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Abstract: The regional PM2.5 transport is one of the important causes for atmospheric 21 

environment change. However, the variations of regional PM2.5 transport in synoptic scale with 22 

meteorological drivers have been incomprehensively understood. Therefore, this study is targeted 23 

at the quasi-weekly oscillation (QWO) of regional PM2.5 transport over central and eastern China 24 

(CEC) with the influence of synoptic-scale disturbance of the East Asian Winter Monsoon 25 

(EAWM) circulation. By constructing the data of daily PM2.5 transport flux in CEC in the winters 26 

of 2015-2019, we utilize the extended empirical orthogonal function (EEOF) decomposition and 27 

other statistical methods to extract the moving spatial distribution of regional PM2.5 transport over 28 

CEC, recognizing the QWO in regional PM2.5 transport with the spatial-temporal variations over 29 

CEC. The source-acceptor relationship in regional transport of PM2.5 is identified with the 2-d lag 30 

effect of the North China Plain, as the upwind source region, on the PM2.5 pollution change in the 31 

Twain-Hu Basin, as the downwind receptor region in central China. The QWO of regional PM2.5 32 

transport over CEC is regulated by the synoptic-scale disturbance of the EAWM circulation with 33 

the periodic activities of Siberian high. These findings could provide new insight into the 34 
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understanding of regional PM2.5 transport with source-receptor relationship and the meteorological 35 

mechanism in atmospheric environment change. 36 

 37 

Key words: regional PM2.5 transport, quasi-weekly oscillation, source-receptor relationship, 38 

extended empirical orthogonal function (EEOF) 39 

 40 

1 Introduction 41 

PM2.5 pollution has attracted worldwide attention due to its adverse impact on the 42 

environment and human health (Fan et al., 2016; Geng et al., 2021; Lin et al., 2018). The PM2.5 43 

pollution in the cold season has become one of the major atmospheric environmental problems in 44 

China (An et al, 2019; Huang et al, 2020b). The high-concentration PM2.5 tends to occur with 45 

extensive spatiotemporal coverage (Tao et al, 2016; Zhang et al, 2019), and synthetic 46 

physical-chemical processes caused such heavy PM2.5 pollution events (Ding et al, 2017; Quan et 47 

al., 2020), including emissions (Liu et al, 2016; Zheng et al, 2018a), chemical formation (Huang et 48 

al, 2014; Nie et al, 2014), atmospheric boundary layer processes (Huang et al, 2018; Zhong et al, 49 

2019), localized circulation (Miao et al, 2015; Shu et al, 2021; Zheng et al, 2018b), as well as 50 

weather and climate (Cai et al, 2017; Wu et al, 2016). The interactions among these physical and 51 

chemical processes make it more challenging to comprehend the severe haze formation, which 52 

serves as one of the major difficulties in forecasting and controlling atmospheric environment 53 

change and heavy air pollution (Zhang et al., 2012; Zhang et al., 2019). 54 

PM2.5 is featured with complex spatiotemporal changes on multiscale (Georgoulias and 55 

Kourtidis, 2012; Wu et al, 2021). PM2.5 oscillates periodically at multi-time scales, and the 56 

periodic oscillation of atmospheric circulation is the leading cause of the cyclical variations of 57 

PM2.5 (Chen et al, 2020; Dong et al, 2021; Fu et al, 2020; Perrone et al, 2018). To be specific, the 58 

1-d periodic change or diurnal variation of near-surface PM2.5 concentrations is mainly attributed 59 

to the atmospheric boundary layer process and localized circulation (Miao et al, 2019); the 60 

periodic change of around 7 days may be controlled by the fluctuation of the long-wave trough in 61 

middle and high latitudes (Guo et al, 2014); the oscillating cycle of about 14 days is closely 62 

related to the quasi-biweekly oscillation of the synoptic circulation (Gao et al, 2020; Zhao et al, 63 

2019); and the 30-60-d intra-seasonal oscillation is mainly caused by the impact of monsoon 64 
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circulation change (Xu et al, 2014; Zhang et al, 2019). Comprehensively revealing the interaction 65 

between PM2.5 and meteorology at different time scales is essential for solving air pollution 66 

problems more effectively (Bäumer and Vogel, 2007; Wang et al, 2020). Previous studies mainly 67 

focused on the multiscale periodic variation of atmospheric pollutants in a certain region or local 68 

area, have not yet found on the PM2.5 trans-regional and periodic oscillation in the large area of 69 

central and eastern China (CEC). 70 

East Asian Winter Monsoon (EAWM) is one of the most active atmospheric circulation 71 

system in the cold season over the Northern Hemisphere (Ding et al, 2017; Wu and Wang, 2002), 72 

which is also a critical leading factor for the variation of wintertime air pollution in CEC (Chin, 73 

2012; Li et al, 2016). Being the major circulation system of EAWM, the Siberian High dominates 74 

the cold seasons, acting as a particular driver of cold airflows, so having an important impact on 75 

the wintertime atmospheric environment in CEC (An et al, 2019; Shen et al, 2021, 2022; Wu et al, 76 

2016). The rapid southward advance of cold air with strong Siberian High can effectively drive the 77 

regional transport of air pollutants with less accumulations across CEC, while the weak Siberian 78 

High with the slow southward movement of cold air can particularly favorable for the transport of 79 

air pollutants from the northern source regions to southern receptor region over CEC (Hou et al., 80 

2020; Zhang et al., 2016). When the position of Siberian High is more eastern than normal, the 81 

transport of air pollutants from northern China to the south is weakened, and the aggravation of 82 

pollution is enhanced in northern China (Jia et al., 2015). Regional pollutant transport driven by 83 

the southward movement of a cold front with the Siberian High would exacerbate the air quality in 84 

the corresponding receptor regions (Kang et al., 2019; Hu et al., 2021; Shen et al, 2022). The 85 

characteristics of atmospheric circulation anomalies favoring heavy haze pollution in China have 86 

changed in recent years, and the leading formation mechanism of severe haze has been shifting 87 

from local accumulation to regional transport processes in eastern China (Yang et al, 2021b). 88 

Therefore, studying the influence of EAWM circulation system on regional pollutant transport 89 

over CEC is an important issue in atmospheric environment changes (Bai et al, 2021, 2022; Ge et 90 

al, 2018; Merrill and Kim, 2004; Tan et al, 2021; Yang, et al, 2021a).  91 

Previous studies have primarily focused on the relationship between atmospheric 92 

intraseasonal oscillations in the mid-to-high latitudes of the Eurasian region and the persistent 93 

PM2.5 pollution (An et al., 2022; Gao et al., 2020; Li et al., 2021; Liu et al., 2022; Wu et al., 2023; 94 
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Yang et al., 2024b). PM2.5 concentration anomalies in North China exhibit significant lifetimes of 95 

10–30 days, with anticyclonic anomalies and related meteorological conditions (e.g., surface air 96 

temperature, boundary layer height) in Northeast Asia influencing local PM2.5 accumulation and 97 

hygroscopic growth (An et al., 2022; Yang et al., 2024b). These studies have investigated the 98 

quasi-biweekly lifecycle of persistent PM2.5 pollution events in North China through phase 99 

synthesis methods (Gao et al., 2020; Wu et al., 2023; Yang et al., 2024b). However, there remains 100 

a lack of systematic studies on the synoptic-scale oscillation of regional PM2.5 transport. 101 

The “harbor” effect on the eastern lee of the Tibetan Plateau’s large topography on the 102 

westerlies is possibly an important factor influencing the regional distribution of PM2.5 pollution 103 

in CEC with weak horizontal winds and sinking motion in the lower troposphere, which 104 

exacerbates the environmental impacts of local air pollutant emissions establishing a 105 

"susceptibility zone" in this region (Xu et al., 2016; Zhu et al, 2018). Anticyclones and cyclones 106 

alternatively affect the region on a time scale of 3-7 days, resulting in periodic air pollution in 107 

cities (Guo et al., 2014). Thus, the weather system in the CEC is basically characterized by 108 

periodic changes and the cold air in winter with EAWM oscillates in quasi-weekly periods (Wu 109 

and Wang, 2002; Wu et al., 2016). However, the influence of the synoptic-scale disturbance of the 110 

EAWM on regional PM2.5 transport over CEC is not yet clear. Responding to this problem, this 111 

study aims to reveal from a new perspective the quasi-weekly oscillation (QWO) of regional PM2.5 112 

transport over CEC affected by EAWM and its underlying mechanism with the synoptic-scale 113 

oscillation of the EAWM circulation. This study could deepen the understanding of regional PM2.5 114 

transport, its source-receptor relationship and meteorological mechanism in the atmospheric 115 

environment changes, and provide scientific evidence for air pollution forecast, early warning and 116 

coordinated control. 117 

 118 

2 Data and methods 119 

2.1 Environmental and meteorological data 120 

 121 

The daily dataset of PM2.5 concentrations selected for this study was from China National 122 

Environmental Monitoring Center (http://datacenter.mee.gov.cn/), including daily PM2.5 123 

concentrations from 1079 air quality monitoring stations in CEC during the winters 124 
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(December-February) of 2015-2019.  125 

Meteorological data were selected out of the NCEP/NCAR global reanalysis daily data 126 

(https://psl.noaa.gov/data/gridded/tables/daily.html) with a grid resolution of 2.5°×2.5° for the 127 

large-scale circulation analysis. It is composed of the daily sea level pressure (SLP), air 128 

temperature at 1000 hPa, and the U- and V-components of wind at 1000 hPa during the winters of 129 

2015–2019. 130 

In addition, the ERA5-land high-resolution reanalysis hourly dataset 131 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form) with spatial 132 

resolution of 0.1°×0.1° was selected for the calculation of transport flux (TF) of PM2.5 in CEC. 133 

The U- and V-components of the 10-m wind over CEC were obtained at 00, 06, 12, and 18 UTC 134 

daily during the winter (December-February) of 2015-2019. In order to match the resolution of 135 

PM2.5 daily data, the ERA5-Land high-resolution 10-m wind was processed into daily average 136 

data. 137 

 138 

2.2 PM2.5 TF and its divergence  139 

 140 

In order to quantitatively characterize the horizontal transport direction and intensity of PM2.5 141 

as well as convergence or divergence during regional PM2.5 transport, we introduced the concepts 142 

of PM2.5 TF and divergence of PM2.5 TF. Generally, there are two types of TF: horizontal and 143 

vertical. This study only addresses the near-surface horizontal PM2.5 TF. The horizontal PM2.5 TF 144 

is defined as the PM2.5 mass passing through the unit area in unit time (unit: μg m−2 
s−1

), expressed 145 

as the product of wind vector and PM2.5 concentration (Liu et al., 2019; Ma et al., 2021), and its 146 

vector points to the same direction as the horizontal wind. The zonal component (Fu) and 147 

meridional component (Fv) of PM2.5 TF vector (TFV) and the magnitude (TFM) are calculated as 148 

follows: 149 

Fu= C·u                                         (1) 150 

Fv= C·v                                          (2) 151 

𝑇𝐹𝑉 = 𝐹𝑢 𝑖 + 𝐹𝑣 𝑗                                      (3) 152 

𝑇𝐹𝑀 = √𝐹𝑢
2 + 𝐹𝑣

2                                      (4) 153 

where C is the surface PM2.5 concentration, u and v are the zonal and meridional components 154 

of the 10-m wind speed, respectively. 155 
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Firstly, the U- and V-components of ERA5-Land high-resolution 10-m wind are interpolated 156 

to 1079 stations of environmental measurements in CEC for calculations of near-surface PM2.5 TF 157 

in this study. Then, the daily PM2.5 TF of the 1079 stations for the winters from 2015 to 2019 are 158 

calculated according to the calculation by Formulas (1)–(4).  159 

The divergence of PM2.5 TF can be an indicator for the PM2.5 budget. When positive 160 

divergence occurs, the air pollutants were net outflow from the domain region, and vice versa 161 

(Wang et al., 2021). The divergence of horizontal PM2.5 TF near the surface is calculated as 162 

follows (Wang et al., 2021): 163 

𝐷 =
𝜕𝐹𝑢

𝜕𝑥
+

𝜕𝐹𝑣

𝜕𝑦
                                        (5) 164 

where D is the horizontal PM2.5 TF divergence, unit: μg m−3 
s−1

. If D is positive (negative), it 165 

indicates divergence (convergence) of PM2.5 TF. 166 

In the i and j grids, the expression of Formula (5) for the differential calculation with grid 167 

spacing to be 𝑑 is 168 

𝐷 =
𝐹𝑢𝑖+1,𝑗−𝐹𝑢𝑖−1,𝑗+𝐹𝑣𝑖,𝑗+1−𝐹𝑣𝑖,𝑗−1

2𝑑
                             (6) 169 

When calculating the horizontal divergence of transport PM2.5 flux, it is necessary to 170 

interpolate the station data of zonal and meridional components (Fu, Fv) of PM2.5 TFV to grid 171 

spacing with 0.25 by 0.25 degree in longitude and latitude in CEC and then calculate the 172 

divergence of PM2.5 TF at each grid point according to Formula (6). 173 

 174 

2.3 Butterworth filter 175 

 176 

Atmospheric motion encompasses a variety of temporal and spatial scales. The sequences of 177 

meteorological variables often contain complex periodic components and exhibit multi-time-scale 178 

variations, including daily, weekly, seasonal, and interannual variations. Numerous observations 179 

have found QWO with periods of less than 10 days across various meteorological elements in the 180 

EAWM system (Compo et al., 1999; Murakami, 1979; Wu and Wang, 2002). Synoptic-scale 181 

atmospheric variations are closely related to atmospheric longwave adjustments, with QWO 182 

periods of 4-7 days observed in cold air activities of the EAWM (Bai et al., 2022; Wu and Wang, 183 

2002). The synoptic-scale disturbance regulates the generation, transport, and removal of PM2.5 in 184 

air pollution, which is a key mechanism behind the 4-7 day periodic changes in PM2.5 in CEC 185 
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during the periods of EAWM (Guo et al., 2014; Liu et al., 2018; Quan et al., 2014, 2020). Based 186 

on the research objectives, identifying the desired periodic components from the original 187 

observational sequences is referred to as sequence filtering. In this study, we employed a 188 

Butterworth filter to extract QWO from observational data. 189 

The Butterworth filter is commonly used to separate atmospheric periodic variations across 190 

specific frequency bands. Due to its smooth amplitude response, linear phase characteristics, and 191 

ease of implementation, Butterworth filter has been widely applied in climate and meteorological 192 

studies (Gouirand et al., 2012; Yang et al., 2024a). The Butterworth filter can be configured as a 193 

low-pass, high-pass, or band-pass filter, depending on the specific requirements. A band-pass 194 

filtering only allows signals within a defined frequency range to pass through with attenuating 195 

signals outside the defined frequency range. It is often employed to extract and analyze signals 196 

within specific frequency bands, such as particular weather patterns and climate cycles. In this 197 

study, to investigate the QWO (8-d) of regional PM2.5 transport over the CEC under the influence 198 

of EAWM circulations in the synoptic scale, we applied Butterworth band-pass filtering to the 199 

daily TFM of PM2.5 change and daily SLP anomalies during the winters of 2015-2019 for 200 

identifying at the quasi-weekly (6-9 days) synoptic-scale component of regional transport of 201 

PM2.5 over CEC.  202 

 203 

2.4 Extended empirical orthogonal function (EEOF) 204 

 205 

The Empirical Orthogonal Function (EOF) analysis is a widely-applied climate statistical 206 

method in atmospheric and oceanographic scientific studies (Kim et al., 2015; Li et al., 2019; 207 

Schepanski et al., 2016), also used to investigate the variability of atmospheric aerosols at 208 

different spatiotemporal scales (Bai et al., 2022; Feng et al., 2020). The mathematical process of 209 

EOF analysis is to decompose the variable field Xm×n, which consists of observations at n times at 210 

m spatial points, into a linear combination of p spatial eigenvectors (modes) with corresponding 211 

time-weighting coefficients: 212 

Xm×n = Vm×p Tp×n                                                   (7) 213 

 214 

where V is the spatial eigenvector (load) and T represents the time coefficient. The main 215 

information of variable field Xm×n is represented by several eigenvectors. Since the method has 216 
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been maturely applied, the detailed calculation steps of EOF decomposition are omitted here, and 217 

our focus is on how to construct the observation matrix.  218 

Firstly, we decompose the daily PM2.5 TFM anomalies of 1079 stations in CEC during the 219 

winters of 2015-2019 by EOF method. Thus, the following observation matrix can be obtained: 220 
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 221 

where X represents the PM2.5 TFM anomalies, m represents the spatial points for 1079 222 

stations, and n represents the observation times of 450 days. Then, the variable field X is 223 

decomposed into the sum of the product of space and time functions according to Formula (7). 224 

EOF decomposition of PM2.5 TFV anomalies can be performed by employing the complex 225 

matrix, hence the following observation matrix is constructed: 226 
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 227 

where X is the PM2.5 TFV anomalies, and u and v refer to the zonal and meridional 228 

components of TFV anomalies. 229 

With EOF analysis we can get the spatial distribution structure, which is in a fixed time 230 

pattern of climate variables, but we cannot get a temporally moving spatial distribution structure. 231 

EEOF is an extension of the EOF to analyze the autocorrelations of the variable field over time. 232 

By selecting a lag time, the original observational matrix is expanded into multiple continuous 233 

time matrices, diagnosing the temporal changes in the spatial structure of variable fields. This 234 

method has widespread applications in the analysis and prediction of marine and atmospheric 235 

motions (Dey et al., 2018; Qian et al., 2019; Wang et al., 2019). 236 

In this study, we utilized the EEOF analysis to reveal the evolution of PM2.5 TF to reveal the 237 

spatiotemporal variations of regional PM2.5 transport. On the basis of Formula (8), a new extension 238 

matrix of PM2.5 TFM is constructed. Due to the study on the synoptic scale, 5 lag times are 239 
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selected, and each lag time is 1 day in length. The constructed observation matrix is as follows: 240 
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 241 

Seen from Formula (10), the new extended matrix is composed of X6m,n-5, where X is the 242 

PM2.5 TFM anomalies, m is the spatial points of observation station, and n is the observation times 243 

of 450 days. When EEOF decomposition is performed on PM2.5 TFV, the complex matrix is still 244 

used for the extension, and the same lag scheme is adopted to construct a new extended matrix of 245 

PM2.5 TFV based on Formula (9). After constructing the initial data matrix, the EEOF 246 

decomposition method is in line with the classical EOF decomposition method. 247 

Additionally, existing studies have utilized wavelet analysis, power spectrum analysis, and 248 

band-pass filtering methods to extract intraseasonal oscillation sequences of regional PM2.5 249 

concentrations (An et al., 2022; Gao et al., 2020; Li et al., 2021; Liu et al., 2022; Wu et al., 2023; 250 

Yang et al., 2024b). Such approaches may serve as alternative methods to EEOF analysis for 251 

establishing the quasi-weekly lifecycle of regional PM2.5 transport.  252 

 253 

3 Results and discussion 254 

 255 
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3.1 QWO of regional PM2.5 transport over CEC 256 

 257 

The EOF decomposition is carried out on the daily anomalies of PM2.5 TFM and TFV in the 258 

winters of 2015-2019 over CEC. The first two EOFs explain 26.6% and 14.2% (29.1% and 11.8%) 259 

of the total anomalous variations of PM2.5 TFM (TFV), which is very helpful for better 260 

characterizing regional PM2.5 transport variations.  261 

Two principal modes govern the variations of PM2.5 TF anomalies over CEC: the first leading 262 

mode of monopole (EOF1) and the second mode of meridional dipole (EOF2) (Fig. 1). EOF1 263 

indicates the enhanced PM2.5 TF over CEC (Fig. 1a). The large value center of TF mainly occurs 264 

in central China, and the transport vector direction is abnormally by north. The horizontal PM2.5 265 

transport is unusually strong in central China affected by the EAWM, presenting a typical channel 266 

for regional PM2.5 transport over CEC (Yang et al., 2021a). The dipole mode of PM2.5 TF 267 

anomalies displays a south–north out-of-phase pattern, with the flux large value centers located in 268 

the North China Plain (NCP) and the Twain-Hu Basin (THB) respectively, and the vector 269 

directions are opposite (Fig. 1b). This mode indicates that the air pollutants from NCP in the 270 

upwind are transported to THB in the downwind driven by the prevailing northerlies of EAWM 271 

(Hu et al., 2021; Shen et al., 2022), and the PM2.5 flux in NCP decreases while that in THB 272 

increases in the regional PM2.5 transport process. 273 

 274 

 275 

Figure 1. Spatial pattern of the (a) EOF1 and (b) EOF2 loads in the daily change of PM2.5 TFV anomalies (vectors, 276 

unitless) and TFM anomalies (color contours, unitless) over CEC in the winters of 2015-2019. The red and blue 277 

boxes indicate NCP and THB, respectively. The grid cells in white represent "missing values". 278 

 279 

(a) (b) 
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Through EOF decomposition, the PM2.5 TF could be understood from the perspective of a 280 

fixed time pattern of climate, but the temporal changes in the moving spatial structure of PM2.5 TF 281 

over CEC failed to be obtained. However, EEOF decomposition can be used to analyze the 282 

continuous structural evolution of the main modes of regional PM2.5 TF over CEC. 283 

The EEOF decomposition was carried out for the daily variations of PM2.5 TFM anomalies 284 

and TFV anomalies respectively over CEC during the winters of 2015-2019. Figure 2 and Figure 285 

S1 show the spatial distribution of different lag times for the main modes of EEOFs, which 286 

account for about 20% of the total variation. According to the analysis, the PM2.5 TFM anomalies 287 

for EEOF2 and EEOF3, as well as TFV anomalies for EEOF1 and EEOF2, all show the structural 288 

evolutions in the different phases of regional PM2.5 transport in one cycle. As it can be seen, 289 

Figures. 2a-d, S1a-d, and 2e-h respectively describe the evolution of the first and second four 290 

phases in a cycle and the first four phases in the next cycle (one phase represents 1day).  291 

Figures 2a-d illustrate the positive anomalies of PM2.5 TF shifting from NCP to THB in the 292 

first four phases under the effect of the EAWM, causing the upwind PM2.5 TF to decrease and the 293 

downwind PM2.5 TF to increase, which is in line with the spatial pattern of the EOF modes in 294 

Figure 1. The last four phases show the out-of-phase pattern of the first half cycle (Figs. S1a-d). It 295 

is noted that when anomalies of PM2.5 TFV in the NCP turn to the northerly direction (Fig. S1d 296 

and Fig. 2e), it is a strong signal initiating the regional PM2.5 transport. Then, the transport is 297 

repeated in the next periodic cycle (Figs. 2e-h). Therefore, the regional PM2.5 transport over CEC 298 

enjoys a quasi-weekly (8-d) oscillation pattern.  299 

 300 
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 301 

Figure 2. (a)-(d) The first four phases (days) of QWO (8-d) during the regional PM2.5 transport over CEC; (e)-(h) 302 

the first four phases (days) of the next cycle. The Loads of PM2.5 TFM anomalies (color contours, unitless) for 303 

EEOF2 and TFV anomalies (vectors, unitless) for EEOF1 with lag time (a) 0 d, (b)1 d, (c) 2 d and (d) 3 d, and 304 

loads of TFM anomalies (color contours, unitless) for EEOF3 and TFV anomalies (vectors, unitless) for EEOF2 305 

with lag time (e) 2 d, (f) 3 d, (j) 4 d and (h) 5 d over CEC in the winters of 2015-2019.  306 

 307 

To further study the variations of regional PM2.5 transport over CEC, we have screened out 308 

23 typical events with greater than 1.5 times standard deviations based on the standardized time 309 

coefficient of EEOF, and then used the 8 consecutive days of each event as the 8 phases of QWO 310 

in the composite analysis on the 23 typical events of regional PM2.5 transport over CEC.  311 

Figure 3 shows the composited PM2.5 TF, divergence of PM2.5 TF, and PM2.5 concentration 312 

anomalies in the first four phases of QWO. The high fluxes of PM2.5 transport from north to south 313 

persists for 3-4 days over CEC and decline in the THB (Fig. 3a-d). The regional PM2.5 transport 314 

lifetime corresponding to synoptic systems is about 3-5 days (Huang et al., 2020a). Abnormal 315 

northerly winds drive the heavy PM2.5 pollution from the upwind NCP to the downwind regions, 316 

aggravating PM2.5 pollution in the downwind THB (Figs. 3e-h). Under the context of QWO, the 317 

average PM2.5 TFM in NCP decreases from approximately 400 μg m
-2 

s
-1

 in the 1st and 2nd phases 318 

to 200 and 100 μg m−2 
s−1

 in the 3rd and 4th phases, respectively (Fig. S2a). Correspondingly, the 319 

PM2.5 concentration anomalies decline from around 100 μg m−3
 to approximately −50 μg m−3

 (Fig. 320 

S2c). In the downwind THB, the average PM2.5 TFM increases from about 200 μg m−2 
s−1

 in the 321 

(a) (b) (c) (d)

(e) (f) (g) (h)
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1st phase to approximately 300 μg m−2 
s−1

 in the 2nd and 3rd phases (Fig. S2b), with PM2.5 322 

concentration anomalies also rising to around 50 μg m−3
 (Fig. S2d). 323 

It is noteworthy that the regions PM2.5 TF convergence zone (negative value of divergence) 324 

matches spatially the centers positive anomaly centers of PM2.5 concentrations, which is confirmed 325 

with a significantly negative correlation of the PM2.5 concentrations with divergences of PM2.5 TF 326 

in the 23 typical events (Fig. S3). The PM2.5 transport is accompanied by flux convergence, which 327 

is beneficial to the PM2.5 accumulation. In addition, the PM2.5 TF in the upwind NCP changes 328 

from convergence to divergence, and the divergence of the PM2.5 TF in the downwind THB alters 329 

to convergence in the meantime (Figs. 3i-l), indicating that the PM2.5 over THB is transported 330 

from the upwind NCP.  331 

 332 

 333 

Figure 3. Spatial distributions of the composited (a-d) PM2.5 TFM (color contours, unit: μg m−2 s−1) and TFV 334 

(vectors, unit: μg m−2 s−1), (e-h) anomalies of PM2.5 concentrations (color contours, unit: μg m−3) and 10-m wind 335 

vectors (unit: m s−1), (i-l) divergence of PM2.5 flux (color contours, unit: 10−3 μg m−3 s−1) in the first four phases of 336 

QWO during the 23 typical events of regional PM2.5 transport over CEC.  337 
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  338 

3.2 Source-receptor relationship in regional PM2.5 transport from NCP to THB  339 

 340 

The regional pollutant transport governed by emissions and meteorology leads to a complex 341 

source–receptor relationship of air pollution changes (Yu et al., 2020). Band-pass filtering is 342 

performed on the daily PM2.5 TFM anomalies at a quasi-weekly (6-9 days) synoptic scale in the 343 

winters of 2015-2019. In Figure 4a, we composite the filter components of PM2.5 TFM in the 8 344 

phases of QWO during the 23 typical events of regional PM2.5 transport over the NCP and THB, 345 

respectively. The PM2.5 TF exhibits an obvious QWO on the synoptic scale (Fig. 4a). The PM2.5 346 

TF over the NCP continues to decline in the first four phases, while that of THB first rises and 347 

then falls in the last four phases, the PM2.5 TF over the NCP increases continuously, while that of 348 

THB falls first and then rises. We can see that the QWO of PM2.5 TF over THB lags behind the 349 

NCP by 2 phases (Fig. 4a). The high TFM of PM2.5 from NCP in the first phase spread to THB, 350 

resulting in the peak of PM2.5 TF over THB in the third phase.  351 

In addition, the distribution of the differences in PM2.5 TF and the vectors between phase 3 352 

and phase 1 of the QWO, and the PM2.5 TF decrease and increase from phase 1 to phase 3 353 

respectively over the upwind NCP and the downwind THB, which is in accordance with the 354 

spatial pattern of the EOF mode (Figs.1b and 4b), indicating that the source-receptor relationship 355 

over CEC exist the regions NCP and THB of regional PM2.5 transport over CEC.  356 

 357 
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 358 

Figure 4. (a) The 8 phases (P1-P8) of QWO during the 23 typical events of regional PM2.5 transport over the NCP 359 

and THB with composited 6-9 d band-pass filtering of PM2.5 TFM; (b) spatial distribution of the differences in 360 

PM2.5 TFM (color contours, unit: μg m−2 s−1) and TFV (vectors, unit: μg m−2 s−1) between the 3rd phase and the 1st 361 

phase of QWO. The red and black boxes represent NCP and THB. 362 

 363 

The statistical analysis based on long-term observation also shows that there is a significant 364 

2-day lag relationship of positive correlation between NCP and THB in PM2.5 TF in the QWO (Fig. 365 

5a). This discloses that the air pollutants are transported from the upwind NCP to the downwind 366 

THB in 2 days, confirming a quasi-2-d lag in the regional PM2.5 transport from NCP to THB (Hu 367 

et al., 2021; Shen et al., 2021). Additionally, in the long-term change of air pollution, the 368 

divergences of PM2.5 TF in the NCP are significantly negatively correlated to that of THB (Fig. 369 

5b), that is, the PM2.5 TF convergences in the downwind THB fits well with the PM2.5 TF 370 
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divergence in the upwind NCP. It can be reflected that the changes in the synoptic scale of EAWM 371 

atmospheric circulation impel the regional PM2.5 transport to build the source-receptor relationship 372 

of atmospheric pollutants between the NCP and THB.  373 

 374 

 375 

Figure 5. (a) Scatter plot of 6-9-d filtering components of PM2.5 TFM (10−3 μg m−2 s−1) over THB in 2-day lag and 376 

NCP during the winters of 2015-2019; (b) scatter plot of PM2.5 TF divergences (10−3 μg m−3 s−1) between THB and 377 

NCP, and the PM2.5 TF divergences are averaged over the value interval of 0.1.  378 

 379 

Driven by prevailing winds of EAWM, the THB became the main receptor for regional 380 

transport of air pollutants over CEC (Bai et al., 2022; Shen et al., 2021). During 2015–2019, 381 

approximately 65.2% of the total PM2.5 heavy pollution events in the THB were triggered by 382 

regional transport of air pollutants over CEC (Hu et al., 2022; Shen et al., 2021). Such PM2.5 383 

transport from upstream source regions in CEC contributes 51%-85.7% of the PM2.5 pollution 384 

over the THB receptor region (Hu et al., 2021; Lu et al., 2017; Shen et al., 2022; Yu et al., 2020), 385 

revealing the dominance of regional transport of air pollutants from CEC to the THB with the 386 

meteorological drivers. Our research emphasizes the QWO of regional PM2.5 transport over CEC 387 

with the driver of the synoptic-scale disturbances of EAWM circulation, confirming the 388 

source-receptor relationships with their 2-day lagging effects in the regional PM2.5 transport 389 

between the upstream NCP source region and the THB receptor region. 390 

 391 

3.3 Effect of synoptic-scale disturbance of EAWM circulation on QWO of regional PM2.5 transport 392 

over CEC 393 

 394 

Meteorological change is the essential factor in regulating the occurrence and development of 395 
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PM2.5 pollution on synoptic scales. To investigate the QWO of EAWM circulation in the synoptic 396 

scale disturbance, this study performs the 6-9-d band-pass filtering of the daily SLP anomalies 397 

(denoted as SLPQWO) in East Asia during the winters of 2015-2019. The SLP and SLPQWO fields 398 

(Figs. 6 and 7) as well as PM2.5 concentrations and 10-m winds (Fig. S4) in the 8 phases of QWO 399 

during the 23 typical events were composited, respectively. The QWO of regional PM2.5 transport 400 

is connected with the “weekly-cycle” synoptic process of PM2.5 transport and accumulation over 401 

CEC (Fig. S4), and it is powered mainly by the Siberian High circulation with the synoptic-scale 402 

disturbance of EAWM circulation (Figs. 6 and 7).  403 

 404 

 405 

Figure 6. The composited differences between the current day and the previous day of SLP (black contour lines, 406 

unit: hPa), 1000 hPa air temperature (color contours, unit:℃) and wind vectors ( unit: m s−1 ) in the first four 407 

phases (a-d) of QWO during the 23 typical events. 408 

 409 

The condition of uniform pressure in the front of Siberian High could favor the PM2.5 410 

accumulation over the NCP for triggering regional PM2.5 transport over CEC (Fig. 7a). The 411 

regional heavy pollution of PM2.5 >150 μg m−3
 lasts for 1-2 days (Figs. S4a and S4b). With the 412 

development of the Siberian High, the extension of the high pressure guides the cold air to 413 

advance southward (Park et al., 2014). As the result of the increasing air pressure gradients, the 414 

strong northerly winds in the EAWM circulation system, deliver high-level PM2.5 air mass from 415 

NCP to THB (Figs. 7a-d, Figs. S4a-d). In addition, the cold and high air pressure system with the 416 
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abnormal northerly airflows moves from the Siberia-Mongolia region to CEC in the first four 417 

phases (Fig. 6), providing beneficial synoptic circulation patterns for regional PM2.5 transport. 418 

Thus, the periodic extension of the Siberian High with the associated strong cold air intrusion is an 419 

important driver in the regional PM2.5 transport over CEC. 420 

Notably, we can see that in the first four phases, the SLPQWO positive anomalies occur, 421 

develop, and expand southward from the Siberia-Mongolia region to CEC (Figs. 7a-d). The 422 

synoptic-scale disturbance with the extension of Siberian High and the southward movement of 423 

cold air could drive the regional PM2.5 transport over CEC (Figs. 7a-d). The situation of the last 424 

four phases is opposite to the SLPQWO negative anomalies in Siberia-Mongolia region, inhibiting 425 

the Siberian High and cold air intrusion (Figs. 7e-h). The low and uniform pressure is beneficial to 426 

the accumulation of PM2.5. Therefore, the periodic changes in the synoptic-scale disturbance of the 427 

EAWM circulation impel the QWO of regional PM2.5 transport over CEC. 428 

 429 

 430 

Corr = 0.81, p < 0.01 Corr = 0.86, p < 0.01

Corr = 0.86, p < 0.01 Corr = 0.68, p < 0.01
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 431 

Figure 7. Composited SLP (black contour lines, unit: hPa) and its synoptic-scale filter component SLPQWO (color 432 

contours, unit: hPa) in the 8 phases (a-h) of QWO during the 23 typical events. Coor represents the spatial 433 

correlation coefficients between SLPQWO and the load of SLPQWO decomposed by EEOF in Fig. S4.  434 

 435 

In addition, the EEOF decomposition is carried out on the SLPQWO field in the winters of 436 

2015-2019 to recognize the periodic activities in the synoptic scale of the EAWM circulation. The 437 

cold air activity of EAWM presents QWO (Wu and Wang, 2002). The positive (negative) 438 

synoptic-scale disturbance occurs in the Siberia-Mongolia region, and then spreads to CEC along 439 

the northwest-southeast path, contributing to the 8-d cycle of QWO (Fig. S5). Notably, the spatial 440 

correlation coefficients between the load of SLPQWO decomposed by EEOF (Fig. S5) and the 441 

SLPQWO composited during 23 typical events (Fig.7) are highly positively correlated in the 8 442 

phases, respectively. Therefore, the QWO in the synoptic-scale activities of the Siberian high is an 443 

important factor for driving the QWO of regional PM2.5 transport over CEC. 444 

 445 

4 Conclusions  446 

Exploring the periodical oscillations of PM2.5 pollution over CEC and the meteorological 447 

effect is crucial for understanding the change in the atmospheric environment and improving 448 

regional air quality forecasts. In this study with constructing a dataset of the daily PM2.5 TF, the 449 

EEOF and statistical methods are used to identify the QWO of regional PM2.5 transport with the 450 

spatiotemporal variations over CEC in winters from 2015 to 2019. The source-receptor 451 

Corr = 0.60, p < 0.01 Corr = 0.76, p < 0.01

Corr = 0.70, p < 0.01 Corr = 0.39, p < 0.01
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relationship is recognized between NCP and THB with the QWO of regional PM2.5 transport over 452 

CEC with the typical EAWM climate. Furthermore, it is revealed that the driving effect of 453 

synoptic-scale disturbance of EAWM circulations on the QWO of regional PM2.5 transport over 454 

China. 455 

The variations of PM2.5 TF over CEC are dominated by the first leading monopole mode and 456 

the second meridional dipole mode. The monopole mode indicates the high PM2.5 flux along the 457 

channel of regional PM2.5 transport from NCP to THB under the governs of the EAWM 458 

circulations, and the dipole mode exhibits a pattern of south-north out-phase with two centers 459 

existing respectively in the upwind NCP and the downwind THB in regional transport of PM2.5 460 

over CEC. In terms of the long-term changes in air pollution of 2015–2019, the regional PM2.5 461 

transport over CEC is featured with the QWO, verifying a source-receptor relationship for the 462 

regional PM2.5 transport from NCP to THB in 2 days. Such changes are incurred by the QWO in 463 

the activities of the Siberian High, and this synoptic-scale disturbance of the EAWM circulations 464 

is generated in the Siberia-Mongolia region, and then develops, marching into CEC, regulating the 465 

QWO of regional PM2.5 transport.  466 

The EEOF analysis with the temporal lag of the spatial fields is able to better characterize the 467 

spatial and temporal evolution of perturbations, especially propagating waves in the atmosphere 468 

(Weare and Nasstrom, 1982; Qian et al., 2019; Yang et al., 2024b). Due to its technical advantages, 469 

the EEOF method is commonly employed to extract atmospheric oscillation patterns to reveal the 470 

impacts and mechanisms of atmospheric fluctuations and monsoon circulation on regional weather, 471 

climate, and atmospheric environments (Dey et al., 2018; Qian et al., 2019; Yang et al., 2024b). In 472 

this study, we employed the EEOF method to identify regional PM2.5 transport modes in synoptic 473 

scale, by constructing PM2.5 transport flux vectors (TFV) and the magnitude (TFM) with the 474 

product of near-surface PM2.5 concentrations and wind components at 1079 stations across China 475 

during the winters of 2015-2019. We performed EEOF analysis on PM2.5 TFV and TFM, resulting 476 

in the spatial structure of PM2.5 transport flux under the temporal disturbances at the synoptic scale, 477 

and revealing the connection between synoptic-scale disturbances in the EAWM and QWO in 478 

regional PM2.5 transport in CEC. Our study focuses on the driving effects of synoptic-scale 479 

disturbances associated with cold air activity with the anomalous northerly winds in EAWM on 480 

QWO of regional PM2.5 transport over CEC, exacerbating PM2.5 pollution in the downwind THB. 481 
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Differently from the studies on stagnant meteorological conditions associated with PM2.5 482 

accumulations (Gao et al., 2020; Wu et al., 2023; Yang et al., 2024b), this study provides new 483 

insights into the understanding of regional PM2.5 transport with source-receptor relationship with 484 

the meteorological mechanism in atmospheric environment change. 485 

Based on the 5-winter (2015-2019) observations of PM2.5 concentrations and the 486 

corresponding meteorological reanalysis data, this study with the climate statistical and diagnostic 487 

methods investigates the QWO of regional PM2.5 transport in China with the influence of 488 

synoptic-scale disturbance of EAWM circulation, providing a new insight into the understanding 489 

of regional air pollutant transport with meteorological drivers in atmospheric environment changes. 490 

Besides the EEOF method used in this study, the alternative methods of wavelet analysis, power 491 

spectrum analysis, and band-pass filtering could be used in further study. Future studies with 492 

utilizing long-term observations of air pollutants and meteorology over CEC could more 493 

comprehensively understand the variations in the regional transport of particles and the gaseous 494 

precursors with their contributions to air pollution, through the integration of artificial intelligence 495 

and physical-chemical process analyses. 496 
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