

1 **Accurate Elucidation of Oxidation Under Heavy Ozone**
2 **Pollution: A Full Suite of Radical Measurement In the**
3 **Chemical-complex Atmosphere**

4 Renzhi Hu¹, Guoxian Zhang^{1,2,×}, Haotian Cai¹, Jingyi Guo¹, Keding Lu⁴, Xin Li⁴,
5 Shengrong Lou⁵, Zhaofeng Tan⁴, Changjin Hu¹, Pinhua Xie^{1,3, **}, Wenqing Liu^{1,3}

6 ¹ Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine
7 Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China

8 ² School of Physics and New Energy, Xuzhou University of Technology, Xuzhou, China

9 ³ College of Resources and Environment, University of Chinese Academy of Science, Beijing, China

10 ⁴ State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
11 Environmental Sciences and Engineering, Peking University, Beijing, China

12 ⁵ State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air
13 Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China

14 **Correspondence to:** Guoxian Zhang, School of Physics and New Energy, Xuzhou
15 University of Technology, Xuzhou, China

16 **Correspondence to:** Pinhua Xie, Key Laboratory of Environment Optics and
17 Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of
18 Sciences, Hefei, China

19 **Email addresses:** gxzhang@aiofm.ac.cn (Guoxian Zhang); phxie@aiofm.ac.cn (Pinhua
20 Xie)

21
22

23 **Abstract:** The Yangze River Delta (YRD) in China encountered with prolonged ozone
24 pollution in September 2020, which had significant impacts on the respiratory,
25 dermatological, and visual health of local residents. To accurately elucidate the
26 limitations of oxidation processes in the chemical-complex atmosphere, a full suite of
27 radical measurements (OH, HO₂, RO₂, and k_{OH}) was established in YRD region for the
28 first time. The diurnal peaks of radicals exhibited considerable variation due to
29 environmental factors, showing ranges of 3.6 to 27.1×10^6 cm⁻³ for OH, 2.1 to 33.2×10^8
30 cm⁻³ for HO₂, and 4.9 to 30.5×10^8 cm⁻³ for RO₂. At a heavy ozone pollution episode, the
31 oxidation capacity reached an intensive level compared with other sites, and the
32 simulated OH, HO₂, and RO₂ radicals provided by the RACM2-LIM1 mechanism failed
33 to adequately match the observed data both in radical concentration and experimental
34 budget analysis. Sensitivity tests utilizing a comprehensive set of radical measurements
35 revealed that the higher aldehyde mechanism (HAM) effectively complements the
36 non-traditional regeneration of OH radicals, yielding enhancements of 4.4% - 6.0%
37 compared to the base scenario, while the concentrations of HO₂ and RO₂ radicals have
38 shown increments of about 7.4% and 12.5%, respectively. Notably, RO₂ radical
39 concentrations exhibit a pronounced sensitivity to autoxidation, with the incorporation of
40 additional OVOCs potentially boosting simulated RO₂ radical concentrations by 20% to
41 40%. The incorporation of larger alkoxy radicals stemming from monoterpenes has
42 refined the consistency between measurements and modeling in the context of ozone
43 production under elevated NO levels, diminishing the disparity from 4.17 to 2.33. This
44 outcome corroborates the hypothesis of sensitivity analysis as it pertains to ozone
45 formation. Moving forward, by implementing a comprehensive radical detection
46 approach, further investigations should concentrate on a broader range of OVOCs to
47 rectify the imbalance associated with RO₂ radicals, thereby providing a more precise
48 understanding of oxidation processes during severe ozone pollution episodes.

49

50 **Keywords:** FAGE-LIF; Full-chain detection; Radical; P(Ox); OVOCs;

51

52 1 Introduction

53 In recent years, China's rapid economic development has led to severe environmental
54 pollution problems, which significantly impacted the respiratory, dermatological, and visual
55 health of local residents (Wang et al., 2022c; Huang et al., 2018). This has raised
56 concerns about the coexistence of regional primary and secondary pollution, making air
57 quality improvement efforts a focal point (Liu et al., 2021; Wang et al., 2022a). In the
58 complex atmosphere, near-surface ozone (O_3) is formed through continuous
59 photochemical reactions between nitrogen oxides ($NO_x \equiv NO + NO_2$) and volatile
60 organic compounds (VOCs) under light conditions, while hydroxyl radicals (OH) serve
61 as the main oxidant in the troposphere, converting VOCs into hydroperoxy (HO_2) and
62 organic peroxy (RO_2) radicals (Rohrer et al., 2014; Hofzumahaus et al., 2009).
63 Additionally, the oxidation of nitric oxide (NO) and peroxy radicals produce nitrogen
64 dioxide (NO_2), which is the sole photochemical source of ozone (Lu et al., 2012; Stone et
65 al., 2012).

66 Despite numerous experimental and theoretical explorations to establish the
67 radical-cored photooxidation mechanism in the troposphere, field observations were
68 primarily focused on HO_x ($HO_x \equiv OH + HO_2$) radicals due to the limitations of detection
69 technology (Kanaya et al., 2012; Lu et al., 2012; Hofzumahaus et al., 2009; Yugo Kanaya
70 and Tanimoto, 2007; Ren et al., 2008; Stone et al., 2012; Levy, 1971). Recent
71 advancements in detection technology, such as the application of a new LIF technique
72 (RO_x LIF), have made the detection of RO_2 radicals possible (Whalley et al., 2013; Tan et
73 al., 2017a). Moreover, the union of comprehensive field campaigns and box model, has
74 proven to be an effective method for verifying the integrity of radical chemistry at local
75 to global scales (Lu et al., 2019b; Tan et al., 2018). Several experiments have indicated
76 that the existing atmospheric chemical mechanism posted challenges in deepening the
77 understanding of the regional pollution explosion (Whalley et al., 2021; Slater et al., 2020;
78 Tan et al., 2017a; Woodward-Massey et al., 2023). For instance, the observation of up to
79 $4 \times 10^9 \text{ cm}^{-3}$ of RO_2 radical in the center of Beijing in 2017 (APHH) was significantly
80 underestimated by the MCM v3.3.1 mechanism (Whalley et al., 2021). Further exploring
81 the unrepeatable concentration and the oxidation process in the chemical-complex
82 atmosphere is deemed necessary (Whalley et al., 2021; Woodward-Massey et al., 2023).

83 The YRD region, situated between the North China Plain (NCP) and Pearl River
84 Delta (PRD), is highly prone to regional transport interactions and aerosol-boundary layer
85 feedback (Jia et al., 2021; Huang et al., 2020). In September 2020, the YRD region
86 experienced a severe episode of secondary pollution, with both the daily maximum
87 8-hour average ozone (MDA8) and daily average $PM_{2.5}$ concentrations surpassing the
88 pollution threshold, distinguishing it from other megacities (Fig. S1). In an effort to gain
89 a better understanding between the complex radical chemistry and the intensive oxidation
90 level, TROPSTECT-YRD (The experiment on Radical chemistry and Ozone Pollution
91 perSpectively: long-Term Elucidation of the photochemiCal oxidaTion in the Yangze
92 River Delta) was conducted in Hefei during September 2020. Accurate elucidation of the
93 oxidation process under heavy ozone pollution was provided by a full suite of radical
94 measurement (OH , HO_2 , RO_2 and k_{OH}) in the chemical-complex atmosphere.

95 **2 Materials and methods**

96 **2.1 Site description and instrumentation**

97 The TROPSTECT observation was conducted from 1 to 20 September 2020 at the
98 Science Island background station (31.9° N, 117.2° E) in Hefei, a typical megacity located
99 in the central region of Anhui Province within the Yangtze River Delta. The station is
100 situated on a peninsula with abundant vegetation to the northwest of urban areas and is in
101 close proximity to Dongpu Lake, which is only 200 meters away, and the main road,
102 positioned 250 meters southward (Fig. 1). Consequently, the relatively enclosed
103 environment exhibits typical suburban characteristics of anthropogenic emissions. The
104 station is located in the transition region between urban and suburban areas, reflecting the
105 regional transpor of pollution in Hefei and its surrounding areas.

106 **Fig. 1. (a)** The location of the measurement site (source: © Google Earth).
107 **(b)** The close shot of the measurement site location (source: © Google Earth).
108 **(c)** The actual image for the LIF-Box.
109

110 Regarding the instrumentation, a group of oxidation-related instruments were
111 installed on the 7th floor of the Comprehensive Building at the Anhui Institute of Optics
112 and Fine Mechanics (AIOFM), with all sampling outlets positioned more than 20 meters
113 above the ground. The details of the instruments measuring various parameters such as
114 meteorological factors (WS, WD, T, RH, P, Jvalues), gas pollutants (O₃, CO, SO₂, NO,
115 NO₂, HONO, HCHO, PAN), and non-methane hydrocarbons (NMHCs) are provided in
116 Table S1.

117 The measurement of NO, NO₂, O₃, CO, and SO₂ was carried out using commercial
118 Thermo Electron model series instruments. Thereof, NO and NO₂ were measured using a
119 chemical fluorescence method (CL) with an enhanced trace-level NO-NO₂-NO_x analyzer
120 (PKU-PL), which achieved a detection limit of 50 ppt (Tan et al., 2017a). The detection
121 of O₃ and SO₂ was conducted through Thermo Electron model 49i and 43i, respectively,
122 while Thermo Electron model 48i was utilized for CO detection. Cavity ring-down
123 spectroscopy (CRDS, Picarro-G2401) was employed for CO detection in parallel, and
124 another ultraviolet absorption instrument (Ecotech EC9810B) was for ozone detection.
125 The instrument inlets were placed within 5 meters of each other for comparison.

126 To ensure measurement accuracy, the instruments in the campaign underwent zero
127 point calibration procedures during the early (August 31st) and late (September 21st)
128 observation periods, and cross-calibrations for O₃ and CO measurements were carried out
129 during the middle (September 9th). Furthermore, additional zero calibration for Thermo
130 48i CO detection was undertaken daily from 0:00-0:30 to minimize shift correction. The
131 comparison results revealed high consistency within the instrument accuracy range for
132 both CO and O₃ measurements (Fig. S2(a)(b)).

133 HONO was detected using a home-built instrument by cavity-enhanced absorption
134 spectroscopy (CEAS), while formaldehyde was determined by the Hantzsch method
135 (SDL MODEL 4050) (Duan et al., 2018; Yang et al., 2021a). An automated gas
136 chromatograph equipped with a mass spectrometer and flame ionization detector
137 (GC-FID/MS) was employed for the online measurement of 99 VOCs species.
138 Information table for parts of the VOC monitoring species by online GC-MS/FID was
139 listed in Table S2.

140 The eight crucial photolysis frequencies (j(NO₂), j(H₂O₂), j(HCHO_M), j(HCHO_R),

141 $j(\text{HONO})$, $j(\text{NO}_3\text{ M})$, $j(\text{NO}_3\text{ R})$, $j(\text{O}^1\text{D})$) were directly measured by a photolysis
142 spectrometer (Metcon, Germany). The unmeasured photolysis frequencies of the
143 remaining active species were computed using Eq.(1):

$$j = l \cdot \cos(\chi)^m \cdot e^{-n \cdot \sec(\chi)} \quad (1)$$

144 The variations in photolysis frequency due to solar zenith angle (χ) were adjusted based
145 on the ratio of observed and simulated $j(\text{NO}_2)$. The optimal values for parameters (l , m ,
146 and n) for different photolysis frequencies were extensively detailed by the MCM v3.3.1
147 (http://mcm.york.ac.uk/parameters/photolysis_param.htm) (Jenkin et al., 2003; Jenkin et
148 al., 1997).

149 **2.2 Radical measurement**

150 **2.2.1 OH, HO₂, RO₂ Concentrations**

151 The laser-induced fluorescence instrument developed by the Anhui Institute of Optics
152 and Fine Mechanics (AIOFM-LIF) was used to simultaneously detect the concentrations
153 of OH, HO₂, and RO₂ radicals, along with OH reactivity (k_{OH}). The OH radical was
154 directly measured by detecting on-resonance fluorescence excited by a 308 nm laser. An
155 indirect measurement for HO₂ was carried out after converting it to OH at a fixed
156 efficiency (Heard and Pilling, 2003).

157 The laser utilized for fluorescence excitation is a high-frequency tunable dye laser
158 that emits a 308 nm laser, with the laser power divided into a ratio of 0.45:0.45:0.08:0.02.
159 Of this power, 90% is directed towards fluorescence cells for concentration and reactivity
160 detection via optical fibers, respectively. 8% of the laser power is directed to a reference
161 cell, while the remaining 2% is used to monitor real-time power fluctuations. The laser is
162 transmitted through HO₂, OH, and RO₂ cells in turn via a coaxial optical path. Two
163 photodiodes are set up at the end of the reference cell and RO₂ detection cell, respectively.
164 The voltage signals and power fluctuations are compared synchronously to diagnose the
165 laser stability. To maintain detection efficiency, the power inside the measurement cells
166 should not be less than 10 mW. Sampling nozzles of 0.4 mm are deployed above OH and
167 HO₂ cells for efficient sampling at a flow rate of approximately 1.1 SLM, and the
168 pressure for all fluorescence cells are maintained at 400 Pa. The micro-channel plate
169 (MCP) detects the weak fluorescence signal collected by lens systems with low noise and
170 high gain. Additionally, a digital delay generator (DG645) optimizes the timing control

171 between the laser output, signal detection, and data acquisition. All of these modules are
172 integrated into a sampling box with constant air conditioning, except for the laser.

173 The detection of RO₂ radicals is more complex compared to the integrated detection
174 of OH and HO₂ radicals (Whalley et al., 2013). To achieve the complete chemical
175 conversion from RO_x to HO₂, a crucial role is played by a 66 mm×830 mm aluminium
176 flow tube, whose performance has been confirmed through the CHOOSE-2019 field
177 campaign (Li et al., 2020). A mixture of 0.17% CO and 0.7 ppm NO injected into the
178 flow tube facilitates the reduction of heterogeneous radical loss and enhancement of
179 conversion efficiency. The sampling flow is limited to 7 SLM by a 1 mm nozzle, and the
180 tube pressure is maintained at 25 hPa. In contrast to the HO_x cells, the large-diameter
181 nozzle (4 mm) is equipped above the cell, and a high concentration of NO (~300 ppm)
182 facilitates the full magnitude HO₂→OH conversion.

183 The observation data (H₂O, O₃) is combined with experimental characterization to
184 eliminate ozone photolysis interference, and most interference signals are excluded by
185 utilizing wavelength modulation (Zhang et al., 2022a). A comparison experiment with
186 PKU-LIF demonstrated the consistency of OH measurement in complex atmosphere
187 (Zhang et al., 2022b). An additional atmospheric oxidation observation was conducted in
188 the same location and season in 2022 with a chemical modulation method to determine
189 the chemical background of OH radicals (Fig. S3). During the ozone pollution
190 (2022.9.29-2022.10.3), the daytime peaks of ozone concentration above 75 ppb,
191 accompanied by alkene species approaching ~10 ppb. The diurnal concentration of
192 isoprene was also a high level (>1 ppb). The chemical conditions are more favourable to
193 induce OH interference than in the TROPSTECT campaign, while the OH concentrations
194 achieved by chemical modulation (OH_{chem}) and wavelength modulation (OH_{wav}) were in
195 good agreement. No obvious chemical background was observed by deploying an inlet
196 pre-injector. Therefore, it is not expected that OH measurement in the present study was
197 affected by internal interference.

198 For HO₂ measurement, lower NO concentration (~1.6 × 10¹² cm⁻³, corresponding to
199 ~15% conversion efficiency) are selected to limit the RO₂→HO₂ interference to less than
200 5% (Wang et al., 2021). Since only the total-RO₂ mode is used for the campaign, the
201 additional uncertainty introduced by RO₂/R(OH)O₂ classification is negligible (Tan et al.,

202 2017b). The observed maximum daily PAN (11:00-14:00) is only 1.15 ± 0.67 ppb,
203 resulting in a calculated PAN-pyrolytic interference for RO_2 measurement of less than 1
204 ppt (Fuchs et al., 2008). The general applicability of AIOFM-LIF in complex atmosphere
205 has been demonstrated through various campaigns (Zhang et al., 2022b; Wang et al.,
206 2021; Wang et al., 2019a).

207 To complete the calibration task, a standard source stably generates equal amounts
208 of OH and HO_2 radicals (Wang et al., 2020). The radical source is also capable of
209 yielding specific RO_2 by titrating hydrocarbon with OH. It is noteworthy that CH_3O_2 has
210 the highest mixing ratio in the RO_2 species, thus it was chosen to represent for sensitivity
211 calibration. The instrument is calibrated every two days, except during rainy weather. The
212 limit of detection (LOD) for OH, HO_2 , and RO_2 in different cells with a typical laser
213 power of 10 mW is measured at $3.3 \times 10^5 \text{ cm}^{-3}$, $1.1 \times 10^6 \text{ cm}^{-3}$, and $2.5 \times 10^6 \text{ cm}^{-3}$,
214 respectively (60 s, 1σ). Measurement accuracy for OH, HO_2 , and RO_2 radicals are
215 reported to be 13%, 17%, and 21%, respectively.

216 **2.2.2 OH reactivity(k_{OH})**

217 The detection of k_{OH} in the atmosphere, defined as the reciprocal of OH lifetime, was
218 conducted using a laser flash photolysis laser-induced fluorescence (LP-LIF) instrument
219 (Lou et al., 2010). The configuration structure for k_{OH} measurement has been detailed in a
220 previous study(Liu et al., 2019). The flow tube in the OH production-reaction unit is at
221 ambient pressure, with a gas flow rate of 17 SLM. A pulsed laser beam (266 nm with an
222 average power of 15 mJ) is output from a frequency-quadrupled Nd:YAG laser, which
223 generates stable OH radical through flash photolysis of ambient ozone in the flow tube.
224 Consistent and stable production of OH radicals is ensured by maintaining a stable
225 concentration of reactants, flow field, and laser energy. Under conditions of 80 ppb O_3
226 and 8000 ppm water vapor concentration, OH radicals produced in the flow tube remains
227 at the concentration order of 10^9 cm^{-3} . Subsequently, the OH radicals are sampled through
228 a nozzle into a fluorescence cell. The OH fluorescence signal is then detected using laser
229 pump and probe techniques and is fitted to calculate the slope of OH decay (k_{OH}). The
230 detection accuracy, achieved with an integration time of 180 s, is 0.3 s^{-1} (1σ).

231 **2.3 Observation-Based Model**

232 The Regional Atmospheric Chemical Mechanism version 2 (RACM2) incorporating

233 the latest Leuven isoprene mechanism (LIM) was utilized to simulate the concentrations
 234 and reactions of OH, HO₂, and RO₂ radicals (Stockwell et al., 1997; Griffith et al., 2013;
 235 Peeters et al., 2014). The RACM2-LIM1 mechanism was specifically involved with
 236 fewer species compared to the explicit MCM mechanism, thus ensuring higher
 237 operational efficiency (Liu et al., 2022). The comprehensive list of model constraints was
 238 provided in Table S3. The measured NMHCs include 29 alkanes, 11 alkenes, 15
 239 aromatics, as well as acetylene and isoprene. For the base scenario, boundary conditions
 240 were established using the observed species, with assumed concentrations of hydrogen
 241 (H₂) and methane (CH₄) at 550 ppb and 1900 ppb, respectively. An ozone-simulation test
 242 was conducted to determine the suitable atmospheric lifetime (τ_D) for the base model. At
 243 the lifetime of 24 hours, with a corresponding first-order loss rate of 1.1 cm/s (assuming a
 244 boundary layer height of 1 km), the simulated ozone concentration closely matched the
 245 observed values (Fig. S4). To improve the model-measurement consistency between OH,
 246 HO₂ and RO₂ radicals, a series of sensitivity analyses were performed to evaluate the
 247 impacts of potential mechanisms, as detailed in Table 1. The time resolution of all
 248 constraints was uniformly set to 15 minutes through averaging or linear interpolation. To
 249 reinitialize unconstrained species to a steady-state, three days of data were input in
 250 advance as the spin-up time.

251 **Table 1.** The sensitive test scenarios utilized to improve the model-measurement consistency between
 252 OH, HO₂ and RO₂ radicals.

Scenario	Configuration	Purpose
Base	RACM2 updated with isoprene reaction scheme (LIM)	The base case with the species involved in Table S3 are constrained as boundary conditions.
X on	As the base scenario, but add the X mechanism, and the X level is between 0.25 - 0.5 ppb.	To untangle the missing OH source where base scenario failed.
MTS on	As the base scenario, but add a monoterpene source, and the monoterpene level is ~0.4 ppb.	Utilizing monoterpene-derived RO ₂ to represent the alkoxy radicals with rather complex chemical structures.
MTS+X on	As the base scenario, but both the X mechanism and monoterpene source are considered.	To consider both the missing OH and RO ₂ sources.
HAM on	As the base scenario, but add the reactive aldehyde chemistry.	To provide a test of whether the proposed mechanism can explain the missing OH source.
HAM on (4 × ALD)	As the base scenario, but add the reactive aldehyde chemistry, and the concentration of ALD was amplified by a factor of 4.	To quantify the impact of missing aldehyde primary emissions on RO _x chemistry.
Ozone simulation	As the base scenario, but remove the constraints of the observed ozone and NO concentrations.	To test the suitable lifetime for the base model.
HCHO simulation	As the base scenario, but remove the constraint of the observed HCHO concentration.	To test the simulation effect of the existing mechanism on formaldehyde

concentration.

253

254 The local formation of ozone can be accurately quantified through the online
255 measurement of ROx radicals (Tan et al., 2018). To overcome the interference from NO,
256 the total oxidant (Ox), which is defined as the sum of NO₂ and O₃, can serve as a reliable
257 parameter to indicate the level of oxidation. Eq.(2) shows that the rate of NO oxidation
258 by peroxy radicals is equivalent to the production of O₃, denoted as F(Ox):

259
$$F(O_x) = k_{HO_2+NO}[NO][HO_2] + \sum_i k_{RO_2^i+NO}[NO]RO_2^i \quad (2)$$

260 The major loss pathways for Ox encompass ozone photolysis, ozonolysis reactions,
261 and radical-related reactions (OH/HO₂+O₃, OH+NO₂), represented as D(Ox) in Eq.(3):

262
$$D(O_x) = \varphi_{OH}j(O^1D)[O_3] + \sum_i \{\varphi_{OH}^i k_{Alkenes+O_3}^i [Alkenes][O_3]\} + (k_{O_3+OH}[OH] +
263 k_{O_3+HO_2}[HO_2])[O_3] + k_{OH+NO_2}[OH][NO_2] \quad (3)$$

264 Here, the OH yields from ozone photolysis and ozonolysis reactions are denoted as φ_{OH}
265 and φ_{OH}^i , respectively.

266 The net photochemical Ox production rate in the troposphere, denoted as P(Ox) in
267 Eq.(4), can therefore be calculated as the difference between Eqs. (2) and (3):

268
$$P(O_x) = F(O_x) - D(O_x) \quad (4)$$

269 2.4 Experimental budget analysis

270 In this study, an experimental radical budget analysis was also conducted (Eqs. (5)
271 - (12)). Unlike model studies, this method relies solely on field measurements
272 (concentrations and photolysis rates) and chemical kinetic data, without depending on
273 concentrations calculated by models(Whalley et al., 2021; Tan et al., 2019b). Given the
274 short-lived characteristics of OH, HO₂, and RO₂ radicals, it is expected that the
275 concentrations are in a steady state, with total production and loss rates being
276 balanced(Lu et al., 2019a). By comparing the known sources and sinks for radicals,
277 unknown processes for initiation, transformation and termination can be determined.

$$P(OH) = j_{HONO}[HONO] + \varphi_{OH}j(O^1D)[O_3] + \sum_i \{\varphi_{OH}^i k_{Alkenes+O_3}^i [Alkenes][O_3]\} + (k_{HO_2+NO}[NO] + k_{HO_2+O_3}[O_3])[HO_2] \quad (5)$$

$$D(OH) = [OH] \times k_{OH} \quad (6)$$

$$\begin{aligned}
P(HO_2) = & 2 \times j_{HCHO_R}[HCHO] + \Sigma i \{ \varphi_{HO_2}^i k_{Alkenes+O_3}^i [Alkenes][O_3] \} \\
& + (k_{HCHO+OH}[HCHO] + k_{CO+OH}[CO])[OH] \\
& + \alpha k_{RO_2+NO}[NO][RO_2]
\end{aligned} \tag{7}$$

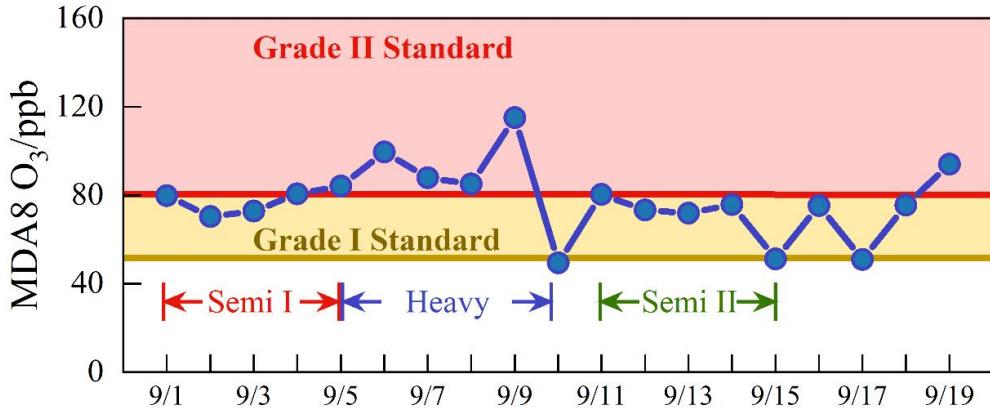
$$\begin{aligned}
D(HO_2) = & (k_{HO_2+NO}[NO] + k_{HO_2+O_3}[O_3] + k_{HO_2+RO_2}[RO_2] \\
& + 2 \times k_{HO_2+HO_2}[HO_2])[HO_2]
\end{aligned} \tag{8}$$

$$\begin{aligned}
P(RO_2) = & \Sigma i \{ \varphi_{RO_2}^i k_{Alkenes+O_3}^i [Alkenes][O_3] \} \\
& + k_{OH}[VOCs][OH]
\end{aligned} \tag{9}$$

$$\begin{aligned}
D(RO_2) = & \{(\alpha + \beta)k_{RO_2+NO}[NO] + (2 \times k_{RO_2+RO_2}[RO_2] \\
& + k_{HO_2+RO_2}[HO_2])[RO_2]
\end{aligned} \tag{10}$$

$$\begin{aligned}
P(RO_x) = & \Sigma i \{ (\varphi_{OH}^i + \varphi_{HO_2}^i + \varphi_{RO_2}^i) k_{Alkenes+O_3}^i [Alkenes][O_3] \} + j_{HONO}[HONO] \\
& + \varphi_{OH} j(O^1D)[O_3] + 2 \times j_{HCHO_R}[HCHO]
\end{aligned} \tag{11}$$

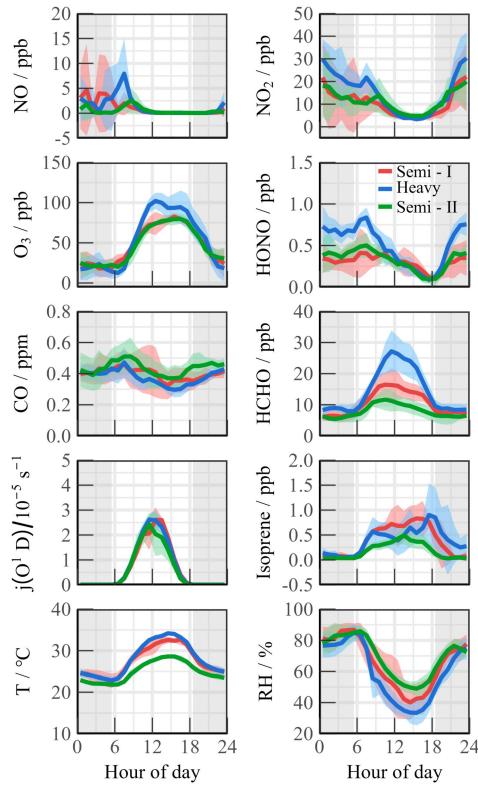
$$\begin{aligned}
D(RO_x) = & (k_{OH+NO_2}[NO_2] + k_{OH+NO}[NO])[OH] + \beta k_{RO_2+NO}[NO] \\
& + 2 \times (k_{RO_2+RO_2}[RO_2][RO_2] + k_{HO_2+RO_2}[HO_2][RO_2] \\
& + k_{HO_2+HO_2}[HO_2][HO_2])
\end{aligned} \tag{12}$$


278 In which, $j(HONO)$, $j(O^1D)$ are the measured photolysis rates of HONO and O_3 ,
279 respectively, and j_{HCHO_R} is the measured photolysis rate for the channel of
280 formaldehyde photolysis generating HO_2 . φ_{OH} represent the OH yield in the O_3
281 photolysis reaction. φ_{OH}^i , $\varphi_{HO_2}^i$ and $\varphi_{RO_2}^i$ are the yields for the ozonolysis reaction
282 producing OH, HO_2 , and RO_2 , respectively. α is the proportion of RO_2 radicals reacting
283 with NO that are converted to HO_2 , and β is the proportion of alkyl nitrates formation,
284 which are set to 1 and 0.05, respectively(Tan et al., 2019b).

285 3 Results

286 3.1 Overview of Measurement

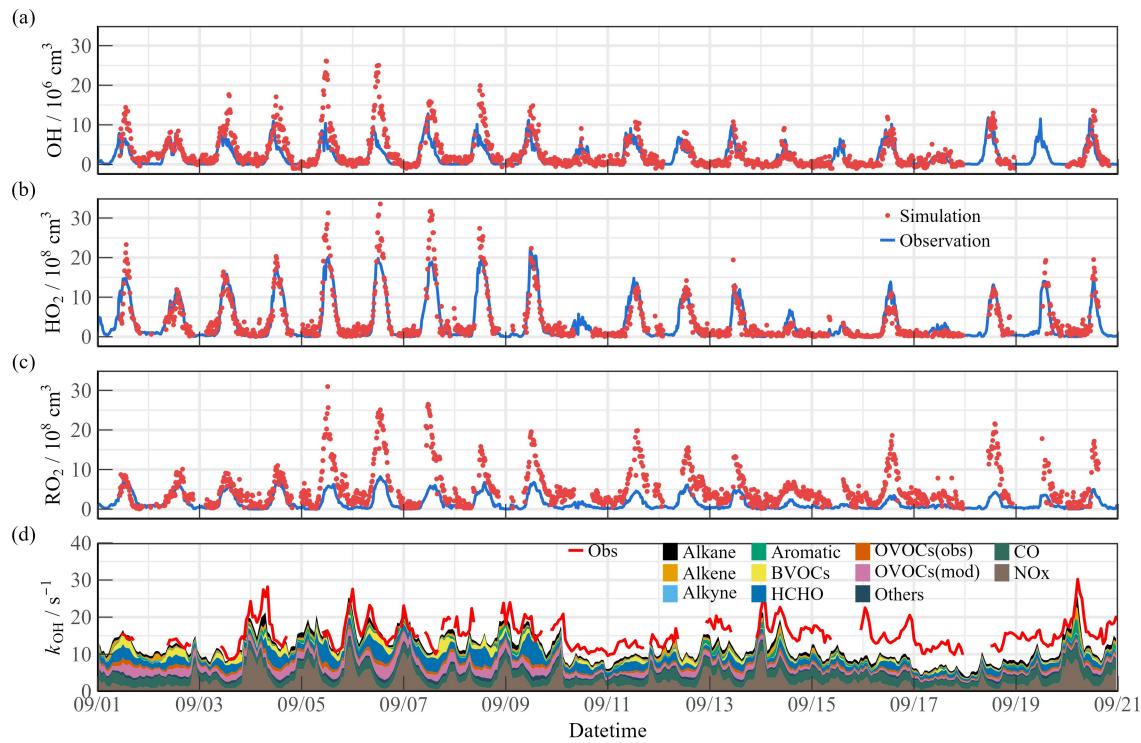
287 During the observation period, the meteorological parameters and trace gas
288 concentrations were plotted in Fig. S5. The timeseries revealed that the peak temperature
289 exceeded 30°C, and the humidity levels remained between 30 – 50% during the daytime.
290 The photolysis rates were observed to peak at noon (11:00 – 13:00), with $j(O^1D)$ and
291 $j(NO_2)$ reaching approximately $3 \times 10^{-5} \text{ s}^{-1}$ and $8 \times 10^{-3} \text{ s}^{-1}$, respectively. Brief rainfall events
292 temporarily happened on September 10th, 15th, and 17th, but totally favorable
293 meteorologies induced the prolonged ozone pollution. The daily maximum 8-hour


294 average ozone concentration (MDA8), as depicted in Fig. 2, consistently exceeded the
 295 Chinese Grade I national air quality standard (GB3095-2012) throughout the observation,
 296 with nine days exceeding the Grade II standard.

297
 298 **Fig. 2.** The daily maximum 8 h average O_3 during the campaign. The yellow and red lines denote the Grade I and
 299 Grade II national standards for O_3 , respectively. Brief rainfall events temporarily happened on 10, 15, and 17 Sep.

300 The ozone pollution can be categorized into three continuous periods based on
 301 pollution levels, which disclose transitional ‘Semi - Heavy - Semi’ pollution
 302 characteristics. Fig. 3 depicts daily variations in meteorological and trace gas
 303 concentrations for different periods. During the Semi I (1 to 5 September) and Semi II (11
 304 to 14 September) periods, the MDA8 levels exceeded Grade I standard, with an average
 305 value of 75.92 ± 5.14 ppb and 75.45 ± 3.73 ppb, respectively. Notably, NO levels peaked
 306 around 9:00 and rapidly decreased to a few hundred ppt due to photochemistry. In
 307 addition, HONO and NO₂ exhibited bimodal variations, with diurnal concentration ranges
 308 of 0.09 – 0.50 ppb and 3.35 – 13.77 ppb, respectively. The HONO/NO₂ ratios during both
 309 Semi periods were consistent with previous urban/suburban observations, with daytime
 310 values of 0.049 ± 0.014 and 0.035 ± 0.012 , respectively (Yang et al., 2021b; Shi et al., 2020;
 311 Hu et al., 2022). Isoprene levels accumulated during the day and decreased at night
 312 during both Semi pollution episodes, with a diurnal average concentration in Semi II only
 313 49.3% of that in Semi I (0.71 ± 0.087 ppb vs 0.35 ± 0.073 ppb). Formaldehyde, as the key
 314 oxidation species, exhibited a concentration profile mirroring that of isoprene, with
 315 significantly higher concentrations ranging from 1.20 to 36.34 ppb compared to other
 316 urban regions (Ma et al., 2022; Yang et al., 2022; Tan et al., 2017b; Yang et al., 2021a).
 317 Heavy pollution episodes from 5 to 9 September resulted in daytime ozone concentration
 318 as high as 129.9 ppb, and oxidation-related species such as HCHO, HONO, NO_x, and

319 VOCs increased synchronously compared to other days.


320

321 **Fig. 3.** Mean diurnal profiles of observed meteorological and chemical parameters during the campaign. Three periods
322 were divided for subsequent study (Semi I, Heavy, and Semi II).

323 **3.2 ROx radical concentrations and budgets**

324 The observed and modeled timeseries for OH, HO₂, RO₂, and *k*_{OH} during the
325 observation time are depicted in Fig. 4. The diurnal peaks of radicals exhibited a wide
326 span due to changes in environmental conditions, with ranges of $3.6 - 27.1 \times 10^6 \text{ cm}^{-3}$ for
327 OH, $2.1 - 33.2 \times 10^8 \text{ cm}^{-3}$ for HO₂, and $4.9 - 30.5 \times 10^8 \text{ cm}^{-3}$ for RO₂. Continuous data for
328 *k*_{OH} observation were acquired within a range of $8.6 - 30.2 \text{ s}^{-1}$. Fig. S6 presents the
329 diurnal profiles of the observed and modeled values during different episodes. The
330 diurnal maximum of OH radical at noon differed between Semi I and Semi II, with
331 $9.28 \times 10^6 \text{ cm}^{-3}$ and $5.08 \times 10^6 \text{ cm}^{-3}$, respectively, while total peroxy radicals (HO₂+RO₂)
332 remained at similar levels with $19.43 \times 10^8 \text{ cm}^{-3}$ and $18.38 \times 10^8 \text{ cm}^{-3}$. Additionally, the
333 distribution of peroxy radicals are not similar in the two Semi periods, with HO₂/RO₂
334 ratios of 1.69:1 and 0.76:1, respectively, which reflects the uneven oxidation levels
335 between Semi I and Semi II. During the Heavy ozone pollution, the averaged OH, HO₂,
336 and RO₂ concentrations were 1.90, 2.15, and 1.98 times higher than those in the Semi

337 periods, suggesting a stronger oxidation capacity, with k_{OH} in Heavy being 26.43% and
 338 9.56% higher than in Semi I and Semi II, respectively. Limited anthropogenic emissions
 339 in the suburban environment reduced the oxidation contribution by NOx and CO
 340 (27.59%). During the heavy pollution, organic species exhibited dominant behavior
 341 regarding diurnal reactivity (9.22 s^{-1} for 69.79%), and anthropogenic hydrocarbons were
 342 not major k_{OH} sources. With an abundant level (~1 ppb), isoprene contributed more than
 343 10% of the reactivity in the diurnal cycle. Therefore, the effect of BVOCs species (such
 344 as monoterpenes, limonene, etc.) on radical chemistry cannot be ignored (Ma et al., 2022;
 345 Wang et al., 2022b). k_{OVOCs} are categorized into three groups: $k_{OVOCs(Obs)}$, $k_{OVOCs(Model)}$, and
 346 k_{HCHO} . Given the significance of formaldehyde photolysis, the contribution of HCHO to
 347 k_{OVOCs} is distinguished. $k_{OVOCs(Obs)}$ encompasses species observed in addition to
 348 formaldehyde, such as acetaldehyde (ACD) and the oxidation products of isoprene
 349 (MACR and MVK). Intermediates generated by the model, including glyoxal (GLY),
 350 methylglyoxal (MGLY), higher aldehydes (ALD), ketones (KET), methyl ethyl ketone
 351 (MEK), and methanol (MOH), are classified as $k_{OVOCs(Model)}$. Upon considering
 352 $k_{OVOCs(Model)}$, the reactivity calculated prior to September 10th aligns quite well with the
 353 observed OH reactivity.

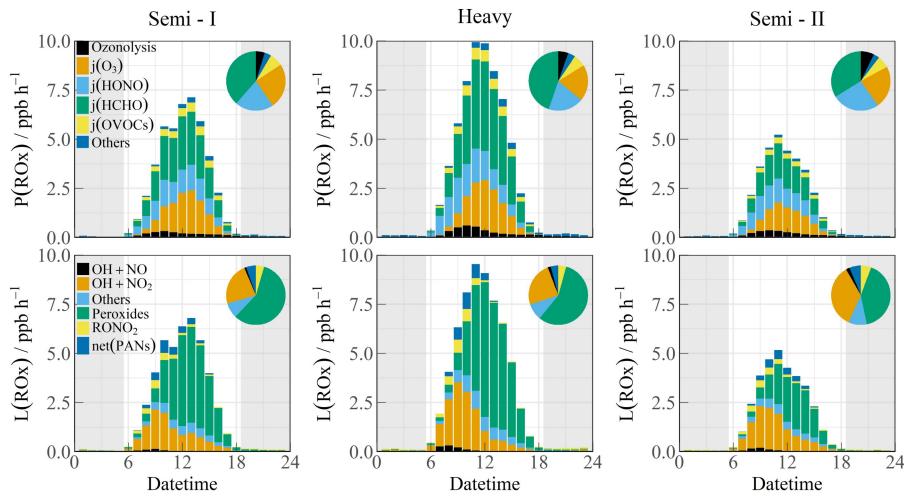

354

Fig. 4. Timeseries of the observed and modelled parameters for OH, HO₂ and k_{OH} during the observation period. (a) OH, (b) HO₂, (c) k_{OH} .

The significant variations in oxidation can be inferred from the disparities during different pollution periods (Fig. S6). During Semi I, there was a good agreement between the measurement and model for peroxy radicals during the daytime. The RACM2-LIM1 mechanism effectively replicated the morning OH radical concentration. However, following 10:00, NO gradually declined, and the increasing OH concentration could not be accounted for by the HO_2+NO formation channel, resulting in a maximum underestimation of $5.85 \times 10^6 \text{ cm}^{-3}$ (Hofzumahaus et al., 2009; Lu et al., 2012). In the Semi II episode, OH was not underestimated in the low-NO regime, with a slight overestimation of HO_2 concentration. However, the simulated RO_2 concentration was only $3.78 \times 10^8 \text{ cm}^{-3}$, whereas observations were 2.77 times larger than the simulation, indicating the existence of additional reaction pathways that likely propagated the $\text{OH} \rightarrow \text{RO}_2$ conversion efficiency. A significant discrepancy of radicals existed in the heavy ozone concentration, with OH, HO_2 , and RO_2 radicals concurrently underestimated at noon by $8.23 \times 10^6 \text{ cm}^{-3}$, $3.94 \times 10^8 \text{ cm}^{-3}$ and $11.59 \times 10^8 \text{ cm}^{-3}$, respectively. The observed HO_2/RO_2 ratio approached 1:1, while the model reflected an unreasonable ratio of 3:1, indicating deficiencies in both primary sources and secondary propagation. The calculated reactivity seems to compare well with the observed OH reactivity at the start of the measurement period, but then there is evidence of missing OH reactivity after September 10th (Fig. 4(d)). Due to the limitations of available instruments, this observation only measured a limited number of OVOCs species, making it difficult to accurately quantify the contribution of larger aldehydes and ketones, carboxylic acids, nitrophenols, and other multifunctional species to k_{OH} (Wang et al., 2024). Since the MCM mechanism considers more secondary formation reactions than the RACM2 mechanism, it can qualitatively assess the photochemical role of unmeasured OVOCs species in the atmosphere (Wang et al., 2022d). The additional modeled OVOCs by the MCM v3.3.1 mechanism contributed $\sim 2.4 \text{ s}^{-1}$ to the missing OH reactivity (Fig. S7). During Heavy period, the reactivity of more model oxidation products increased the daytime k_{OH} by about 5.1 s^{-1} . Therefore, the observed k_{OH} can serve as an upper limit for sensitivity tests, thereby the full suite of radical measurement can be performed to explore the missing oxidation properties and ozone formation (Section 4.1).

387 Fig. 5 displays the diurnal profiles of the ROx budget during different episodes. In
 388 Semi I, formaldehyde photolysis showed a higher contribution (38.6%), while HONO
 389 photolysis (21.0%) and ozone photolysis (24.7%) accounted for similar proportions in
 390 primary sources. The contribution of photolysis from other OVOCs was comparable to
 391 that of ozonolysis reactions (7.2% vs. 4.8%). However, in Semi II, the decreased
 392 oxidation level was attributed to lower ROx sources, despite the similar proportions.
 393 During the Heavy period, the primary sources dramatically increased (up to ~10 ppb/h),
 394 with HCHO photolysis contributing the most, alongside other sources at common levels
 395 (ranging between 1.74 – 2.66 ppb/h) in the YRD region (Ma et al., 2022). Fast HCHO
 396 oxidation dominated the radical primary source during heavy ozone pollution, which
 397 contrasts with the dominant role of HONO/O₃ in other megacities (Yang et al., 2022; Tan
 398 et al., 2017b; Yang et al., 2021a).

399 The radical removal rate during the daytime was generally balanced with production
 400 contributions. In the morning, owing to high NOx concentrations, radical termination was
 401 mainly dominated by OH+NO₂, OH+NO, RO₂+NO, and RO₂+NO₂. Furthermore, the
 402 formation of peroxy nitrate accounted for a certain proportion (~5%). As NOx
 403 concentrations decreased after 10:00, self-reactions in peroxy radicals became significant.

404
 405 **Fig. 5.** The diurnal profiles of ROx budget during different polluted episodes (Semi I, Heavy, and Semi II). The
 406 pie chart denotes proportions in different parts during the daytime (10:00-15:00). The grey areas denote nighttime.
 407

408 By comparing the known sources and sinks for radicals, unknown processes for
 409 initiation, transformation and termination can be determined in the experimental budget
 410 analysis (Fig. S8). During the Semi I period, the production and destruction rates of HO₂,
 RO₂, and total ROx radicals were very consistent, but a significant lack of a source term

411 for OH radicals was existed after 10:00. This missing source became more pronounced
412 during the Heavy period, reaching 16 ppb/h at noon, which is close to the results
413 observed by AIRPRO, but three times that observed by Heshan in PRD region(Tan et al.,
414 2019b; Whalley et al., 2021). The ratio of OH production-to-destruction rate during the
415 Semi II period was close to 1, indicating consistency between the observed results of OH,
416 HO₂, *k*_{OH}, and other precursors(Whalley et al., 2018). However, the generation of HO₂
417 radicals in the morning was about twice as high as the removal rate, suggesting that there
418 are contributions from unconsidered HO₂ radical removal channels (such as
419 heterogeneous reactions)(Song et al., 2021). During the Heavy period, there was a rapid
420 total removal rate of RO₂ radicals, reflecting the dominated HO₂ generation by the
421 reaction of RO₂ radicals with NO. Although the P(HO₂) and D(HO₂) were quite in
422 balance, the removal rate of RO₂ radicals far exceeded the known production rate
423 (especially before 12:00). Previous work has shown that halogen chemistry (such as
424 photolysis of nitryl chloride (ClNO₂)) could be an important source in the morning time,
425 but this was not included in the calculation of ROx or RO₂ budget in this campaign(Tan
426 et al., 2017b). The steady-state analysis for HO₂ radical in the London campaign
427 emphasized that only by significantly reducing the observed RO₂-to-HO₂ propagation
428 rate to just 15% could balance both P(HO₂) and D(HO₂), indicating that the RO₂-related
429 mechanism for propagation to other radical species may not be fully understood(Whalley
430 et al., 2018). Therefore, based on the current knowledge seems unlikely to explain the
431 required source-sink difference of nearly 25 ppb/h in the RO₂ budget. Sensitivity analysis
432 is needed to further infer the causes of the difference for the experimental budget
433 analysis.

434 3.3 Oxidation comparison

435 The concentration of OH radicals during the daytime is a crucial indicator of
436 atmospheric oxidation levels (Liu et al., 2021). Table 2 summarized radicals and related
437 parameters for regions with similar latitudes ($32.0^\circ \pm 2^\circ$ N, $j(O^1D) \approx 2.5 \pm 0.5 \times 10^{-5} \text{ s}^{-1}$).
438 The joint influence of solar radiation and local photochemistry resulted in megacities
439 exhibiting intense oxidation levels in summer/autumn, characterized by OH radicals
440 being maintained at approximately $10.0 \times 10^6 \text{ cm}^{-3}$ at noon. Notably, an observation in
441 Houston revealed an OH concentration of nearly $20.0 \times 10^6 \text{ cm}^{-3}$, with *k*_{OH} of 10 s^{-1} (Mao

442 et al., 2010). In areas such as Los Angeles, Pasadena, and Tokyo, the propagation
 443 efficiency of radicals was restricted due to fresh anthropogenic emissions. OH
 444 concentrations were only half of those observed in other megacities, with higher
 445 inorganic-dominated k_{OH} recorded (Pasadena, $\sim 20 \text{ s}^{-1}$) (George et al., 1999; Griffith et al.,
 446 2016; Yugo Kanaya et al., 2007). In the TROPSTECT observation, the observed k_{OH}
 447 exceeded the mean value at the same latitude ($> 15 \text{ s}^{-1}$). Additionally, during the Heavy
 448 episode, higher OH concentration ($13.5 \times 10^6 \text{ cm}^{-3}$) was found, comparable to the highest
 449 level at regions with similar latitude (Houston 2000/2006, (Mao et al., 2010)).
 450 Synchronous elevation in radical concentration and reactivity indicated a strong oxidation
 451 level in the YRD region.

452 The observations in the YRD region showed a stable conversion factor (OH- $j(O^1D)$)
 453 of $4 \pm 1 \times 10^{11} \text{ cm}^{-3} \text{ s}$, which was comparable to other megacities in the PRD, NCP, and
 454 SCB regions (Ma et al., 2022; Tan et al., 2019a). The corresponding slope between OH
 455 concentration and solar radiation was used to quantify the oxidation efficiency from
 456 photolysis, and it was observed that a higher slope of $5.3 \times 10^{11} \text{ cm}^{-3} \text{ s}$ during the Heavy
 457 period indicated an active radical chemistry. This implies that there is a strong oxidation
 458 efficiency from photolysis in the YRD region.

459 During summer and autumn seasons, photochemical pollution is a common
 460 occurrence, as noted by (Tan et al., 2021). Analysis of radical concentration across
 461 different regions reveals that the YRD region exhibited concentrations higher than 10^7
 462 cm^{-3} , slightly lower than in Guangzhou in 2006 but consistent with observations in other
 463 megacities (Ma et al., 2022; Tan et al., 2017a; Lu et al., 2012; Yang et al., 2021a).
 464 Conversely, winter is characterized by haze pollution (Ma et al., 2019). An urban site in
 465 Shanghai reported a peak OH concentration of $2.6 \times 10^6 \text{ cm}^{-3}$, closely resembling the $1.7 -$
 466 $3.1 \times 10^6 \text{ cm}^{-3}$ range found in polluted winter atmospheres (Zhang et al., 2022a). Although
 467 no significant regional disparities in oxidation levels were detected in agglomerations,
 468 attention should be directed to the YRD region due to its elevated radical concentration,
 469 reactivity, and photolysis efficiency, signaling the need to investigate its role in radical
 470 chemistry.

471 **Table 2.** Summary of radical concentrations and related species concentrations at regions with similar latitude and
 472 megapolitan areas in China. All data are listed as the average in noontime (11:00~13:00).

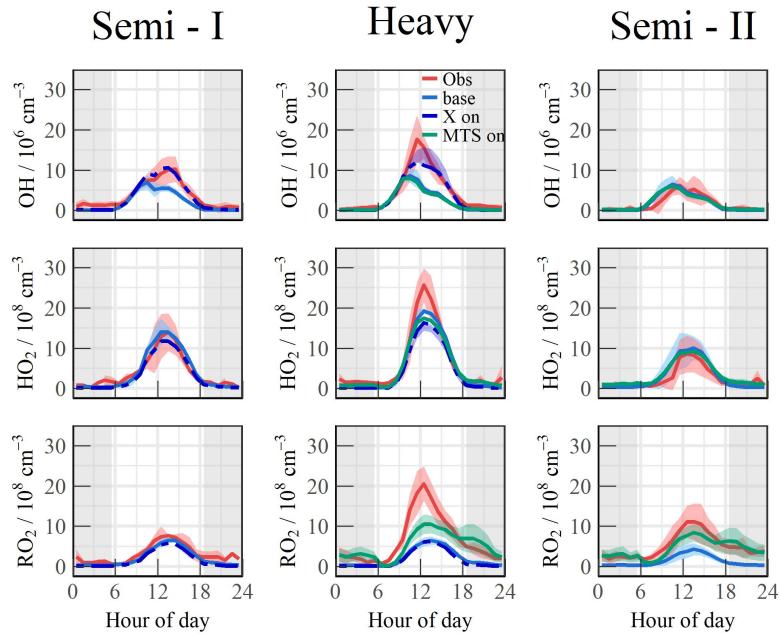
Location	Latitude	Year	OH (10^6 cm^{-3})	k_{OH} (s^{-1})	$j(O^1D)$ (10^{-5} s^{-1})	Slope ($10^{11} \text{ cm}^{-3} \text{ s}$)	X (ppb)	References
----------	----------	------	---	---------------------------------	---	--	------------	------------

Regions with similar latitude								
Los Angeles	34.1° N	Sep 1993	6.0	-	-	-	-	(George et al., 1999)
Nashville	36.2° N	Jun–Jul 1999	10.0	10.2	3.0	3.3 ^c	-	(Martinez et al., 2003)
Houston	29.7° N	Aug 2000	20.0	9.0 ^b	3.0	6.7 ^c	-	(Mao et al., 2010)
Tokyo	35.6° N	Jul–Aug 2004	6.3	-	2.5	3.0	-	(Yugo Kanaya et al., 2007)
Houston	29.7° N	Sep 2006	15.0	11.0	3.1	5.0 ^c	-	(Mao et al., 2010)
Pasadena	34.1° N	May–Jun 2010	4.0	20.0	2.5	1.6 ^c	-	(Griffith et al., 2016)
Taizhou	32.6° N	May–Jun 2018	10.6	10.8 ^a	2.1	4.8	0.10	(Ma et al., 2022)
Chengdu	30.7° N	Aug 2019	10.0	8.0	2.2	4.1	0.25	(Yang et al., 2021a)
TROPSTECT (Heavy)	31.9° N	Sep 2020	13.5	16.0	2.6	5.3	0.50	This work
TROPSTECT (Semi)	31.9° N	Sep 2020	7.2	14.2	2.4	3.1	0.25	This work
Regions in megapolitan areas in China								
Guangzhou (PRD)	23.5° N	Jul 2006	12.6	17.9	3.5 ^b	4.5	0.85	(Lu et al., 2012)
Wangdu (NCP)	38.7° N	Jun–Jul 2014	8.3	15.0	1.8	4.5	0.10	(Tan et al., 2017b)
Beijing (NCP)	39.9° N	May–Jun 2017	9.0	30.0	2.4	3.8 ^c	~0	(Whalley et al., 2021)
Taizhou (YRD)	32.6° N	May–Jun 2018	10.6	10.8 ^a	2.1	4.8	0.10	(Ma et al., 2022)
Shenzhen (PRD)	22.6° N	Sep–Oct 2018	4.5	21.0	1.8	2.4	0.10	(Yang et al., 2022)
Chengdu (SCB)	30.7° N	Aug 2019	9.0	8.0	2.2	4.0	0.25	(Yang et al., 2021a)
Hefei (YRD)	31.9° N	Sep 2020	10.4	14.3	2.4	4.4	0.30	This work

473 ^a The modeled k_{OH} .

474 ^b Value only in the afternoon.

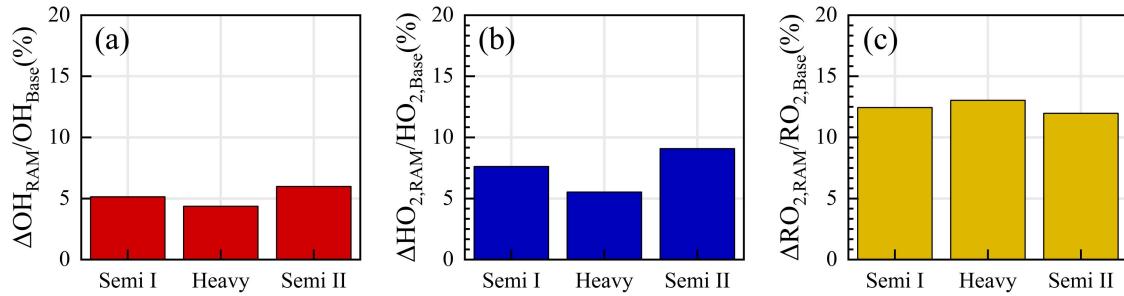
475 ^c Using the ratio of OH / j(O¹D)


476 4 Discussion

477 4.1 Measurement–model reconciliation for radicals

478 4.1.1 OH underestimation

479 Full suite of OH, HO₂, RO₂ and k_{OH} was utilized in the TROPSTECT campaign to
480 untangle a thorough understanding of oxidation mechanisms where base model failed.
481 One specific phenomenon was the absence of an OH source in situations where NO
482 levels gradually decreased after 10:00. A sensitivity test was conducted introducing a
483 species X, analogous to NO, to enhance OH regeneration (Fig. 6, RO₂→HO₂ and
484 HO₂→OH) (Hofzumahaus et al., 2009). It was found that the addition of as little as 0.25
485 ppb X was sufficient to compensate for the full magnitude of the OH underestimation in
486 the low NO region (Fig. 6). The employment of the X mechanism not only accelerated
487 OH regeneration but also augmented the removal channel of peroxy radicals, which
488 consequently led to a reduction in both HO₂ and RO₂ radical concentrations compared to
489 the base scenario.


490 The underdetermined radical sources in China were corresponding to the oxidation
 491 level (Ma et al., 2022; Tan et al., 2017a; Lu et al., 2012; Yang et al., 2021a; Wang et al.,
 492 2019b). The required X level typically ranged from 0.1 to 0.3 ppb, with the exception of
 493 the Backgarden observation which required 0.85 ppb X, as indicated in Table 2 (Lu et al.,
 494 2012). A minimum limit of 0.1 ppb X was established to account for any missing
 495 reactivity (Ma et al., 2022). Notably, throughout the entire observation, a strong
 496 agreement between the modeled and observed OH was achieved when a mixture of 0.25
 497 ppb X was incorporated into the base scenario, consistent with the the order of magnitude
 498 in Chengdu (Yang et al., 2021a). During the Heavy period, the augmented
 499 photochemistry resulted in complex oxidation, necessitating an additional missing OH
 500 source equivalent to 0.5 ppb X to fully address the underestimation of OH.

501
 502 **Fig. 6.** The mean diurnal profiles of measured and modeled OH, HO₂ and RO₂ concentrations at different
 503 scenarios. Sensitivity tests included three scenarios (Scenario 1: base case; Scenario 2: X mechanism on. The dashed
 504 line represented the performance of 0.25 ppb X introduced in the Semi I and Heavy episodes, and the blue shadow
 505 denoted the upper limit for X influence (0.5 ppb); Scenario 3: monoterpene mechanism on; Both API and LIM were
 506 added into the base model as upper and lower limits for the influence of monoterpene, and the mean of the two values
 507 was taken as the average effect. The grey areas denote nighttime.

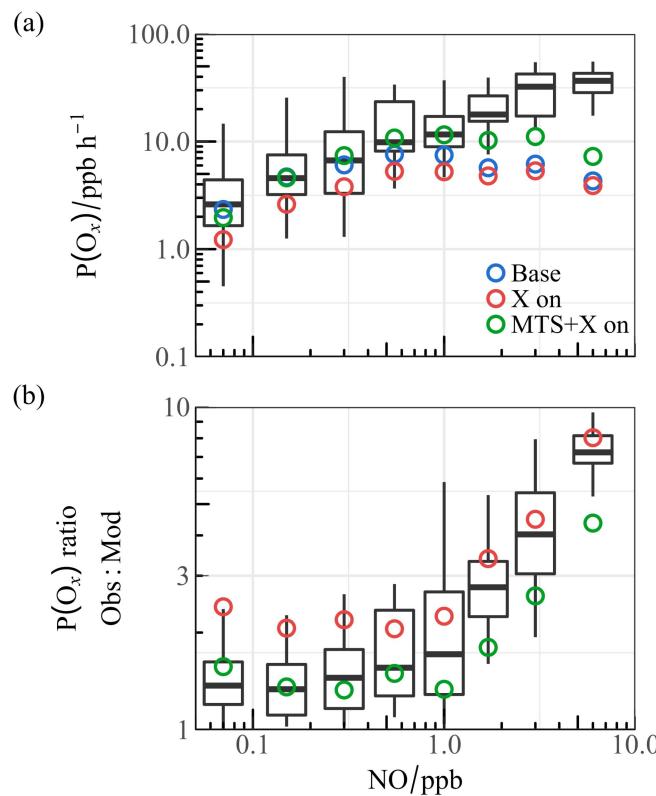
508 Missing OH sources are closely related to the chemistry of OVOCs(Yang et al.,
 509 2024a; Qu et al., 2021). Reactive aldehyde chemistry, particularly the autoxidation of
 510 carbonyl organic peroxy radicals (R(CO)O₂) derived from higher aldehydes, is a
 511 significant OH regeneration mechanism that has been shown to contribute importantly to
 512 OH sources in regions with abundant natural and anthropogenic emissions during warm

513 seasons(Yang et al., 2024b). In this study, the higher aldehyde mechanism (HAM) by
 514 Yang et al was parameterized into the base model to test new insights into the potential
 515 missing radical chemistry (Fig. 7). The results indicate that the contribution of the HAM
 516 mechanism to OH radicals in different episodes ranged between 4.4% - 6.0%, while the
 517 concentrations of HO₂ and RO₂ radicals increased by approximately 7.4% and 12.5%,
 518 respectively.

519
 520 **Fig. 7.** The response of (a) OH, (b) HO₂ and (c) RO₂ radicals to the Higher Aldehyde Mechanism (HAM) in
 521 different episodes (Semi I, Heavy, and Semi II) in diurnal time (10:00-15:00).

522 4.1.2 RO₂ underestimation

523 The base scenario in Semi II is capable of accurately reproducing the concentrations
 524 of OH and HO₂ radicals within the data uncertainty. However, the simulated RO₂
 525 concentration by the base model is only $3.78 \times 10^8 \text{ cm}^{-3}$, which does not align with the
 526 observed oxidation levels in YRD, indicating a clear discrepancy. This underestimation is
 527 similarly evident in the APHH observation in Beijing, as the highest observed
 528 concentration of RO₂ radicals reached $5.5 \times 10^9 \text{ cm}^{-3}$, far exceeding the level predicted by
 529 the MCM v3.3.1 mechanism (Whalley et al., 2021). The failure to reproduce the RO₂
 530 concentration reflects the inadequacy of the mechanisms related to RO₂ radicals due to
 531 diverse oxidation reactions. This issue is further elucidated by previous studies, which
 532 highlighted the possibility of certain VOCs undergoing more intricate isomerization or
 533 fragmentation steps to sustain the long lifetime of RO₂ radicals (Whalley et al., 2018;
 534 Whalley et al., 2021).


535 The union of k_{OH} and RO₂ measurement can help reveal the magnitude of missing
 536 RO₂ as a hypothesis of sensitivity analysis. An additional reaction was added to the base
 537 model in a previous research, converting OH into C96O₂ (the oxidation product of
 538 α -pinene) with a reaction rate equal to the missing reactivity, to explore the source of the
 539 missing RO₂ radicals(Whalley et al., 2021). Discrepancy of OH reactivity ($\sim 3 - 5 \text{ s}^{-1}$)

540 between measurement and model suggested that an additional driving force was
541 necessary to complete the OH to RO₂ step. In the TROPSPECT campaign, approximately
542 0.4 ppb of monoterpene was introduced into the base scenario as the chemical reactions
543 of complex alkoxy radicals, which is similar to an atmospheric level in the
544 EXPLORE-2018 campaign, the YRD region (Wang et al., 2022b). The RACM2
545 mechanism identified α -pinene (API) and limonene (LIM) as representative
546 monoterpene species. Sensitivity tests were conducted by incorporating API and LIM
547 into the 'MTS on' and 'MTS+X on' scenarios, respectively (Ma et al., 2022). The mean of
548 these values was considered the average effect of monoterpene chemistry, and depicted
549 as the green line in Fig. 6. In the 'MTS on' scenario, the chemistry of peroxy radicals in
550 Semi II was reasonably described by introducing the source of complex alkoxy radicals,
551 and the obs-to-mod ratio of peroxy radicals decreased from 2.2 to 1.3. Furthermore, the
552 introduction of additional complex alkoxy radicals had minimal impact on HO_x
553 chemistry, with changes in daytime OH and HO₂ concentrations of less than 5×10^5 cm⁻³
554 and 2.5×10^7 cm⁻³, respectively. This demonstrates the robustness of HO_x radical in
555 response to potential monoterpene.

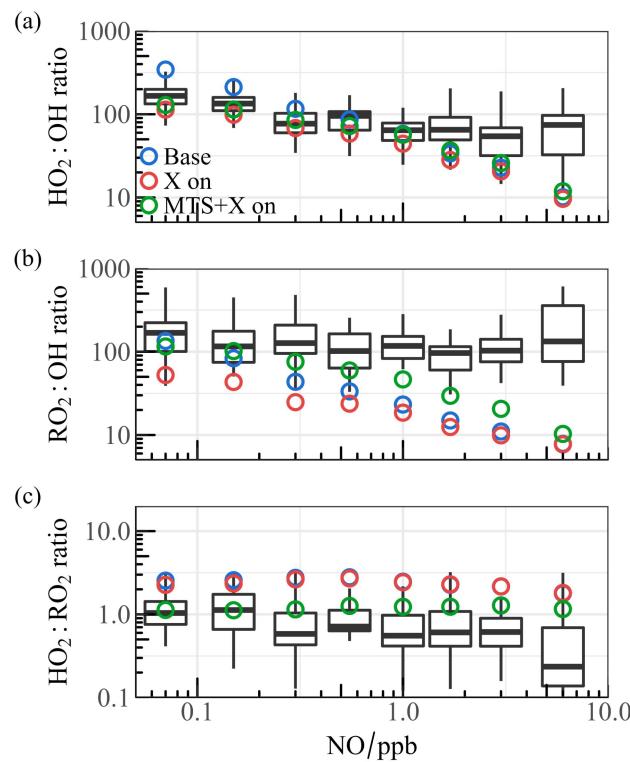
556 Higher aldehyde chemistry is a concrete manifestation of verifying the
557 aforementioned hypothesis for RO₂ sources (Yang et al., 2024b). The autoxidation process
558 of R(CO)O₂, encompasses a hydrogen migration process that transforms it into
559 the ·OOR(CO)OOH radical (Wang et al., 2019b). This radical subsequently reacts with
560 NO to yield the ·OR(CO)OOH radical. The ·OR(CO)OOH radical predominantly
561 undergoes two successive rapid hydrogen migration reactions, ultimately resulting in the
562 formation of HO₂ radicals and hydroperoxy carbonyl (HPC). Consequently, the HAM
563 mechanism extends the lifetime of the RO₂ radical, providing a valuable complement to
564 the unaccounted sources of RO₂ radicals. As depicted in Fig. 7, the incorporation of the
565 HAM mechanism results in an approximate 7.4% and 12.5% increase in the
566 concentrations of HO₂ and RO₂ radicals, respectively. It is important to note that the total
567 concentrations of primary emitted aldehydes and the HPC group may be underestimated,
568 which could lead to the aforementioned analysis being conservative in nature. Further
569 exploration of the unaccounted sources of RO₂ radicals will be presented in Section 4.3.

570 **4.1.3 P(Ox) underestimation**

Upon completing the hypothetical investigation into the radical underestimation, a sensitivity comparison between observed and modeled P(O_x) was conducted across the entire range of NO concentrations, as depicted in Fig. 8(a)(b). With increasing NO concentration, the overall P(O_x) amplified, reaching a maximum of approximately 30 ppb/h. This variation has been validated through multiple observations in Wangdu, APHH, and other studies (Tan et al., 2017b; Whalley et al., 2021; Whalley et al., 2018). However, the imperfect understanding of the mechanisms related to peroxy radicals ultimately leads to misjudgment of the ozone production process in high NO regimes, with a degree of underestimation close to 10 times, as illustrated in Fig. 8(b).

Fig. 8. The relationship between NO and (a) P(O_x), (b) P(O_x) (Obs:Mod). Boxplot diagrams are used to illustrate the minimum, 25th percentile, median, 75th percentile, and maximum values of the observed dataset. The circles represent the median values for the base model as well as for different mechanisms added to the model within various ranges.

Although the inclusion of the X mechanism improves the agreement between simulated and observed OH concentrations in the low-NO range, it has a negative effect on the P(O_x) simulation. The introduction of a major source of RO₂ can help address the underestimation problem in the base scenario, as the lack of RO₂ species and related reaction rates is an important factor leading to deviations in the simulation of ozone


590 production rates (Tan et al., 2017a). The combination of the X mechanism and
591 monoterpene chemistry is shown to better harmonize the relationship between HO₂ and
592 RO₂. Notably, the deficiency in the ozone generation mechanism was adequately
593 explained within a certain range in the 'MTS+X On' scenario, leading to an enhancement
594 in the simulation performance of P(O_x) in the high NO_x region (Fig. 8(b)). Therefore,
595 reasonable simulation of the concentration of peroxy radicals is key to accurately
596 quantifying the process of ozone generation.

597 **4.2 Effect of mechanism reconciliation on oxidation**

598 Both radical concentration and oxidation coordinating deficiency are worthy of
599 examine (Fig. S9). To eliminate the influence of non-photolytic processes, only the
600 daytime concentration range with $j(O^1D)$ greater than $5 \times 10^{-6} \text{ s}^{-1}$ was selected. The
601 boxplots illustrate the ratio of observation to simulation (base model), with the circles
602 representing the average values after integrating different mechanisms into the base
603 scenario. In the low NO regime (NO < 1 ppb), the OH underestimation was consistently
604 prominent as NO concentration decreased, and the base model was able to reasonably
605 reflect the HO₂ distribution contrastly. As NO levels increased, the simulated OH
606 concentration aligned well with the observation, but both HO₂ and RO₂ concentrations
607 exhibited underprediction. RO₂ underestimation extended across the entire NO range, and
608 could rise to over 10 times when NO levels reached about 10 ppb. Sensitivity tests based
609 on the full suite of radical measurement revealed that the X mechanism accelerated OH
610 regeneration, and the introduction of larger RO₂ alleviated the absence of certain sources
611 by 2 to 4 times.

612 The coordinate ratios of radical serves as another test for RO_x propagation (Fig. 9).
613 The observed HO₂/OH ratio is approximately 100, declining to some extent as the
614 concentration of NO increases, which is consistent with previous studies (Griffith et al.,
615 2016; Griffith et al., 2013). However, the base model does not accurately replicate the
616 curve depicting the change in HO₂/OH ratio, as shown in Fig. 9 (a). At low NO levels, the
617 ratio significantly overestimated and shows a steeper decline compared to the base
618 scenario as NO levels increase. Furthermore, the observed RO₂/OH ratios remain around
619 100, whereas the predicted values are significantly underestimated when NO exceeds 1
620 ppb (refer to Fig. 9(b)). In terms of the observed HO₂/RO₂ ratio, it maintains a relatively

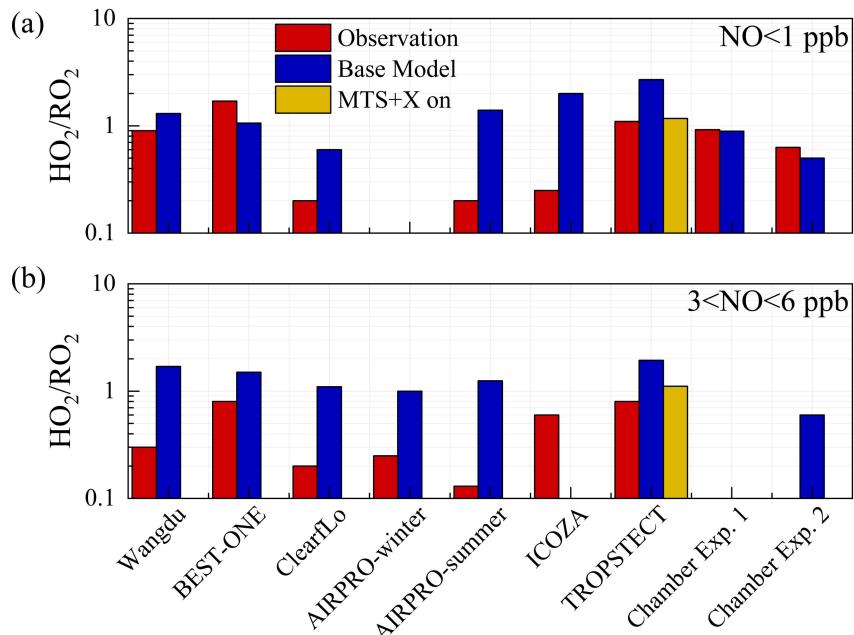
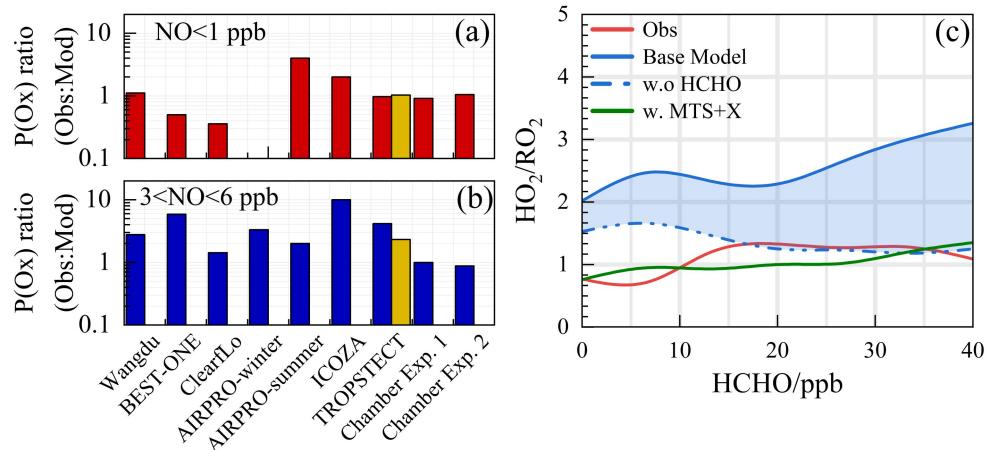

constant trend within the range of 0.5 – 1.5, while the model overestimated by more than twice, highlighting an inconsistency between the conversion of $\text{RO}_2 \rightarrow \text{HO}_2$. The incorporation of the X mechanism has proven to be effective in a balanced HO_2/OH ratio as illustrated in Fig. 9(a), but amplifying the termination pathway for HO_2 and RO_2 , which altered the coordination between RO_2 and OH across the entire NO range (Fig. 9(b)). The connection between unconditional OH source and larger RO_2 isomerization in chemically complex environments is key to fully understanding tropospheric chemistry, and a better coordination of HO_2/OH , RO_2/OH , and HO_2/RO_2 ratios are established by incorporating additional mechanisms.

Fig. 9. The ratios for (a) HO_2/OH , (b) RO_2/OH , and (c) HO_2/RO_2 show a correlation with NO levels. Boxplot diagrams are used to illustrate the minimum, 25th percentile, median, 75th percentile, and maximum values of the observed dataset. The circles represent the median values for the base model as well as for different mechanisms added to the model within various ranges.

The HO_2/RO_2 parameter was utilized to explore the transformation relationship between HO_2 and RO_2 radicals. If HO_2 is formed from an RO_2 radical, it would result in an HO_2/RO_2 radical concentration ratio of approximately 1. The HO_2/RO_2 ratios derived from radical concentrations measured by laser-induced fluorescence instruments and calculated using the MCM or RACM models were summarized in Fig. 10. In field studies, the observed HO_2/RO_2 ratios were between 0.2 - 1.7 under low-NO conditions ($\text{NO} < 1$

641 ppb) and only 0.1 - 0.8 under high-NO conditions ($3 < \text{NO} < 6$ ppb). From the
 642 perspective of model-observation matching, except for three measurements in ClearfLo,
 643 ICOZA and AIRPRO-summer campaigns, the HO_2/RO_2 ratios in other regions could be
 644 reasonably reflected by the MCM or RACM2 mechanisms(Woodward-Massey et al.,
 645 2023; Whalley et al., 2021; Whalley et al., 2018; Färber et al., 2024). However, the ratio
 646 is generally underestimated under high NO conditions, reaching up to 5 times in ClearfLo.
 647 According to the latest chamber experiments, the HO_2/RO_2 radical concentration ratios
 648 for VOCs forming HO_2 are 0.6 for both one-step and two-step reactions. Therefore, the
 649 extremely low HO_2/RO_2 ratios observed in field campaigns can only be explained if
 650 almost all RO_2 radicals undergo multiple-step reactions before forming HO_2 . During the
 651 TROPSTECT campaign, the observed HO_2/RO_2 remains at 1.1 and 0.8 under low-NO
 652 and high-NO conditions, respectively. After considering the complex sources of complex
 653 alkoxy radicals in the 'MTS+X' scenario, the simulated values of HO_2/RO_2 in both
 654 low-NO and high-NO regions match the observed values well.


655

656 **Fig. 10.** Summary of the HO_2/RO_2 ratios derived from radical concentrations measured by laser-induced fluorescence
 657 instruments and calculated using the MCM or RACM models under (a) low-NO and (b) high-NO conditions.
 658 Charmber Exp. 1 and Charmber Exp. 2 denotes the parameters by single-step HO_2 formation and multi-step HO_2
 659 formation determined in the chamber by (Färber et al., 2024).

660 4.3 Missing OVOCs sources influence ozone production

661 The consistency between model predictions and observed measurements for ozone

662 production, akin to the concentration ratio of HO_2/RO_2 , is depicted in Fig. 11(a)(b). In
 663 areas with low NO levels, the ratio of modeled to actual ozone production ranges from
 664 0.5 to 2, with the exception of the ClearfLo and AIRPRO-summer
 665 datasets(Woodward-Massey et al., 2023; Whalley et al., 2021). Conversely, under high
 666 NO conditions (with NO concentrations between 3 and 6 ppbv), the ozone production
 667 rate ($\text{P}(\text{Ox})$) derived from measured radical concentrations typically exceeds that of the
 668 base model's predictions by more than threefold. Laboratory experiments focusing on the
 669 oxidation of representative VOCs suggest that ozone production can be enhanced by
 670 approximately 25% for the anthropogenic VOCs under investigation(Färber et al., 2024).
 671 The MTS+X scenario represents an effort to enhance the congruence between modeled
 672 and measured radical concentrations. The incorporation of OVOCs and larger alkoxy
 673 radicals derived from monoterpenes has refined the model-measurement agreement for
 674 ozone formation under high NO conditions, reducing the discrepancy from 4.17 to 2.33.
 675 This substantiates the hypothesis of sensitivity analysis concerning ozone generation, as
 676 detailed in Section 4.2 and illustrated in Fig. S10.

677

678 **Fig. 11.** Summary of the $\text{P}(\text{Ox})_{\text{Obs}}/\text{P}(\text{Ox})_{\text{Mod}}$ under **(a)** low-NO and **(b)** high-NO conditions.**(c)** The ratios for
 679 HO_2/RO_2 show a correlation with HCHO levels. The blue shading represents the range of variation from constrained to
 680 unconstrained formaldehyde conditions. Chamber Exp. 1 and Chamber Exp. 2 denotes the parameters by single-step
 681 HO₂ formation and multi-step HO₂ formation determined in the chamber by (Färber et al., 2024).

682 The reasons for the discrepancy between simulated and observed values for ozone
 683 production deserve further investigation. As depicted in Fig.11(c), the simulated
 684 HO₂/RO₂ ratios display a robust positive correlation with photochemical activity,
 685 fluctuating between 2 and 4. A notable feature during severe ozone pollution is the
 686 intense distribution of formaldehyde, with an average concentration of 21.81 ± 4.57 ppb

687 (11:00 – 13:00). While formaldehyde acts as a precursor for HO_2 radicals, it does not
688 directly generate RO_2 radicals. The contributions of OVOCs to the ROx radical do not
689 exhibit the same intensity as formaldehyde, and the current mechanism encounters
690 difficulties in replicating formaldehyde concentrations (Fig. S11). The simulation of
691 formaldehyde concentrations using the MCM v3.3.1 mechanism has shown improvement,
692 indicating that the secondary formation of unmeasured species, such as OVOCs, will
693 feedback on RO_2 radical levels. When formaldehyde levels are unconstrained, the
694 simulated HO_2/RO_2 ratios align with observations, suggesting that under the prevailing
695 chemical mechanism, the photochemical efficiency of formaldehyde and other OVOCs is
696 similar. Therefore, an empirical hypothesis is proposed to amplify the concentration of
697 higher-order aldehydes by a factor of about 4, which is the proportion of formaldehyde
698 concentration underestimated by the model. The qualitative assessment of the impact of
699 missing aldehyde primary emissions on RO_2 radical concentrations was combined with
700 the HAM mechanism across the entire photochemical spectrum (Fig.S12). Enhanced
701 impact of aldehyde autoxidation in the presence of weak photochemical conditions could
702 alter the simulated levels of OH and HO_2 radicals by approximately 13.9% and 18.1%,
703 respectively. However, higher ALD concentrations will be achieved under intensive
704 photochemical conditions, leading to the gradual dominance of the sink channels for OH
705 + OVOCs, with the effect of autoxidation mechanisms gradually decreasing. RO_2 radical
706 concentrations is notably more sensitive to the HAM mechanism, where incorporates
707 additional OVOCs, can enhance the simulation of RO_2 radical concentrations by 20 -
708 40%. Consequently, although limiting formaldehyde can partially offset the HO_2 radical
709 cycle and enhance the precision of HOx radical chemistry studies, additional
710 measurements should be undertaken for other OVOCs, coupled with the deployment of
711 full-chain radical detection systems, to accurately elucidate the oxidation processes under
712 severe ozone pollution conditions.

713 5 Conclusion

714 The full suite radical measurement of OH, HO_2 , RO_2 and k_{OH} was first deployed in
715 the YRD region (TROPSTECT) and encountered with a prolonged ozone pollution in
716 September 2020. The diurnal peaks of radicals exhibited considerable variation due to

717 environmental factors, showing ranges of 3.6 to $27.1 \times 10^6 \text{ cm}^{-3}$ for OH, 2.1 to $33.2 \times 10^8 \text{ cm}^{-3}$ for HO₂, and 4.9 to $30.5 \times 10^8 \text{ cm}^{-3}$ for RO₂. Continuous k_{OH} data fell within a range
718 of 8.6 – 30.2 s^{-1} , demonstrating the dominant behavior of organic species in diurnal
719 reactivity. Furthermore, observations in the YRD region were found to be similar to those
720 in other megacities, suggesting no significant regional differences in oxidation levels
721 were observed in agglomerations overall.

723 At a heavy ozone pollution episode, the oxidation level reached intensive compared
724 with other sites, and the simulated OH, HO₂, and RO₂ radicals provided by the
725 RACM2-LIM1 mechanism failed to adequately match the observed data both in radical
726 concentration and experimental radical budget. Sensitivity tests based on the full suite of
727 radical measurement revealed that the X mechanism accelerated OH regeneration, and
728 the introduction of larger alkoxy radicals alleviated the RO₂-related imbalance. The HAM
729 mechanism effectively complements the non-traditional regeneration of OH radicals,
730 improving by 4.4% - 6.0% compared to the base scenario, while the concentrations of
731 HO₂ and RO₂ radicals increased by approximately 7.4% and 12.5% , respectively. The
732 incorporation of complex processes enabled better coordination of HO₂/OH, RO₂/OH,
733 and HO₂/RO₂ ratios, and adequately addressed the deficiency in the ozone generation
734 mechanism within a certain range. Incorporation of OVOCs and larger alkoxy radicals
735 derived from monoterpenes improved the measurement-model consistency for ozone
736 formation under high NO conditions, reducing the discrepancy from 4.17 to 2.33 , which
737 corroborates the hypothesis of sensitivity analysis in the context of ozone generation.
738 This study enabled a deeper understanding of the tropospheric radical chemistry at play.
739 Notably,

740 ✓ A full suite of radical measurement can untangle the gap-bridge for the base model in
741 more chemically-complex environments as an hypothesis of sensitivity tests.
742 ✓ Additional measurements targeting more OVOCs should also be conducted to fulfill
743 the RO₂-related imbalance, and then accurately elucidating the oxidation under
744 severe ozone pollution.

745

746 **Financial support**

747 This work was supported by the National Key R&D Program of China
748 (2022YFC3700301), the National Natural Science Foundation of China (62275250,
749 U19A2044, 42030609), the Natural Science Foundation of Anhui Province (No.
750 2008085J20), the Anhui Provincial Key R&D Program (2022l07020022), and the
751 Distinguished Program of Jianghuai Talents Program of Excellence (HYRCSTZ202401).

752 **Data availability**

753 The data used in this study are available upon request (rzhu@aiofm.ac.cn).

754 **Author contributions**

755 WQ Liu, PH Xie, RZ Hu contributed to the conception of this study. RZ Hu and GX
756 Zhang performed the data analyses and manuscript writing. All authors contributed to
757 measurements, discussed results, and commented on the paper.

758 **Competing interests**

759 The contact author has declared that none of the authors has any competing interests.
760

761 References

762 Duan, J., Qin, M., Ouyang, B., Fang, W., Li, X., Lu, K., Tang, K., Liang, S., Meng, F., Hu, Z., Xie, P., Liu,
763 W., and Häsler, R.: Development of an incoherent broadband cavity-enhanced absorption spectrometer for
764 in situ measurements of HONO and NO₂, *Atmos Meas Tech*, 11, 4531-4543, 10.5194/amt-11-4531-2018,
765 2018.

766 Färber, M., Fuchs, H., Bohn, B., Carlsson, P. T. M., Gkatzelis, G. I., Marcillo Lara, A. C., Rohrer, F.,
767 Vereecken, L., Wedel, S., Wahner, A., and Novelli, A.: Effect of the Alkoxy Radical Chemistry on the
768 Ozone Formation from Anthropogenic Organic Compounds Investigated in Chamber Experiments, *ACS*
769 *ES&T Air*, 1, 1096-1111, 10.1021/acsestair.4c00064, 2024.

770 Fuchs, H., Holland, F., and Hofzumahaus, A.: Measurement of tropospheric RO₂ and HO₂ radicals by a
771 laser-induced fluorescence instrument, *Rev of Sci Inst*, 79, 084104, 10.1063/1.2968712, 2008.

772 George, L. A., Hard, T. M., and O'Brien, R. J.: Measurement of free radicals OH and HO₂ in Los Angeles
773 smog, *J Geophys Res-Atmos*, 104, 11643-11655, 1999.

774 Griffith, S. M., Hansen, R. F., Dusanter, S., Stevens, P. S., Alaghmand, M., Bertman, S. B., Carroll, M. A.,
775 Erickson, M., Galloway, M., Grossberg, N., Hottle, J., Hou, J., Jobson, B. T., Kamprath, A., Keutsch, F. N.,
776 Lefer, B. L., Mielke, L. H., O'Brien, A., Shepson, P. B., Thurlow, M., Wallace, W., Zhang, N., and Zhou, X.
777 L.: OH and HO₂ radical chemistry during PROPHET 2008 and CABINEX 2009-Part 1: Measurements and
778 model comparison, *Atmos Chem Phys*, 13, 5403-5423, 10.5194/acp-13-5403-2013, 2013.

779 Griffith, S. M., Hansen, R. F., Dusanter, S., Michoud, V., Gilman, J. B., Kuster, W. C., Veres, P. R., Graus,
780 M., de Gouw, J. A., Roberts, J., Young, C., Washenfelder, R., Brown, S. S., Thalman, R., Waxman, E.,
781 Volkamer, R., Tsai, C., Stutz, J., Flynn, J. H., Grossberg, N., Lefer, B., Alvarez, S. L., Rappenglueck, B.,
782 Mielke, L. H., Osthoff, H. D., and Stevens, P. S.: Measurements of hydroxyl and hydroperoxy radicals
783 during CalNex-LA: Model comparisons and radical budgets, *J Geophys Res-Atmos*, 121, 4211-4232,
784 10.1002/2015jd024358, 2016.

785 Heard, D. E. and Pilling, M. J.: Measurement of OH and HO₂ in the troposphere, *Chemical reviews*, 103,
786 5163-5198, 10.1021/cr020522s, 2003.

787 Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C., Fuchs, H., Holland, F., Kita, K.,
788 Kondo, Y., Li, X., Lou, S., Shao, M., Zeng, L., Wahner, A., and Zhang, Y.: Amplified Trace Gas Removal in
789 the Troposphere, *Science*, 324, 1702-1704, 10.1126/science.1164566, 2009.

790 Hu, B., Duan, J., Hong, Y., Xu, L., Li, M., Bian, Y., Qin, M., Fang, W., Xie, P., and Chen, J.: Exploration of
791 the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from
792 measurements across four seasons, *Atmos Chem Phys*, 22, 371-393, 10.5194/acp-22-371-2022, 2022.

793 Huang, J., Pan, X., Guo, X., and Li, G.: Health impact of China's Air Pollution Prevention and Control
794 Action Plan: an analysis of national air quality monitoring and mortality data, *Lancet Planet Health*, 2,
795 e313-e323, 10.1016/S2542-5196(18)30141-4, 2018.

796 Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.: Amplified transboundary transport
797 of haze by aerosol-boundary layer interaction in China, *Nature Geoscience*, 13, 428-434,
798 10.1038/s41561-020-0583-4, 2020.

799 Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic
800 compounds: A protocol for mechanism development, *Atmos Environ*, 31, 81-104,
801 10.1016/s1352-2310(96)00105-7, 1997.

802 Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master
803 Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds,
804 *Atmos Chem Phys*, 3, 181-193, 10.5194/acp-3-181-2003, 2003.

805 Jia, W., Zhang, X., and Wang, Y.: Assessing the pollutant evolution mechanisms of heavy pollution
806 episodes in the Yangtze-Huaihe valley: A multiscale perspective, *Atmos Environ*, 244,
807 10.1016/j.atmosenv.2020.117986, 2021.

808 Kanaya, Y., Hofzumahaus, A., Dorn, H. P., Brauers, T., Fuchs, H., Holland, F., Rohrer, F., Bohn, B.,
809 Tillmann, R., Wegener, R., Wahner, A., Kajii, Y., Miyamoto, K., Nishida, S., Watanabe, K., Yoshino, A.,
810 Kubistin, D., Martinez, M., Rudolf, M., Harder, H., Berresheim, H., Elste, T., Plass-Duelmer, C., Stange, G.,
811 Kleffmann, J., Elshorbany, Y., and Schurath, U.: Comparisons of observed and modeled OH and HO₂
812 concentrations during the ambient measurement period of the HO(x)Comp field campaign, *Atmos Chem
813 Phys*, 12, 2567-2585, 10.5194/acp-12-2567-2012, 2012.

814 Levy, H.: Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted, *Science*, 173,

815 141-143, 10.1126/science.173.3992.141, 1971.
 816 Li, S., Lu, K., Ma, X., Yang, X., Chen, S., and Zhang, Y.: Field measurement of the organic peroxy radicals
 817 by the low-pressure reactor plus laser-induced fluorescence spectroscopy, Chinese Chemical Letters, 31,
 818 2799-2802, 10.1016/j.cclet.2020.07.051, 2020.
 819 Liu, S., Li, X., Shen, X., Zeng, L., Huang, X., Zhu, B., Lin, L., and Lou, S.: Measurement and partition
 820 analysis of atmospheric OH reactivity in autumn in Shenzhen, *Acta Scientiae Circumstantiae*, 39,
 821 3600-3610, 2019.
 822 Liu, Y., Li, J., Ma, Y., Zhou, M., Tan, Z., Zeng, L., Lu, K., and Zhang, Y.: A review of gas-phase chemical
 823 mechanisms commonly used in atmospheric chemistry modelling, *Journal of Environmental Sciences*,
 824 10.1016/j.jes.2022.10.031, 2022.
 825 Liu, Z., Wang, Y., Hu, B., Lu, K., Tang, G., Ji, D., Yang, X., Gao, W., Xie, Y., Liu, J., Yao, D., Yang, Y., and
 826 Zhang, Y.: Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China,
 827 *Sci Total Environ*, 771, 10.1016/j.scitotenv.2021.145306, 2021.
 828 Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Haseler, R., Kita, K.,
 829 Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.:
 830 Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model
 831 results, *Atmos Chem Phys*, 10, 11243–11260, 10.5194/acp-10-11243-2010, 2010.
 832 Lu, K., Guo, S., Tan, Z., Wang, H., Shang, D., Liu, Y., Li, X., Wu, Z., Hu, M., and Zhang, Y.: Exploring
 833 atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air
 834 pollution, *Natl. Sci. Rev.*, 6, 579-594, 10.1093/nsr/nwy073, 2019a.
 835 Lu, K. D., Guo, S., Tan, Z. F., Wang, H. C., Shang, D. J., Liu, Y. H., Li, X., Wu, Z. J., Hu, M., and Zhang, Y.
 836 H.: Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of
 837 secondary air pollution, *Natl. Sci. Rev.*, 6, 579-594, 10.1093/nsr/nwy073, 2019b.
 838 Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Haeseler, R., Hu, M., Kita,
 839 K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and
 840 Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River Delta 2006:
 841 a missing OH source in a VOC rich atmosphere, *Atmos Chem Phys*, 12, 1541-1569,
 842 10.5194/acp-12-1541-2012, 2012.
 843 Ma, X., Tan, Z., Lu, K., Yang, X., Chen, X., Wang, H., Chen, S., Fang, X., Li, S., Li, X., Liu, J., Liu, Y.,
 844 Lou, S., Qiu, W., Wang, H., Zeng, L., and Zhang, Y.: OH and HO₂ radical chemistry at a suburban site
 845 during the EXPLORE-YRD campaign in 2018, *Atmos Chem Phys*, 22, 7005-7028,
 846 10.5194/acp-22-7005-2022, 2022.
 847 Ma, X. F., Tan, Z. F., Lu, K. D., Yang, X. P., Liu, Y. H., Li, S. L., Li, X., Chen, S. Y., Novelli, A., Cho, C.
 848 M., Zeng, L. M., Wahner, A., and Zhang, Y. H.: Winter photochemistry in Beijing: Observation and model
 849 simulation of OH and HO₂ radicals at an urban site, *Sci Total Environ*, 685, 85-95,
 850 10.1016/j.scitotenv.2019.05.329, 2019.
 851 Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Harder, H., Lefer, B., Rappenglück, B.,
 852 Flynn, J., and Leuchner, M.: Atmospheric oxidation capacity in the summer of Houston 2006: Comparison
 853 with summer measurements in other metropolitan studies, *Atmos Environ*, 44, 4107-4115,
 854 10.1016/j.atmosenv.2009.01.013, 2010.
 855 Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G. J.,
 856 Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A.,
 857 Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J.: OH and HO₂ concentrations, sources,
 858 and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, *J Geophys
 859 Res-Atmos*, 108, 10.1029/2003jd003551, 2003.
 860 Peeters, J., Muller, J. F., Stavrakou, T., and Nguyen, V. S.: Hydroxyl Radical Recycling in Isoprene
 861 Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism, *J
 862 Phys Chem A*, 118, 8625-8643, 10.1021/jp5033146, 2014.
 863 Qu, H., Wang, Y., Zhang, R., Liu, X., Huey, L. G., Sjostedt, S., Zeng, L., Lu, K., Wu, Y., Shao, M., Hu, M.,
 864 Tan, Z., Fuchs, H., Broch, S., Wahner, A., Zhu, T., and Zhang, Y.: Chemical Production of Oxygenated
 865 Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone
 866 Production, *Environ Sci Technol*, 10.1021/acs.est.1c04489, 2021.
 867 Ren, X., Olson, J. R., Crawford, J. H., Brune, W. H., Mao, J., Long, R. B., Chen, Z., Chen, G., Avery, M. A.,
 868 Sachse, G. W., Barrick, J. D., Diskin, G. S., Huey, L. G., Fried, A., Cohen, R. C., Heikes, B., Wennberg, P.
 869 O., Singh, H. B., Blake, D. R., and Shetter, R. E.: HO_x chemistry during INTEX-A 2004: Observation,
 870 model calculation, and comparison with previous studies, *J Geophys Res-Atmos*, 113,

871 10.1029/2007jd009166, 2008.

872 Rohrer, F., Lu, K., Hofzumahaus, A., Bohn, B., Brauers, T., Chang, C.-C., Fuchs, H., Haeseler, R., Holland,
873 F., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S., Oebel, A., Shao, M., Zeng, L., Zhu, T., Zhang, Y., and
874 Wahner, A.: Maximum efficiency in the hydroxyl-radical-based self-cleansing of the troposphere, *Nature
875 Geoscience*, 7, 559-563, 10.1038/ngeo2199, 2014.

876 Shi, X., Ge, Y., Zheng, J., Ma, Y., Ren, X., and Zhang, Y.: Budget of nitrous acid and its impacts on
877 atmospheric oxidative capacity at an urban site in the central Yangtze River Delta region of China, *Atmos
878 Environ*, 238, 10.1016/j.atmosenv.2020.117725, 2020.

879 Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore,
880 R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L., Bloss, W., Vu, T., Sun, Y., Xu, W.,
881 Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Elevated levels of OH
882 observed in haze events during wintertime in central Beijing, *Atmos Chem Phys*, 20, 14847-14871,
883 10.5194/acp-20-14847-2020, 2020.

884 Song, H., Lu, K., Dong, H., Tan, Z., Chen, S., Zeng, L., and Zhang, Y.: Reduced Aerosol Uptake of
885 Hydroperoxyl Radical May Increase the Sensitivity of Ozone Production to Volatile Organic Compounds,
886 *Environmental Science & Technology Letters*, 9, 22-29, 10.1021/acs.estlett.1c00893, 2021.

887 Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism for regional atmospheric
888 chemistry modeling, *J Geophys Res-Atmos*, 102, 25847-25879, 10.1029/97jd00849, 1997.

889 Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO₂ radicals: field measurements and
890 model comparisons, *Chemical Society reviews*, 41, 6348-6404, 10.1039/c2cs35140d, 2012.

891 Tan, Z., Ma, X., Lu, K., Jiang, M., Zou, Q., Wang, H., Zeng, L., and Zhang, Y.: Direct evidence of local
892 photochemical production driven ozone episode in Beijing: A case study, *Sci Total Environ*, 800, 148868,
893 10.1016/j.scitotenv.2021.148868, 2021.

894 Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang, Z.,
895 Xie, S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities
896 during the photochemically polluted season: a case study based on box model simulation, *Atmos Chem
897 Phys*, 19, 3493-3513, 10.5194/acp-19-3493-2019, 2019a.

898 Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Haeseler, R., He,
899 L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang,
900 Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain:
901 observation and model calculations of OH, HO₂ and RO₂ radicals, *Atmos Chem Phys*, 17, 663-690,
902 10.5194/acp-17-663-2017, 2017a.

903 Tan, Z. F., Lu, K. D., Dong, H. B., Hu, M., Li, X., Liu, Y. H., Lu, S. H., Shao, M., Su, R., Wang, H. C., Wu,
904 Y. S., Wahner, A., and Zhang, Y. H.: Explicit diagnosis of the local ozone production rate and the
905 ozone-NO_x-VOC sensitivities, *Sci. Bull.*, 63, 1067-1076, 10.1016/j.scib.2018.07.001, 2018.

906 Tan, Z. F., Lu, K. D., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y. H., Rohrer, F., Shao, M.,
907 Sun, K., Wu, Y. S., Zeng, L. M., Zhang, Y. S., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y. H.:
908 Experimental budgets of OH, HO₂, and RO₂ radicals and implications for ozone formation in the Pearl
909 River Delta in China 2014, *Atmos Chem Phys*, 19, 7129-7150, 10.5194/acp-19-7129-2019, 2019b.

910 Tan, Z. F., Fuchs, H., Lu, K. D., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H. B., Gomm, S., Haseler, R.,
911 He, L. Y., Holland, F., Li, X., Liu, Y., Lu, S. H., Rohrer, F., Shao, M., Wang, B. L., Wang, M., Wu, Y. S.,
912 Zeng, L. M., Zhang, Y. S., Wahner, A., and Zhang, Y. H.: Radical chemistry at a rural site (Wangdu) in the
913 North China Plain: observation and model calculations of OH, HO₂ and RO₂ radicals, *Atmos Chem Phys*,
914 17, 663-690, 10.5194/acp-17-663-2017, 2017b.

915 Wang, F., Hu, R., Xie, P., Wang, Y., Chen, H., Zhang, G., and Liu, W.: Calibration source for OH radical
916 based on synchronous photolysis, *Acta Phys Sin-Ch Ed*, 69, 2020.

917 Wang, F. Y., Hu, R. Z., Chen, H., Xie, P. H., Wang, Y. H., Li, Z. Y., Jin, H. W., Liu, J. G., and Liu, W. Q.:
918 Development of a field system for measurement of tropospheric OH radical using laser-induced
919 fluorescence technique, *Opt. Express*, 27, A419-A435, 10.1364/oe.27.00a419, 2019a.

920 Wang, H., Lu, K., Tan, Z., Chen, X., Liu, Y., and Zhang, Y.: Formation mechanism and control strategy for
921 particulate nitrate in China, *Journal of Environmental Sciences*, 10.1016/j.jes.2022.09.019, 2022a.

922 Wang, H., Ma, X., Tan, Z., Wang, H., Chen, X., Chen, S., Gao, Y., Liu, Y., Liu, Y., Yang, X., Yuan, B., Zeng,
923 L., Huang, C., Lu, K., and Zhang, Y.: Anthropogenic monoterpenes aggravating ozone pollution, *Natl. Sci.
924 Rev.*, 9, 2022b.

925 Wang, S.-n., Wu, R.-r., and Wang, L.-m.: Role of hydrogen migrations in carbonyl peroxy radicals in the
926 atmosphere, *Chinese J Chem Phys*, 32, 457-466, 10.1063/1674-0068/cjcp1811265, 2019b.

927 Wang, T., Xue, L., Feng, Z., Dai, J., Zhang, Y., and Tan, Y.: Ground-level ozone pollution in China: a
928 synthesis of recent findings on influencing factors and impacts, *Environmental Research Letters*,
929 10.1088/1748-9326/ac69fe, 2022c.

930 Wang, W., Yuan, B., Su, H., Cheng, Y., Qi, J., Wang, S., Song, W., Wang, X., Xue, C., Ma, C., Bao, F.,
931 Wang, H., Lou, S., and Shao, M.: A large role of missing volatile organic compound reactivity from
932 anthropogenic emissions in ozone pollution regulation, *Atmos Chem Phys*, 24, 4017-4027,
933 10.5194/acp-24-4017-2024, 2024.

934 Wang, W., Yuan, B., Peng, Y., Su, H., Cheng, Y., Yang, S., Wu, C., Qi, J., Bao, F., Huangfu, Y., Wang, C.,
935 Ye, C., Wang, Z., Wang, B., Wang, X., Song, W., Hu, W., Cheng, P., Zhu, M., Zheng, J., and Shao, M.:
936 Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger
937 contributors to radicals and ozone production in the atmosphere, *Atmos Chem Phys*, 22, 4117-4128,
938 10.5194/acp-22-4117-2022, 2022d.

939 Wang, Y., Hu, R., Xie, P., Chen, H., Wang, F., Liu, X., Liu, J., and Liu, W.: Measurement of tropospheric
940 HO₂ radical using fluorescence assay by gas expansion with low interferences, *J Environ Sci (China)*, 99,
941 40-50, 10.1016/j.jes.2020.06.010, 2021.

942 Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity
943 of laser-induced fluorescence instruments used for HO₂ detection to an interference from RO₂ radicals and
944 introducing a novel approach that enables HO₂ and certain RO₂ types to be selectively measured, *Atmos
945 Meas Tech*, 6, 3425-3440, 10.5194/amt-6-3425-2013, 2013.

946 Whalley, L. K., Stone, D., Dunmore, R., Hamilton, J., Hopkins, J. R., Lee, J. D., Lewis, A. C., Williams, P.,
947 Kleffmann, J., Laufs, S., Woodward-Massey, R., and Heard, D. E.: Understanding in situ ozone production
948 in the summertime through radical observations and modelling studies during the Clean air for London
949 project (ClearfLo), *Atmos Chem Phys*, 18, 2547-2571, 10.5194/acp-18-2547-2018, 2018.

950 Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore,
951 R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Mehra, A., Worrall, S. D., Bacak, A., Bannan, T. J., Coe, H.,
952 Percival, C. J., Ouyang, B., Jones, R. L., Crilley, L. R., Kramer, L. J., Bloss, W. J., Vu, T., Kotthaus, S.,
953 Grimmond, S., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard,
954 D. E.: Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO_x in
955 Beijing, *Atmos Chem Phys*, 21, 2125-2147, 10.5194/acp-21-2125-2021, 2021.

956 Woodward-Massey, R., Sommariva, R., Whalley, L. K., Cryer, D. R., Ingham, T., Bloss, W. J., Ball, S. M.,
957 Cox, S., Lee, J. D., Reed, C. P., Crilley, L. R., Kramer, L. J., Bandy, B. J., Forster, G. L., Reeves, C. E.,
958 Monks, P. S., and Heard, D. E.: Radical chemistry and ozone production at a UK coastal receptor site,
959 *Atmos Chem Phys*, 23, 14393-14424, 10.5194/acp-23-14393-2023, 2023.

960 Yang, X., Li, Y., Ma, X., Tan, Z., Lu, K., and Zhang, Y.: Unclassical Radical Generation Mechanisms in the
961 Troposphere: A Review, *Environ Sci Technol*, 10.1021/acs.est.4c00742, 2024a.

962 Yang, X., Lu, K., Ma, X., Gao, Y., Tan, Z., Wang, H., Chen, X., Li, X., Huang, X., He, L., Tang, M., Zhu,
963 B., Chen, S., Dong, H., Zeng, L., and Zhang, Y.: Radical chemistry in the Pearl River Delta: observations
964 and modeling of OH and HO₂ radicals in Shenzhen in 2018, *Atmos Chem Phys*, 22, 12525-12542,
965 10.5194/acp-22-12525-2022, 2022.

966 Yang, X., Wang, H., Lu, K., Ma, X., Tan, Z., Long, B., Chen, X., Li, C., Zhai, T., Li, Y., Qu, K., Xia, Y.,
967 Zhang, Y., Li, X., Chen, S., Dong, H., Zeng, L., and Zhang, Y.: Reactive aldehyde chemistry explains the
968 missing source of hydroxyl radicals, *Nat Commun*, 15, 1648, 10.1038/s41467-024-45885-w, 2024b.

969 Yang, X., Lu, K., Ma, X., Liu, Y., Wang, H., Hu, R., Li, X., Lou, S., Chen, S., Dong, H., Wang, F., Wang, Y.,
970 Zhang, G., Li, S., Yang, S., Yang, Y., Kuang, C., Tan, Z., Chen, X., Qiu, P., Zeng, L., Xie, P., and Zhang, Y.:
971 Observations and modeling of OH and HO₂ radicals in Chengdu, China in summer 2019, *The Science of
972 the total environment*, 772, 144829-144829, 10.1016/j.scitotenv.2020.144829, 2021a.

973 Yang, Y., Li, X., Zu, K., Lian, C., Chen, S., Dong, H., Feng, M., Liu, H., Liu, J., Lu, K., Lu, S., Ma, X.,
974 Song, D., Wang, W., Yang, S., Yang, X., Yu, X., Zhu, Y., Zeng, L., Tan, Q., and Zhang, Y.: Elucidating the
975 effect of HONO on O₃ pollution by a case study in southwest China, *Sci Total Environ*, 756, 144127,
976 10.1016/j.scitotenv.2020.144127, 2021b.

977 Yugo Kanaya, Renqiu Cao, Hajime Akimoto, Masato Fukuda, Yuichi Komazaki, Yoko Yokouchi, Makoto
978 Koike, Hiroshi Tanimoto, Nobuyuki Takegawa, and Kondo, a. Y.: Urban photochemistry in central Tokyo:
979 1. Observed and modeled OH and HO₂ radical concentrations during the winter and summer of 2004, *J
980 Geophys Res-Atmos*, 112, 20, 10.1029/2007JD008670, 2007.

981 Yugo Kanaya, R. C., Shungo Kato, Yuko Miyakawa, Yoshizumi Kajii, Hiroshi and Tanimoto, Y. Y.,
982 Michihiro Mochida, Kimitaka Kawamura, Hajime Akimoto: Chemistry of OH and HO₂ radicals observed

983 at Rishiri Island, Japan, in September 2003: Missing daytime sink of HO₂ and positive nighttime
984 correlations with monoterpene, *J Geophys Res-Atmos*, 112, 10.1029/2006id007987, 2007.
985 Zhang, G., Hu, R., Xie, P., Lou, S., Wang, F., Wang, Y., Qin, M., Li, X., Liu, X., Wang, Y., and Liu, W.:
986 Observation and simulation of HO_x radicals in an urban area in Shanghai, China, *Sci Total Environ*, 810,
987 152275, 10.1016/j.scitotenv.2021.152275, 2022a.
988 Zhang, G., Hu, R., Xie, P., Lu, K., Lou, S., Liu, X., Li, X., Wang, F., Wang, Y., Yang, X., Cai, H., Wang, Y.,
989 and Liu, W.: Intercomparison of OH radical measurement in a complex atmosphere in Chengdu, China, *Sci
990 Total Environ*, 155924, 10.1016/j.scitotenv.2022.155924, 2022b.
991