1	Supplementary Material					
2	For					
3	A Novel Methodology for Assessing the Hygroscopicity of Aerosol Filter Samples					
4	Nagendra Raparthi ¹ , Anthony S. Wexler ^{1,2,3,4} , Ann M. Dillner ¹					
5	¹ Air Quality Research Center, University of California, Davis, 95616 CA, USA					
6	² Mechanical and Aerospace Engineering, University of California, Davis, 95616 CA, USA					
7	³ Civil and Environmental Engineering, University of California, Davis, 95616 CA, USA					
8	⁴ Land, Air, and Water Resources, University of California, Davis, 95616 CA, USA					
9						
10	Correspondence to: Ann M. Dillner (amdillner@ucdavis.edu)					
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						

	1st Day	2nd day	3rd day	4th day	5th day
T (⁰ C) - <i>Observed</i>	20.5	21.2	20.3	19.7	19.5
RH (%) - <i>Observed</i>	41.4	63.9	52.4	37.2	49.8
P (mm Hg) - Observed	767.6	764.3	762.5	767.8	764.5
From Online Psychrometric Chart	Specific volume (m ³ /kg)				
Room	0.832	0.843	0.839	0.828	0.833
84.3%	0.840	0.847	0.845	0.837	0.840
90.8%	0.842	0.848	0.847	0.838	0.841
97.5%	0.843	0.850	0.848	0.840	0.842
Inverse of specific volume	Air density (kg/m³)				
Room	1.202	1.186	1.192	1.207	1.200
84.3%	1.190	1.181	1.183	1.195	1.190
90.8%	1.188	1.179	1.181	1.193	1.189
97.5%	1.186	1.176	1.179	1.190	1.188
	Change in the mass (µg) of air from measured RHs to room RH				
Mass (in µg)	1st Day	2nd day	3rd day	4th day	5th day
84.3%	233	114	172	264	204
90.8%	245	120	193	247	196
97.5%	293	183	237	323	240

- **Table S1.** Air density and mass obtained for room and measured relative humidities (RHs) from
- 32 Psychrometric Chart

Figure S1. Water activity of saturate BaCl₂.2H₂O at different temperatures (Source: Wang et al.,
 2012)

38

Figure S2. Comparison of the variation in wet weight of plain and gold-coated aluminum
 pouches with loaded filters

Figure S3. Variation in the weight of the plain aluminum pouch with a Teflon filter (a) 84.3%
and (b) 90.5% over time starting when the pouch is removed from the respective chamber and
placed on the balance. Hollow circles represent the transfer from the wet chamber to the balance,
while solid circles depict the transfer from the dry desiccator to the balance

Figure S4. Variation in the wet weight of the plain aluminum pouch without a Teflon filter (a)
 84.3%, (b) 90.8% and (c) 97.5% over time starting when the pouch is removed from the
 respective chamber and placed on the balance.

Figure S5. Comparison of estimated GFs from the 20 minutes wet weighing interval with the 5,
 10, and 15-minute intervals. Error bar represents the standard deviation.