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Abstract: Focal and Zonal Statistics are fundamental tools in GIS for characterizing spatial
patterns, yet they have traditionally addressed spatial stratified heterogeneity (SSH) and spatial
positional dependence (SPD) in isolation. To overcome this limitation, we introduce FZStats
v1.0, a Python 3/QT5-based toolbox that not only integrates conventional Focal and Zonal
statistics, but also implements a novel Focal-Zonal Mixed Statistics approach capable of jointly
capturing both SSH and SPD. First, we formally develop the Focal-Zonal Mixed Statistics
model to address stratified heterogeneity, spatial dependence, and their interactions within a
unified framework—filling a key methodological gap left by traditional approaches that cannot
accommodate their co-occurrence in real-world spatial data. Second, FZStats v1.0 provides a
user-friendly graphical interface for flexible configuration of neighborhood window shapes
(e.g., rectangular, circular, elliptical), sizes, and statistical operations (e.g., mean, percentiles).
It also supports multiprocessing and batch operations, enabling scalable computation across
diverse spatial analysis tasks. Third, we validate the effectiveness and robustness of the new
method through a geothermal anomaly detection case study. Across multiple years, seasons,
representative target sizes, and local window radii, the Focal-Zonal Mixed Statistics
consistently outperforms both Focal and Zonal Statistics, demonstrating its superior capability
in enhancing anomaly signals under complex spatial conditions. In summary, FZStats v1.0 is

not only a theoretically grounded and methodologically novel tool, but also a highly adaptable
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and practical solution for spatial data analysis in diverse application domains.

Keywords: Spatial Statistics; Raster Operations; Spatial Stratified Heterogeneity (SSH);
Spatial Positional Dependency (SPD); Focal/Zonal Statistics.

1 Introduction

Geographic Information Systems (GIS) represent a milestone in the evolution of geography by
providing a new paradigm for the integrated management, analysis, and visualization of spatial
data (Goodchild, 1992; Bernhardsen, 2002; Longley et al., 2015). As a vital analytical module
within GIS, spatial statistics enable researchers to quantify and interpret spatial patterns and
relationships on the Earth's surface with unprecedented precision (Fischer & Getis, 2010;
Fotheringham & Rogerson, 2013). With continued advances in GIS technology, investigators
can now more easily explore the distribution, temporal evolution, and driving mechanisms of
spatial variables; and spatial statistical theories and methods play an increasingly prominent
role in geographical studies. Two foundational concepts in spatial statistical analysis are spatial
heterogeneity and positional dependence (Goodchild & Haining, 2004). Correspondingly,
Zonal Statistics and Focal (Neighborhood) Statistics offer two complementary approaches.
Zonal Statistics partitions raster units representing the target variable into discrete zones based
on predefined schemes, computes summary metrics such as mean, maximum, minimum, and
sum within each zone, and renders the results as a mosaic raster layer (Singla & Eldawy, 2018;
Haag et al.,, 2020; Winsemius & Braaten, 2024). In contrast, Focal Statistics defines a
neighborhood around each cell according to specified window shape and size, calculates the
same set of summary metrics within that neighborhood, and assigns the resulting value to the
central cell; by sliding this window across all locations, it thereby quantifies how these statistics
vary with the window's movement (Mathews & Jensen, 2012; Kassawmar et al., 2019; Zhang
et al., 2021).

Mainstream GIS platforms such as ArcGIS and QGIS include dedicated modules for Zonal
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Statistics and Focal Statistics, both of which have been widely adopted in practice. From an
application standpoint, Zonal Statistics primarily deals with spatial stratified heterogeneity
(SSH) by partitioning the study area into zones based on environmental characteristics, thereby
capturing SSH (Wang et al., 2016; Wang and Xu, 2017; Gao et al., 2022). For instance,
vegetation growth or potential often varies markedly among zones delineated by slope and
aspect, which are key drivers of vegetation dynamics (Zhang et al., 2018, 2019; Xu et al., 2020).
Conversely, Focal Statistics focuses on spatial positional dependence (SPD) by employing
moving-window or geographically weighted techniques to detect and mitigate positional effects
(Tobler, 1970; Wolter et al., 2009; Wagner et al., 2018). For example, even soils or rocks with
the same texture exhibit geochemical variations that diminish with decreasing distance,
reflecting underlying positional dependence; consequently, spatial interpolation of element
concentrations typically assigns greater weight to nearer samples (Krige and Magri, 1982;
Trangmar et al., 1986; Zuo, 2014).

In practice, SSH and SPD often co-occur, manifesting as abrupt and gradual variations
respectively. At broad scales, terrestrial vegetation patterns illustrate SPD through meridional,
latitudinal, and altitudinal gradients driven by land-sea distribution, solar radiation, and
elevation (Qiu et al., 2013; Dong et al., 2019; Eddin and Gall, 2024). Conversely, local
topography, microclimate, and human activity introduce sharp boundaries in vegetation cover,
generating SSH—for example, stark contrasts between shady and sunny slopes (Alvarez-
Martinez et al., 2014; Zhang and Zhang, 2022) and between urban and rural landscapes (Zhang
et al., 2023b). Similarly, in mineral geology, stratigraphic age differences produce SSH in
resource distribution (Zhao, 2006; Zuo, 2020), while internal and external geological processes
impart SPD to mineralization patterns (Cheng, 2006, 2012), as modeled by geostatistics and
kriging (Krige, 1951; Goovaerts, 1997; Miiller et al., 2022). Therefore, effective spatial

statistical analysis must integrate both SSH and SPD.
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To address these challenges, previous studies have integrated SSH and SPD, developing
specialized hybrid models for specific spatial-statistical objectives. For example, Zhu et al.
(2019) extended traditional spatial interpolation methods—normally focused solely on spatial
dependence—by introducing environmental similarity constraints, and formalized the “Third
Law of Geography”, which states that geographically similar contexts yield similar target-
variable values (Zhu et al., 2018; Zhu et al., 2020). In a similar vein, Zhang et al. (2019)
incorporated spatial sliding-window techniques into vegetation potential assessment, resulting
in a model that simultaneously considers spatial proximity and environmental similarity (Xu et
al., 2020; Zhang, 2023a). More recently, Lessani and Li (2024) developed the Similarity and
Geographically Weighted Regression (SGWR) model, which combines distance-based and
similarity-based weights to overcome limitations of traditional geographically weighted
methods that address only spatial dependency.

Although these methods successfully integrate SSH and SPD in specific tasks such as
interpolation and regression, there is still no general-purpose GIS toolbox comparable to Focal
and Zonal Statistics within standard GIS workflows. To fill this gap, this study presents FZStats
v1.0, which unifies traditional Zonal Statistics and Focal Statistics with the novel Focal-Zonal
Mixed Statistics model. Leveraging multiprocessing and batch-processing capabilities, FZStats
v1.0 improves computational efficiency and optimizes usability. Moreover, from a logical
perspective, Focal-Zonal Mixed Statistics can be viewed as a generalization of the two
traditional approaches. Specifically, when the moving window covers—or substantially
exceeds—the entire study area (i.e., window size — o0), the method converges to Zonal
Statistics, effectively addressing SSH. Conversely, when only a single zone is defined, it
simplifies to Focal Statistics, capturing SPD. In the more common and complex scenarios where
both SSH and SPD coexist, only the mixed approach is capable of simultaneously accounting

for both characteristics. Consequently, FZStats v1.0 is positioned to function as a
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comprehensive analytical framework for spatial studies necessitating simultaneous evaluation
of SSH and SPD parameters across diverse application domains.

2 Models

2.1 Focal Statistics model

The Focal Statistics method addresses spatial positional dependence by computing summary
statistics within a defined neighborhood around each raster cell. The implementation involves

three main steps: (1) defining the neighborhood window—specifying its shape (e.g., square,
circular, elliptical) and size; (2) identifying the neighboring cells—Ilocating all raster cells

within the neighborhood of the focal cell; and (3) computing statistics—applying a selected

statistical function (e.g., mean, sum, minimum, maximum) to the identified neighboring cells
and assigning the result to the focal cell.
2.1.1 Defining the neighborhood window
Defining the neighborhood window is a fundamental step in Focal Statistics. This step involves
specifying two key parameters: the window's shape and size. These parameters should be
determined according to the spatial characteristics of the data and the research objectives.
Common shape options include circular, square, and rectangular, while the window size is
typically defined by the number of cells.

To implement these neighborhood windows in a computational framework, we developed
three distinct each corresponding to a different geometric shape: rectangular, circular, and

elliptical. These window classes are outlined in Listing 1.



123

124

125

126

127

128

129

130

131

132

133

134

135

class KDGeoRectNbhWindow:
def __init__(self, height: int, width: int):
self.height = height
self.width = width
self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

class KDGeoCircleNbhWindow:
def __init__(self, radius: int):

self.radius = radius
self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...
class KDGeoEllipseNbhWindow:
def __init__(self, semi_major_axis: int, axis_ratio: float, azimuth: float):
self.semi_major_axis = semi_major_axis
self.axis_ratio = axis_ratio

self.azimuth = azimuth
self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

Listing 1. Code fragment for the three types of neighborhood window classes: the rectangular window class
(KDGeoRectNbhWindow), the circular window class (KDGeoCircleNbhWindow), and the elliptical window
class (KDGeoEllipseNbhWindow).

The mathematical essence of a neighborhood window lies in its formal specification of a
spatial domain of influence, which is typically discretized as a two-dimensional binary mask
matrix. This matrix defines the inclusion of neighboring cells within a fixed spatial extent
centered on a focal cell. Specifically, it indicates whether each cell in the local neighborhood
should be considered for subsequent analysis or computation. The matrix can be formally

expressed as:

1 if (x,y) € Qy
0 otherwise

NMcx,cy(xIY) = { (1)

where (), denotes the neighborhood spatial domain centered on cell (cx,cy), whose

geometric properties are jointly determined by the shape and size parameters of the window. As
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shown in Listing 1, the generate mask matrix method implemented in each window class is
responsible for generating the neighborhood mask matrix according to the specified window
parameters (e.g., height, width, radius).
2.1.2 Identifying cells within the neighborhood
After the mathematical formulation of the neighborhood window is established (as defined in
Eq. (1)), the spatial sliding window technique can be employed to identify cells within
predefined neighborhoods centered on each focal cell for localized analysis (Hyndman and Fan,
1996). For a given focal cell located at position (i, j), the effective neighborhood cell set can be
obtained through the following two computational stages.

(1) Alignment of the neighborhood mask matrix

To ensure accurate spatial correspondence, the geometric center of the neighborhood mask
matrix NM € {0, 1}"™*™" is aligned with the focal cell located at (i, j) on the raster grid. A
mapping is then established from each element in the mask matrix to its corresponding location
in the raster data domain. Let the center of the mask matrix be located at (cx,cy), and let
(u,v) denote the row and column offsets from the center. Then, the mapping from mask
coordinates to raster coordinates is defined as:

xy)=(>0+ wj+v) )
where (x,y) denotes the coordinate of a neighboring cell in the raster grid, derived from the
relative offset (u, v) with respect to the focal cell. This mapping ensures that the neighborhood
window is precisely aligns with the focal cell.

(2) Identification of the valid neighborhood cell set

To handle boundary effects when the neighborhood window extends beyond the raster
extent, a boundary-clipping strategy is adopted. That is, only the cells that are entirely located
within the raster data domain ) are retained. The valid neighborhood cell set Cr 4534 (i, /)

is defined as:
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Crvaia(t,)) ={(x,y) € Qp INMcyey(x,y) = 1} 3)
where NM, ., (x,y) € {0,1} is the corresponding value in the neighborhood mask matrix. A

value of 1 indicates inclusion as a valid neighbor for subsequent analysis, while a value of 0
signifies exclusion.

2.1.3 Calculating the Focal Statistics

After identifying the valid neighborhood cells, their corresponding values are retrieved from
the raster dataset and organized into a two-dimensional array. Based on these values, statistical
measures such as mean, percentiles, and other user-defined metrics can be computed. The
resulting statistic is then assigned to the corresponding position in the output raster.

This procedure can be implemented through a function that obtains the neighborhood mask
matrix, identifies valid neighborhood values for the focal cell, and computes the specified
statistic. Listing 2 presents a representative implementation of this workflow.

The computation is performed for every cell in the input raster, and the resulting values

are written to the output raster, producing the final focal statistics result.
def calculate_focal_statistics_result(

nbh_window_mask: np.ndarray,

data_arr: np.ndarray,

data_align_pos: Tuple[int, int],

stats_parameters_list: List[str]

) -> float:

cur_nbh_mask, cur_nbh_data = calculate_current_nbh(nbh_window_mask, data_arr, data_align_pos)
valid_value_arr = cur_nbh_data[cur_nbh_mask]

return calculate_statistics(valid_value_arr, stats_parameters_list)

Listing 2. Python function calculate focal statistics result for computing focal statistics. The function
identifies valid values from a neighborhood centered at the focal cell, filters them using a predefined mask,

and then calculates the specified statistics.

2.2 Zonal Statistics model

Unlike Focal Statistics, which operate solely on a single value raster, Zonal Statistics requires
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two input raster layers: a value raster and a zone raster. The zone raster defines the spatial
configuration and categorical labels of zones, where each cell is assigned to exactly one zone.
Zonal statistics computes summary metrics (e.g., mean, sum, minimum, maximum) for each
zone by summarizing the values of the corresponding cells in the value raster. The resulting
statistic is then uniformly assigned to all cells within that zone. After all zones are processed,
the individual results are combined to generate the final output raster.

The implementation of Zonal Statistics typically involves two primary steps: (1)
identifying the set of cells in the value raster corresponding to each zone based on the zone
raster, and (2) calculating summary statistics across those cell values within each zone.

2.2.1 Identifying cells in the value raster falling into each zone

In Zonal Statistics, spatial overlay analysis is employed to associate each cell in the value raster
with a specific zone, as defined by a corresponding zone raster (Hyndman and Fan, 1996). This
process maps each cell in the value raster to its corresponding zone based on spatial alignment.
Based on this mapping, cells in the value raster are grouped according to their zone membership,
resulting in a set of raster cells for each zone.

2.2.2 Calculating the Zonal Statistics

Once the set of raster cells belonging to each zone has been identified, a summary statistic is
computed based on the corresponding cell values. The result is then uniformly assigned to all
cells within that zone. After all zones are processed, the individual zone-level results are
mosaicked to generate the final output raster.

Listing 3 demonstrates the implementation of this zonal statistics procedure. The
calculate_zonal_statistics_result function accepts a value raster (data_arr), a zone raster
(feature_arr), and a list of statistical parameters. For each unique zone code identified in the

zone raster, the function identifies the corresponding cell values from the value raster, performs
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the specified statistical computation, and assigns the result to all cells within the zone,

ultimately yielding a complete zonal statistics output raster.

def calculate_zonal_statistics_result(
data_arr: np.ndarray, feature_arr: np.ndarray, stats_parameters_list: List[str]
) -> np.ndarray:

stats_result_arr = np.full_like(data_arr, np.nan)

zone_code_1list = np.unique(feature_arr)

for code in zone_code_list:
code_mask = (feature_arr == code)
masked_data_arr = data_arr[code_mask]
stats_result = calculate_statistics(masked_data_arr, stats_parameters_list)
stats_result_arr[code_mask] = stats_result

return stats_result_arr

Listing 3. Python implementation of the zonal statistics computation. The calculate zonal statistics result

function computes a specified statistic for each zone defined in the zone raster and assigns the result to all

corresponding cells in the output raster.

2.3 Focal-Zonal Mixed Statistics

Similar to Zonal Statistics, Focal-Zonal Mixed Statistics operates on two raster inputs: a value
raster and a zone raster. However, this method uniquely integrates spatial and categorical
criteria, combining the localized analysis of Focal Statistics with the zone-based constraints of
Zonal Statistics. The computation involves two primary stages:

2.3.1 Identifying neighborhood cells belonging to the same zone

In this step, the selection of relevant cells for analysis is governed by two criteria, the spatial
proximity, as defined by a neighborhood window centered on the focal cell, and zone

homogeneity, requiring that all selected cells belong to the same zone as the focal cell.

10
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For a focal cell located at position (i, j), the valid neighborhood cell set Crz ;414 (i, j)
can be defined as:

Crzvaia(t)) = {(0Y) € U [NMeyey (,y) =1 A Z(x,y) = Z(i, )} (@)
where NM ., ¢, (x,y) € {0,1} is the corresponding value in the neighborhood mask matrix. A
value of 1 indicates inclusion as a candidate valid neighbor for subsequent analysis, whereas a
value of 0 indicates that the cell is excluded. €, denotes the spatial domain of the raster dataset,
(x,y) are the relative positions of candidate neighboring cells, and Z(i,j) is the zone code of
the focal cell, which serves as the categorical constraint.

2.3.2 Calculating the Focal-Zonal Mixed Statistics

Once the set of valid neighboring cells has been determined based on both spatial proximity
and zone membership, the next step is to compute the desired statistical measures using the
identified cell values. For each focal cell, only those neighboring cells that lie within the defined
spatial window and share the same zone code are included in the statistical calculation. This
dual constraint ensures that the resulting Focal-Zonal Mixed Statistics reflects localized
variation while maintaining consistency within categorical spatial units.

Listing 4 demonstrates the implementation of the Focal-Zonal Mixed Statistics procedure.
The calculate focal zonal statistics result function computes a localized statistic for a given
focal cell by integrating both spatial and zonal constraints. It first identifies the neighborhood
data and associated zone codes based on the predefined window mask centered at the target
position. Then, it applies a zonal constraint by retaining only those neighboring cells whose
zone codes match that of the focal cell. After applying the combined focal-zonal mask, the
specified statistic is computed on the resulting valid value set.

The computation is performed for every cell in the input raster, where the neighborhood is
constrained both spatially and categorically. The resulting values are written to the output raster,

producing the final Focal-Zonal Mixed Statistics result.

11
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def calculate_focal_zonal_statistics_result(
nbh_window_mask: np.ndarray,
data_arr: np.ndarray,
feature_arr: np.ndarray,
data_align_pos: Tuple[int, int],
stats_parameters_list: List[str]

) -> float:

cur_nbh_mask, cur_nbh_data = calculate_current_nbh(nbh_window_mask, data_arr, data_align_pos)

_, cur_nbh_feature = calculate_current_nbh(nbh_window_mask, feature_arr, data_align_pos)

cur_fééture‘: featuré_arr[Aata_;iién_ﬁos]
cur_feafufe_mask ;‘(cﬁf_ﬁbh_feature>;; cﬁr_feature)
fz_mésk ; cﬁr_ﬁbﬁ;magk & eur_féatu;e_méék
Qaiia;Qalue_érf‘; ﬁur_nﬁﬁ;dat;[fz;ﬁaskj

retpfn calc;iéfe;;tatistic;kvéii&;v;lﬁe_arr, stats_parameters_list)

Listing 4. Python implementation of the Focal-Zonal Mixed Statistics computation. The function filters
neighborhood cells based on both spatial proximity and zone code consistency, then calculates a user-

specified statistic on the resulting valid subset.

3 Module design
3.1 Modeling process for Focal-Zonal Mixed Statistics
The detailed modeling process for Focal-Zonal Mixed Statistics is described as follows.

(1) Preparation of the value raster and the environmental factor rasters

This initial step involves collecting and preprocessing the spatial datasets required for the
analysis. The value raster typically represents the primary variable of interest, such as
temperature, pollution levels, or vegetation indices. The environmental factor rasters
characterize variables that potentially influence the spatial heterogeneity of the target variable,
including elevation, slope, land cover, and other relevant geographical or ecological attributes.
Preprocessing procedures typically include resampling, reprojection, and normalization to

ensure that all raster layers share a consistent spatial extent, resolution, and coordinate reference

12
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system.

(2) Construction of Unique-Value Environmental Characteristic Zonal Raster (UV-
ECZR)

In this step, environmental factor rasters—whether continuous or categorical—are
reclassified into discrete categories using a well-defined discretization scheme. For continuous
variables, the classification method should be selected according to the data distribution and
research objectives: natural breaks (Jenks) are recommended for datasets exhibiting clear
clustering, equal interval classification suits uniformly distributed data, and quantile
classification ensures balanced representation across value ranges. For categorical variables,
original classes are typically retained unless aggregating categories improves analytical validity.
The optimal number of classes, usually between 5 and 8, should balance environmental
heterogeneity with adequate sample size within each zone. Classification performance can be
evaluated by minimizing within-zone variance, maximizing between-zone variance, and
assessing clustering validity through the silhouette coefficient. After reclassification, the final
UV-ECZR is produced via spatial overlay analysis, wherein each unique combination of
reclassified layers is assigned a Unique-Value Environmental Characteristic Code (UV-ECC).
Cells sharing the same UV-ECC form a Similar Environmental Unit (SEU), ensuring that
resulting zones capture meaningful ecological thresholds while maintaining sufficient sample
sizes for statistical reliability. A detailed methodological workflow for this process is provided
in Sect. 3.2.1.

(3) Determination of neighborhood window and statistical parameters

This process involves specifying the neighborhood window and specifying the selecting
appropriate statistical parameters for the Focal-Zonal Mixed Statistics. The window size should
be selected based on several considerations, including the spatial scale of the studied

phenomenon (e.g., local versus regional patterns), the resolution of the input rasters (with
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coarser resolution favoring larger windows), and computational efficiency (as larger windows
significantly increase processing time). The window shape should be chosen according to the
nature of spatial anisotropy (elliptical for directional patterns), processing efficiency
(rectangular shapes are computationally faster), mitigation of edge effects (circular windows
help reduce boundary artifacts), and data characteristics (rectangular for grid-aligned features
and circular for isotropic phenomena). The selection of the statistical function should align with
the analytical objectives: the mean is suitable for general smoothing and trend detection; the
standard deviation is appropriate for identifying variability and anomalies; the minimum and
maximum help detect extreme values; percentiles (such as the 90th percentile) support robust
threshold analyses; and the sum is useful for aggregation tasks.

(4) Preparation of output raster

This step involves generating an output raster that matches the input rasters in terms of
spatial extent, resolution, and coordinate reference system to ensure seamless spatial alignment.
The output raster serves as a container to store the results of the Focal-Zonal Mixed Statistics
computations. Before processing, the output raster is typically initialized with null values (e.g.,
NoData or NaN) to indicate that no computation has yet been performed. As the computation
proceeds, each computed statistic is written into the output raster at the spatial location
corresponding to the focal cell.

(5) Calculation of the statistics

In this step, the moving window technique is employed to systematically traverse each
focal cell across the study area. For each focal cell, its local neighborhood is first determined
based on the predefined neighborhood window parameters (refer to Sect. 2.1.1). Within this
neighborhood, cells belonging to the same SEU as the focal cell are identified by comparing
their UV-ECC values. The specified statistical measure is then calculated using the

corresponding values from the value raster for the selected cells. The computed statistic is
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assigned to the focal cell's position in the output raster. This procedure is repeated iteratively
for all focal cells until the output layer is fully generated.

(6) Save of output raster

After the computation is complete for all focal cells, the finalized output raster is written
to disk. After all cells have been iteratively processed, the complete output raster is finalized
and saved to disk. Ensuring proper saving procedures, such as specifying an appropriate file
format (e.g., GeoTIFF) and maintaining consistent georeferencing information, is essential to
preserve data integrity and facilitate subsequent spatial analyses.

3.2 Core algorithm design for Focal-Zonal Mixed Statistics

3.2.1 Algorithm design for the UV-ECZR construction

Assume there are p continuous environmental variables, denoted as {E;, E,, ..., Ep}, and their
corresponding reclassified variables are {CEy, CE5,...,CEy}. The number of categories for
CE, is denoted as S, and the required digit length D, is computed as:

Dy = |1gSq] +1 )
where Ig denotes the logarithm with base 10, |.| represents the floor function, and q =
1,2,...,p. The category values for each environmental variable must be positive integers, and
the value range for the reclassified raster CEq is [1,S,]. It is necessary to prepend a sufficient
number of “0”’s to ensure the code has a consistent digit length of Dy.

Thus, each pixel at location (i,j) in the raster can be represented by the vector of its p
reclassified environmental category values:

CE(i,j) = (CE1(i,)), CE2 (i, /), .-, CER (i, ) (6)
where each component CE,(i,j) is the integer category code of the p-th environmental
variable at pixel (i,j).

The UV-ECC at pixel (i,j) is defined as a unique scalar encoding of the vector CE(i, j).

One efficient way to construct this code is by decimal digit concatenation:

15
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UV = ECC (i,]) = ¥0_, CEq(i,j) - 10%k=a+1Px %

Based on the framework of raster map algebra, the UV-ECZR is constructed through a
spatial overlay operation applied to the p reclassified environmental variable layers. This
process corresponds to a local operation in raster algebra, where the categorical values from
each layer are combined on a cell-by-cell basis to generate a multi-dimensional representation.

A more realistic and pertinent code sample is provided in Listing 5.

import os
import arcpy

feature_dir = r"E:\rn\paper\pl\A_data\f_z\L_20230928\feature"

# List of preclassified environmental variable layers (raster files)
ce_layers = ["slope_rc9.tif", "aspect_rc9.tif"]

# Read the environmental variable layers into a list of Raster objects
ce_rasters = [arcpy.sa.Raster(raster) for raster in ce_layers]

# Perform a cell-by-cell overlay operation (local operation in raster algebra)
uv_eczr_raster = ce_rasters[0]
for raster in ce_rasters[1:]:

uv_eczr_raster += raster

# Save the resulting UV-ECZR (multi-dimensional raster)
uv_eczr_path = os.path.join(feature_dir, "slope_rc9_aspect_rc9.tif")
uv_eczr_raster.save(uv_eczr_path)

Listing 5. Python implementation of UV-ECZR generation using arcpy-based raster map algebra. Each input
raster layer represents a reclassified environmental variable (e.g., slope or aspect), and the local overlay
operation combines their category codes to produce a unique zone identifier for each pixel.

3.2.2 Algorithm design for determining the valid range for statistics under the sliding
window technique

Rectangular windows, which align with the row and column structure of raster data, are widely
used in the sliding window operations due to their simplicity and computational efficiency.

However, its drawback is also evident: cells located at the four corners are significantly farther
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from the focal cell than those on the horizontal and vertical axes (Zhang et al., 2016a). Despite
this, rectangular windows remain among the most commonly employed window shapes.

In this study, we consider not only rectangular windows but also circular and elliptical
window shapes. Since a circle is a special case of an ellipse, the ellipse is used as a generalized
example to illustrate the algorithm for determining the valid range of cells for statistics under
the sliding window technique in the context of Focal-Zonal Mixed Statistics.

(1) Mask matrix for elliptical window

An elliptical window is defined by three key parameters: the length of major axis, the ratio
of the minor axis to the major axis, and the deflection angle of major axis. Let (xq, Vo)
represent the center of the ellipse, i.e., the current location, a denotes the semi-major axis
length, r be the minor-to-major axis ratio, and 6 be the deflection angle. Then the elliptical

window can be mathematically expressed as:

[(x—x¢) cos B+(y—y,) sin ]2

3 —(x—x0) sin 8+(y—y,) cos 0]2
Ellipse((xy,v0),a,17,0) = = G Sm(m)f o) €OS ®)

Based on Eq. (8), the bounding box of the elliptical window can be represented as

BBox,yipse(minX, maxX, minY, maxY), where minX, maxX, minY, maxY are as follows:

4CF
inX X=x0t |[55——
minX,maxX =xo £ |———
4AF (9)
k minY, maxY =y, + |[5——
B2—4AC

where,

(A =a?(sin*0 +1r?cos?0)

B =2a?(r?—-1)sin6cos b

C = a?(cos?0 +r?sin?0) (10)
lF = —%(on + Ey,) —r2a*

The bounding box BBo0X.yipse provides a simplified and direct spatial reference for
constructing a Boolean mask matrix for the elliptical window, i.e., Matrixgyipse mask> Where

cells inside and outside the BBoXpse are assigned values of “True” and “False”,
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371  respectively. In Focal Statistics, this binary mask is used directly to identify the valid

372 neighborhood cells for statistical operations (see Fig. 1a).
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374  Figure 1. Heatmaps for the Boolean mask matrix: (a) the elliptical window of Focal Statistics, (b) the
375  similar environmental unit (SEU) of Zonal Statistics, and (c) the elliptical window similar environmental
376 unit (EW-SEU) of Focal-Zonal Mixed Statistics.

377 (2) Mask matrix for similar environment in the bounding box

378 SEU is the basic object of Zonal Statistics. In Focal-Zonal Mixed Statistics, for the current
379  cell, the elliptical window similar environmental unit (EW-SEU) is established according to the
380 environmental characteristic code within the initial neighborhood window defined by the
381  bounding box. Using MatriXsimiiarity mask to represent this unit, cells with the same
382  environmental characteristic code as the current cell are assigned a value of “True”, while others
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are assigned a value of “False”, as shown in Fig. 1b.

(3) Mask matrix for similar environment in the elliptical window

The matrices of steps (1) and (2) shares the same dimensions, and thus the similar
environment mask matrix for the current cell in the elliptical window can be constructed using
a logical “AND” operation between these two matrices, as expressed in the following equation:

Matrixg s mask = MatrixXsimiarity mask N MatrixXguipse mask (11)
where A denotes the logical “AND” operator. Matrixg g mask serves as the basis for
determining the valid range for Focal-Zonal Mixed Statistics, as illustrated in Fig. 1c.

3.2.3 Algorithm design for the statistics calculation
The core algorithm for statistical computation within the Focal-Zonal Mixed Statistics
framework consists of the following steps:

(1) Determination of valid statistical cells in the value raster

Using Matrixy .. to represent the cell array from the value raster within the bounding
box defined above, then by performing a bitwise multiplication of Matrixg s ;masi With
Matrixyq,e, the final valid statistical value matrix Matrixy,;;q 1S obtained:

Matrixygig = Matrixg s mask @ Matrixyqpe (12)
where®denotes bitwise multiplication. This operation collects cells from the value raster that
are located within the neighborhood and share the same UV-ECC as the current cell, while
masking out other cells that could interfere with the statistical results. In Matrixy 4, the
masked cells can be represented with “NaN”".

(2) Design of the calculation function for the statistics

Taking Matrixy4iq as the final input, the calculation functions for Focal-Zonal Mixed
Statistics can be designed based on scientific computing tools such as NumPy. This library
provides a range of statistical methods, including minimum, maximum, mean, standard

deviation, percentiles, and more. For instance, the “numpy.nanmax()” method can ignore “NaN”
p g
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values and return the maximum value of Matrixy 4, While the “numpy.nanpercentile()”
method, also ignoring “NaN” values, calculates the n-th percentile of Matrixy ;4.
3.3 User interface design

The Focal-Zonal Mixed Statistics, along with traditional Zonal Statistics and Focal
Statistics, are included in the newly developed toolbox, FZStats v1.0, using Python3 and QT5.
The user interface is organized into three tabs, each dedicated to one of the three methods,
allowing users to switch among them (see Fig. 2). Taking the tab for Focal-Zonal Mixed
Statistics as an example, the interface is divided into four main sections, and the detailed
description of the user interface design is given as follows.

Focal Zonal Statistics ot

Focal Stats Zonal Stats FZ Mized Stats

Rasters Setting

Value Raster  E:/rr/3_works/CBS/LST/LST_STD. tif B
Zone Raster E:frn/3_works/CBSHITEAASAAS_olazs. tif E‘
Result Raster E:/rn/3_works/CBS/AS as_rst/eirZ40_mean fz. tif ™ |
Feighbourhood Setting Statistics Setting
Window Tvpe CIECLE w Statistics Type MEAH w
Radins 240

fdvanced Setting

Sub—gridding 1,1
Tnits o Cell .::::. Map Frocess Humber 16
Threzhold 1

Tznore Wodata

Frocessing Mezzage

Value Raster: E:/rn/3_works/CES/LST/LST_STD. tif

Tome Raster: E:/vne/S_works/CES/HJTEZ S 03_olass tif

Result Raster: E:/frn/3_weorks/CES/AS/as_rst/cirf40_mean fz. tif
Tnit: Cell

Heighbourhood Window: CIRECLE

Radius: 240

Statizties Type: MEAN

Columns: 1

Rows: 1

Frocezs Humber: 16
m1 111

Add to Config File 3 Fun | > Quit

Figure 2. User interface design of FZStats v1.0
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(1) Input and output design

Users can load the value raster and UV-ECZR layers as inputs. Additionally, the output
path and filename for the result raster can be specified.

(2) Neighborhood window design

Users can define the shape (e.g., rectangular, circular, elliptical) and and size of the
neighborhood window. For rectangular and circular windows, size is controlled by the half-side
length and radius, respectively. Elliptical windows are configured via three parameters: the
length of the major axis, the ratio of the minor axis to the major axis, and the deflection angle
of major axis.

(3) Statistical measure design

A dropdown menu allows users to choose from various statistical measures (mean, max,
std, etc.). For percentile-based statistics, the desired percentile value (e.g., 50th, 75th, 98th)
must be specified.

(4) Optimization settings

This section presents optimized parameter configurations to enhance computational
efficiency:

Chunk processing: Divide large raster layers into smaller chunks to manage memory usage
efficiently.

Parallel processing: Specify the number of processors to enable parallel computation and
reduce runtime on multi-core systems.

Threshold setting: Define a minimum sample threshold for statistical operations to ensure
robust and meaningful results.

Additionally, a batch processing mode is provided for automation. Users can prepare a
configuration file (config.ini) to set parameters for multiple runs. This facilitates efficient task

management, parameter reuse, and error tracking.
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4 Experimental study

4.1 Background of the case

Geothermal resources, similar to coal, oil, and natural gas, are valuable energy mineral
resources whose development and utilization play a crucial role in alleviating energy supply
pressures and improving the global environment (Huang and Liu, 2010; Goldstein et al., 2011).
The primary indicator for geothermal exploration is the detection of thermal anomalies
(Romaguera et al., 2018; Gemitzi et al., 2021). In recent years, with the rapid advancement of
remote sensing technologies, land surface temperature (LST) derived from thermal infrared
bands has become a key parameter for identifying geothermal anomalies. However, LST is
influenced not only by geothermal activity but also by environmental factors such as slope,
aspect, and surface vegetation cover (Tran et al., 2017; Duveiller et al., 2018; Zhao and Duan,
2020).

To effectively extract LST anomalies directly related to geothermal activity, it is essential
to suppress the confounding effects of surface environmental variables. Within the analytical
framework of the Focal-Zonal Mixed Statistics developed in this study, terrain features are
incorporated into environmental zoning, and the spatial sliding window technique 1s employed
to mitigate environmental interference and enhance the detection of geothermal anomaly
signals.

4.2 Data preprocessing

4.2.1 Spatial distribution of LST

In this study, Landsat 8 imagery (Orbit Number: 116031) acquired during the spring, summer,
and autumn seasons of 2015, 2019, and 2023, covering the Changbai Mountain region, was
utilized for land surface temperature (LST) mapping and geothermal anomaly detection. The
selection of multi-temporal images across different seasons and years was intended to robustly

validate the effectiveness of the proposed method and to explore the temporal evolution patterns
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of geothermal anomalies, thereby providing improved support for geothermal exploration.

Following standard preprocessing procedures, including radiometric calibration and
atmospheric correction, the Universal Single-Channel Algorithm (Jiménez-Muifioz et al., 2009,
2014; Zhang et al., 2016b) was applied to retrieve LST across the study area. The resulting LST
distributions are illustrated in Fig. 3.

Taking the LST retrieved from the Landsat 8 image acquired on March 20, 2023, as an
example, a comparison between Fig. 3 and the terrain information presented in Fig. 4 reveals a
strong spatial correlation between LST patterns and topographic factors, particularly slope
aspect. Given that the local overpass time of Landsat 8 over the study area was approximately
11:00 AM, with a corresponding solar azimuth angle of 153°, LST values were significantly
higher on southeast-facing slopes compared to northwest-facing slopes (Fig. 4a). This
highlights the pronounced influence of solar radiation on the spatial variability of LST within

the study area.
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Figure 3. Spatial distribution of land surface temperature (LST) in the study area on March 20, 2023.

4.2.2 Mapping of unique-value environmental characteristic zones

Slope and aspect were selected as the environmental factors for constructing the UV-ECZR (see
Fig. 4a and 4b). As previously discussed, these two variables exhibit a strong spatial coupling
relationship with LST. Although elevation and vegetation coverage were not directly included
in the environmental zoning process, their variability can be considered relatively homogeneous
within the defined neighborhood window (Zhang et al., 2019). Thus, their confounding effects
are indirectly mitigated. In the framework of Focal-Zonal Mixed Statistics modeling, sample

heterogeneity arising from long-range spatial variables can be effectively controlled by spatial
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492  proximity, while heterogeneity caused by short-range spatial variables is suppressed through

493  environmental similarity.
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495  Figure 4. Maps of environmental factors: (a) Slope aspect, (b) Slope degree, and (c) the composite Unique-

496  Value Environmental Characteristic Zonal Raster (UV-ECZR).

497 4.3 Enhancement of geothermal anomalies based on Focal-Zonal Mixed Statistics

498  In mineral prospectivity mapping, standard deviation normalization (Z-score transformation) is
499  commonly employed to assist in constructing indicator variables for anomaly detection (Journel
500 & Huijbregts, 1978; Goovaerts, 1997). This procedure involves subtracting the mean from the
501  original value and then dividing by the standard deviation, rescaling variables to a uniform
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range to mitigate scale-dependent biases and enhance comparability of multi-source
geochemical data in predictive modeling (Carranza, 2008). The resulting standardized value
quantifies the deviation of the original measurement from the mean in units of standard
deviations. The core principle lies in defining an appropriate sample range for calculating local
background statistics (e.g., mean and standard deviation), which ensures meaningful
comparisons between the current value and its spatial context (Cheng, 2007; Wang et al., 2011).

In this study, Focal-Zonal Mixed Statistics was adopted to define the comparable sample
range by simultaneously considering spatial proximity and environmental similarity.
Specifically, for each current location, the level of land surface temperature (LST) was assessed
within a sample set determined jointly by the local moving window and similar terrain features.
This method effectively suppresses the influence of terrain, vegetation, and other confounding
factors, allowing the resulting LST anomaly distribution to predominantly reflect geothermal
activity. Using a circular moving window with a radius of 4.2 km, the enhanced geothermal

anomaly map derived from Fig. 3 is shown in Fig. 5.
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Figure 5. Enhanced geothermal anomaly map based on Focal-Zonal Mixed Statistics with a local window
radius of 4.2 km.

By comparing Figs. 5 and 3, it is evident that the LST anomalies enhanced through Focal-
Zonal Mixed Statistics show a stronger spatial correlation with known geothermal wells (as
referenced by Yan et al., 2017). The higher values in Fig. 5 more effectively highlight these
geothermal wells, suggesting that areas with high values in this figure have an increased
likelihood of indicating new geothermal resources.

4.4 Performance Comparison
Following the standard deviation normalization approach described above, Zonal Statistics and

Focal Statistics were also applied to the LST dataset (Fig. 3) to enhance geothermal anomalies,
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thereby facilitating comparative evaluation of the models. Specifically, the Receiver Operating
Characteristic (ROC) curve was employed to assess the predictive performance of the original
LST and the three enhancement indices derived from Focal Statistics, Zonal Statistics, and
Focal-Zonal Mixed Statistics.

The ROC curve plots the False Positive Rate (FPR) against the True Positive Rate (TPR)
(Fawcett, 2006, Hanczar et al., 2010), and the Area Under the Curve (AUC) is used as a
quantitative metric for model evaluation. AUC values range from 0.5 to 1, where higher values
indicate better predictive accuracy and model performance.

The ROC curves for the LST dataset and the three enhancement indices are presented in
Fig. 6, where subfigures a—d correspond to the four observation dates: March 20, June 24,
September 28, and December 25, 2023. Focal Statistics and Focal-Zonal Mixed Statistics were
both implemented using a circular window with a radius of 4.2 km. It is evident that, across all
seasons, the enhancement indices derived from the Focal-Zonal Mixed Statistics approach
consistently outperform the others. For instance, in Fig. 6a, the AUC value under Focal-Zonal
Mixed Statistics reaches 0.734, notably higher than that of Zonal Statistics (0.508), Focal
Statistics (0.669), and the original LST (0.474). Although both Zonal Statistics and Focal
Statistics demonstrate slight improvements over the raw LST, their enhancement effects remain
limited. Furthermore, comparison of Fig. 6a—d indicates that our enhanced model performs best

in autumn, as evidenced by the highest AUC value observed in this season.
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Figure 6. Receiver Operating Characteristic (ROC) curves of the Land Surface Temperature (LST) and its

three enhancement indicators derived from Focal Statistics, Zonal Statistics, and Focal-Zonal Mixed

Statistics, respectively. A Parameter settings: the local window used for both Focal Statistics and Focal-Zonal

Mixed Statistics is a circle with a radius of 4.2 km; the zoning categories used for Zonal Statistics are identical

to those employed in Focal-Zonal Mixed Statistics; and a geothermal well represents an area of 0.035 km?

surrounding it.

5 Discussion

5.1 Significance and Necessity of the New Statistical Method

Firstly, from a theoretical standpoint, traditional methods each address only one aspect of spatial

variation: Focal Statistics primarily captures SPD, while Zonal Statistics is designed to account
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for SSH. However, real-world spatial problems often exhibit both characteristics
simultaneously. This underscores the theoretical necessity and practical relevance of developing
the new method—Focal-Zonal Mixed Statistics—which bridges the methodological gap
between Focal Statistics and Zonal Statistics.

Secondly, from a conceptual perspective, Focal-Zonal Mixed Statistics can be viewed as
a generalization of the two conventional approaches. When the moving window encompasses—
or far exceeds—the entire study area (i.e., the window size approaches infinity), the method
converges to Zonal Statistics, effectively capturing stratified heterogeneity. Conversely, when
the analysis is confined to a single environmental zone, the method reduces to Focal Statistics,
thereby focusing on spatial positional dependence. This flexibility enables the new method to
seamlessly adapt to different spatial structures.

Thirdly, in terms of practical performance (see Fig. 6), although traditional methods show
some ability to enhance geothermal anomaly detection—for example, Focal Statistics improves
AUC values by 3.9% to 41.1% over the original LST—the proposed method demonstrates
significantly greater efficacy, with AUC improvements ranging from 9.9% to as high as 54.9%.
These results clearly highlight the superior performance of Focal-Zonal Mixed Statistics.

Finally, regarding broader applicability, although geothermal anomaly enhancement
serves as the illustrative case in this study, the utility of the proposed method extends well
beyond this specific context. It is particularly well suited for applications requiring both
improved sample purity and simultaneous control over SSH and SPD. Potential domains
include mineral resource potential evaluation, vegetation restoration potential assessment,
cropland productivity analysis, and terrestrial vegetation carbon sink estimation. Furthermore,
the method can be employed to assess the spatial variability of target variables under specific
environmental constraints, and to evaluate the effectiveness of environmental factors in

delineating spatial patterns of interest.
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5.2 Robustness of the new method

To ensure that the superior performance of the proposed method, as demonstrated in Sect. 4.4,
is not due to chance, it is essential to test its robustness under varying conditions. This involves
adjusting key parameters such as the size of the local analysis window, the year and season of
image acquisition, and the representative area assigned to geothermal wells. Through multi-
scenario comparative experiments, the consistency and reliability of the model’s advantages
can be systematically evaluated.

To rigorously assess the robustness of the proposed method, we conducted a series of
controlled experiments involving multiple scenarios. Specifically, Landsat imagery from the
years 2015, 2019, and 2023 was selected, covering all four seasons—spring, summer, autumn,
and winter—for each year. Due to cloud contamination and other data quality issues, some
missing seasonal scenes were replaced with imagery from adjacent years and similar months.
In addition, two representative areas were defined for individual geothermal wells: 0.0009 km?
(equivalent to a single 30 m % 30 m pixel) and 0.035 km?. To further test the model's sensitivity
to spatial scale, we varied the radius of circular local windows from 0.3 km to 9 km in 0.3 km
increments. These selections of years, seasons, neighborhood sizes, and point
representativeness were all deliberately designed to evaluate the stability and generalizability
of the proposed method relative to the two traditional approaches.

When the representative area for a geothermal well is defined as a circle with an area of
0.035 km?, and imagery from the year 2023 is used for modeling, the AUC values of the original
LST and its enhancement indices are calculated across different seasons and a range of local
window sizes. Specifically, circular windows with radii ranging from 0.3 km to 9 km (at 0.3 km
intervals) are applied to evaluate model performance. The AUC values obtained under these
varying seasonal and spatial conditions—across different models—are plotted in a Cartesian

coordinate system, as illustrated in Fig. 7.

31



607
608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

0.85

0.85

a b

0.7 0.7
o v
= £
< <
> >
© S

= 0.55 =2 0.55

0.4 0.4

10 60 110 160 210 260 10 60 110 160 210 260
Window size Window size
Land Surface Temperature Focal Statistics Land Surface Temperature Focal Statistics
Zonal Statistics Focal-Zonal Mixed Statistics Zonal Statistics Focal-Zonal Mixed Statistics
0.85 0.85
c d

0.7 0.7
2 Q
3 3
K s
o 0

2055 = 0.55

0.4 0.4

10 60 110 160 210 260 10 60 110 160 210 260

Window size Window size
Focal Statistics
Focal-Zonal Mixed Statistics

Focal Statistics
Focal-Zonal Mixed Statistics

Land Surface Temperature
—— Zonal Statistics

Land Surface Temperature
Zonal Statistics

Figure 7. Variations in AUC values with increasing local window radius (measured in pixel units) for Land
Surface Temperature (LST) and its three enhancement indices derived from Focal Statistics, Zonal Statistics,
and Focal-Zonal Mixed Statistics. The geothermal wells are represented as circles with an area of 0.035 km?.
Panels (a) through (d) correspond to the LST data acquired in the spring, summer, autumn, and winter of
2023, respectively.

Appendix Figs. S1 and S2 present the modeling results for the years 2015 and 2019,
respectively, under the condition that each geothermal well is represented by a circular area of
0.035 km?.

Appendix Figs. S3 to S5 show the results for the years 2015, 2019, and 2023, respectively,
where the representative area for each geothermal well is defined as a single pixel (30 m x 30 m,
i.e., 0.0009 km?).

Overall, the two enhancement models incorporating neighborhood windows—Focal
Statistics and Focal-Zonal Mixed Statistics—consistently outperform both the Zonal Statistics
model and the original, unenhanced LST. The relatively poor performance of Zonal Statistics

is primarily attributed to the strong spatial variability of LST and the limitations of the simple
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classification scheme employed. Moreover, since neighborhood-based methods are inherently
sensitive to spatial scale, the effectiveness of both Focal Statistics and Focal-Zonal Mixed
Statistics varies with changes in window size.

However, regardless of the specific modeling configuration—including different years
(2015, 2019, or 2023), seasons (spring, summer, autumn, or winter), definitions of the
geothermal well representative area (either a single pixel of 0.0009 km? or a circular area of
0.035 km?), and a wide range of local window sizes (radii from 0.3 km to 9 km in 0.3 km
intervals)—Focal-Zonal Mixed Statistics consistently delivers superior performance compared
to Focal Statistics. This consistent advantage across diverse scenarios and parameter settings
clearly demonstrates the robustness and broader applicability of the proposed method.

5.3 Advancements of the Toolbox

The FZStats v1.0 toolbox developed in this study not only integrates traditional Focal Statistics
and Zonal Statistics—addressing SPD and SSH, respectively—but also innovatively
implements Focal-Zonal Mixed Statistics by combining spatial proximity and environmental
similarity, enabling simultaneous handling of both SPD and SSH. This toolbox thus offers a
novel and versatile solution for spatial statistical analysis.

To enhance its applicability across diverse scenarios and computing environments, the
toolbox provides a variety of parameter-setting interfaces. In terms of neighborhood window
configuration, users can select from rectangular, circular, or elliptical windows, with the
elliptical option allowing the expression of spatial anisotropy through adjustable parameters.
Regarding statistical measures, the toolbox supports traditional metrics such as mean, standard
deviation, minimum, and maximum, as well as flexible calculation of arbitrary percentiles to
suit specific analytical needs. To optimize memory usage and computational efficiency, FZStats
v1.0 supports both raster chunk processing and multi-process operation modes. This design

accommodates different hardware capacities and enables efficient parallel processing on multi-
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core CPUs. Additionally, users can specify a minimum number of cells for valid statistics
through the "Threshold" parameter, effectively preventing low-precision and unreliable results
caused by insufficient sample sizes.

Finally, to improve automation and multitasking efficiency, the toolbox offers a batch
processing solution. Users can define processing parameters within a multi-section INI-format
configuration file, thus avoiding repetitive manual operations. This functionality supports one-
time parameter setup, automatic execution of multiple tasks, parameter reuse, and error tracking,
significantly enhancing operational efficiency and reliability.

6 Conclusions

This study developed the FZStats v1.0 toolbox based on Python 3 and QTS5, integrating
traditional Focal Statistics, Zonal Statistics, and the newly proposed Focal-Zonal Mixed
Statistics. Detailed algorithmic implementations and modeling processes for these methods
were presented, and their performance was evaluated through geothermal anomaly detection
experiments. The main conclusions are summarized as follows:

First, the development of Focal-Zonal Mixed Statistics is crucial, as it addresses the
limitations of traditional Focal Statistics and Zonal Statistics, providing a unified solution for
simultaneously handling SPD and SSH.

Second, FZStats v1.0 offers extensive parameter-setting capabilities, supporting flexible
configurations of window shapes and statistical measures. Additionally, through adjustable
processing options such as raster chunking and multi-processing, the toolbox can maintain
efficient performance across a range of computing environments.

Third, case study analyses demonstrate that Focal-Zonal Mixed Statistics significantly
enhance the detection of geothermal anomalies compared to conventional Zonal and Focal
Statistics methods, with this advantage proving robust across different conditions.

In summary, FZStats v1.0 not only contributes theoretical innovation to spatial statistical
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methods but also exhibits strong functionality and flexibility in practical applications. It holds
considerable promise for geothermal anomaly detection and broader fields requiring integrated
spatial statistical solutions.
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