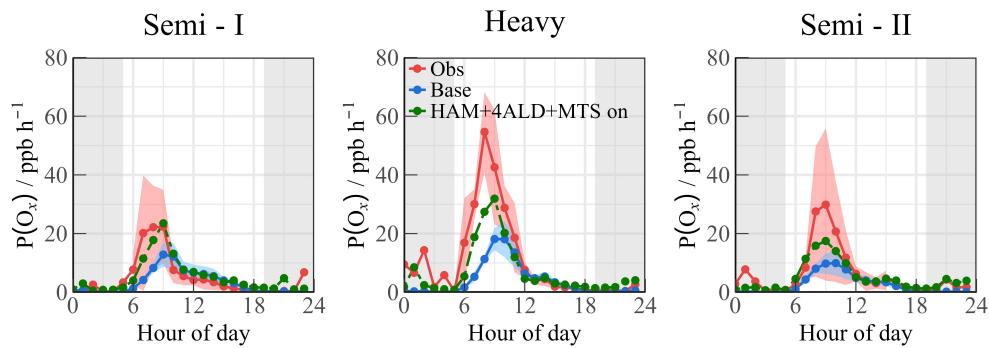

614

615 **Fig. 9.** Summary of the HO₂/RO₂ ratios derived from radical concentrations measured by laser-induced fluorescence
 616 instruments and calculated using the MCM or RACM models under (a) low-NO and (b) high-NO conditions.
 617 Charmer Exp. 1 and Charmer Exp. 2 denotes the parameters by single-step HO₂ formation and multi-step HO₂
 618 formation determined in the chamber by (Färber et al., 2024).

619 4.3 Missing OVOCs sources influence ozone production

620 The consistency between model predictions and observed measurements for ozone
 621 production, akin to the concentration ratio of HO₂/RO₂, is depicted in Fig. 10(a)(b). In
 622 areas with low NO levels, the ratio of modeled to actual ozone production ranges from
 623 0.5 to 2, with the exception of the ClearfLo and APHH-summer
 624 datasets(Woodward-Massey et al., 2023; Whalley et al., 2021). Conversely, under high
 625 NO conditions (with NO concentrations between 3 and 6 ppbv), the ozone production
 626 rate (P(O_x)) derived from measured radical concentrations typically exceeds that of the
 627 base model's predictions by more than threefold. Laboratory experiments focusing on the

628 oxidation of representative VOCs suggest that ozone production can be enhanced by
 629 approximately 25% for the anthropogenic VOCs under investigation(Färber et al., 2024).


630

631 **Fig. 10.** Summary of the $P(Ox)_{\text{obs}}/P(Ox)_{\text{Mod}}$ under (a) low-NO and (b) high-NO conditions. The yellow bar chart
 632 represents the simulation scenario of 'HAM +4ALD+MTS on'. (c) The ratios for HO_2/RO_2 show a correlation with
 633 HCHO levels. The blue shading represents the range of variation from constrained to unconstrained formaldehyde
 634 conditions. Charmber Exp. 1 and Charmber Exp. 2 denotes the parameters by single-step HO_2 formation and multi-step
 635 HO_2 formation determined in the chamber by (Färber et al., 2024).

636 The reasons for the discrepancy between simulated and observed values for ozone
 637 production deserve further investigation. As depicted in Fig. 10(c), the simulated
 638 HO_2/RO_2 ratios display a robust positive correlation with photochemical activity,
 639 fluctuating between 2 and 4. A notable feature during severe ozone pollution is the
 640 intense distribution of formaldehyde, with an average concentration of 21.81 ± 4.57 ppb
 641 (11:00 – 13:00). While formaldehyde acts as a precursor for HO_2 radicals, it does not
 642 directly generate RO_2 radicals. The contributions of OVOCs to the ROx radical do not
 643 exhibit the same intensity as formaldehyde, and the current mechanism encounters
 644 difficulties in replicating formaldehyde concentrations (Fig. S9). The simulation of
 645 formaldehyde concentrations using the MCM v3.3.1 mechanism has shown improvement,
 646 indicating that the secondary formation of unmeasured species, such as OVOCs, will
 647 feedback on RO_2 radical levels. When formaldehyde levels are unconstrained, the
 648 simulated HO_2/RO_2 ratios align with observations, suggesting that under the prevailing
 649 chemical mechanism, the photochemical efficiency of formaldehyde and other OVOCs is
 650 similar. Therefore, an empirical hypothesis is proposed to amplify the concentration of
 651 higher-order aldehydes by a factor of about 4, which is the proportion of formaldehyde
 652 concentration underestimated by the model. The qualitative assessment of the impact of
 653 missing aldehyde primary emissions on RO_2 radical concentrations was combined with

654 the HAM mechanism across the entire photochemical spectrum (Fig. S10). Enhanced
 655 impact of aldehyde autoxidation in the presence of weak photochemical conditions could
 656 alter the simulated levels of OH and HO₂ radicals by approximately 13.9% and 18.1%,
 657 respectively. However, higher ALD concentrations will be achieved under intensive
 658 photochemical conditions, leading to the gradual dominance of the sink channels for OH
 659 + OVOCs, with the effect of autoxidation mechanisms gradually decreasing. RO₂ radical
 660 concentrations is notably more sensitive to the HAM mechanism, where incorporates
 661 additional OVOCs, can enhance the simulation of RO₂ radical concentrations by 20 -
 662 40%.

663 On the basis of HAM mechanism, the 'HAM +4ALD+MTS on' scenario represents
 664 an effort to enhance the congruence between modeled and measured radical
 665 concentrations. In Fig. S11, with increasing NO concentration, the overall P(O_x)
 666 amplified, reaching a maximum of approximately 30 ppb/h. However, the imperfect
 667 understanding of the mechanisms related to peroxy radicals ultimately leads to
 668 misjudgment of the ozone production process in high NO regimes, with a degree of
 669 underestimation close to 10 times, as illustrated in Fig. S11(b). Notably, the deficiency in
 670 the ozone generation mechanism was adequately explained within a certain range in the
 671 'HAM +4ALD+MTS on' scenario, leading to an enhancement in the simulation
 672 performance of P(O_x) in the high NO_x region. The incorporation of OVOCs and larger
 673 alkoxy radicals derived from monoterpenes has refined the model-measurement
 674 agreement for ozone formation under high NO conditions, reducing the discrepancy from
 675 4.17 to 2.39 (Fig. 11).

676
 677 **Fig. 11.** The P(O_x) values that calculated by radical values under different scenarios. The grey areas denote
 678 nighttime.

679 Therefore, reasonable simulation of the concentration of peroxy radicals is key to

680 accurately quantifying the process of ozone generation. Although limiting formaldehyde
681 can partially offset the HO₂ radical cycle and enhance the precision of HO_x radical
682 chemistry studies, additional measurements should be undertaken for other OVOCs,
683 coupled with the deployment of full-chain radical detection systems, to accurately
684 elucidate the oxidation processes under severe ozone pollution conditions.

685 **5 Conclusion**

686 The full suite radical measurement of OH, HO₂, RO₂ and k_{OH} was first deployed in
687 the YRD region (TROPSTECT) and encountered with a prolonged ozone pollution in
688 September 2020. The diurnal peaks of radicals exhibited considerable variation due to
689 environmental factors, showing ranges of 3.6 to 27.1×10^6 cm⁻³ for OH, 2.1 to 33.2×10^8
690 cm⁻³ for HO₂, and 4.9 to 30.5×10^8 cm⁻³ for RO₂. Continuous k_{OH} data fell within a range
691 of 8.6 – 30.2 s⁻¹, demonstrating the dominant behavior of organic species in diurnal
692 reactivity. Furthermore, observations in the YRD region were found to be similar to those
693 in other megacities, suggesting no significant regional differences in oxidation levels
694 were observed in agglomerations overall.

695 At a heavy ozone pollution episode, the oxidation level reached intensive compared
696 with other sites, and the simulated OH, HO₂, and RO₂ radicals provided by the
697 RACM2-LIM1 mechanism failed to adequately match the observed data both in radical
698 concentration and experimental radical budget. Sensitivity tests based on the full suite of
699 radical measurement revealed that the HAM mechanism effectively complements the
700 non-traditional regeneration of OH radicals, improving by 4.4% - 6.0% compared to the
701 base scenario, while the concentrations of HO₂ and RO₂ radicals increased by
702 approximately 7.4% and 12.5%, respectively. Under the constraints of k_{OH} measurement,
703 the inclusion of OVOCs and larger alkoxy radicals derived from monoterpenes enabled
704 better coordination of HO₂/OH, RO₂/OH, and HO₂/RO₂ ratios, and adequately improved
705 the model-measurement consistency for ozone formation, reducing the discrepancy under
706 high NO conditions from 4.17 to 2.39. This study enabled a deeper understanding of the
707 tropospheric radical chemistry at play. Notably,

708 ✓ A full suite of radical measurement can untangle the gap-bridge for the base model in
709 more chemically-complex environments as an hypothesis of sensitivity tests.

710 ✓ Additional measurements targeting more OVOCs should also be conducted to fulfill
711 the RO₂-related imbalance, and then accurately elucidating the oxidation under
712 severe ozone pollution.

713

714 **Financial support**

715 This work was supported by the National Key R&D Program of China
716 (2022YFC3700301), the National Natural Science Foundation of China (62275250,
717 U19A2044, 42030609), the Natural Science Foundation of Anhui Province (No.
718 2008085J20), the Anhui Provincial Key R&D Program (2022l07020022), and the
719 Distinguished Program of Jianghuai Talents Program of Excellence (HYRCSTZ202401).

720 **Data availability**

721 The data used in this study are available upon request (rzhu@aiofm.ac.cn).

722 **Author contributions**

723 WQ Liu, PH Xie, RZ Hu contributed to the conception of this study. RZ Hu and GX
724 Zhang performed the data analyses and manuscript writing. All authors contributed to
725 measurements, discussed results, and commented on the paper.

726 **Competing interests**

727 The contact author has declared that none of the authors has any competing interests.
728

References

730 Duan, J., Qin, M., Ouyang, B., Fang, W., Li, X., Lu, K., Tang, K., Liang, S., Meng, F., Hu, Z., Xie, P., Liu, W., and Häsler, R.: Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and NO₂, *Atmos Meas Tech*, 11, 4531-4543, 10.5194/amt-11-4531-2018, 2018.

731 Färber, M., Fuchs, H., Bohn, B., Carlsson, P. T. M., Gkatzelis, G. I., Marcillo Lara, A. C., Rohrer, F., Vereecken, L., Wedel, S., Wahner, A., and Novelli, A.: Effect of the Alkoxy Radical Chemistry on the 732 Ozone Formation from Anthropogenic Organic Compounds Investigated in Chamber Experiments, *ACS 733 ES&T Air*, 1, 1096-1111, 10.1021/acsestairstair.4c00064, 2024.

734 Fuchs, H., Holland, F., and Hofzumahaus, A.: Measurement of tropospheric RO₂ and HO₂ radicals by a 735 laser-induced fluorescence instrument, *Rev of Sci Inst*, 79, 084104, 10.1063/1.2968712, 2008.

736 George, L. A., Hard, T. M., and O'Brien, R. J.: Measurement of free radicals OH and HO₂ in Los Angeles 737 smog, *J Geophys Res-Atmos*, 104, 11643-11655, 1999.

738 Griffith, S. M., Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S. B., Carroll, M. A., 739 Erickson, M., Galloway, M., Grossberg, N., Hottle, J., Hou, J., Jobson, B. T., Kamprath, A., Keutsch, F. N., 740 Lefer, B. L., Mielke, L. H., O'Brien, A., Shepson, P. B., Thurlow, M., Wallace, W., Zhang, N., and Zhou, X. 741 L.: OH and HO₂ radical chemistry during PROPHET 2008 and CABINEX 2009-Part 1: Measurements and 742 model comparison, *Atmos Chem Phys*, 13, 5403-5423, 10.5194/acp-13-5403-2013, 2013.

743 Griffith, S. M., Hansen, R. F., Dusanter, S., Michoud, V., Gilman, J. B., Kuster, W. C., Veres, P. R., Graus, 744 M., de Gouw, J. A., Roberts, J., Young, C., Washenfelder, R., Brown, S. S., Thalman, R., Waxman, E., 745 Volkamer, R., Tsai, C., Stutz, J., Flynn, J. H., Grossberg, N., Lefer, B., Alvarez, S. L., Rappenglueck, B., 746 Mielke, L. H., Osthoff, H. D., and Stevens, P. S.: Measurements of hydroxyl and hydroperoxy radicals 747 during CalNex-LA: Model comparisons and radical budgets, *J Geophys Res-Atmos*, 121, 4211-4232, 10.1002/2015jd024358, 2016.

748 Heard, D. E. and Pilling, M. J.: Measurement of OH and HO₂ in the troposphere, *Chemical reviews*, 103, 749 5163-5198, 10.1021/cr020522s, 2003.

750 Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C., Fuchs, H., Holland, F., Kita, K., 751 Kondo, Y., Li, X., Lou, S., Shao, M., Zeng, L., Wahner, A., and Zhang, Y.: Amplified Trace Gas Removal in 752 the Troposphere, *Science*, 324, 1702-1704, 10.1126/science.1164566, 2009.

753 Hu, B., Duan, J., Hong, Y., Xu, L., Li, M., Bian, Y., Qin, M., Fang, W., Xie, P., and Chen, J.: Exploration of 754 the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from 755 measurements across four seasons, *Atmos Chem Phys*, 22, 371-393, 10.5194/acp-22-371-2022, 2022.

756 Huang, J., Pan, X., Guo, X., and Li, G.: Health impact of China's Air Pollution Prevention and Control 757 Action Plan: an analysis of national air quality monitoring and mortality data, *Lancet Planet Health*, 2, 758 e313-e323, 10.1016/S2542-5196(18)30141-4, 2018.

759 Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.: Amplified transboundary transport 760 of haze by aerosol-boundary layer interaction in China, *Nature Geoscience*, 13, 428-434, 10.1038/s41561-020-0583-4, 2020.

761 Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic 762 compounds: A protocol for mechanism development, *Atmos Environ*, 31, 81-104, 10.1016/s1352-2310(96)00105-7, 1997.

763 Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master 764 Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, 765 *Atmos Chem Phys*, 3, 181-193, 10.5194/acp-3-181-2003, 2003.

766 Jia, W., Zhang, X., and Wang, Y.: Assessing the pollutant evolution mechanisms of heavy pollution 767 episodes in the Yangtze-Huaihe valley: A multiscale perspective, *Atmos Environ*, 244, 10.1016/j.atmosenv.2020.117986, 2021.

768 Kanaya, Y., Hofzumahaus, A., Dorn, H. P., Brauers, T., Fuchs, H., Holland, F., Rohrer, F., Bohn, B., 769 Tillmann, R., Wegener, R., Wahner, A., Kajii, Y., Miyamoto, K., Nishida, S., Watanabe, K., Yoshino, A., 770 Kubistin, D., Martinez, M., Rudolf, M., Harder, H., Berresheim, H., Elste, T., Plass-Duelmer, C., Stange, G., 771 Kleffmann, J., Elshorbany, Y., and Schurath, U.: Comparisons of observed and modeled OH and HO₂ 772 concentrations during the ambient measurement period of the HO(x)Comp field campaign, *Atmos Chem 773 Phys*, 12, 2567-2585, 10.5194/acp-12-2567-2012, 2012.

774 Levy, H.: Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted, *Science*, 173, 775

783 141-143, 10.1126/science.173.3992.141, 1971.

784 Li, S., Lu, K., Ma, X., Yang, X., Chen, S., and Zhang, Y.: Field measurement of the organic peroxy radicals
785 by the low-pressure reactor plus laser-induced fluorescence spectroscopy, Chinese Chemical Letters, 31,
786 2799-2802, 10.1016/j.cclet.2020.07.051, 2020.

787 Liu, S., Li, X., Shen, X., Zeng, L., Huang, X., Zhu, B., Lin, L., and Lou, S.: Measurement and partition
788 analysis of atmospheric OH reactivity in autumn in Shenzhen, *Acta Scientiae Circumstantiae*, 39,
789 3600-3610, 2019.

790 Liu, Y., Li, J., Ma, Y., Zhou, M., Tan, Z., Zeng, L., Lu, K., and Zhang, Y.: A review of gas-phase chemical
791 mechanisms commonly used in atmospheric chemistry modelling, *Journal of Environmental Sciences*,
792 10.1016/j.jes.2022.10.031, 2022.

793 Liu, Z., Wang, Y., Hu, B., Lu, K., Tang, G., Ji, D., Yang, X., Gao, W., Xie, Y., Liu, J., Yao, D., Yang, Y., and
794 Zhang, Y.: Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China,
795 *Sci Total Environ*, 771, 10.1016/j.scitotenv.2021.145306, 2021.

796 Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Haseler, R., Kita, K.,
797 Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.: Atmospheric OH
798 reactivities in the Pearl River Delta – China in summer 2006: measurement and model
799 results, *Atmos Chem Phys*, 10, 11243–11260, 10.5194/acp-10-11243-2010, 2010.

800 Lu, K., Guo, S., Tan, Z., Wang, H., Shang, D., Liu, Y., Li, X., Wu, Z., Hu, M., and Zhang, Y.: Exploring
801 atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air
802 pollution, *Natl. Sci. Rev.*, 6, 579-594, 10.1093/nsr/nwy073, 2019a.

803 Lu, K. D., Guo, S., Tan, Z. F., Wang, H. C., Shang, D. J., Liu, Y. H., Li, X., Wu, Z. J., Hu, M., and Zhang, Y.
804 H.: Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of
805 secondary air pollution, *Natl. Sci. Rev.*, 6, 579-594, 10.1093/nsr/nwy073, 2019b.

806 Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Haeseler, R., Hu, M., Kita,
807 K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and
808 Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River Delta 2006:
809 a missing OH source in a VOC rich atmosphere, *Atmos Chem Phys*, 12, 1541-1569,
810 10.5194/acp-12-1541-2012, 2012.

811 Ma, X., Tan, Z., Lu, K., Yang, X., Chen, X., Wang, H., Chen, S., Fang, X., Li, S., Li, X., Liu, J., Liu, Y.,
812 Lou, S., Qiu, W., Wang, H., Zeng, L., and Zhang, Y.: OH and HO₂ radical chemistry at a suburban site
813 during the EXPLORE-YRD campaign in 2018, *Atmos Chem Phys*, 22, 7005-7028,
814 10.5194/acp-22-7005-2022, 2022.

815 Ma, X. F., Tan, Z. F., Lu, K. D., Yang, X. P., Liu, Y. H., Li, S. L., Li, X., Chen, S. Y., Novelli, A., Cho, C.
816 M., Zeng, L. M., Wahner, A., and Zhang, Y. H.: Winter photochemistry in Beijing: Observation and model
817 simulation of OH and HO₂ radicals at an urban site, *Sci Total Environ*, 685, 85-95,
818 10.1016/j.scitotenv.2019.05.329, 2019.

819 Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappenglück, B.,
820 Flynn, J., and Leuchner, M.: Atmospheric oxidation capacity in the summer of Houston 2006: Comparison
821 with summer measurements in other metropolitan studies, *Atmos Environ*, 44, 4107-4115,
822 10.1016/j.atmosenv.2009.01.013, 2010.

823 Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G. J.,
824 Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A.,
825 Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.: OH and HO₂ concentrations, sources,
826 and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, *J Geophys
827 Res-Atmos*, 108, 10.1029/2003jd003551, 2003.

828 Peeters, J., Muller, J. F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl Radical Recycling in Isoprene
829 Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism, *J
830 Phys Chem A*, 118, 8625-8643, 10.1021/jp5033146, 2014.

831 Qu, H., Wang, Y., Zhang, R., Liu, X., Huey, L. G., Sjostedt, S., Zeng, L., Lu, K., Wu, Y., Shao, M., Hu, M.,
832 Tan, Z., Fuchs, H., Broch, S., Wahner, A., Zhu, T., and Zhang, Y.: Chemical Production of Oxygenated
833 Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone
834 Production, *Environ Sci Technol*, 10.1021/acs.est.1c04489, 2021.

835 Ren, X., Olson, J. R., Crawford, J. H., Brune, W. H., Mao, J., Long, R. B., Chen, Z., Chen, G., Avery, M. A.,
836 Sachse, G. W., Barrick, J. D., Diskin, G. S., Huey, L. G., Fried, A., Cohen, R. C., Heikes, B., Wennberg, P.
837 O., Singh, H. B., Blake, D. R., and Shetter, R. E.: HO_x chemistry during INTEX-A 2004: Observation,
838 model calculation, and comparison with previous studies, *J Geophys Res-Atmos*, 113,

839 10.1029/2007jd009166, 2008.

840 Rohrer, F., Lu, K., Hofzumahaus, A., Bohn, B., Brauers, T., Chang, C.-C., Fuchs, H., Haeseler, R., Holland,
841 F., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S., Oebel, A., Shao, M., Zeng, L., Zhu, T., Zhang, Y., and
842 Wahner, A.: Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere, *Nature
843 Geoscience*, 7, 559-563, 10.1038/ngeo2199, 2014.

844 Shi, X., Ge, Y., Zheng, J., Ma, Y., Ren, X., and Zhang, Y.: Budget of nitrous acid and its impacts on
845 atmospheric oxidative capacity at an urban site in the central Yangtze River Delta region of China, *Atmos
846 Environ*, 238, 10.1016/j.atmosenv.2020.117725, 2020.

847 Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore,
848 R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L., Bloss, W., Vu, T., Sun, Y., Xu, W.,
849 Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Elevated levels of OH
850 observed in haze events during wintertime in central Beijing, *Atmos Chem Phys*, 20, 14847-14871,
851 10.5194/acp-20-14847-2020, 2020.

852 Song, H., Lu, K., Dong, H., Tan, Z., Chen, S., Zeng, L., and Zhang, Y.: Reduced Aerosol Uptake of
853 Hydroperoxyl Radical May Increase the Sensitivity of Ozone Production to Volatile Organic Compounds,
854 *Environmental Science & Technology Letters*, 9, 22-29, 10.1021/acs.estlett.1c00893, 2021.

855 Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional atmospheric
856 chemistry modeling, *J Geophys Res-Atmos*, 102, 25847-25879, 10.1029/97jd00849, 1997.

857 Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO₂ radicals: field measurements and
858 model comparisons, *Chemical Society reviews*, 41, 6348-6404, 10.1039/c2cs35140d, 2012.

859 Tan, Z., Ma, X., Lu, K., Jiang, M., Zou, Q., Wang, H., Zeng, L., and Zhang, Y.: Direct evidence of local
860 photochemical production driven ozone episode in Beijing: A case study, *Sci Total Environ*, 800, 148868,
861 10.1016/j.scitotenv.2021.148868, 2021.

862 Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z.,
863 Xie, S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities
864 during the photochemically polluted season: a case study based on box model simulation, *Atmos Chem
865 Phys*, 19, 3493-3513, 10.5194/acp-19-3493-2019, 2019a.

866 Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Haeseler, R., He,
867 L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang,
868 Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain:
869 observation and model calculations of OH, HO₂ and RO₂ radicals, *Atmos Chem Phys*, 17, 663-690,
870 10.5194/acp-17-663-2017, 2017a.

871 Tan, Z. F., Lu, K. D., Dong, H. B., Hu, M., Li, X., Liu, Y. H., Lu, S. H., Shao, M., Su, R., Wang, H. C., Wu,
872 Y. S., Wahner, A., and Zhang, Y. H.: Explicit diagnosis of the local ozone production rate and the
873 ozone-NO_x-VOC sensitivities, *Sci. Bull.*, 63, 1067-1076, 10.1016/j.scib.2018.07.001, 2018.

874 Tan, Z. F., Lu, K. D., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y. H., Rohrer, F., Shao, M.,
875 Sun, K., Wu, Y. S., Zeng, L. M., Zhang, Y. S., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y. H.:
876 Experimental budgets of OH, HO₂, and RO₂ radicals and implications for ozone formation in the Pearl
877 River Delta in China 2014, *Atmos Chem Phys*, 19, 7129-7150, 10.5194/acp-19-7129-2019, 2019b.

878 Tan, Z. F., Fuchs, H., Lu, K. D., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H. B., Gomm, S., Haseler, R.,
879 He, L. Y., Holland, F., Li, X., Liu, Y., Lu, S. H., Rohrer, F., Shao, M., Wang, B. L., Wang, M., Wu, Y. S.,
880 Zeng, L. M., Zhang, Y. S., Wahner, A., and Zhang, Y. H.: Radical chemistry at a rural site (Wangdu) in the
881 North China Plain: observation and model calculations of OH, HO₂ and RO₂ radicals, *Atmos Chem Phys*,
882 17, 663-690, 10.5194/acp-17-663-2017, 2017b.

883 Wang, F., Hu, R., Xie, P., Wang, Y., Chen, H., Zhang, G., and Liu, W.: Calibration source for OH radical
884 based on synchronous photolysis, *Acta Phys Sin-Ch Ed*, 69, 2020.

885 Wang, F. Y., Hu, R. Z., Chen, H., Xie, P. H., Wang, Y. H., Li, Z. Y., Jin, H. W., Liu, J. G., and Liu, W. Q.:
886 Development of a field system for measurement of tropospheric OH radical using laser-induced
887 fluorescence technique, *Opt. Express*, 27, A419-A435, 10.1364/oe.27.00a419, 2019a.

888 Wang, H., Lu, K., Tan, Z., Chen, X., Liu, Y., and Zhang, Y.: Formation mechanism and control strategy for
889 particulate nitrate in China, *Journal of Environmental Sciences*, 10.1016/j.jes.2022.09.019, 2022a.

890 Wang, H., Ma, X., Tan, Z., Wang, H., Chen, X., Chen, S., Gao, Y., Liu, Y., Liu, Y., Yang, X., Yuan, B., Zeng,
891 L., Huang, C., Lu, K., and Zhang, Y.: Anthropogenic monoterpenes aggravating ozone pollution, *Natl. Sci.
892 Rev.*, 9, 2022b.

893 Wang, S.-n., Wu, R.-r., and Wang, L.-m.: Role of Hydrogen Migrations in Carbonyl Peroxy Radicals in the
894 Atmosphere, *Chinese J Chem Phys*, 32, 457-466, 10.1063/1674-0068/cjcp1811265, 2019b.

895 Wang, T., Xue, L., Feng, Z., Dai, J., Zhang, Y., and Tan, Y.: Ground-level ozone pollution in China: a
 896 synthesis of recent findings on influencing factors and impacts, *Environmental Research Letters*,
 897 10.1088/1748-9326/ac69fe, 2022c.

898 Wang, W., Yuan, B., Su, H., Cheng, Y., Qi, J., Wang, S., Song, W., Wang, X., Xue, C., Ma, C., Bao, F.,
 899 Wang, H., Lou, S., and Shao, M.: A large role of missing volatile organic compound reactivity from
 900 anthropogenic emissions in ozone pollution regulation, *Atmos Chem Phys*, 24, 4017-4027,
 901 10.5194/acp-24-4017-2024, 2024.

902 Wang, W., Yuan, B., Peng, Y., Su, H., Cheng, Y., Yang, S., Wu, C., Qi, J., Bao, F., Huangfu, Y., Wang, C.,
 903 Ye, C., Wang, Z., Wang, B., Wang, X., Song, W., Hu, W., Cheng, P., Zhu, M., Zheng, J., and Shao, M.:
 904 Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger
 905 contributors to radicals and ozone production in the atmosphere, *Atmos Chem Phys*, 22, 4117-4128,
 906 10.5194/acp-22-4117-2022, 2022d.

907 Wang, Y., Hu, R., Xie, P., Chen, H., Wang, F., Liu, X., Liu, J., and Liu, W.: Measurement of tropospheric
 908 HO₂ radical using fluorescence assay by gas expansion with low interferences, *J Environ Sci (China)*, 99,
 909 40-50, 10.1016/j.jes.2020.06.010, 2021.

910 Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity
 911 of laser-induced fluorescence instruments used for HO₂ detection to an interference from RO₂ radicals and
 912 introducing a novel approach that enables HO₂ and certain RO₂ types to be selectively measured, *Atmos
 913 Meas Tech*, 6, 3425-3440, 10.5194/amt-6-3425-2013, 2013.

914 Whalley, L. K., Stone, D., Dunmore, R., Hamilton, J., Hopkins, J. R., Lee, J. D., Lewis, A. C., Williams, P.,
 915 Kleffmann, J., Laufs, S., Woodward-Massey, R., and Heard, D. E.: Understanding in situ ozone production
 916 in the summertime through radical observations and modelling studies during the Clean air for London
 917 project (ClearfLo), *Atmos Chem Phys*, 18, 2547-2571, 10.5194/acp-18-2547-2018, 2018.

918 Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore,
 919 R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Mehra, A., Worrall, S. D., Bacak, A., Bannan, T. J., Coe, H.,
 920 Percival, C. J., Ouyang, B., Jones, R. L., Crilley, L. R., Kramer, L. J., Bloss, W. J., Vu, T., Kotthaus, S.,
 921 Grimmond, S., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard,
 922 D. E.: Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO_x in
 923 Beijing, *Atmos Chem Phys*, 21, 2125-2147, 10.5194/acp-21-2125-2021, 2021.

924 Woodward-Massey, R., Sommariva, R., Whalley, L. K., Cryer, D. R., Ingham, T., Bloss, W. J., Ball, S. M.,
 925 Cox, S., Lee, J. D., Reed, C. P., Crilley, L. R., Kramer, L. J., Bandy, B. J., Forster, G. L., Reeves, C. E.,
 926 Monks, P. S., and Heard, D. E.: Radical chemistry and ozone production at a UK coastal receptor site,
 927 *Atmos Chem Phys*, 23, 14393-14424, 10.5194/acp-23-14393-2023, 2023.

928 Yang, X., Li, Y., Ma, X., Tan, Z., Lu, K., and Zhang, Y.: Unclassical Radical Generation Mechanisms in the
 929 Troposphere: A Review, *Environ Sci Technol*, 10.1021/acs.est.4c00742, 2024a.

930 Yang, X., Lu, K., Ma, X., Gao, Y., Tan, Z., Wang, H., Chen, X., Li, X., Huang, X., He, L., Tang, M., Zhu,
 931 B., Chen, S., Dong, H., Zeng, L., and Zhang, Y.: Radical chemistry in the Pearl River Delta: observations
 932 and modeling of OH and HO₂ radicals in Shenzhen in 2018, *Atmos Chem Phys*, 22, 12525-12542,
 933 10.5194/acp-22-12525-2022, 2022.

934 Yang, X., Wang, H., Lu, K., Ma, X., Tan, Z., Long, B., Chen, X., Li, C., Zhai, T., Li, Y., Qu, K., Xia, Y.,
 935 Zhang, Y., Li, X., Chen, S., Dong, H., Zeng, L., and Zhang, Y.: Reactive aldehyde chemistry explains the
 936 missing source of hydroxyl radicals, *Nat Commun*, 15, 1648, 10.1038/s41467-024-45885-w, 2024b.

937 Yang, X., Lu, K., Ma, X., Liu, Y., Wang, H., Hu, R., Li, X., Lou, S., Chen, S., Dong, H., Wang, F., Wang, Y.,
 938 Zhang, G., Li, S., Yang, S., Yang, Y., Kuang, C., Tan, Z., Chen, X., Qiu, P., Zeng, L., Xie, P., and Zhang, Y.:
 939 Observations and modeling of OH and HO₂ radicals in Chengdu, China in summer 2019, *The Science of
 940 the total environment*, 772, 144829-144829, 10.1016/j.scitotenv.2020.144829, 2021a.

941 Yang, Y., Li, X., Zu, K., Lian, C., Chen, S., Dong, H., Feng, M., Liu, H., Liu, J., Lu, K., Lu, S., Ma, X.,
 942 Song, D., Wang, W., Yang, S., Yang, X., Yu, X., Zhu, Y., Zeng, L., Tan, Q., and Zhang, Y.: Elucidating the
 943 effect of HONO on O₃ pollution by a case study in southwest China, *Sci Total Environ*, 756, 144127,
 944 10.1016/j.scitotenv.2020.144127, 2021b.

945 Yugo Kanaya, Renqiu Cao, Hajime Akimoto, Masato Fukuda, Yuichi Komazaki, Yoko Yokouchi, Makoto
 946 Koike, Hiroshi Tanimoto, Nobuyuki Takegawa, and Kondo, a. Y.: Urban photochemistry in central Tokyo:
 947 1. Observed and modeled OH and HO₂ radical concentrations during the winter and summer of 2004, *J
 948 Geophys Res-Atmos*, 112, 20, 10.1029/2007JD008670, 2007.

949 Yugo Kanaya, R. C., Shungo Kato, Yuko Miyakawa, Yoshizumi Kajii, Hiroshi and Tanimoto, Y. Y.,
 950 Michihiro Mochida, Kimitaka Kawamura, Hajime Akimoto: Chemistry of OH and HO₂ radicals observed

951 at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO₂ and positive nighttime
952 correlations with monoterpene, *J Geophys Res-Atmos*, 112, 10.1029/2006id007987, 2007.
953 Zhang, G., Hu, R., Xie, P., Lou, S., Wang, F., Wang, Y., Qin, M., Li, X., Liu, X., Wang, Y., and Liu, W.:
954 Observation and simulation of HO_x radicals in an urban area in Shanghai, China, *Sci Total Environ*, 810,
955 152275, 10.1016/j.scitotenv.2021.152275, 2022a.
956 Zhang, G., Hu, R., Xie, P., Lu, K., Lou, S., Liu, X., Li, X., Wang, F., Wang, Y., Yang, X., Cai, H., Wang, Y.,
957 and Liu, W.: Intercomparison of OH radical measurement in a complex atmosphere in Chengdu, China, *Sci
958 Total Environ*, 155924, 10.1016/j.scitotenv.2022.155924, 2022b.
959