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Abstract. To accurately study the characteristics of an air pollution emitter, it is necessary to isolate the contribution of that 10 

emitter to total measured pollution concentrations. A variety of published methods exist to complete this task, like placing 

measurements upwind the emitter, employing a distant background measurement station, or algorithmic methods that extract 

a background from the time-series of measured concentrations (e.g., wavelet decomposition). In this study, we measured 

nitrogen oxides (NOX), carbon monoxide (CO), carbon dioxide (CO2), and fine particulate matter (PM2.5) at four sites spanning 

Toronto, Ontario, Canada. We first characterized the spatial variability of background concentrations across the city, and then 15 

tested the accuracy of seven different algorithmic methods of estimating true measured upwind-of-emitter backgrounds near 

Toronto’s Highway 401 by using the data collected at a downwind site. These methods included time-series and regression 

methods, including machine learning (XGBoost). We observed background concentrations had notable spatial variability, 

except for PM2.5. When predicting backgrounds upwind the highway, we found a distant measurement station provided an 

accurate background only during some times of day and was least accurate during rush hours. When testing algorithmic 20 

predictions of upwind-of-highway backgrounds, we found that regression models outperformed time-series methods, with best 

predictions having 𝑅2 exceeding 0.75 for all four pollutants. Despite the better performance of regression models, time-series 

methods still provided reasonable estimates; we also found that emitter-specific covariates (e.g. traffic counts, onsite dispersion 

modelling) did not play an important role in regressions, suggesting backgrounds can be well-characterized by time of day, 

meteorology, and distant measurement stations. Based on our results, we provide ranked recommendations for choosing 25 

background estimation methods. We suggest future air pollution research characterizing individual emitters include careful 

consideration of how background concentrations are estimated. 

1  Introduction 

Across air pollution literature, there is a common distinction between stationary field measurement sites located well away 

from any known sources that record background pollution concentrations and those that record local concentrations, such as 30 
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near-road sites, influenced by emissions from nearby “local” sources. Generally, background concentrations are considered to 

arise from a mix of more distant upwind anthropogenic and natural sources and processes, while local concentrations are 

impacted by one or more nearby sources of interest. The difference between the concentration of an air pollutant measured at 

near-source and background sites can be attributed to local emissions. Within this process of apportioning the measured total 

concentration, the contribution of emissions from nearby sources is referred to as the local or emitted concentration, while that 35 

within air masses arriving from upwind of a measurement site is referred to as the background concentration. 

Good measures of background concentrations are important for isolating local sources of pollution. Ideal outdoor field 

measurements would include instruments both up- and down-wind of the source of interest, such that the source’s contribution 

is the difference between the two. However, this is not always possible: requiring two simultaneous measurements increases 

instrumentation and operation cost; there may not be an appropriate upwind location to place instruments; and widely varying 40 

predominant wind directions might necessitate more than just one upwind-downwind measurement pair. For these reasons, 

tools for estimating background concentrations (𝐶𝑏𝑘𝑔) without a second measurement site are valuable. With reliable 𝐶𝑏𝑘𝑔 

estimates, researchers can isolate continuous measurements of their sources of interest, which is vital for source attribution 

and measuring emission rates and emission factors. 

Traditionally, if measurements immediately upwind of a source of interest were not available, researchers might utilize either 45 

an urban background station or tracer species to isolate contributions from sources of interest. Urban background stations are 

typically within a few kilometres of the study location but are removed from any major nearby sources; and these might be 

located in a park or a nearby rural area. Tracer species are those that are specific to the source of interest – if a researcher 

knows a measured emissions source is the only major nearby source of a particular species, they can be confident their 

measured source is the only contributor to measured concentrations of that species. 50 

Unfortunately, both approaches, despite their prevalence in the literature, have limitations. Urban background stations might 

not be wholly isolated from all sources or background concentrations might vary spatially between the urban background 

station and the study site (particularly in the context of the strict definition of “background concentration” we provide below). 

For tracer species, in many cases the source of interest cannot be guaranteed to be the only measured contributor. For example, 

NOx is often considered a tracer for traffic emissions, but in a dense urban area measured nitrogen oxides (NOx) concentrations 55 

will contain emissions from many different roads, so no single traffic type or road can be isolated.  

Beyond these common approaches, there exist some other methods for estimating background concentrations, particularly 

for application to continuous time-series measurements of atmospheric pollution: examples are signal decomposition and 

estimating dilution between source and receptor. In summary, notable background-subtraction methods include: 

• Measuring pollutant concentrations immediately upwind of the source of interest, as mentioned above, such as in 60 

highway studies by Zhu et al. (2002), Kohler et al. (2005), and Frey et al. (2022). 

• Designating a geographically distinct measurement station as an urban or regional background, with that station 

typically having few nearby emissions sources (Hicks et al., 2021; Hilker et al., 2019). 

• Comparing times when a measurement site is up- and down-wind of a target source (Hilker et al., 2019). 
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• Identifying a background or apportioning sources via wavelet decomposition (Klems et al., 2010; Sabaliauskas et 65 

al., 2014; Wei et al., 2019). 

• Wang (2018) and Hilker et al. (2019) employed and tested an iterative algorithm that heuristically estimates a 

background signal similar to that produced from wavelet decomposition, which is termed as pseudo-wavelet. In 

brief, this method takes a smoothed interpolation of minima in the measured near-source concentration within a 

moving time window. 70 

• Inverse dispersion modelling, where multiple downwind measurements are paired with a dispersion model 

estimating downwind concentrations given an emission rate. This approach requires multiple geographically 

distinct measurements downwind of the source of interest. Inverse dispersion modelling approaches are usually 

applied to measure emission rates from the source of interest, though concentration upwind of the emitter should 

be produced as a by-product of this calculation (Fushimi et al., 1997; Olaguer, 2022). 75 

• Clustering algorithms: clustering can identify sources by grouping correlated pollutants, and may not necessarily 

delineate between local and background sources, however Rodríguez et al. (2024) demonstrated a separation of 

local and non-local sources using a fuzzy clustering algorithm. 

• Geospatial interpolation from urban background stations, which can estimate the spatial variability of background 

concentrations, such as in Arunachalam et al. (2014).  80 

• Localized iterative regression within a time-series of concentrations to extract a baseline signal, as described by 

Ruckstuhl et al. (2012); however this study presented a method to further decompose measurements from a 

background site, implying a definition of background concentration that is geographically broader than what we 

consider in this study. 

1.1 Defining “background concentration” 85 

To address the limitations of urban background sites and the other methods identified above, we propose a definition for 

background subtraction that is useful for isolating emissions sources of interest: background concentrations, 𝐶𝑏𝑘𝑔, are only the 

portions of the total measured concentrations that were not emitted from the local emission source of interest. This definition 

is similar to the one provided by Arunachalam et al. (2014). With this definition, the total measured concentration, 𝐶𝑚𝑒𝑎𝑠, is 

strictly a sum of the local concentration, 𝐶𝑙𝑜𝑐𝑎𝑙 , and background concentration, 𝐶𝑏𝑘𝑔: 90 

 

𝐶𝑚𝑒𝑎𝑠 = 𝐶𝑙𝑜𝑐𝑎𝑙 + 𝐶𝑏𝑘𝑔 (1) 

As a corollary to this definition, 𝐶𝑙𝑜𝑐𝑎𝑙  is only the portion of 𝐶𝑚𝑒𝑎𝑠 that was emitted from the source of interest, and thus the 

local concentration becomes useful for estimating emissions, source characteristics, etc. This definition recognizes that the 

background concentration may vary across regions such as a city because of the many sources present. At the same time, the 95 

background concentration across a city can be relatively homogenous, if much of the background originates from sources or 

https://doi.org/10.5194/egusphere-2024-2488
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

4 

 

processes well upwind of a city, as is often the case for pollutants such as PM2.5 and CO2. Ideally, this background concentration 

should be measured directly upwind the source of interest, with no interstitial sources. The up- and down-wind measurements 

should also be near enough to each other and the emissions source that dilution of background concentrations while they travel 

between the up- and down-wind instruments is not of concern. Total measured concentration, 𝐶𝑚𝑒𝑎𝑠, is then the concentration 100 

downwind the source. This is the configuration at the highway field site studied here, which had instruments placed up- and 

down-wind a major urban highway in Toronto, Canada. While it is desirable for the background site to be as close as possible 

to the emissions source of interest, such as directly upwind a busy road, the nearer the background site is to the emission 

source, the greater the potential for emissions from that source to contribute at times to the concentrations measured at the 

background site. We posit that this definition of background concentration lends itself readily to useful measurements of 𝐶𝑙𝑜𝑐𝑎𝑙 . 105 

Accordingly, it is desirable that researchers measuring rates and/or characteristics of emissions sources can estimate 𝐶𝑏𝑘𝑔 when 

direct measurement is not possible, as previously discussed. 

We note that this definition differs from existing interpretations of background in air pollution research, where background 

might be interpreted as either a minimum or baseline concentration, or as pollution arising from long-range transport from 

multiple distant sources (Gómez-Losada et al., 2016, 2018). These existing definitions would imply homogeneous and 110 

temporally constant concentrations spread across an entire neighbourhood, city, or region. Measuring such a background 

concentration might require rural measurement, or an urban measurement isolated from any single source. In our case, we are 

interested in measuring 𝐶𝑏𝑘𝑔 for the purpose of extracting 𝐶𝑙𝑜𝑐𝑎𝑙 , so emissions from sources other than the targeted emitter are 

only a problem if they are so nearby as to render the measurement of 𝐶𝑏𝑘𝑔 obviously unusable.  

1.2 Study outline and objectives 115 

In this study we tested, qualitatively and quantitatively, the accuracy of a variety of methods for estimating background 

concentration at a field site next to a large roadway emissions source. We first qualitatively examined the extent to which 

background concentrations varied across an urban area, and tested how accurately concentrations measured at two distant 

urban background stations matched background concentrations measured at the highway site. We then tested the accuracy of 

seven algorithms for predicting background concentrations at the near-road site. The algorithmic methods were differentiated 120 

into two classes: frequency methods used the time-series nature of 𝐶𝑚𝑒𝑎𝑠  to predicted 𝐶𝑏𝑘𝑔 , on the theoretical basis that 

background concentrations vary on a longer temporal scale than a nearby source, and that 𝐶𝑏𝑘𝑔 = 𝐶𝑚𝑒𝑎𝑠 at least occasionally. 

Frequency methods included the pseudo-wavelet method presented by Wang (2018) and Hilker et al. (2019). Regression 

methods were those that incorporated additional covariates measured or estimated at the study site and were regressed to the 

measured upwind background concentrations. Regression methods included both traditional linear regressions like ordinary 125 

least squares (OLS) and machine learning models like XGBoost (Chen and Guestrin, 2016). 
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The objective of this study was to improve our understanding of how background concentrations vary across an urban area, 

and to evaluate if measured 𝐶𝑏𝑘𝑔 can be reliably estimated from 𝐶𝑚𝑒𝑎𝑠 and other covariates at a downwind site. Specifically, 

our objectives, questions, and relevant hypotheses were: 

• Do background concentrations vary geographically across an urban area, and are there times or conditions where 130 

background concentrations are homogeneous? We hypothesized that background concentrations will differ 

geographically across the city, and that this inter-site difference will be greater for pollutants with more 

geographically variable emissions like NOx and carbon monoxide (CO). 

• Evaluate the ability of a variety of algorithmic methods for estimating background concentrations from measured 

concentrations downwind of a source of interest. For the site studied here, the source of interest was a major urban 135 

highway. We hypothesized that regression methods will outperform frequency methods, on the basis that the 

additional information provided by the extra variables will improve estimates.  

• Evaluate qualitatively and quantitatively the usefulness of the tested background concentration estimates for 

arbitrary new measurements and make a recommendation for method(s) to algorithmically estimate background 

concentration for future urban air pollution studies. 140 

• Test the extent to which low-cost air quality sensors can resolve the contributions of local emissions and 

background concentrations at a near-road site. 

In all cases we optimized and assessed the accuracy of 𝐶𝑏𝑘𝑔 predictions chiefly via the root mean square error (RMSE). We 

also present and consider other quantitative metrics of prediction performance and examine qualitative performance from 

various figures of true and estimated 𝐶𝑏𝑘𝑔. We evaluate each of these objectives, questions, and hypotheses in our results 145 

below. We validated the accuracy of each algorithmic estimates of background concentration by temporarily deploying a low-

cost air pollution sensor platform to the upwind side of the tested highway site – this approach of short-term low-cost 

deployments is becoming increasingly feasible with the growing availability of competitive low-cost sensor products. This 

study thus also serves as an example of the benefits of such sensor products. 

This study was completed as part of the larger Study of Winter Air Pollution in Toronto (SWAPIT) campaign, a collaborative 150 

effort between the academic, government, and private institutions in the Toronto, Ontario region. 

2 Methodology 

2.1 Field measurements 

We gathered field measurements at five sites throughout Toronto, Ontario, Canada, from 2023-11-23 to 2024-04-12, 

totalling just over 141 days of measurements. The next two sections describe the sampling sites and instruments. 155 
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2.1.1 Site descriptions 

The primary highway field site was located adjacent a stretch of Toronto’s Highway 401 located at approximately UTM 

617300 m E 4840900 m N 17T. This stretch of highway is one of the busiest in North America, with over 400,000 annual 

average daily traffic (AADT) in 2016 as reported by the Ontario Ministry of Transportation (2016). It is 17 lanes and 113 m 

wide adjacent to the measurement sites, and runs in a primarily west-east direction, offset about 18° towards a southwest-160 

northeast direction. The highway is divided into collector and express lanes, with the inner eight lanes being east- and west-

bound express lanes with few entrances or exits, and the remaining outer lanes being collectors with merge and exit lanes a 

few hundred metres up- and down-stream the measurement location. This site included two instrument locations: the first was 

a permanent roadside station on the south side of the highway that was frequently downwind the road; the second location was 

a background sensor placed north of the highway, which was frequently upwind the road. The north site was designated as the 165 

background site based on predominant wind directions and the fact that this site featured a temporarily deployed low-cost 

sensor platform, while the south site features a permanent air quality station operated by the Ontario Ministry of the 

Environment, Conservation and Parks. Figure 1 maps the city sites in detail. 
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Figure 1: Top: locations of measurement sites throughout Toronto region. Bottom: detailed map of the Highway 401 field study site. 170 
Inset bottom: wind rose measured at Highway 401 roadside (downwind) station during the study period. Throughout this document, 

the Highway 401 downwind roadside station is referred to as “highway roadside downwind” or “highway downwind”, and the 

Highway 401 upwind background site is referred to as “highway upwind background” or “highway upwind”. 

In addition to the primary highway site, we recorded pollution concentrations at three additional sites throughout the Toronto 

area. The first site was the Wallberg urban near-road site, located at the University of Toronto’s Wallberg Memorial Building 175 

at UTM 629381 m E 4835252 m N 17N. This site features a similar set of air pollution instruments as the permanent Highway 
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401 downwind site, and was located 15 m from a major urban road and about 40 m from an intersection. The remaining two 

sites were designated as distant urban background sites, not near any emissions sources of comparable magnitude to Highway 

401. The first urban background site was Downsview, located at UTM 623330 m E 4848631 m N 17N. This site is in a green 

space near an office building and is about 175 m from the nearest road. The final site was the Hanlan’s Point urban background 180 

station, located at UTM 630025 m E 4830061 m N 17N. This site is located on an island in Lake Ontario, south of Toronto’s 

downtown core. The Hanlan’s Point site is isolated from any nearby sources, with the only notable emissions source being a 

regional airport over a kilometre to the north. 

All sites listed here except the highway upwind background site were equipped with a similar set of air contaminant 

instruments, detailed in the next section.  185 

2.1.2 Airborne pollutants, traffic, and meteorology 

We employed a variety of instruments to measure air pollutant concentrations, meteorology, and traffic counts. The 

instruments deployed at each site except the highway upwind background are listed in Table 1. We selected NOx (NO + NO2), 

CO, PM2.5, and CO2 to cover a range of dominant sources: we expect PM2.5 and CO2 to have large regional background concentrations while 

CO and NOx are more sensitive to proximity to sources. For PM2.5, given the dominance of regional transport and secondary formation, and 190 

the consequential homogeneity of this pollutant’s concentration across urban areas, we expect that differentiating between local and 

background pollution might be difficult. However, we retained PM2.5 to serve as a counterexample to the other pollutants, which have greater 

differences between local and background concentrations. 

Table 1. Air pollution, meteorology, and traffic count instruments deployed at each measurement site except the highway upwind 

background site.  195 

Measurand Symbol Method Instrument name Manufacturer 

Nitrogen oxides NO, NO2, NOx Chemiluminescence 42i 

Thermo Fisher Carbon monoxide CO Infrared absorbance 48i 

Fine particulate matter PM2.5 Nephelometry and beta attenuation 5030(i) SHARP** 

Spectrometry T640** Teledyne API 

Carbon dioxide CO2 Non-dispersive infrared LI-840A LI-COR Biosciences 

Onsite meteorology 𝑇, 𝑃, 𝑅𝐻, 𝑢, 𝜃 Various WXT520 Vaisala 

Traffic counts* 𝑁𝐿𝐷𝑉, 𝑁𝑀𝐻𝐷𝑉 Radar Smartsensor 125HD Wavetronix 

*Traffic counts were only recorded at the Highway 401 downwind site, and only for the nearest eight lanes. 𝐿𝐷𝑉 = light duty vehicles, 

𝑀𝐻𝐷𝑉 = medium and heavy duty vehicles. 

**PM2.5 at the Hanlan’s Point background station was measured with a Teledyne API T640 while other sites used the Thermo Fisher 5030 

or 5030i SHARP. 

 200 

We acquired additional micrometeorological measurements for dispersion models from various sources, which we detail in 

the appendices. We used dispersion model outputs as exogenous variables for regression methods, described in more detail in 

Appendix C. At the Highway 401 north background site, we deployed a low-cost AirSENCE air pollution measurement system 

(AUG Signals, Toronto, Canada). This system utilizes a variety of low-cost sensor systems to simultaneously measure a variety 
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of pollutants, including NOx, CO, CO2, and PM2.5. Morris et al.(2020) has previously explored the performance of the 205 

AirSENCE system. 

For PM2.5 at the Hanlan’s Point site, we collected concentrations measured with the Teledyne API T640 rather than the 

Thermo Fisher SHARP instrument deployed at each other site (also again excepting the low-cost instrument upwind the 

highway). Zheng et al. directly compared two T640s to the same model SHARP used here, and reported variations up to 3 to 

5 μg ⋅ m−3 in concentration ranges similar to those typically measured here, with the T640 more often reporting slightly higher 210 

concentrations than the SHARP. The possibility that PM2.5 measured at Hanlan's Point may be slightly inflated should be kept 

in mind when reading results that directly compare concentrations across sites. Presumably, the low-cost sensor-based PM2.5 

we measured north of the highway also deviated from reference instruments by similar or larger amounts, however as explained 

below, we produced a corrective calibration for the low-cost sensor platform prior to deployment. We also found that when 

directly comparing hourly PM2.5 concentrations between SHARP and T640 instruments across sites used in this study, variation 215 

between instruments was similar to variation between sites, suggesting no systematic bias due to instrument differences. Should 

any disagreement between instruments exist anyways, this should only affect our results in cases where measured 

concentrations are compared directly – in cases where data were included in regression models, any offset in measured 

concentration should have a limited impact on regression results, as such offsets can be accounted for via intercept and 

regression coefficients in linear models, or through similar underlying mechanisms in the machine learning model we applied 220 

here.  

We averaged concentration and meteorology measurements to the nearest minute. To ensure the low-cost AirSENCE 

instrument platforms reported concentrations comparable with reference instruments to the greatest extent feasible, we applied 

multiple quality control and calibration steps prior to analysis. In particular, we addressed calibration and drift in some of the 

low-cost sensors through comparison with other sites, and corrected the low-cost PM2.5 measurements for hygroscopicity with 225 

the correction procedure devised by Crilley et al. (2018). We also placed the AirSENCE device atop the downwind highway 

station for nearly 18 days at the start of our measurement campaign, and used this co-location period to calibrate the 

AirSENCE’s sensors against the station’s reference instruments, controlling for interference from humidity, pressure, and 

temperature. We describe these preprocessing steps in greater detail in Appendix B.  

Additional information on some of these same sampling sites and instruments can be found in publications by Wang et al. 230 

(2018), Hilker et al. (2019), and Jeong et al. (2020); this list is not exhaustive and these sites have been employed in a variety 

of prior air pollution studies. 

2.2 Separating measured local and background concentrations at the highway site 

To choose when we could consider the difference between near-road and upwind measurements as local concentrations, 

𝐶𝑙𝑜𝑐𝑎𝑙 , we considered the relationship between measured concentrations and wind at the highway site. From Figure F.1 we 235 

identified which wind directions to subsample from our measurements to isolate local and background signals: we selected 

periods where wind direction relative to the road was between 80 degrees to the northwest and 40 degrees to the northeast. 

https://doi.org/10.5194/egusphere-2024-2488
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

10 

 

The asymmetry in downwind directions relative to the road could be explained by traffic-induced turbulence, which can 

influence bulk air flow above the road (Hashad et al., 2022); since station south of the highway is nearest an eastbound lane, 

those lanes might add a westerly component to the observed wind direction. From Figure F.2 we also observed that some 240 

downwind roadside (𝐶𝑚𝑒𝑎𝑠) and traffic-related (𝐶𝑙𝑜𝑐𝑎𝑙 = 𝐶𝑚𝑒𝑎𝑠 − 𝐶𝑏𝑘𝑔) concentrations diverged below wind speeds of about 

1.0 m ⋅ s−1. At low wind speeds, measurement of wind direction becomes unreliable, so identifying up- and down-wind periods 

is not possible with stagnant winds. Further, at low wind speeds the likelihood of vehicle-induced turbulence effecting the 

background measurements increases. To avoid analysing the lowest wind speed periods where these issues might be prevalent, 

we subsampled 𝐶𝑏𝑘𝑔  measurements for periods where concurrent wind speeds were ≥ 1.0 m ⋅ s−1  in addition to the 245 

requirement for concurrent wind directions falling within the above-mentioned range. 

When applying measurements or estimates of background concentrations, in some applications it would be useful to further 

limit valid measurements of 𝐶𝑏𝑘𝑔 to periods where 𝐶𝑚𝑒𝑎𝑠 ≥ 𝐶𝑏𝑘𝑔. If the reverse were true, this would imply 𝐶𝑙𝑜𝑐𝑎𝑙  is negative; 

physically, a negative 𝐶𝑙𝑜𝑐𝑎𝑙  might indicate that emissions from the source of interest are low and that upwind pollutant 

concentrations have diluted between the upwind and downwind sensors, and any emissions from the source of interest are not 250 

large enough to overcome this dilution. A negative 𝐶𝑙𝑜𝑐𝑎𝑙  could also be caused by a source near the upwind 𝐶𝑏𝑘𝑔 measurement 

that is not or only partially captured at the downwind site. In practice, negative measures of 𝐶𝑙𝑜𝑐𝑎𝑙  might not be useful. For 

example, in applications where 𝐶𝑙𝑜𝑐𝑎𝑙  is used to calculate emission rates from the source of interest, a negative value would 

imply absorption/reduction rather than emission, which in many cases would be impossible. In our analysis here we chose not 

to remove periods where 𝐶𝑚𝑒𝑎𝑠 < 𝐶𝑏𝑘𝑔 to avoid eliminating too great a portion of our measurements from our analysis, and 255 

to acknowledge that for pollutants where background concentration makes up a large portion of the whole measured 

concentration (as is the case for CO2 and PM2.5), the difference between 𝐶𝑚𝑒𝑎𝑠 and 𝐶𝑏𝑘𝑔 can be small enough that instrument 

sensitivity will play a role in determining if the difference between the two is measurable. 

We provide some additional discussion on the relationship between wind speed and 𝐶𝑙𝑜𝑐𝑎𝑙  in Appendix F. 

2.3 Predicting background concentrations at the highway site 260 

2.3.1 Onsite background concentration (𝑪𝒃𝒌𝒈) prediction methods 

We tested here nine methods of estimating background concentration measured upwind the highway: two distant urban 

background stations, three frequency methods, three regression methods, and a final ensemble method.  

The distant urban background stations we tested for estimating 𝐶𝑏𝑘𝑔  were the same two urban background stations 

mentioned previously: 265 

• Downsview station, located in an urban area but 175 m from the nearest road (Site C in Figure 1). 

• Hanlan’s Point station, located on an island in Lake Ontario, isolated from any nearby emissions (Site D in Figure 

1). 
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We tested three frequency methods, including one mentioned in the introduction: 

• A naïve rolling minimum, with the length of the rolling window optimized to minimize prediction error. We did 270 

not expect this method to produce accurate predictions, but included it as minimally simple approach. 

• The pseudo-wavelet method devised by Wang et al. (2018). 

• A rolling ball background subtraction – rolling ball algorithms are common in image processing, where they are 

used to correct unevenly intense image backgrounds. To our knowledge, this is the first case of rolling ball 

algorithms applied in air pollution research. 275 

We also included three regression methods: 

• Traditional ordinary least squares (OLS) multi-variable linear regression. 

• Regularized (elastic net) regression, which is a linear model with two regularization terms that can be optimized to 

control for regression prediction overfitting. 

• Machine learning regression with XGBoost – this model can produce accurate non-linear predictions and has a 280 

large number of hyperparameters that can be tuned to control overfitting, degree of variable interaction, model 

complexity, etc. The XGBoost model has been successfully deployed previously in air quality studies, 

demonstrating its potential usefulness (Xu et al., 2020b, a). We manually set some hyperparameters and optimized 

others to minimize error. See Appendix C for details on how we specified XGBoost regressions. 

For each regression method, we included a variety of predictive covariates in addition to concentration measured downwind 285 

of the road. These covariates included concentrations measured at the distant urban background stations, vehicle counts split 

by vehicle size, predictions of pollutant dilution from the RLINE dispersion model, and meteorology measured at the Highway 

401 site (Snyder et al., 2013). In some cases, we transformed covariates prior to fitting regression models to increase the 

linearity of the relationship between covariate and measured 𝐶𝑏𝑘𝑔, and for regression models we scaled predictors to mean 

zero and unit variance prior to fitting. We provide a detailed list of covariates in Appendix C.4.  290 

Finally, we included one additional ensemble model: this final method was a regularized (ridge) regression using the 

predictions from each of the prior listed methods as inputs, and optimized to minimize root mean squared error in cross-

validated predictions. This ensemble model was the most complex approach we employed and was fit last because it required 

the outputs of each prior model. 

Extended descriptions of each of the algorithmic methods for estimating background concentration (i.e. all methods listed 295 

here except the urban background stations) are provided in Appendix C.  

2.3.2 Optimizing prediction methods and evaluating accuracy 

Many of the above methods for predicting 𝐶𝑏𝑘𝑔 require user-specific parameters. To select these parameters, we applied a 

similar process across each method. For each algorithmic method, we varied input parameters iteratively or semi-randomly 

via Bayesian hyperoptimization and selected the parameter that produced the lowest prediction error (Akiba et al., 2019). In 300 
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each case we evaluated prediction error with five-fold cross-validation to control for overfitting. The only exception was OLS, 

which has no hyperparameters to tune, however we still evaluated its accuracy with the same cross-validation scheme.  

To evaluate model accuracy, we calculated a variety of metrics using a similar approach as when optimizing. These metrics 

included root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (𝑅2), fractional bias (FB), 

among others. Additional details on 𝐶𝑏𝑘𝑔  prediction method optimization and evaluation, including details on optimized 305 

hyperparameters, cross-validation, and metrics are included in Appendix C. 

3 Results and discussion 

3.1 Geographic variability of urban background concentrations 

After defining when a measurement is considered background at the highway site, we first compared average background 

concentrations at the three sites in the Greater Toronto Area. Figure 2 summarizes average concentrations while Figure 3 310 

depicts their diurnal patterns. From these figures, we can directly compare typical levels and daily patterns in background 

concentrations across a city. Table 2 quantifies geographic and temporal variability in local and background concentrations at 

the same sites. 

Table 2: Mean and standard deviations (s.d.), and coefficient of variation (c.v. = s.d./mean) of pollutants measured at each study site, 

and means and standard deviations of differences between selected sites. The HWY Down – HWY Up row is the difference between 315 
up- and down-wind at the Highway site, summarizing variability in local (𝑪𝒎𝒆𝒂𝒔 − 𝑪𝒃𝒌𝒈) concentrations. The Downsview – Hanlan’s 

row is the difference between Downsview and Hanlan’s Point sites, capturing geographic variability in backgrounds. Values rounded 

to two significant figures. 

 CO [ppbv] CO2 [ppmv] NOx [ppbv] PM2.5 [µg·m-3] 

 Mean s.d. c.v. Mean s.d. c.v. Mean s.d. c.v. Mean s.d. c.v. 

Highway downwind roadside 380 160 0.42 460 30 0.064 45 33 0.74 6.4 5.6 0.87 

Highway upwind background 230 120 0.54 440 30 0.068 16 18 1.1 4.8 4.7 0.99 

Downsview 220 97 0.43 450 23 0.053 15 17 1.2 6.5 6.2 0.95 

Hanlan’s Point 220 62 0.28 440 15 0.034 7.9 11 1.3 6.3 4.7 0.75 

Wallberg (Downtown) 240 85 0.36 450 20 0.044 14 12 0.9 5.9 4.8 0.82 

HWY Down – HWY Up  150 110 0.69 17 17 0.99 28 25 0.9 1.8 3.9 2.2 

Downsview – Hanlan’s 9.9 84 8.5 8 19 2.4 6.9 13 1.9 0.19 4.5 24 

*The lower PM2.5 at highway upwind background only included periods where the sensor was upwind (northerly) of the road, whereas 

other sites were not restricted by wind direction or speed. When limiting considered winds across sites, PM2.5 backgrounds at other sites 320 
were more comparable to the highway upwind background site (Figure 5). 

For CO, CO2, and NOx, we recorded the greatest average concentrations at the Highway 401 downwind site; for PM2.5 where 

it was second-greatest at the Highway 401 downwind site. High concentrations downwind the road is sensible given the 

intensity of traffic on this road. For example, the ratio of downwind/upwind concentration was greatest for NOx: median total 

downwind NOx was 2.75 times greater than upwind background NOx at the highway site, which is unsurprising since NOx is 325 
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generally understood to be a strong traffic tracer. In the context of Figure 2, background NOx appears similar between the 

highway, Downsview, and Hanlan’s sites, however this is misleading: low average background NOx concentrations mean that 

the percent differences between sites are relatively greater than for pollutants like PM2.5 and CO2, which have large 

backgrounds. In other words, the small concentrations of background NOx make for small absolute differences in background 

concentration but larger ratios between sites. This introduces a contradiction in measuring background NOx: background 330 

concentrations are low compared to near-source concentrations, so assuming a low or zero background would induce less error 

than such an assumption would induce for pollutants like CO2 or PM2.5, but at the same time assuming homogenous background 

NOx concentration would create the greatest percent error between background sites. The fact that total NOx concentrations 

are nearer zero than other pollutants increases the overall sensitivity of the difference between 𝐶𝑚𝑒𝑎𝑠 and 𝐶𝑏𝑘𝑔, making it 

paradoxically more sensitive but easier to estimate. Effectively the reliability of background estimation required differs for 335 

different applications. Even a rough estimate of the NOx background will be adequate when the application is subtracting this 

small value from a much larger total NOx concentration measured roadside (downwind). In contrast, it is challenging to 

evaluate how background NOx differs between locations, given that the background NOx concentrations will be small and 

difficult to estimate reliably. This is reflected in Figure 3, where diurnal background NOx measured at the Hanlan’s Point site 

is never equal to the other two background sites, whereas CO2 and CO had similar concentrations across all sites during at 340 

least some times of the day. On the other hand, like CO and CO2, there was some correlation in diurnal trends between 

background NOx recorded at the highway and Downsview sites. 
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Figure 2. Box-and-whisker plots of concentrations measured at the various sites throughout Toronto. Hatched boxes indicate sites 345 
near and/or downwind a road (i.e. non-background sites). Boxes extend to 25th and 75th quantiles, whiskers extend an additional 1.5 

interquartile ranges. Middle bars are medians.  
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For CO, we measured similar average background levels at the Highway 401 downwind site and the Downsview urban 

background site, with the largest deviations between the two occurring during morning rush hour (Figure 3). There are two 

possible explanations for this morning divergence: first, higher nearby anthropogenic activity and thus emissions coupled with 350 

lower wind speeds in mornings would increase heterogeneity in urban background concentrations across the city. Second, 

during low morning wind speeds, emissions from the highway might reach the background station. However, we subsampled 

our highway upwind background measurements for periods with non-stagnant winds, so this second explanation should have 

a limited effect on our measurements; thus the morning rush-hour background CO differences in Figure 3 indicates increased 

spatial background heterogeneity during these times. CO measured at the Hanlan’s Point urban background station were fairly 355 

level throughout the day, with a possible slight peak during morning rush hour; CO at Hanlan’s Point was roughly 5 to 25% 

lower than the backgrounds measured elsewhere in the city, except during midday to early afternoon when concentrations were 

lowest and similar at all three sites. The correlation between CO measured at the highway upwind background and Downsview 

suggest that the Downsview site, situated 9.8 km northeast of the highway site, may serve as a good estimate of background 

CO concentrations with only a linear adjustment (e.g. the slope between Highway 401 and Downsview is < 1 in Figure J.1 but 360 

correlation is strong and intercept is near zero). At the Highway 401 site we measured background concentrations only when 

the sensor was upwind the road; further upwind was a suburban residential area north of the highway, so emissions from gas-

fuelled furnaces may compound the background heterogeneity from low morning wind speeds we mentioned previously, 

especially given that our measurement campaign took place during winter months. 

Like CO, background CO2 concentrations had correlated diurnal trends and levels at the highway and Downsview locations, 365 

with higher rush-hour concentrations at the highway. This is indicative of spatial heterogeneity in CO2 concentrations across 

the city, especially during mornings, as we observed for CO. The difference in average concentrations between the near-road 

and urban background sites is further notable given that we aligned baseline CO2 concentrations at all sites during measurement 

preprocessing. Accordingly, the remaining differences indicate the near-road sites measured more transient high CO2 

concentrations, which in turn suggests non-constant sources upwind of these sites. The differences between CO2 measured at 370 

the urban background stations and the highway upwind background means those distant urban background stations would not 

serve as adequate estimates of background CO2 at the highway site if considering minutely or hourly data; conversely, the 

similarity in overall average background CO2 concentrations suggests that if we were to consider only long-term (i.e. 24 h or 

greater) averages, distant urban background stations provide reasonable estimates of average background CO2 concentrations, 

especially when comparing the backgrounds at the highway and Downsview sites (Figure 2 and Table 2). 375 

The only notable feature in diurnal patterns of PM2.5 background concentrations was a shallow noon-to-early-afternoon 

valley at Downsview and Hanlan’s Point, which can be explained due to evaporation of morning-emitted ammonium nitrate, 

a precursor to PM2.5, due to higher midday temperatures. The Highway 401 background sensor recorded the lowest median 

concentration, but differences in PM2.5 concentrations across the city generally did not appear significant; in other words, we 

found PM2.5 was spatially homogeneous across Toronto (Figure 2). This may be reflective of dominant sources and processes 380 

contributing to particulate matter in Toronto. Lee et al. (2003) observed over two decades ago that secondary processes were 
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a major source of total PM2.5 in Toronto, while more recently Jeong et al. (2020) showed that, while source profiles have 

changed in the intervening years, secondary sources remain dominant. The importance of such secondary formation processes 

coupled with the trends in Figure 2 and Figure 3 indicate that separating the contributions of background concentrations and 

primary emissions to PM2.5 concentrations might not be feasible using time-series (frequency) and regression methods such as 385 

those discussed here. Conversely, homogeneity of PM2.5 concentrations means urban background stations will provide a good 

estimate of background PM2.5 throughout the city if we consider only long-term averages, like our observation of homogenous 

long-term averages for CO2. 

 

 390 

 

Figure 3. Hourly mean diurnal profiles of measured background pollution concentrations at three stationary measurement sites in 

Toronto. For the Highway 401 site, these figures depict measurements from the background sensor only during periods where the 

background sensor was upwind the road and wind was not stagnant, producing a valid measure of 𝑪𝒃𝒌𝒈  as defined in the 

methodology. Downsview (DV) and Hanlan’s backgrounds had no wind direction restrictions.  395 

For CO, CO2, and NOx, the correlation in diurnal patterns between background concentrations measured at the highway and 

Downsview sites suggests that the Downsview station, situated within the city but about 175 m distant from the nearest notable 

traffic emissions source, may serve as an adequate estimate of upwind concentrations for measurements near sources like the 

highway in Toronto, but that the accuracy of this estimate would be reduced during mornings and evenings, when spatial 

heterogeneity across the city in background concentrations may be larger. A similar conclusion can be drawn from the values 400 

in Table 2, where highway upwind background and Downsview have similar average concentrations, but the highway upwind 

background tended to have greater standard deviations and/or greater coefficients of variation, except for NOx which had 
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similar coefficients between highway upwind background and Downsview. Conversely, concentrations measured at the 

Hanlan’s Point background station, which reflects regional background concentrations, are likely to underestimate highway 

upwind backgrounds both in terms of average levels and variation.  405 

Across pollutants, the level of hour-to-hour variability in Figure 3 and standard deviations in Table 2 correlated with the 

proximity of sites to pollution emissions sources. The highway upwind background, while isolated from the road of interest 

via wind direction, was still located in a dense urban area with a variety of emissions sources and had strong diurnal patterns 

throughout the day. We observed less hour-to-hour variability at the Downsview and Hanlan’s Point urban background 

stations. The Downsview site measurements were closer in magnitude to the highway upwind background, but variability was 410 

lesser, especially during morning and evening. The Downsview station is separated from immediate sources but is still within 

a few hundred metres of emissions sources, while concentrations measured at the more isolated Hanlan’s Point were lower 

than all other sites (except for PM2.5). Hanlan’s Point lays on an island in Lake Ontario south of Toronto – while there is an 

airport on the same island, its runway is over 1 km away. We posit the lower CO, CO2, and NOx at Hanlan’s Point can be 

explained from an absence of nearby sources, while the similar PM2.5 is explained by both the dominance of secondary and 415 

regional particle sources. 

Figure 4 shows scatters of measured background CO2 at the three background sites. Figure J.1 to Figure J.3 show similar 

plots for the remaining measured pollutants. These figures only show periods where backgrounds were concurrently measured 

at each site, and only show a random 20% subset of measurements to speed calculation of the KDE and lessen figure density.  

From these scatters we can derive similar conclusions about the relationship between background concentrations at various 420 

sites across the city. As we observed in Figure 2 and Figure 3, background concentrations at the near-road site might be 

reasonably estimated for some but not all pollutants. We observed that CO and CO2 measured at the Downsview urban 

background station were somewhat correlated with background levels measured at the highway – thus we expect 

concentrations measured at Downsview to be important covariates in regression models predicting highway 𝐶𝑏𝑘𝑔 for CO and 

CO2 – but we noted that the correlation between Downsview and Highway 401 background concentrations was less clear for 425 

NOx. PM2.5 concentrations were mostly homogeneous across the city, and thus appeared more strongly correlated in scatters 

(Figure J.3). Background NOx concentrations were the least comparable between sites (Figure J.2), corroborating our earlier 

observation that, despite having low concentrations, NOx background concentrations are paradoxically very spatially 

heterogeneous and have a high degree of source-specific contribution at near-source sites. These inter-pollutant differences 

again point to their individual levels of spatial homogeneity/heterogeneity. From these results we can rank pollutants in order 430 

of increasing background concentration geospatial heterogeneity: PM2.5 < CO2 ≈ CO < NOx. While PM2.5 is clearly the most 

homogeneous and NOx the most heterogeneous, the distinction in variability between CO2 and CO is less clear.  
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Figure 4. Paired scatters and kernel density estimates (KDE) of measured background carbon dioxide concentrations at three 

stationary measurement sites in the Greater Toronto Area. HWY401 indicates the highway upwind background site, while other 435 
labels indicate their respective urban background sites. Red lines are 1-to-1.  

We also observed that this ranking of geographic variability was similar to the relative temporal variabilities in background 

concentration for each pollutant. The coefficients of variation for the difference between the Downsview and Hanlan’s Point 

sites in Table 2 reflect a similar ordering, with the inter-site difference in PM2.5 having the most variability relative to its mean, 

and NOx having the least – in other words, the coefficients of variation for inter-site differences express how much that 440 

pollutant varies temporally versus spatially, because a pollutant that varies over time but is spatially homogenous will have a 

large inter-site-difference coefficient of variability due to short-term concentration fluctuations or instrument noise, even if the 

coefficient for any individual site is low. We can also examine temporal variabilities and relative magnitudes of background 

concentrations indirectly by examining the best-optimized hyperparameters for the frequency methods, which we discuss in 

Appendix K.  445 

From these comparisons of measured local and background concentrations, we can conclude that in some cases the urban 

background sites can provide a suitable estimate of highway upwind background concentrations, but for some pollutants and 
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times of day, a direct measurement or algorithmic estimate of background concentration is necessary. Accordingly, we further 

applied and tested each of the background concentration prediction algorithms we introduced in the methodology. 

 450 

3.2 Comparing performance of background concentration estimates 

We subsampled roadside (downwind) and background (upwind) concentrations according to the definitions provided in the 

methodology. We then optimized and estimated background concentrations using each of the frequency and regression 

methods listed. Figure 5 shows diurnal patterns of measured and predicted concentrations at the Highway 401 site. The lines 

for XGBoost and pseudo-wavelet show background concentrations estimated from the highway downwind data.    455 

 

Figure 5. Diurnal trends of measured total (black), measured background (blue) and predicted background (dashed purple and 

green, and solid red) concentrations at the Highway 401 site. Only periods containing valid measures of 𝑪𝒃𝒌𝒈 upwind of the 

highway as defined in the methodology were included in the highway upwind background data. Note that measured background 

trends may differ slightly from Figure 3 as this figure only includes periods where all shown measured and predicted backgrounds 460 
were concurrently available.  The lines for “Highway upwind bkg.” and “XGBoost bkg.” are often superimposed yielding an 

apparently purple line. 

Figure 6 shows measured-predicted scatters for a selection of background concentration prediction algorithms. From these 

scatters we observed that the accuracy of a method in estimating measured background concentrations was correlated with 

model complexity – the computationally complex XGBoost model produced the most qualitatively accurate scatters of those 465 

shown in Figure 6, while the simpler frequency (pseudo-wavelet) and urban background station (Downsview) estimates were 

accurate at times but clearly less reliable than the XGBoost predictions. 

For PM2.5, we noted that our ability to produce an algorithmic estimate of measured background concentration was limited. 

Poor accuracy of predictions is likely explained by the aforementioned sources and processes unique to PM2.5 out of all the 
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pollutants studied here. For the remaining pollutants, accuracy varied between methods but appeared generally superior to that 470 

of PM2.5. However, as previously mentioned, this does not preclude us from viewing PM2.5 as a counterexample by which we 

can judge other, more accurately-predicted pollutants. 

 

Figure 6. Measured-predicted scatters for selected methods of estimating background concentration at the Highway 401 site. 

Measured concentrations are true 𝑪𝒃𝒌𝒈 recorded by the AirSENCE device north and upwind of the highway. Scatters only include 475 

periods where 𝑪𝒃𝒌𝒈 measures were valid as defined in the methodology. 

Figure 7 shows the root mean square error (RMSE) and coefficient of determination (𝑅2) of CO 𝐶𝑏𝑘𝑔 predictions using each 

method, including the urban background stations, roughly ordered by increasing complexity and accuracy. Figure H.1 to Figure 

H.3 show the same metrics for NOx, CO2, and PM2.5. Where Figure 6 permits us to qualitatively examine 𝐶𝑏𝑘𝑔 prediction 

accuracy, Figure 7 (and Figure H.1 to Figure H.3) quantitatively corroborate our observations that accuracy tended to increase 480 

with model complexity. Unsurprisingly, the XGBoost and ensemble models generally had the greatest accuracy out of all 

algorithmic methods, according to prediction RMSE and 𝑅2. When compared with urban background stations, frequency 

methods tended to have similar error to measured background data from Downsview in predicting 𝐶𝑏𝑘𝑔 (except for NOx), and 

regression methods, particularly XGBoost, had less error and greater 𝑅2. OLS and elastic net had lower accuracy than XGBoost 
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models, indicating some degree of variable interaction or nonlinearity existed in background concentration behaviour, but the 485 

increase in accuracy from linear regression to machine learning was minor for all pollutants. Hanlan’s Point always had greater 

error and lower 𝑅2  than Downsview, a trend reflecting our above discussion on the suitability of using a distant urban 

background station for predicting onsite 𝐶𝑏𝑘𝑔. For CO2 and NOx the incremental gain in prediction accuracy between frequency 

and regression methods was more apparent than for PM2.5 and CO, suggesting accurate prediction of CO2 and NOx might more 

strongly rely on information contained in predictors other than downwind 𝐶𝑚𝑒𝑎𝑠. Interestingly, for NOx the predictive accuracy 490 

of frequency methods was worse than simply using measurements from the Downsview background station to predict 𝐶𝑏𝑘𝑔, 

suggesting background NOx cannot be extracted from downwind total NOx alone with high accuracy, although as previously 

discussed high accuracy is not needed for applications like resolving local contributions since background NOx is generally 

much lower than local NOx. For every other pollutant the accuracy of the Downsview background station in predicting 𝐶𝑏𝑘𝑔 

was worse or at least near that of frequency methods. This observation might also be reflective of our previously mentioned 495 

sensitivity in estimating background NOx due to its relatively low average concentrations. 

For PM2.5, the accuracy of algorithmic 𝐶𝑏𝑘𝑔  predictions did exceed that of the Downsview station, but the relative 

incremental gain in accuracy was less clear than for other pollutants, suggesting little benefit can be gained for algorithmically 

predicting background PM2.5 over simply using an urban background station. Only the XGBoost and ensemble models had 

notably superior accuracy for PM2.5, indicating that greater complexity is necessary to accuracy predict background PM2.5 than 500 

for other pollutants. These trends broadly align with our prior discussion on the homogeneity and complexity of sources and 

processes governing background PM2.5. However, the RMSE of the low-cost sensor placed upwind of the highway versus a 

reference sensor was greater than the mean difference between up- and down-wind PM2.5 at the highway (Table B.1), 

suggesting that in addition to the homogeneity of PM2.5 (Figure 2 to Figure 4), our ability to separate 𝐶𝑏𝑘𝑔 from 𝐶𝑚𝑒𝑎𝑠 was 

limited for PM2.5, which would inherently limit our ability to predict PM2.5 𝐶𝑏𝑘𝑔. 505 
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Figure 7. Root mean square error (RMSE, bars) and coefficient of determination (𝑹𝟐, diamonds) for predicted background CO at 

the highway site, as predicted by each method tested here. Scores show the accuracy of each method in estimating true upwind 

background concentration, with lower RMSE and greater 𝑹𝟐 being better. Scores were calculated as the mean across five-fold 

cross-validation. 510 

For CO and CO2, there is some similarity in accuracy for frequency methods and regression methods. RMSE and 𝑅2 for CO 

predictions from regression methods were only slightly better than RMSE for frequency methods. For CO2, prediction RMSE 

and 𝑅2 appeared to improve from frequency methods to regression methods, and again to the ensemble model, indicating 

similar levels of accuracy within each class of algorithmic prediction models. 

3.3 Importance of site-specific covariates 515 

We fit each method to only a single field study site, so it is difficult to conclude if our results are generalizable for urban 

background concentrations or if they are specific to the single highway site studied. However, we can gain some insight into 

the generality of our conclusions by testing the importance of site-specific information in producing accurate estimates of 

background concentrations with the regression methods tested here. Specifically, to test the importance of onsite information 

in predicting background concentrations, we refit our XGBoost model after shuffling covariates specific to the highway site, 520 

but XGBoost hyperparameters and the total number of variables remained unchanged. Shuffling covariates refers to the process 

https://doi.org/10.5194/egusphere-2024-2488
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

23 

 

by which one input variable at a time is randomly shuffled so the measurements of that variable are no longer in order relative 

to other input and target features. By shuffling covariates and refitting, we remove possible correlations between site-specific 

features and the target measured background concentration but retain the same set of features so we can refit the XGBoost 

model without retuning hyperparameters, enabling comparison of XGBoost predictions with and without highway-specific 525 

inputs. 

To produce this regression, we shuffled covariates specific to the highway emissions source, including RLINE dispersion 

estimates, highway traffic counts, and traffic-weighted average vehicle speed. The site-specific measurements we left 

unshuffled were downwind total concentrations, 𝐶𝑚𝑒𝑎𝑠, the target upwind background concentrations, 𝐶𝑏𝑘𝑔, and meteorology. 

We chose not to shuffle meteorology based on our observation that meteorology is usually similar across the city at any moment 530 

in time and thus could feasibly be measured offsite; meteorological measurements are also often widely available or measurable 

with relatively low-cost instruments. Figure 8 shows normalized prediction errors for 𝐶𝑏𝑘𝑔 predicted via XGBoost for each 

pollutant with and without shuffling. 

 

Figure 8. Relative RMSE for XGBoost-predicted 𝑪𝒃𝒌𝒈 with and without covariates specific to the highway field site included in 535 

model. RMSE was calculated via five-fold cross-validation, relative RMSE is RMSE divided by the standard deviation of the target 

regressand (𝑪𝒃𝒌𝒈). Whiskers are standard deviations across folds. 

The errors in Figure 8 suggest that removing information specific to the highway site did not produce a significant change 

in XGBoost model accuracy. The absolute percent difference between RMSE with and without site-specific variables shuffled 

was less than 5% for all pollutants, and differences were within one standard deviation across cross-validation folds, indicating 540 

little or no significant difference between models with and without shuffled site-specific variables. This indicates that most of 

the variability in 𝐶𝑏𝑘𝑔 was explained by highway downwind concentrations and other covariates not specific to the highway – 

it is also reflective of our observations in Figure 7 and Figure H.1 to Figure H.3 that predicting 𝐶𝑏𝑘𝑔 with concentrations 

measured at the Downsview urban background station, while less accurate than some other methods, still produced prediction 

𝑅2 exceeding 0.5 for all pollutants. Since concentrations measured at Downsview and the Highway were included as predictors 545 

in both cases in Figure 8, we can indirectly conclude that concentrations measured at Downsview coupled with concentrations 
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measured downwind the highway together contain most of the information necessary to accurately predict 𝐶𝑏𝑘𝑔, and that 

adding more emissions-source-specific covariates only marginally increased prediction accuracy.  

This lack of difference might imply our model of background concentrations is not site-specific. That is, the XGBoost model 

without highway-specific covariates might be transferable to other locations. This in turn would mean that the spatial variation 550 

of background across the city is mostly encompassed within information provided by measuring the total concentrations at 

different sites, consistent with the assumption underlying frequency-based methods. With only one near-source site in this 

study, we did not further test this transferability. At the very least, this result shows our methodology might be successfully 

repeated at new near-source sites without requiring as many site-specific covariates as we included here. 

3.4 Regression model feature importance 555 

We can examine feature importance in the XGBoost models for each pollutant to gauge covariate importance for estimating 

𝐶𝑏𝑘𝑔 . We achieve this using Shapley Additive Explanations (SHAP) – SHAP plots can provide explanations of feature 

importance for complex nonlinear models where simple coefficients are not available, as is the case with XGBoost (Lundberg 

and Lee, 2017). Additional examples of SHAP values in the context of air pollution research can be found from Xu et al. 

(2020a, b). Figure 9 shows SHAP beeswarm plots for the XGBoost model predicting highway upwind background 𝐶𝑏𝑘𝑔 for 560 

each pollutant.  

 

Figure 9. SHAP beeswarm plots for XGBoost models predicting upwind background concentration at the highway site. XGBoost 

models were tuned via Bayesian hyperoptimization with five-fold stratified cross-validation. These figures indicate relative degree 
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of importance – for example, a blue dot far to the right on a feature indicates that a low value of that feature was associated with a 565 
high predicted concentration. Each dot represents one predicted concentration and one value of that feature. (bkg: background; 

dv:Downsview; hwy: highway; meas: measured)  

The SHAP values in Figure 9 suggest that for CO, CO2, and NOx, the most important predictors of upwind background at 

the Highway 401 site were concentrations measured at the Downsview urban background site and hour of day. This is 

consistent with each of our prior discussed results: generally concentrations measured at Downsview can provide a fair estimate 570 

of mean background concentration levels, but these estimates may be inaccurate during some hours of the day and predictions 

can be notably improved through inclusion of additional information. The fact that time of day is an important predictor aligns 

with our observation that Downsview serves as a fair background estimate, except during morning and to a lesser degree 

evening rush hours (i.e. except during some hours of the day). Outside these important predictors, meteorology had notable 

importances for all pollutants. Lastly, for PM2.5 pollutant concentrations measured at Downsview, while still important, had a 575 

lesser impact on predictions, which is yet again reflective of the difficulty in predicting background PM2.5 at the highway site.  

Surprisingly, concentrations measured downwind the highway, 𝐶𝑚𝑒𝑎𝑠, were much less important predictors in XGBoost 

than concentrations measured at Downsview. This was surprising both based on theory and when comparing against other 

methods: 𝐶𝑚𝑒𝑎𝑠 should always be a direct sum of 𝐶𝑏𝑘𝑔 and local emissions, and thus we expect it to explain some variability 

in background concentrations. This result was also in contrast to regression coefficients from our linear elastic net fits, which 580 

fit large coefficients on 𝐶𝑚𝑒𝑎𝑠 for all pollutants (Figure L.1 to Figure L.4). Regardless, the results of this SHAP analysis suggest 

that 𝐶𝑚𝑒𝑎𝑠  had a comparatively small impact on XGBoost predictions. On the other hand, we found that our frequency 

methods, which take only 𝐶𝑚𝑒𝑎𝑠  as an input, had fair accuracy. These two results together suggest that to extract useful 

estimates of 𝐶𝑏𝑘𝑔 from 𝐶𝑚𝑒𝑎𝑠, algorithmic methods benefit by considering not just concurrent measurements but past and 

future values of 𝐶𝑚𝑒𝑎𝑠 as well; in this study, only frequency methods considered lagged values of 𝐶𝑚𝑒𝑎𝑠 when predicting 𝐶𝑏𝑘𝑔. 585 

The importance of temperature for some predictions might be explained by an uneven distribution of measured temperatures. 

Most of our measurements occurred in winter with low temperatures, while a minority of measurements at the end of our study 

had higher temperatures. Because there are fewer samples with high temperatures, regression models risk placing a greater 

relative importance on those samples, inflating the relative importance of temperature. This can be improved upon in future 

studies by extending a similar regression fitting approach to a longer measurement period. 590 

3.5 Limitations of analysis 

As this study examined only a single urban area, the applicability of our results to other urban areas relies on the assumption 

that many cities feature a similar variety and heterogeneity of emissions sources and geography. The sites explored here, 

including both urban background and near-road up- and downwind- sites, represented a variety of geographic features, 

including proximity to a large body of water, green space, and proximity to emissions sources other than the road targeted at 595 

the highway site. While our analysis of XGBoost model accuracy without site-specific features in Figure 8 lends support to 

the idea that our model of background concentrations is not specific to the highway site, this conclusion is indirect and a better 
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method of testing transferability would be to apply our results at a new site with similar configuration of measurements up- 

and down-wind of an emissions source. 

We also only explored background concentrations for four airborne pollutants: three gaseous and one particulate. For the 600 

gaseous pollutants tested, we expect that loss or formation via reaction will be low. While NO and NO2 concentrations can 

vary rapidly near roads through reaction, we only considered the sum of the two, NOx, which as a whole should not vary 

significantly through reaction over the distances from the highway investigated here. This simplicity of behaviour will simplify 

our models, and it is plausible that background pollutants with more complex reaction mechanisms or sources might require 

more covariates to accurately predict with regression models. For example, modelling background ozone might benefit from 605 

including insolation as an exogenous predictor. 

Lastly, it remains unclear if these models would transfer well to sites with different geometry, emissions sources, or typical 

weather. It is plausible that the strength of the methods tested here is due to the simplicity of the major source observed: the 

size and business of Highway 401 lends confidence to the assertion that it will be the dominant source of local airborne 

pollution at the downwind highway site; traffic also has consistent diurnal patterns and emissions intensity is easily inferred 610 

through a simple traffic count. If the regression models presented here were refit near a source with different characteristics, 

such as an industrial source emitting at all hours of the day, or at a measurement site with multiple strong upwind sources, it 

stands to reason that predictive performance would be degraded. 

4 Conclusions and recommendations 

From the analyses and results presented here, we can draw conclusions on the behaviour and predictability of background 615 

concentrations and our ability to extract the influence of local emissions on measured air pollutions.  

First, we observed that background air pollution concentrations varied geographically across the measured urban area during 

the study period. Variation was greater for NOx and CO, which are more strongly driven by localized emissions sources; 

variation was lesser for CO2 and PM2.5, for which background concentrations make up a greater portion of the measured whole, 

and for which global or regional upwind emissions and processes dominate over localized emissions. This has implications for 620 

urban air quality studies targeting specific emissions sources, especially considering the growing popularity of deploying many 

low-cost sensors across a region to study the spatial spread of air pollutants. While placing a sensor near an emissions source 

might provide insight into the influence of that source on measured concentrations, the inhomogeneity of some background 

concentrations observed implies that researchers cannot always rely on distant measurements of background concentration to 

isolate local emissions signals. 625 

To address the geographic variability of background concentrations, we tested the extent to which urban or regional 

background stations can be used to predict background concentrations at a field site near a major urban highway. We found 

that concentrations measured at the distant background sites most accurately predicted highway upwind backgrounds for CO2, 

and with slightly less accuracy for PM2.5, CO, and NOx, and was the most or second-most important predictor in regression 
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models for all but PM2.5. This loosely aligned with our observation that CO2 and PM2.5 varied less across the city than CO and 630 

NOx. It is intuitive that a distant background station would provide more accurate predictions of onsite 𝐶𝑏𝑘𝑔 for pollutants with 

low spatial variability in background concentrations, than for pollutants with higher variability. Our results also indicate that 

our low-cost instrument upwind of the highway produced useful measurements of background CO, CO2 and NOx 

concentrations, provided it was calibrated via co-location with reference instruments prior to deployment. Comparison of 

background concentration scatters and diurnal patterns indicate that the low-cost instrument was similarly capable of 635 

measuring these background concentrations as a reference station, despite its lower cost and weaker reported sensor sensitivity. 

We tested seven algorithms for estimating background concentrations: three frequency methods using only measured 

roadside downwind concentrations as an input, three regression methods using roadside downwind concentrations and 

additional covariates as inputs, and a final ensemble model using the predictions from the prior six methods as covariates. We 

observed that in some cases frequency methods outperformed distant urban background stations for estimating near-road 𝐶𝑏𝑘𝑔, 640 

in most cases regression models outperformed frequency methods, and the ensemble model always provided the best accuracy 

of all. This ranking of accuracy is broadly correlated with increasing complexity and number of inputs for each method: using 

an urban background station to estimate 𝐶𝑏𝑘𝑔 includes no information about the field study site or pollutant concentrations 

measured there, and this approach had lower accuracies and underpredicted backgrounds for some pollutants during rush hours. 

Frequency methods included total measured roadside downwind concentrations, 𝐶𝑚𝑒𝑎𝑠, and were somtimes superior to urban 645 

background stations. Regression methods incorporated additional covariates on top of 𝐶𝑚𝑒𝑎𝑠  and outperformed frequency 

methods and distant background stations. Finally, the ensemble model, requiring the outputs of each prior method, had the 

greatest complexity and greatest accuracy. 

Based on these results, we recommend that municipalities or air pollution specialists deploying sensors or monitors with the 

aim of resolving the contribution of specific emissions sources consider carefully how they will measure or algorithmically 650 

isolate the contribution of background to total measured concentrations. Our measurement sites in Toronto reflected a variety 

of geographic features (varying built environments, proximity to water, extent of green space, etc.), indicating that our finding 

of varying background pollution concentrations might apply to other cities, given these features are common across many 

urban areas. From our analysis of background concentration prediction methods, we can provide recommendations for which 

method users should choose based on their use-case and availability of data. These recommendations are loosely ordered by 655 

decreasing strength of predictive accuracy offset by decreasing requirements for instrumentation or additional measurement 

sites: 

1. If possible, direct measurement of background concentrations and winds immediately upwind the source of interest 

should always be preferred. 

2. In cases where measurements of 𝐶𝑏𝑘𝑔 upwind the source of interest are available for some but not all of the study 660 

period, we recommend applying a regression approach – these approaches had the greatest accuracy and our cross-

validation results suggest they should extrapolate well to periods where 𝐶𝑏𝑘𝑔  was not directly measured. In 
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particular we suggest using XGBoost or similar machine learning approaches that allow for nonlinearity and 

interactions, which here had the greatest accuracy. However, we advise caution in applying regression models 

outside the conditions they were trained in, such as different sites or seasons. 665 

3. For applications where only long-term averages (i.e. 24 h or longer) are of concern, using a distant urban 

background station as a proxy for true onsite 𝐶𝑏𝑘𝑔 measurements will prove sufficiently accurate, however for 

higher-resolution measurements, urban background stations may prove inaccurate during periods of peak 

emissions, such as during rush-hour near the highway emissions source studied here. 

4. For applications where both upwind 𝐶𝑏𝑘𝑔  measurements and a suitable urban background station are both 670 

unavailable or too costly, we suggest applying one of the frequency methods described here, particularly the 

pseudo-wavelet method developed by Wang et al. (2018) or the rolling ball algorithm. For these frequency methods, 

in roadway applications we suggest using hyperparameters like those identified here in Table K.1. For pollutants 

other than those measured here, we suggest applying parameters like those in Table K.1 based on similarity in 

pollutant behaviour – for example, if a pollutant is expected to be a strong tracer or a local source, as NOx is for 675 

traffic, we suggest applying similar hyperparameters as used for NOx in this study.  

5. In a similar vein, for cases where municipalities are deploying networks of sensors, or epidemiologists are exploring 

geographic variability of background concentrations vs. local emissions, we suggest applying the pseudo-wavelet 

or rolling ball frequency methods. While the context of our tests here were up- and down-wind differences targeting 

a single roadway emissions source, the theoretical basis of frequency methods – that background concentrations 680 

vary on a longer time-scale than local emissions – extends these methods to pollution concentrations regardless of 

proximity to one particular source. The pseudo-wavelet method applied in this context is also touched upon by 

Wang et al. (2018) and Hilker et al. (2019).  

Generally, we do not suggest applying the naïve rolling minimum method tested here except as it was used here: as a bar by 

which we can judge other, better algorithms for predicting 𝐶𝑏𝑘𝑔 , since the naïve rolling minimum can be considered the 685 

simplest but least accurate method for estimating background concentrations, so any other new method should outperform it.  

In a similar vein, usefulness of the ensemble model we tested is dubious – the extent of information and effort required to 

implement such a model for predicting 𝐶𝑏𝑘𝑔 seems to exceed the potential benefit of gains in predictive accuracy. Also, when 

choosing an urban background station to serve as a proxy for 𝐶𝑏𝑘𝑔, care must be taken to choose a station placed in an area 

with similar land use as upwind of the source of interest – a station like the isolated Hanlan’s Point site we describe here would 690 

be unsuitable for sites surrounded by urban or suburban areas.  

Finally, we suggest any study targeting specific emissions sources carefully consider how to extract local versus background 

contributions to measured concentrations, including but not limited to applying one of the methods tested here. We also 

encourage additional research in separating local and background concentrations, especially with different emissions sources, 

regions, or methods than those we explored here. 695 
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5 Appendices 

Appendix A Micrometeorological and other inputs for RLINE 

We used the RLINE model to produce dispersion estimates as an input feature for regression models in this study (Snyder 

et al., 2013). The RLINE model uses outputs from the AERMET micrometeorological pre-processor produced by the United 700 

States Environmental Protection Agency (U.S. EPA, 2004). AERMET requires a variety of micrometeorological 

measurements as inputs, which can be provided in a variety of formats. We employed measurements from Toronto’s Pearson 

International Airport, acquired from the National Centers for Environmental Information Integrated Surface Database (n.d.); 

and upper air measurements at Buffalo Niagara International Airport, acquired from the National Oceanic and Atmospheric 

Administration’s radiosonde database (n.d.). 705 

We identified lane and receptor geometry using ArcGIS Pro and Google Earth Pro. We set initial vertical dispersion, 𝜎𝑧,𝑖𝑛𝑖𝑡 , 

using the recommended formula in the RLINE user manual, which in turn points to EPA guidance (Environmental Protection 

Agency, 2010; Snyder and Heist, 2013). This formula uses vehicle heights and fleet mix to estimate initial dispersion; we 

assumed vehicle heights of 1.5 m for light-duty vehicles and 4.15 m for medium- and heavy-duty vehicles, based on the same 

EPA guidance document and the law in Ontario governing maximum vehicle height (Ontario, 2012). Other inputs were taken 710 

from recommendations in the RLINE user manual. 

Appendix B Data processing 

To ensure air pollutant concentration measurements were accurate, realistic, and comparable between sites, we performed 

an extensive quality assurance and control process on the raw measurements prior to use. First, gas-phase instruments at the 

Downsview, Hanlan’s, Wallberg, and Highway 401 south site are calibrated regularly. 715 

Prior to analysis, we applied the following steps to raw measurements. For programmatic details, refer to the raw files 

provided alongside this publication. 

1. We removed periods identified as invalid measurements in our measurement database for reasons such as 

calibration or maintenance. In some cases, we dropped additional measurements if it appeared the instrument was 

turned back on too soon after calibration. 720 

2. We manually removed some periods that appeared to have extreme outliers or unusual behaviour suggestive of 

instrument malfunction, calibration problems, or transient spikes unrelated to the measured road emissions or 

background concentrations. 

3. We corrected PM2.5 measurements from the AirSENCE instrument for interference from humidity with the 

correction equation suggested by Crilley et al. (2018). 725 

4. We corrected for baseline drift in CO2 measured at Hanlan’s Point, Wallberg, and both Highway 401 stations by 

assuming concentrations measured at these sites must be similar to CO2 measured at the Downsview site 

occasionally over a 48 h period. We selected the Downsview urban background station as the reference site for this 

adjustment because it was calibrated during the sampling campaign. We applied such a correction specifically by 
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calculating the rolling 48 h 0.5% quantile of each CO2 signal and assuming these rolling quantiles must be equal – 730 

we then subtracted the difference between each site’s rolling quantile and the Downsview quantile from the CO2 

signal at each site (except Downsview, since it was treated as the reference).  

5. We calibrated the Highway 401 background AirSENCE instruments by placing the sensor package on the roof of 

the Highway 401 south station for 17 days prior to deployment to the north side of the highway. With these 17 

days’ raw pollutant measurements, we calibrated the AirSENCE instrument against measurements from the south 735 

station’s reference instruments. This calibration was specifically a linear regression, regressing a target function 

like: 

𝐶𝑟𝑒𝑓 = 𝛽0 + 𝛽1𝐶𝐴𝑆 + 𝛽2𝑇 + 𝛽3𝑃 + 𝛽4𝑅𝐻 + 𝛽5𝐶𝐴𝑆𝑇 + 𝛽6𝐶𝐴𝑆𝑃 + 𝛽7𝐶𝐴𝑆𝑅𝐻 (2) 

Where 𝐶𝑟𝑒𝑓  are concentrations recorded by the reference instruments, 𝐶𝐴𝑆  are concentrations measured by the 

AirSENCE low-cost platform, 𝑇 is ambient temperature, 𝑃 is ambient pressure, 𝑅𝐻 is ambient relative humidity, 740 

and 𝛽 are regression coefficients. We regressed this function for each pollutant, and then created predicted values 

of 𝐶𝑟𝑒𝑓  for the entire measurement campaign, and treated these values as calibrated measurements from the 

AirSENCE device after we deployed it to the north (background) side of the highway. 

6. After the above steps, we set concentrations less than zero to 10−5 for each pollutant. We applied this adjustment 

to simplify analyses that required taking the logarithm of concentrations. 745 

Table B.1 shows some measures comparing AirSENCE pollutant concentrations to reference instruments at the Highway 

401 south station before and after calibration. These measures generally appear to indicate that the AirSENCE reported similar 

concentration measurements to the reference instruments during the training period after measurements were preprocessed 

using steps 1 through 5 above. 
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Table B.1: Statistics comparing concentrations measured by the low-cost AirSENCE sensor platform to reference instruments before 750 
and after calibrating the AirSENCE measurements. 

 Pollutant 𝑹𝟐 RMSE 𝑨𝑭=𝟏.𝟏 FB 

Pre-calibration 

CO 0.92 82 0.18 -0.19 

CO2 0.83 12 1.0 -0.015 

PM2.5 0.75 4.2 0.16 0.19 

NOx 0.98 33 0.0025 -0.56 

Post-calibration 

CO 0.93 36 0.77 ~0 

CO2 0.85 8.7 1.0 ~0 

PM2.5 0.78 3.6 0.20 ~0 

NOx 0.98 4.5 0.58 ~0 

The performance statistics in Table B.1 imply that, after calibration, measurements captured by the low-cost AirSENCE 

sensors were comparable to those captured by the reference instruments, with small errors and effectively no bias for CO, CO2, 

and NOx. However, for PM2.5, the fraction of values falling within a factor of 1.1 (𝐴𝐹=1.1) and the RMSE imply that PM2.5 

measurements were relatively less accurate than other pollutants. This likely compounded with our observation of homogeneity 755 

in PM2.5 background concentrations in the Toronto region, further reducing our ability to separate 𝐶𝑏𝑘𝑔 from 𝐶𝑚𝑒𝑎𝑠 for PM2.5 

at the Highway 401 site. Accordingly, and as mentioned in the main article body, our ability to extract meaningful results at 

the Highway 401 site was lesser for PM2.5 than for other pollutants. However, our observation that PM2.5 was largely 

homogeneous across Toronto remains valid, as the low-cost AirSENCE device was only deployed at the highway upwind 

background site. 760 

 

Appendix C Descriptions of background concentration prediction algorithms 

The following sections list the various frequency- and regression-based algorithms we tested for estimating on-site upwind 

background concentrations. Most methods follow a similar optimization scheme, and all were tuned to produce the best 

possible estimate of measured background, 𝐶𝑏𝑘𝑔, at the highway upwind background site. 765 

Except where otherwise noted, we applied a similar optimization method for tuning and fitting each of these algorithmic 

models. We employed the optuna Python library, which applies Bayesian hyperoptimization to search the possible space of 

hyperparameters for an optimal configuration (Akiba et al., 2019). For scoring during optimization, we calculated the five-fold 

cross-validated root mean square error (RMSE) of predictions. In stratified cross-validation, the model is fit or regressed to 

most of the data (the training set) while a subset is held aside (the test set); after fitting, predictions are generated for the held-770 

out test set and compared to the target variable in that set. In this study, this means the regression model is fit to 4/5 (80%) of 

the measurements and then predictions are made using the remaining 1/5 (20%) of measurements, and we calculated the RMSE 
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of those predictions. The mean RMSE across all five folds is then taken as the score for that particular hyperparameter 

configuration, and the set of parameters with the lowest RMSE after some predefined number of optimization trials is selected 

as the optimal model. 775 

For frequency-based methods, the concept of creating predictions for a held-out set is less meaningful, because these 

methods use information in the input 𝐶𝑚𝑒𝑎𝑠 signal across a span of times to produce their 𝐶𝑏𝑘𝑔 predictions, so holding out 

some data is challenging. However, to produce an RMSE score that was more comparable to that for regression methods, we 

produced a frequency-method 𝐶𝑏𝑘𝑔 prediction for all measurements, then calculated the RMSE for the indices associated with 

each of the five cross-validation folds, then took the mean of those five RMSE scores as the final score for that optimization 780 

trial. In this way, the score was a mean of scores, similar to the cross-validation approach in regression methods. We applied 

this same mean-of-fold’s-scores approach when evaluating frequency-method predictions as in Figure 7, Figure H.1 to Figure 

H.3, and Table P.1. We also limited evaluation of frequency methods to use only those measurement periods where regression 

methods were also evaluated. We do this because the large number of predictors in regression methods gives rise to some gaps 

in the feature set that are not included during regression – using only those times made available to regression methods ensures 785 

a fair comparison between background stations, frequency methods, and regression methods. 

We prioritized the RMSE as our regression metric due to its popularity in the literature and because it produces an error in 

units of the target concentration (i.e. ppmv, ppbv, or µg·m-3). However, we note that other metrics might produce superior 

model fits due to their statistical advantages. In particular, the mean squared log error (MSLE) has advantages for air pollution 

research, on the basis that atmospheric pollution concentrations are bounded and not normally distributed. Airborne 790 

concentrations are typically log-normally distributed, meaning a prediction error underestimating the true concentration must 

be bounded between zero and the true concentration, while an overestimating prediction has no upper bound. This uneven 

bounding means algorithms attempting to minimize the RMSE of airborne concentrations are more likely to produce a 

prediction that underestimates than overestimates, because the RMSE penalizes positive and negative errors equally, but only 

positive errors are unbounded. The MSLE, on the other hand, more strongly penalizes underestimations because it log-795 

transforms the target and prediction, which is appropriate for air pollution concentrations where underestimations are more 

likely to be small due to their bounded nature. Despite these advantages, we retained the RMSE as our primary metric for the 

reasons mentioned above. Also, a reader can immediately understand an RMSE score in the context of typical real-world 

pollutant concentrations; a RMSE of 10 ppmv for a CO2 prediction is understandable relative to typical real concentrations 

above 400 ppmv, but a MSLE of 0.001 log-ppmv is not intuitive. 800 

The following sections describe each algorithmic 𝐶𝑏𝑘𝑔 prediction method in detail. 

Appendix C.1 Naïve rolling minimum 

Baseline or background concentrations in the literature are frequently estimated as a concentration that is less than and 

occasionally but not always equal to the total measured concentration – in other words, the background concentration is taken 

to loosely follow the lower limit of measured concentrations, while transient peaks are attributed to local sources. Examples 805 
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of such approaches include those applied by Klems et al. (2010), Sabaliauskas et al. (2014), and Hilker et al. (2019). Similar 

approaches are also applied in other fields, such as removing baseline signals in spectroscopic signals, which share some 

similar characteristics to pollutant concentration signals. 

Other than taking the absolute minimum measured concentration as a baseline, the next simplest approach is to consider a 

rolling minimum over some period of continuous measurements. Thus a rolling minimum background has only one parameter 810 

to tune: the width of the rolling window. We considered possible window widths in the range of 5 minutes to 48 hours. Because 

of the simplicity of this approach, we did not apply Bayesian hyperoptimization, and instead tested all window widths in this 

range in 5 minute increments. 

We did not expect the naïve rolling minimum model to produce reasonable estimates of background concentration. Instead, 

we intended this method to serve as a bar by which to judge the remaining, more sophisticated algorithmic predictions. 815 

Appendix C.2 Pseudo-wavelet 

The pseudo-wavelet method estimates a background concentration similarly to wavelet methods a la Klems et al. (2010) 

and Sabaliauskas et al. (2014), but it is not a true wavelet algorithm. At a high level, the pseudo-wavelet algorithm produces 

multiple interpolations between the two smallest values of measured downwind concentrations within a rolling window of 

varying widths, and then averages these interpolations to produce a smoothed estimate of background concentration. The 820 

algorithm requires three inputs: the measured total pollutant concentrations, 𝐶𝑚𝑒𝑎𝑠; the initial width of the rolling windows, 

𝑊, in units of the 𝐶𝑚𝑒𝑎𝑠 measurement frequency, which in this case was minutes; and a unitless smoothing parameter, 𝛼. 

Additional detail and applications of the pseudo-wavelet algorithm are provided by Wang et al. (2018), where it was 

originally introduced, and by Hilker et al. (2019), who evaluated background concentration predictions produced by the 

pseudo-wavelet method against some other methods. 825 

Appendix C.3 Rolling ball 

The rolling ball method simulates sliding a ball along the bottom of the measured total pollutant signal, with the background 

being the trace defined by the path of the top of the ball. This approach is common in image processing to remove uneven or 

noisy image backgrounds. We are not aware of any implementations of this method in air quality studies, but background 

concentrations predictions from the rolling ball algorithm have similar properties to those from the pseudo-wavelet algorithm. 830 

The rolling ball method requires three inputs: 𝐶𝑚𝑒𝑎𝑠, and two tuning parameters defining the shape of the ball. 

In air pollution data, the horizontal axis of the 𝐶𝑚𝑒𝑎𝑠 signal is in units of time while the amplitude is in units of pollution 

concentration. Accordingly, the rolling ball algorithm in practice is more accurately described as sliding an ellipsoid along the 

bottom of the 𝐶𝑚𝑒𝑎𝑠 signal, with the dimensions of the ellipsoid being defined in different units from each other. The semi-

major axis of the ellipsoid will align with the concentration (vertical) axis of the pollutant signal and have units of concentration, 835 

while the semi-minor axis will align with the temporal (horizontal) axis and have units of the pollutant signal’s frequency – in 

this case, minutes. Thus the rolling ball algorithm requires two tuning parameters which are these semi-axis lengths. To 

simplify this algorithm, we fixed the length of the concentration semi-axis as equal to the standard deviation of the total 
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measured downwind concentration, 𝐶𝑚𝑒𝑎𝑠, of the relevant pollutant. Thus we reduced the number of parameters needing tuning 

to one. We optimized this remaining parameter, the length of the temporal semi-axis, via hyperoptimization. We considered 840 

possible widths in the range of 2 minutes to 48 hours. 

Appendix C.4 Regression model covariates 

Regression-based methods incorporated both the measured highway downwind concentration signal alongside additional 

predictor variables to estimate upwind background concentrations. They do not incorporate the time-series nature of the 

measurements, using only concurrent values of each covariate to estimate background. We did not develop these regression 845 

models from a theoretical basis, but from a primarily statistical basis – we selected covariates for their potential to improve 

estimates regardless of any possible physical interpretation of their effect in a regression model. 

The covariates included in each of the base regression models were: 

• Total concentrations measured downwind the highway, 𝐶𝑚𝑒𝑎𝑠, in units matching the pollutant. 

• Concentrations measured at the two urban background stations, 𝐶𝑏𝑘𝑔,𝑑𝑣 and 𝐶𝑏𝑘𝑔,ℎ𝑎𝑛𝑙𝑎𝑛𝑠, also in units matching the 850 

target pollutant. 

• Counts of vehicles on the highway in a given minute, 𝑁, in units of veh ⋅ minute−1. Only the nearest 8 of 17 lanes 

on the highway were captured by a radar counter.  

• RLINE dispersion predictions, 𝑘ℎ𝑤𝑦 , in units s ⋅ m−2. 

• Squared cosine and sine of wind direction measured at the highway, cos2(𝜃), sin2(𝜃). 855 

• Wind speed measured at the highway, 𝑢, in m ⋅ s−1. 

• Ambient temperature measured at the highway, 𝑇, in °C. 

• Ambient pressure measured at the highway, 𝑃, in hPa. 

• Ambient relative humidity measured at the highway, 𝑅𝐻, in %. 

• Hour of day and day of week, encoded as one-hot columns for OLS and elastic net and as integers for XGBoost. 860 

Concentrations measured at Downsview are denoted with the subscript 𝑑𝑣, and Hanlan’s Point with the subscript ℎ𝑎𝑛𝑙𝑎𝑛𝑠. 

We included meteorological measurements from only the highway site, however when testing the importance of highway 

site-specific regression features in Section 3.3, we did not permute meteorology variables because these values tend to be 

strongly correlated at sites across the city and are thus not site-specific in the sense that we sought in this analysis. The purpose 

of testing highway site-specific feature importance was to indirectly test model transferability, and since meteorology should 865 

be similar across sites, it does not need to be considered a site-specific feature. 

For all regression models, we scaled covariates to zero mean and unit variance before fitting.  

Appendix C.5 Ordinary least squares regression 

As a first-pass regression model we employed a simple ordinary-least squares (OLS) multi-variable linear regression, with 

each of the above-listed covariates as exogenous regressors. While we do not necessarily expect the relationship between 870 
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measured background concentrations and any particular covariate to be linear, we included a linear regression estimate due to 

the familiarity and popularity of such models in the literature. 

We expect regularized and non-linear machine learning models to match or outperform OLS for all pollutants. As the naïve 

rolling minimum sets the bar for accuracy for all algorithmic estimates, the OLS model sets a second hurdle by which to judge 

more sophisticated regression models. 875 

Appendix C.6 Regularized (elastic net) regression 

Elastic net regression is a linear model like OLS, but applies additional penalties to model loss during fitting based on the 

size of regression coefficients, essentially preferring more parsimonious models with smaller coefficients. Elastic net 

specifically includes both L1 and L2 regularization terms, which when applied individually would be referred to as lasso and 

ridge regression, respectively. The L1 penalty shrinks coefficients towards zero, penalizing large coefficients and performing 880 

variable selection. The L2 penalty shrinks large coefficients asymptotically towards zero. Applying these penalties to a linear 

regression model retains the interpretability of linear regression coefficients but reduces the risk of overfitting through both 

variable selection and coefficient shrinking. In this application, we expect the elastic net regression to outperform OLS because 

we test our background concentration estimates through cross-validation, which will help identify models that overfit to 

training data. We selected the degrees of L1 and L2 regularization through hyperoptimization. 885 

Appendix C.7 Machine learning with XGBoost 

Machine learning allows for non-linearity and feature interactions in the underlying relationship between true background 

and covariates. However, the downsides are a risk of overfitting, challenging tuning, and reduced interpretability. 

XGBoost has a large number of hyperparameters to tune that can individually and together strongly influence model 

performance. We selected some hyperparameters to tune and others to hold constant based on trial and error. We optimized 890 

maximum tree depth, number of boosting rounds, learning rate, L1 and L2 regularization, and XGBoost’s gamma 

regularization term. We held other parameters constant at either their default values or at values selected through trial and error 

and case knowledge. We set minimum and maximum bounds for hyperparameter optimization based on best judgement and 

again through extensive trial and error. Selected hyperparameter values and ranges are available in the source code provided 

alongside this study. 895 

Appendix C.8 Ensemble background estimate 

As a final algorithmic 𝐶𝑏𝑘𝑔 prediction model, we considered an ensemble of predictions from each of the methods introduced 

thus far. Our ensemble model was an L2-regularized (ridge) regression taking each of the other estimated backgrounds (two 

urban background stations, three frequency methods, and three regression methods) as exogenous variables, along with an 

intercept. The ensemble regression did not include the covariates listed above that were included in the base regression models, 900 

instead taking the outputs of the other models as inputs. We selected the degree of L2 regularization for the ensemble model 

by searching 160 logarithmically-spaced values from 10−9  to 107 , rather than through randomized Bayesian 

hyperoptimization. 
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Appendix D Meteorology at the highway field site 

 905 

Figure D.1. Mean diurnal patterns of wind speed (𝒖), temperature (𝑻), pressure (𝑷), and relative humidity (𝑹𝑯) measured at the 

Highway 401 downwind south station.  

 

Figure D.2. Wind rose depicting dominant wind speeds and directions at the Highway 401 field study location, measured on the 

south and predominantly downwind side of the highway. 910 
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Figure D.3. Diurnal heatmap depicting frequency of wind directions measured on the south side of Highway 401 over the entire 

study period. The red dashed line indicates the direction that would be directly perpendicular and across the road at the 

measurement point.  

  915 
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Appendix E Comparing SHARP and T640 instruments 

 

 

Figure E.1: Scatter matrix comparing SHARP and T640 instruments across three of the sites used in this study. Red lines are one-

to-one, dashed lines with shaded areas are linear regressions with 95% confidence intervals. 920 
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Appendix F Separating local and background signals by wind speed and direction 

Figure F.1 shows background and roadside downwind concentrations at Highway 401 as a function of concurrent wind 

direction. From this figure, we identified the wind directions appropriate for considering the background sensor north of the 

highway to be a true measure of 𝐶𝑏𝑘𝑔. As indicated in the methodology, the range we selected was between 80 degrees to the 925 

northwest and 40 degrees to the northeast, based largely upon the ranges where the difference in down- and upwind sensors 

(i.e. 𝐶𝑙𝑜𝑐𝑎𝑙 = 𝐶𝑚𝑒𝑎𝑠 − 𝐶𝑏𝑘𝑔) began to trend towards zero. 

In addition to decreasing mean concentrations concurrent with the higher wind speeds as discussed in the methodology and 

visible in Figure F.2, we also observed an unexpected maximum mean 𝐶𝑙𝑜𝑐𝑎𝑙  for some pollutants at wind speeds ~2 m ⋅ s−1. 

This was most apparent for NOx, but was also present to a lesser extent in CO and CO2. The cause of increasing  𝐶𝑙𝑜𝑐𝑎𝑙  at wind 930 

speeds below 2 m ⋅ s−1is not clear. With all other variables (meteorology, emissions, etc) held constant, simple dispersion 

theory predicts decreasing local concentrations associated with increasing wind speeds. There are some possible explanations 

for this observation: higher wind speeds typically occur during midday to afternoon when insolation is greatest, which is 

concurrent with higher anthropogenic activity and thus emissions. This possibility is supported qualitatively by Figure F.3, 

which shows similar trends of 𝐶𝑙𝑜𝑐𝑎𝑙  as a function of wind speed but with the underlying measurements coloured by time of 935 

day also shown. In these figures, we observed that higher wind speeds and higher concentrations both tended to occur later in 

the day – more green points are to the right of the axes in Figure F.3, indicating that we recorded higher wind speeds more 

often later in the day. These simultaneous correlations lend themselves to the appearance of a positive correlation between 

wind speed and 𝐶𝑙𝑜𝑐𝑎𝑙 . This can be corroborated by comparing the diurnal trends of 𝐶𝑙𝑜𝑐𝑎𝑙  in Figure I.1 and wind in Figure 

D.1, where we observed high average concentrations during the same times of day as high average wind speeds. 940 
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Figure F.1. Mean pollutant concentrations at the Highway 401 site binned by concurrent wind direction in one degree bins. Wind 

direction is adjusted so zero is directly normal and facing across the road from the roadside downwind measurement site. The 

highway lays mostly east-west, so positive directions indicate more easterly winds and negative directions indicate more westerly 

winds. Trends were smoothed and interpolated with a weighted centred rolling mean across 15 adjacent increments, weighted by 945 
sample size. 
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Figure F.2. Mean pollutant concentrations at the Highway 401 site as a function of concurrent wind speed. Trends were generated 

by first calculating mean concentrations within 0.25 𝐦 ⋅ 𝐬−𝟏  bins of concurrent wind speeds. Increments with fewer than 60 

measurements were excluded. Trends were smoothed and interpolated with a weighted centered rolling mean across 11 adjacent 950 
increments, weighted by sample size. For 𝑪𝒍𝒐𝒄𝒂𝒍, we only included periods were 𝑪𝒍𝒐𝒄𝒂𝒍 > 𝟎 when producing these trends. 
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Figure F.3. Mean pollutant concentrations at the Highway 401 site as a function of concurrent wind speed. Mean trends were 

generated by taking mean concentrations within 0.25 𝐦 ⋅ 𝐬−𝟏 bins of concurrent wind speeds. Points are underlying measurements 

used to generate the trends and are coloured by hour of day the measurement fell within. We only included periods where 𝑪𝒍𝒐𝒄𝒂𝒍 >955 
𝟎 when producing these scatters and trends. 
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Appendix G Exemplar time-series trends 

 

Figure G.1. Example of measured and estimated background pollutant signals at the Highway 401 field study site. For clarity, not 960 
all background estimation methods are shown here. Grey shaded regions indicate when the south site was downwind the highway, 

indicating periods where the 𝑪𝒃𝒌𝒈 signal was a valid measurement of background concentration as defined in the methodology. 
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Appendix H 𝑪𝒃𝒌𝒈 prediction accuracies for NOx, CO2, and PM2.5 

 

Figure H.1. Root mean square error (RMSE, bars) and coefficient of determination (𝑹𝟐, diamonds) for predicted background NOx 965 
at the highway site, as predicted by each method tested here. Scores show the accuracy of each method in estimating true upwind 

background concentration, with lower RMSE and greater 𝑹𝟐 being better. Scores were calculated as the mean across five-fold 

cross-validation. 

 

Figure H.2. Root mean square error (RMSE, bars) and coefficient of determination (𝑹𝟐, diamonds) for predicted background CO2 970 
at the highway site, as predicted by each method tested here. Scores show the accuracy of each method in estimating true upwind 

background concentration, with lower RMSE and greater 𝑹𝟐 being better. Scores were calculated as the mean across five-fold 

cross-validation. 
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Figure H.3. Root mean square error (RMSE, bars) and coefficient of determination (𝑹𝟐, diamonds) for predicted background 975 
PM2.5 at the highway site, as predicted by each method tested here. Scores show the accuracy of each method in estimating true 

upwind background concentration, with lower RMSE and greater 𝑹𝟐 being better. Scores were calculated as the mean across five-

fold cross-validation.  
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Appendix I 𝑪𝒍𝒐𝒄𝒂𝒍 diurnal patterns 980 

 

Figure I.1. Mean hourly diurnal trends of the difference between measured concentrations downwind the highway (𝑪𝒎𝒆𝒂𝒔) and 

background concentrations upwind of the highway (𝑪𝒃𝒌𝒈) for each pollutant. Periods where the difference, 𝑪𝒍𝒐𝒄𝒂𝒍, was negative, 

were excluded. 
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Appendix J Background concentration scatters 985 

 

Figure J.1. Paired scatters and kernel density estimates (KDE) of background carbon monoxide concentrations at three stationary 

measurement sites in the Greater Toronto Area. Red lines are 1-to-1. For the Highway 401 site, backgrounds were only considered 

valid when wind direction and speed fell within the ranges specified in the methodology; figures only show periods where 

backgrounds were concurrently measured at each site. To speed calculation of the KDE and lessen figure density, a random 20% 990 
subset of measurements are shown here.  
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Figure J.2. Paired scatters and kernel density estimates (KDE) of background nitrogen oxides (NO + NO2) concentrations at three 

stationary measurement sites in the Greater Toronto Area. Red lines are 1-to-1. For the Highway 401 site, backgrounds were only 

considered valid when wind direction and speed fell within the ranges specified in the methodology; figures only show periods where 995 
backgrounds were concurrently measured at each site. To speed calculation of the KDE and lessen figure density, a random 20% 

subset of measurements are shown here. 

48

https://doi.org/10.5194/egusphere-2024-2488
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 

Figure J.3. Paired scatters and kernel density estimates (KDE) of background particulate matter < 2.5 μm diameter concentrations 

at three stationary measurement sites in the Greater Toronto Area. Red lines are 1-to-1. For the Highway 401 site, backgrounds 1000 
were only considered valid when wind direction and speed fell within the ranges specified in the methodology; figures only show 

periods where backgrounds were concurrently measured at each site. To speed calculation of the KDE and lessen figure density, a 

random 20% subset of measurements are shown here. Note that the Hanlan’s Point site used a different PM2.5 instrument – see 

methodology for details. 

 1005 
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Appendix K Frequency method optimized hyperparameters 

While frequency methods were often less accurate in predicting 𝐶𝑏𝑘𝑔 than regression methods, they can provide insight into 

background pollutant behaviour by examining their optimized hyperparameters. For the naïve rolling minimum and rolling 

ball algorithms, both were fit with a single hyperparameter, and in both cases this single parameter expresses an effective width 

of temporal duration of measured roadside downwind concentrations to consider when estimating background concentrations. 1010 

For the naïve rolling minimum, the tuned parameter is the window width in minutes, and for the rolling ball axis it is the radius 

along the temporal semi-axis of the ellipse that is “rolled” along the bottom of the downwind pollution concentration signal. 

For both, a larger parameter produces a predicted 𝐶𝑏𝑘𝑔  that has less or slower temporal variability, and a lower average 

magnitude. For the pseudo-wavelet method there are two parameters that are somewhat interchangeable in how they affect the 

resulting 𝐶𝑏𝑘𝑔 prediction, but they can be similarly interpreted because larger values again produce more slowly-varying and 1015 

smaller signals. 

Table K.1 shows the hyperoptimized best parameters for each frequency method. The differences between optimized 

parameters reflected the characteristics and spatial variability of the pollutants – in particular, the order of pollutants as ranked 

by frequency method coefficients loosely correlated with pollutants as ordered by their coefficients of variation (CV) in Table 

2. NOx and PM2.5 had the largest hyperparameters across methods and the greatest CVs, followed by CO, and then CO2. 1020 

Another way to interpret these parameters is to consider that for all frequency methods, very large hyperparameters lead to 

background predictions that approach a constant value, so the relative size of these parameters indicates the extent to which 

the background concentration for that pollutant might be appropriately estimated as a constant value. Thus these parameters 

provide additional, albeit indirect, evidence for differences in temporal variability of pollutant backgrounds relative to their 

means. This correlates with our prior observation that low NOx background concentrations paradoxically make predicting NOx 1025 

𝐶𝑏𝑘𝑔 both easier and harder depending on the context. 

Table K.1. Hyperoptimized parameters for the naïve rolling minimum, rolling ball, and pseudo-wavelet (PW) background 

estimation algorithms. Parameters are in units of minutes except 𝜶, which is unitless. 

 Naïve  Ball PW 𝛼 PW 𝑊 

CO 115 185 15 16 

CO2 45 86 7 19 

NOx 210 289 23 23 

PM2.5 175 360 22 22 

 

For the pseudo-wavelet algorithm, the ranking of optimal 𝛼 and 𝑊 parameters were similar to the naïve minimum and 1030 

rolling ball methods. Larger values of 𝑊  produce background concentration predictions that vary more slowly and less 

frequently equal the input 𝐶𝑚𝑒𝑎𝑠 signal, and thus make up a smaller portion of the total measured concentration. In other words, 

larger values of 𝑊 indicate that local emissions are a more dominant driver of concentration variability. Similar conclusions 
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can be drawn for values of 𝛼. However, to a certain extent 𝑊 and 𝛼 are interchangeable, as demonstrated by the examples in 

Hilker et al. (2019), so it is more challenging to draw meaningful conclusions about background concentration characteristics 1035 

from the pseudo-wavelet algorithm’s parameters than from the naïve and rolling ball methods, which each use a single and 

more easily interpreted tuning parameter. Despite this, we find a broad agreement across frequency methods in the relative 

magnitudes of optimized parameters between pollutants: these parameters suggest NOx and PM2.5 background concentrations 

varied less rapidly relative to their average levels than CO2 and CO. 
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Appendix L Elastic net regression coefficients 1040 

 

Figure L.1. Elastic net regression coefficients for predicted highway upwind background CO. The optimal degree of L1 and L2 

regularization was identified via five-fold stratified cross-validation. Covariates and target concentrations were standardized prior 

to fitting, so coefficients are unitless. 
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 1045 

Figure L.2. Elastic net regression coefficients for predicted highway upwind background CO2. The optimal degree of L1 and L2 

regularization was identified via five-fold stratified cross-validation. Covariates and target concentrations were standardized prior 

to fitting, so coefficients are unitless. 
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Figure L.3. Elastic net regression coefficients for predicted highway upwind background NOx. The optimal degree of L1 and L2 1050 
regularization was identified via five-fold stratified cross-validation. Covariates and target concentrations were standardized prior 

to fitting, so coefficients are unitless. 
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Figure L.4. Elastic net regression coefficients for predicted highway upwind background PM2.5. The optimal degree of L1 and L2 

regularization was identified via five-fold stratified cross-validation. Covariates and target concentrations were standardized prior 1055 
to fitting, so coefficients are unitless. 
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Appendix M Example of cross-validation stratification 

 

Figure M.1. Train-test split with five-fold cross-validation for predicting highway upwind background NOx. This example figure 

demonstrates how measurements were split during cross-validation. In each fold, models were trained on measurements coloured 1060 
blue and tested against measurements coloured orange. Black points demonstrate model-predicted background concentrations in 

each fold. 
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Appendix N S 

   

Figure N.1. Measured background pollutant concentrations at the highway site as a function of each covariate considered in 1065 
regression models. To clarify potential underlying relationships, covariates were binned into 50 equally spaced bins based on their 

individual ranges; dots are means of the background concentrations within that bin, and bars are standard deviations. Only periods 

with valid measures of 𝑪𝒃𝒌𝒈, as defined in the methodology, are included. 
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Appendix O Ensemble ridge regression trace plots 

 1070 

Figure O.1. Highway upwind background CO ensemble model ridge regression coefficients and mean five-fold cross-validation 

score as a function of regularization strength. Coloured traces are regression coefficients and the thick black trace is root mean 

squared error of predicted concentrations. The dashed vertical line indicates the degree of regularization with the lowest error. 
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Figure O.2. Highway upwind background CO2 ensemble model ridge regression coefficients and mean five-fold cross-validation 1075 
score as a function of regularization strength. Coloured traces are regression coefficients and the thick black trace is root mean 

squared error of predicted concentrations. The dashed vertical line indicates the degree of regularization with the error. 
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Figure O.3. Highway upwind background NOx ensemble model ridge regression coefficients and mean five-fold cross-validation 

score as a function of regularization strength. Coloured traces are regression coefficients and the thick black trace is root mean 1080 
squared error of predicted concentrations. The dashed vertical line indicates the degree of regularization with the lowest error. 
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Figure O.4. Highway upwind background PM2.5 ensemble model ridge regression coefficients and mean five-fold cross-validation 

score as a function of regularization strength. Coloured traces are regression coefficients and the thick black trace is root mean 

squared error of predicted concentrations. The dashed vertical line indicates the degree of regularization with the lowest error. 1085 
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Appendix P Tables of background concentration estimate accuracy metrics 

Table P.1. Performance statistics of each background prediction method when compared to true measured 𝑪𝒃𝒌𝒈 at the highway 

upwind background, as defined in the methodology. Scores are the means across folds in five-fold cross-validation. Values were 

rounded to three significant figures. 

Pollutant Prediction method RMSE 𝑅2 Spearman’s R 𝐹1.1 𝑚𝑔 FB Max error Mean error Min error MAE 

CO 

Downsview 89.8 0.59 0.742 0.352 0.893 0.163 1280 36.6 -639 48.7 

Hanlan’s Point 110 0.375 0.63 0.4 0.996 0.11 1320 25.8 -510 55.8 

Naïve rolling min. 92 0.561 0.644 0.198 1.21 -0.116 1220 -29.6 -223 65.5 

Pseudo-wavelet 89.5 0.633 0.704 0.161 1.27 -0.157 1200 -40.9 -179 68.6 

Rolling ball 96.8 0.542 0.659 0.182 1.25 -0.14 1190 -36.1 -217 70.3 

OLS 72.2 0.665 0.728 0.328 1.02 -0.00066 1180 -0.223 -487 46.3 

Elastic Net 71.9 0.678 0.759 0.345 1.02 -0.00184 1190 -0.401 -466 44.8 

XGBoost 63.5 0.727 0.757 0.469 1.03 -0.0136 1160 -3.03 -332 37.6 

Ensemble 47.6 0.824 0.88 0.636 1.01 0.00037 1120 0.13 -294 25.2 

CO2 

Downsview 15.7 0.71 0.655 0.972 0.997 0.00768 103 3.41 -69.4 9.77 

Hanlan’s Point 25.5 0.352 0.638 0.941 0.995 0.0158 161 7 -55.5 13.4 

Naïve rolling min. 16.7 0.683 0.558 0.981 1.01 -0.0123 100 -5.5 -51 12.5 

Pseudo-wavelet 16.3 0.701 0.565 0.984 1.02 -0.0123 84.7 -5.52 -49.6 12.4 

Rolling ball 17.4 0.669 0.558 0.978 1.02 -0.0136 100 -6.11 -51.6 13 

OLS 11.3 0.843 0.792 0.994 1 -0.00022 74.3 -0.107 -51.6 7.96 

Elastic Net 11.3 0.846 0.798 0.994 1 -0.00021 75.7 -0.106 -52 7.9 

XGBoost 10.3 0.86 0.84 0.995 1 -0.00197 74 -0.876 -56.7 6.96 

Ensemble 5.34 0.957 0.942 1 1 4.92E-06 58.6 0.00366 -39.3 3.56 

NOx 

Downsview 2.93 0.655 0.678 0.102 0.649 0.192 29.8 0.93 -38.3 2.06 

Hanlan’s Point 3.5 0.439 0.696 0.184 1.07 -0.0816 31.2 -0.386 -30.8 1.9 

Naïve rolling min. 3 0.59 0.643 0.118 0.913 0.0793 30.3 0.551 -13.4 1.95 

Pseudo-wavelet 2.75 0.639 0.668 0.143 0.976 0.0668 30.1 0.499 -8.27 1.77 

Rolling ball 2.95 0.586 0.645 0.124 0.99 0.0473 30.2 0.424 -9.8 1.92 

OLS 2.51 0.71 0.798 0.168 1.09 -0.0483 29.8 -0.0396 -18 1.58 

Elastic Net 2.46 0.721 0.801 0.179 1.11 -0.0485 29.8 -0.0309 -13.9 1.54 

XGBoost 2.11 0.764 0.847 0.27 1.06 -0.0202 29.9 0.051 -7.71 1.22 

Ensemble 1.61 0.84 0.896 0.354 1.03 -0.0108 29.4 0.03 -7.05 0.904 

PM2.5 

Downsview 10.4 0.629 0.551 0.11 0.713 0.253 95.6 3.49 -76.7 6.8 

Hanlan’s Point 16.2 0.297 0.392 0.0494 0.532 0.556 131 6.97 -60.5 9.5 

Naïve rolling min. 13.9 0.422 0.389 0.1 1.11 -0.116 126 -2.05 -46.3 9.25 

Pseudo-wavelet 13.6 0.449 0.401 0.107 1.22 -0.158 111 -2.89 -39.3 9.23 

Rolling ball 14.5 0.413 0.422 0.104 1.33 -0.236 120 -4.42 -45.9 9.95 

OLS 8.91 0.719 0.693 0.148 1.04 -0.00075 86 -0.249 -56.7 6.01 

Elastic Net 8.92 0.721 0.694 0.145 1.04 0.000101 86.2 -0.252 -56.8 6 

XGBoost 7.4 0.786 0.742 0.206 1.06 -0.0311 81.2 -0.594 -58.6 4.66 

Ensemble 5.59 0.869 0.823 0.264 1.01 0.00207 75.5 -0.0057 -45.6 3.51 
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Code and data availability. Analysis code is available in a Zenodo repository with DOI: 10.5281/zenodo.13236885. Raw 

data may be made available upon request. 
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