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Abstract: Focal and Zonal Statistics are fundamental tools in GIS for characterizing spatial 10 

patterns, yet they have traditionally addressed spatial stratified heterogeneity (SSH) and spatial 11 

positional dependence (SPD) in isolation. To overcome this limitation, we introduce FZStats 12 

v1.0, a Python 3/QT5–based toolbox that not only integrates conventional Focal and Zonal 13 

statistics, but also implements a novel Focal–Zonal Mixed Statistics approach capable of jointly 14 

capturing both SSH and SPD. First, we formally develop the Focal–Zonal Mixed Statistics 15 

model to address stratified heterogeneity, spatial dependence, and their interactions within a 16 

unified framework—filling a key methodological gap left by traditional approaches that cannot 17 

accommodate their co-occurrence in real-world spatial data. Second, FZStats v1.0 provides a 18 

user-friendly graphical interface for flexible configuration of neighborhood window shapes 19 

(e.g., rectangular, circular, elliptical), sizes, and statistical operations (e.g., mean, percentiles). 20 

It also supports multiprocessing and batch operations, enabling scalable computation across 21 

diverse spatial analysis tasks. Third, we validate the effectiveness and robustness of the new 22 

method through a geothermal anomaly detection case study. Across multiple years, seasons, 23 

representative target sizes, and local window radii, the Focal–Zonal Mixed Statistics 24 

consistently outperforms both Focal and Zonal Statistics, demonstrating its superior capability 25 

in enhancing anomaly signals under complex spatial conditions. In summary, FZStats v1.0 is 26 

not only a theoretically grounded and methodologically novel tool, but also a highly adaptable 27 
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and practical solution for spatial data analysis in diverse application domains. 28 

Keywords: Spatial Statistics; Raster Operations; Spatial Stratified Heterogeneity (SSH); 29 

Spatial Positional Dependency (SPD); Focal/Zonal Statistics. 30 

1 Introduction 31 

Geographic Information Systems (GIS) represent a milestone in the evolution of geography by 32 

providing a new paradigm for the integrated management, analysis, and visualization of spatial 33 

data (Goodchild, 1992; Bernhardsen, 2002; Longley et al., 2015). As a vital analytical module 34 

within GIS, spatial statistics enable researchers to quantify and interpret spatial patterns and 35 

relationships on the Earth's surface with unprecedented precision (Fischer & Getis, 2010; 36 

Fotheringham & Rogerson, 2013). With continued advances in GIS technology, investigators 37 

can now more easily explore the distribution, temporal evolution, and driving mechanisms of 38 

spatial variables; and spatial statistical theories and methods play an increasingly prominent 39 

role in geographical studies. Two foundational concepts in spatial statistical analysis are spatial 40 

heterogeneity and positional dependence (Goodchild & Haining, 2004). Correspondingly, 41 

Zonal Statistics and Focal (Neighborhood) Statistics offer two complementary approaches. 42 

Zonal Statistics partitions raster units representing the target variable into discrete zones based 43 

on predefined schemes, computes summary metrics such as mean, maximum, minimum, and 44 

sum within each zone, and renders the results as a mosaic raster layer (Singla & Eldawy, 2018; 45 

Haag et al., 2020; Winsemius & Braaten, 2024). In contrast, Focal Statistics defines a 46 

neighborhood around each cell according to specified window shape and size, calculates the 47 

same set of summary metrics within that neighborhood, and assigns the resulting value to the 48 

central cell; by sliding this window across all locations, it thereby quantifies how these statistics 49 

vary with the window's movement (Mathews & Jensen, 2012; Kassawmar et al., 2019; Zhang 50 

et al., 2021). 51 

Mainstream GIS platforms such as ArcGIS and QGIS include dedicated modules for Zonal 52 
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Statistics and Focal Statistics, both of which have been widely adopted in practice. From an 53 

application standpoint, Zonal Statistics primarily deals with spatial stratified heterogeneity 54 

(SSH) by partitioning the study area into zones based on environmental characteristics, thereby 55 

capturing SSH (Wang et al., 2016; Wang and Xu, 2017; Gao et al., 2022). For instance, 56 

vegetation growth or potential often varies markedly among zones delineated by slope and 57 

aspect, which are key drivers of vegetation dynamics (Zhang et al., 2018, 2019; Xu et al., 2020). 58 

Conversely, Focal Statistics focuses on spatial positional dependence (SPD) by employing 59 

moving‐window or geographically weighted techniques to detect and mitigate positional effects 60 

(Tobler, 1970; Wolter et al., 2009; Wagner et al., 2018). For example, even soils or rocks with 61 

the same texture exhibit geochemical variations that diminish with decreasing distance, 62 

reflecting underlying positional dependence; consequently, spatial interpolation of element 63 

concentrations typically assigns greater weight to nearer samples (Krige and Magri, 1982; 64 

Trangmar et al., 1986; Zuo, 2014). 65 

In practice, SSH and SPD often co-occur, manifesting as abrupt and gradual variations 66 

respectively. At broad scales, terrestrial vegetation patterns illustrate SPD through meridional, 67 

latitudinal, and altitudinal gradients driven by land–sea distribution, solar radiation, and 68 

elevation (Qiu et al., 2013; Dong et al., 2019; Eddin and Gall, 2024). Conversely, local 69 

topography, microclimate, and human activity introduce sharp boundaries in vegetation cover, 70 

generating SSH—for example, stark contrasts between shady and sunny slopes (Álvarez-71 

Martínez et al., 2014; Zhang and Zhang, 2022) and between urban and rural landscapes (Zhang 72 

et al., 2023b). Similarly, in mineral geology, stratigraphic age differences produce SSH in 73 

resource distribution (Zhao, 2006; Zuo, 2020), while internal and external geological processes 74 

impart SPD to mineralization patterns (Cheng, 2006, 2012), as modeled by geostatistics and 75 

kriging (Krige, 1951; Goovaerts, 1997; Müller et al., 2022). Therefore, effective spatial 76 

statistical analysis must integrate both SSH and SPD. 77 
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To address these challenges, previous studies have integrated SSH and SPD, developing 78 

specialized hybrid models for specific spatial-statistical objectives. For example, Zhu et al. 79 

(2019) extended traditional spatial interpolation methods—normally focused solely on spatial 80 

dependence—by introducing environmental similarity constraints, and formalized the “Third 81 

Law of Geography”, which states that geographically similar contexts yield similar target-82 

variable values (Zhu et al., 2018; Zhu et al., 2020). In a similar vein, Zhang et al. (2019) 83 

incorporated spatial sliding-window techniques into vegetation potential assessment, resulting 84 

in a model that simultaneously considers spatial proximity and environmental similarity (Xu et 85 

al., 2020; Zhang, 2023a). More recently, Lessani and Li (2024) developed the Similarity and 86 

Geographically Weighted Regression (SGWR) model, which combines distance-based and 87 

similarity-based weights to overcome limitations of traditional geographically weighted 88 

methods that address only spatial dependency.  89 

Although these methods successfully integrate SSH and SPD in specific tasks such as 90 

interpolation and regression, there is still no general-purpose GIS toolbox comparable to Focal 91 

and Zonal Statistics within standard GIS workflows. To fill this gap, this study presents FZStats 92 

v1.0, which unifies traditional Zonal Statistics and Focal Statistics with the novel Focal–Zonal 93 

Mixed Statistics model. Leveraging multiprocessing and batch-processing capabilities, FZStats 94 

v1.0 improves computational efficiency and optimizes usability. Moreover, from a logical 95 

perspective, Focal–Zonal Mixed Statistics can be viewed as a generalization of the two 96 

traditional approaches. Specifically, when the moving window covers—or substantially 97 

exceeds—the entire study area (i.e., window size → ∞), the method converges to Zonal 98 

Statistics, effectively addressing SSH. Conversely, when only a single zone is defined, it 99 

simplifies to Focal Statistics, capturing SPD. In the more common and complex scenarios where 100 

both SSH and SPD coexist, only the mixed approach is capable of simultaneously accounting 101 

for both characteristics. Consequently, FZStats v1.0 is positioned to function as a 102 
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comprehensive analytical framework for spatial studies necessitating simultaneous evaluation 103 

of SSH and SPD parameters across diverse application domains. 104 

2 Models 105 

2.1 Focal Statistics model 106 

The Focal Statistics method addresses spatial positional dependence by computing summary 107 

statistics within a defined neighborhood around each raster cell. The implementation involves 108 

three main steps: (1) defining the neighborhood window—specifying its shape (e.g., square, 109 

circular, elliptical) and size; (2) identifying the neighboring cells—locating all raster cells  110 

within the neighborhood of the focal cell; and (3) computing statistics—applying a selected 111 

statistical function (e.g., mean, sum, minimum, maximum) to the identified neighboring cells 112 

and assigning the result to the focal cell. 113 

2.1.1 Defining the neighborhood window 114 

Defining the neighborhood window is a fundamental step in Focal Statistics. This step involves 115 

specifying two key parameters: the window's shape and size. These parameters should be 116 

determined according to the spatial characteristics of the data and the research objectives. 117 

Common shape options include circular, square, and rectangular, while the window size is 118 

typically defined by the number of cells. 119 

To implement these neighborhood windows in a computational framework, we developed 120 

three distinct each corresponding to a different geometric shape: rectangular, circular, and 121 

elliptical. These window classes are outlined in Listing 1. 122 
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 123 

Listing 1. Code fragment for the three types of neighborhood window classes: the rectangular window class 124 

(KDGeoRectNbhWindow), the circular window class (KDGeoCircleNbhWindow), and the elliptical window 125 

class (KDGeoEllipseNbhWindow). 126 

The mathematical essence of a neighborhood window lies in its formal specification of a 127 

spatial domain of influence, which is typically discretized as a two-dimensional binary mask 128 

matrix. This matrix defines the inclusion of neighboring cells within a fixed spatial extent 129 

centered on a focal cell. Specifically, it indicates whether each cell in the local neighborhood 130 

should be considered for subsequent analysis or computation. The matrix can be formally 131 

expressed as: 132 

𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = {
1 if (𝑥, 𝑦) ∈ Ω𝑊
0 otherwise

                                      (1) 133 

where Ω𝑊  denotes the neighborhood spatial domain centered on cell (𝑐𝑥, 𝑐𝑦) , whose 134 

geometric properties are jointly determined by the shape and size parameters of the window. As 135 
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shown in Listing 1, the _generate_mask_matrix method implemented in each window class is 136 

responsible for generating the neighborhood mask matrix according to the specified window 137 

parameters (e.g., height, width, radius). 138 

2.1.2 Identifying cells within the neighborhood 139 

After the mathematical formulation of the neighborhood window is established (as defined in 140 

Eq. (1)), the spatial sliding window technique can be employed to identify cells within 141 

predefined neighborhoods centered on each focal cell for localized analysis (Hyndman and Fan, 142 

1996). For a given focal cell located at position (i, j), the effective neighborhood cell set can be 143 

obtained through the following two computational stages. 144 

(1) Alignment of the neighborhood mask matrix 145 

To ensure accurate spatial correspondence, the geometric center of the neighborhood mask 146 

matrix 𝑵𝑴 ∈ {0, 1}𝑚×𝑛  is aligned with the focal cell located at (i, j) on the raster grid. A 147 

mapping is then established from each element in the mask matrix to its corresponding location 148 

in the raster data domain. Let the center of the mask matrix be located at (𝑐𝑥, 𝑐𝑦), and let 149 

(𝑢, 𝑣)  denote the row and column offsets from the center. Then, the mapping from mask 150 

coordinates to raster coordinates is defined as:  151 

(𝑥, 𝑦) = (𝑖 +  𝑢, 𝑗 + 𝑣)                                                 (2) 152 

where (𝑥, 𝑦) denotes the coordinate of a neighboring cell in the raster grid, derived from the 153 

relative offset (𝑢, 𝑣) with respect to the focal cell. This mapping ensures that the neighborhood 154 

window is precisely aligns with the focal cell. 155 

(2) Identification of the valid neighborhood cell set 156 

To handle boundary effects when the neighborhood window extends beyond the raster 157 

extent, a boundary-clipping strategy is adopted. That is, only the cells that are entirely located 158 

within the raster data domain Ω𝐷 are retained. The valid neighborhood cell set 𝑪𝐹_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) 159 

is defined as: 160 
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𝑪𝐹_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) = {(𝑥, 𝑦) ∈ Ω𝐷 |𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = 1}                           (3) 161 

where 𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) ∈ {0, 1} is the corresponding value in the neighborhood mask matrix. A 162 

value of 1 indicates inclusion as a valid neighbor for subsequent analysis, while a value of 0 163 

signifies exclusion. 164 

2.1.3 Calculating the Focal Statistics 165 

After identifying the valid neighborhood cells, their corresponding values are retrieved from 166 

the raster dataset and organized into a two-dimensional array. Based on these values, statistical 167 

measures such as mean, percentiles, and other user-defined metrics can be computed. The 168 

resulting statistic is then assigned to the corresponding position in the output raster.  169 

This procedure can be implemented through a function that obtains the neighborhood mask 170 

matrix, identifies valid neighborhood values for the focal cell, and computes the specified 171 

statistic. Listing 2 presents a representative implementation of this workflow. 172 

The computation is performed for every cell in the input raster, and the resulting values 173 

are written to the output raster, producing the final focal statistics result. 174 

 175 

Listing 2. Python function calculate_focal_statistics_result for computing focal statistics. The function 176 

identifies valid values from a neighborhood centered at the focal cell, filters them using a predefined mask, 177 

and then calculates the specified statistics. 178 

2.2 Zonal Statistics model 179 

Unlike Focal Statistics, which operate solely on a single value raster, Zonal Statistics requires 180 
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two input raster layers: a value raster and a zone raster. The zone raster defines the spatial 181 

configuration and categorical labels of zones, where each cell is assigned to exactly one zone. 182 

Zonal statistics computes summary metrics (e.g., mean, sum, minimum, maximum) for each 183 

zone by summarizing the values of the corresponding cells in the value raster. The resulting 184 

statistic is then uniformly assigned to all cells within that zone. After all zones are processed, 185 

the individual results are combined to generate the final output raster. 186 

The implementation of Zonal Statistics typically involves two primary steps: (1) 187 

identifying the set of cells in the value raster corresponding to each zone based on the zone 188 

raster, and (2) calculating summary statistics across those cell values within each zone. 189 

2.2.1 Identifying cells in the value raster falling into each zone 190 

In Zonal Statistics, spatial overlay analysis is employed to associate each cell in the value raster 191 

with a specific zone, as defined by a corresponding zone raster (Hyndman and Fan, 1996). This 192 

process maps each cell in the value raster to its corresponding zone based on spatial alignment. 193 

Based on this mapping, cells in the value raster are grouped according to their zone membership, 194 

resulting in a set of raster cells for each zone. 195 

2.2.2 Calculating the Zonal Statistics 196 

Once the set of raster cells belonging to each zone has been identified, a summary statistic is 197 

computed based on the corresponding cell values. The result is then uniformly assigned to all 198 

cells within that zone. After all zones are processed, the individual zone-level results are 199 

mosaicked to generate the final output raster.  200 

Listing 3 demonstrates the implementation of this zonal statistics procedure. The 201 

calculate_zonal_statistics_result function accepts a value raster (data_arr), a zone raster 202 

(feature_arr), and a list of statistical parameters. For each unique zone code identified in the 203 

zone raster, the function identifies the corresponding cell values from the value raster, performs 204 
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the specified statistical computation, and assigns the result to all cells within the zone, 205 

ultimately yielding a complete zonal statistics output raster. 206 

 207 

Listing 3. Python implementation of the zonal statistics computation. The calculate_zonal_statistics_result 208 

function computes a specified statistic for each zone defined in the zone raster and assigns the result to all 209 

corresponding cells in the output raster. 210 

2.3 Focal-Zonal Mixed Statistics 211 

Similar to Zonal Statistics, Focal-Zonal Mixed Statistics operates on two raster inputs: a value 212 

raster and a zone raster. However, this method uniquely integrates spatial and categorical 213 

criteria, combining the localized analysis of Focal Statistics with the zone-based constraints of 214 

Zonal Statistics. The computation involves two primary stages: 215 

2.3.1 Identifying neighborhood cells belonging to the same zone 216 

In this step, the selection of relevant cells for analysis is governed by two criteria, the spatial 217 

proximity, as defined by a neighborhood window centered on the focal cell, and zone 218 

homogeneity, requiring that all selected cells belong to the same zone as the focal cell. 219 
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For a focal cell located at position (i, j), the valid neighborhood cell set 𝑪𝐹𝑍_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗)  220 

can be defined as:  221 

𝑪𝐹𝑍_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) = {(𝑥, 𝑦) ∈ Ω𝐷 |𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = 1 Ʌ 𝑍(𝑥, 𝑦) = 𝑍(𝑖, 𝑗)}         (4) 222 

where 𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) ∈ {0, 1} is the corresponding value in the neighborhood mask matrix. A 223 

value of 1 indicates inclusion as a candidate valid neighbor for subsequent analysis, whereas a 224 

value of 0 indicates that the cell is excluded. Ω𝐷 denotes the spatial domain of the raster dataset, 225 

(𝑥, 𝑦) are the relative positions of candidate neighboring cells, and 𝑍(𝑖, 𝑗) is the zone code of 226 

the focal cell, which serves as the categorical constraint. 227 

2.3.2 Calculating the Focal-Zonal Mixed Statistics 228 

Once the set of valid neighboring cells has been determined based on both spatial proximity 229 

and zone membership, the next step is to compute the desired statistical measures using the 230 

identified cell values. For each focal cell, only those neighboring cells that lie within the defined 231 

spatial window and share the same zone code are included in the statistical calculation. This 232 

dual constraint ensures that the resulting Focal-Zonal Mixed Statistics reflects localized 233 

variation while maintaining consistency within categorical spatial units. 234 

Listing 4 demonstrates the implementation of the Focal-Zonal Mixed Statistics procedure. 235 

The calculate_focal_zonal_statistics_result function computes a localized statistic for a given 236 

focal cell by integrating both spatial and zonal constraints. It first identifies the neighborhood 237 

data and associated zone codes based on the predefined window mask centered at the target 238 

position. Then, it applies a zonal constraint by retaining only those neighboring cells whose 239 

zone codes match that of the focal cell. After applying the combined focal-zonal mask, the 240 

specified statistic is computed on the resulting valid value set. 241 

The computation is performed for every cell in the input raster, where the neighborhood is 242 

constrained both spatially and categorically. The resulting values are written to the output raster, 243 

producing the final Focal-Zonal Mixed Statistics result. 244 
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 245 

Listing 4. Python implementation of the Focal-Zonal Mixed Statistics computation. The function filters 246 

neighborhood cells based on both spatial proximity and zone code consistency, then calculates a user-247 

specified statistic on the resulting valid subset. 248 

3 Module design 249 

3.1 Modeling process for Focal-Zonal Mixed Statistics 250 

The detailed modeling process for Focal-Zonal Mixed Statistics is described as follows. 251 

(1) Preparation of the value raster and the environmental factor rasters 252 

This initial step involves collecting and preprocessing the spatial datasets required for the 253 

analysis. The value raster typically represents the primary variable of interest, such as 254 

temperature, pollution levels, or vegetation indices. The environmental factor rasters 255 

characterize variables that potentially influence the spatial heterogeneity of the target variable, 256 

including elevation, slope, land cover, and other relevant geographical or ecological attributes. 257 

Preprocessing procedures typically include resampling, reprojection, and normalization to 258 

ensure that all raster layers share a consistent spatial extent, resolution, and coordinate reference 259 
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system. 260 

(2) Construction of Unique-Value Environmental Characteristic Zonal Raster (UV-261 

ECZR) 262 

In this step, environmental factor rasters—whether continuous or categorical—are 263 

reclassified into discrete categories using a well-defined discretization scheme. For continuous 264 

variables, the classification method should be selected according to the data distribution and 265 

research objectives: natural breaks (Jenks) are recommended for datasets exhibiting clear 266 

clustering, equal interval classification suits uniformly distributed data, and quantile 267 

classification ensures balanced representation across value ranges. For categorical variables, 268 

original classes are typically retained unless aggregating categories improves analytical validity. 269 

The optimal number of classes, usually between 5 and 8, should balance environmental 270 

heterogeneity with adequate sample size within each zone. Classification performance can be 271 

evaluated by minimizing within-zone variance, maximizing between-zone variance, and 272 

assessing clustering validity through the silhouette coefficient. After reclassification, the final 273 

UV-ECZR is produced via spatial overlay analysis, wherein each unique combination of 274 

reclassified layers is assigned a Unique-Value Environmental Characteristic Code (UV-ECC). 275 

Cells sharing the same UV-ECC form a Similar Environmental Unit (SEU), ensuring that 276 

resulting zones capture meaningful ecological thresholds while maintaining sufficient sample 277 

sizes for statistical reliability. A detailed methodological workflow for this process is provided 278 

in Sect. 3.2.1. 279 

(3) Determination of neighborhood window and statistical parameters 280 

This process involves specifying the neighborhood window and specifying the selecting 281 

appropriate statistical parameters for the Focal-Zonal Mixed Statistics. The window size should 282 

be selected based on several considerations, including the spatial scale of the studied 283 

phenomenon (e.g., local versus regional patterns), the resolution of the input rasters (with 284 
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coarser resolution favoring larger windows), and computational efficiency (as larger windows 285 

significantly increase processing time). The window shape should be chosen according to the 286 

nature of spatial anisotropy (elliptical for directional patterns), processing efficiency 287 

(rectangular shapes are computationally faster), mitigation of edge effects (circular windows 288 

help reduce boundary artifacts), and data characteristics (rectangular for grid-aligned features 289 

and circular for isotropic phenomena). The selection of the statistical function should align with 290 

the analytical objectives: the mean is suitable for general smoothing and trend detection; the 291 

standard deviation is appropriate for identifying variability and anomalies; the minimum and 292 

maximum help detect extreme values; percentiles (such as the 90th percentile) support robust 293 

threshold analyses; and the sum is useful for aggregation tasks. 294 

(4) Preparation of output raster 295 

This step involves generating an output raster that matches the input rasters in terms of 296 

spatial extent, resolution, and coordinate reference system to ensure seamless spatial alignment. 297 

The output raster serves as a container to store the results of the Focal–Zonal Mixed Statistics 298 

computations. Before processing, the output raster is typically initialized with null values (e.g., 299 

NoData or NaN) to indicate that no computation has yet been performed. As the computation 300 

proceeds, each computed statistic is written into the output raster at the spatial location 301 

corresponding to the focal cell. 302 

(5) Calculation of the statistics 303 

In this step, the moving window technique is employed to systematically traverse each 304 

focal cell across the study area. For each focal cell, its local neighborhood is first determined 305 

based on the predefined neighborhood window parameters (refer to Sect. 2.1.1). Within this 306 

neighborhood, cells belonging to the same SEU as the focal cell are identified by comparing 307 

their UV-ECC values. The specified statistical measure is then calculated using the 308 

corresponding values from the value raster for the selected cells. The computed statistic is 309 
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assigned to the focal cell's position in the output raster. This procedure is repeated iteratively 310 

for all focal cells until the output layer is fully generated. 311 

(6) Save of output raster 312 

After the computation is complete for all focal cells, the finalized output raster is written 313 

to disk. After all cells have been iteratively processed, the complete output raster is finalized 314 

and saved to disk. Ensuring proper saving procedures, such as specifying an appropriate file 315 

format (e.g., GeoTIFF) and maintaining consistent georeferencing information, is essential to 316 

preserve data integrity and facilitate subsequent spatial analyses. 317 

3.2 Core algorithm design for Focal-Zonal Mixed Statistics 318 

3.2.1 Algorithm design for the UV-ECZR construction 319 

Assume there are 𝑝 continuous environmental variables, denoted as {𝐸1, 𝐸2, . . . , 𝐸𝑝}, and their 320 

corresponding reclassified variables are {𝐶𝐸1, 𝐶𝐸2, . . . , 𝐶𝐸𝑝} . The number of categories for 321 

𝐶𝐸𝑞 is denoted as 𝑆𝑞, and the required digit length 𝐷𝑞 is computed as: 322 

𝐷𝑞 = ⌊lg𝑆𝑞⌋ + 1                                                       (5) 323 

where lg  denotes the logarithm with base 10, ⌊. ⌋  represents the floor function, and 𝑞 =324 

1, 2, . . . , 𝑝. The category values for each environmental variable must be positive integers, and 325 

the value range for the reclassified raster 𝑪𝑬q is [1, 𝑆𝑞]. It is necessary to prepend a sufficient 326 

number of “0”s to ensure the code has a consistent digit length of 𝐷q. 327 

Thus, each pixel at location (𝑖, 𝑗) in the raster can be represented by the vector of its 𝑝 328 

reclassified environmental category values: 329 

𝑪𝑬(𝑖, 𝑗) = (𝐶𝐸1(𝑖, 𝑗), 𝐶𝐸2(𝑖, 𝑗), . . . , 𝐶𝐸𝑝(𝑖, 𝑗))                                (6) 330 

where each component 𝐶𝐸𝑞(𝑖, 𝑗)  is the integer category code of the p-th environmental 331 

variable at pixel (𝑖, 𝑗). 332 

The UV-ECC at pixel (𝑖, 𝑗) is defined as a unique scalar encoding of the vector 𝑪𝑬(𝑖, 𝑗). 333 

One efficient way to construct this code is by decimal digit concatenation: 334 
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𝑈𝑉 − 𝐸𝐶𝐶 (𝑖, 𝑗) = ∑ 𝐶𝐸𝑞(𝑖, 𝑗) ∙ 10
∑ 𝐷k
𝒑
𝒌=𝒒+𝟏𝑝

𝑞=1                               (7) 335 

Based on the framework of raster map algebra, the UV-ECZR is constructed through a 336 

spatial overlay operation applied to the p reclassified environmental variable layers. This 337 

process corresponds to a local operation in raster algebra, where the categorical values from 338 

each layer are combined on a cell-by-cell basis to generate a multi-dimensional representation. 339 

A more realistic and pertinent code sample is provided in Listing 5. 340 

 341 

Listing 5. Python implementation of UV-ECZR generation using arcpy-based raster map algebra. Each input 342 

raster layer represents a reclassified environmental variable (e.g., slope or aspect), and the local overlay 343 

operation combines their category codes to produce a unique zone identifier for each pixel. 344 

3.2.2 Algorithm design for determining the valid range for statistics under the sliding 345 

window technique 346 

Rectangular windows, which align with the row and column structure of raster data, are widely 347 

used in the sliding window operations due to their simplicity and computational efficiency. 348 

However, its drawback is also evident: cells located at the four corners are significantly farther 349 
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from the focal cell than those on the horizontal and vertical axes (Zhang et al., 2016a). Despite 350 

this, rectangular windows remain among the most commonly employed window shapes.  351 

In this study, we consider not only rectangular windows but also circular and elliptical 352 

window shapes. Since a circle is a special case of an ellipse, the ellipse is used as a generalized 353 

example to illustrate the algorithm for determining the valid range of cells for statistics under 354 

the sliding window technique in the context of Focal–Zonal Mixed Statistics. 355 

(1) Mask matrix for elliptical window 356 

An elliptical window is defined by three key parameters: the length of major axis, the ratio 357 

of the minor axis to the major axis, and the deflection angle of major axis. Let  (𝑥0, 𝑦0) 358 

represent the center of the ellipse, i.e., the current location, 𝑎  denotes the semi-major axis 359 

length, 𝑟 be the minor-to-major axis ratio, and 𝜃 be the deflection angle. Then the elliptical 360 

window can be mathematically expressed as: 361 

𝐸𝑙𝑙𝑖𝑝𝑠𝑒((𝑥0, 𝑦0), 𝑎, 𝑟, 𝜃)  =  
[(𝑥−𝑥0) cos𝜃+(𝑦−𝑦0) sin𝜃]

2

𝑎2
+
[−(𝑥−𝑥0) sin𝜃+(𝑦−𝑦0) cos𝜃]

2

(𝑟𝑎)2
  (8) 362 

Based on Eq. (8), the bounding box of the elliptical window can be represented as 363 

𝐵𝐵𝑜𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑒(𝑚𝑖𝑛𝑋,𝑚𝑎𝑥𝑋,𝑚𝑖𝑛𝑌,𝑚𝑎𝑥𝑌), where 𝑚𝑖𝑛𝑋,𝑚𝑎𝑥𝑋,𝑚𝑖𝑛𝑌,𝑚𝑎𝑥𝑌 are as follows: 364 

{
 

 𝑚𝑖𝑛𝑋,𝑚𝑎𝑥𝑋 =𝑥0 ±√
4𝐶𝐹

𝐵2−4𝐴𝐶
     

𝑚𝑖𝑛𝑌,𝑚𝑎𝑥𝑌 =𝑦0 ±√
4𝐴𝐹

𝐵2−4𝐴𝐶
    

                                      (9) 365 

where, 366 

{
 
 

 
 
𝐴 = 𝑎2 ( 𝑠𝑖𝑛2 𝜃 + 𝑟2 𝑐𝑜𝑠2 𝜃) 

𝐵 = 2𝑎2(𝑟2 − 1) 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 

𝐶 = 𝑎2 ( 𝑐𝑜𝑠2 𝜃 + 𝑟2 𝑠𝑖𝑛2 𝜃) 

𝐹 = −
1

2
(𝐷𝑥0 + 𝐸𝑦0) − 𝑟

2𝑎4

                                         (10) 367 

The bounding box 𝐵𝐵𝑜𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑒  provides a simplified and direct spatial reference for 368 

constructing a Boolean mask matrix for the elliptical window, i.e., 𝑀𝑎𝑡𝑟𝑖𝑥𝐸𝑙𝑙𝑖𝑝𝑠𝑒_𝑚𝑎𝑠𝑘, where 369 

cells inside and outside the 𝐵𝐵𝑜𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑒  are assigned values of “True” and “False”, 370 
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respectively. In Focal Statistics, this binary mask is used directly to identify the valid 371 

neighborhood cells for statistical operations (see Fig. 1a). 372 

 373 

Figure 1. Heatmaps for the Boolean mask matrix: (a) the elliptical window of Focal Statistics, (b) the 374 

similar environmental unit (SEU) of Zonal Statistics, and (c) the elliptical window similar environmental 375 

unit (EW-SEU) of Focal-Zonal Mixed Statistics. 376 

(2) Mask matrix for similar environment in the bounding box 377 

SEU is the basic object of Zonal Statistics. In Focal-Zonal Mixed Statistics, for the current 378 

cell, the elliptical window similar environmental unit (EW-SEU) is established according to the 379 

environmental characteristic code within the initial neighborhood window defined by the 380 

bounding box. Using 𝑀𝑎𝑡𝑟𝑖𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑠𝑘  to represent this unit, cells with the same 381 

environmental characteristic code as the current cell are assigned a value of “True”, while others 382 
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are assigned a value of “False”, as shown in Fig. 1b. 383 

(3) Mask matrix for similar environment in the elliptical window 384 

The matrices of steps (1) and (2) shares the same dimensions, and thus the similar 385 

environment mask matrix for the current cell in the elliptical window can be constructed using 386 

a logical “AND” operation between these two matrices, as expressed in the following equation: 387 

𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘 = 𝑀𝑎𝑡𝑟𝑖𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑠𝑘  ∧  𝑀𝑎𝑡𝑟𝑖𝑥𝐸𝑙𝑙𝑖𝑝𝑠𝑒_𝑚𝑎𝑠𝑘               (11) 388 

where ∧  denotes the logical “AND” operator. 𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘  serves as the basis for 389 

determining the valid range for Focal-Zonal Mixed Statistics, as illustrated in Fig. 1c. 390 

3.2.3 Algorithm design for the statistics calculation 391 

The core algorithm for statistical computation within the Focal-Zonal Mixed Statistics 392 

framework consists of the following steps: 393 

(1) Determination of valid statistical cells in the value raster 394 

Using 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑢𝑒 to represent the cell array from the value raster within the bounding 395 

box defined above, then by performing a bitwise multiplication of 𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘  with 396 

𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑢𝑒, the final valid statistical value matrix 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 is obtained: 397 

𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 = 𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘  ⊗𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑢𝑒                            (12) 398 

where⊗denotes bitwise multiplication. This operation collects cells from the value raster that 399 

are located within the neighborhood and share the same UV-ECC as the current cell, while 400 

masking out other cells that could interfere with the statistical results. In 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 , the 401 

masked cells can be represented with “NaN”.  402 

(2) Design of the calculation function for the statistics 403 

Taking 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 as the final input, the calculation functions for Focal-Zonal Mixed 404 

Statistics can be designed based on scientific computing tools such as NumPy. This library 405 

provides a range of statistical methods, including minimum, maximum, mean, standard 406 

deviation, percentiles, and more. For instance, the “numpy.nanmax()” method can ignore “NaN” 407 
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values and return the maximum value of 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 , while the “numpy.nanpercentile()” 408 

method, also ignoring “NaN” values, calculates the n-th percentile of 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑. 409 

3.3 User interface design 410 

The Focal-Zonal Mixed Statistics, along with traditional Zonal Statistics and Focal 411 

Statistics, are included in the newly developed toolbox, FZStats v1.0, using Python3 and QT5. 412 

The user interface is organized into three tabs, each dedicated to one of the three methods, 413 

allowing users to switch among them (see Fig. 2). Taking the tab for Focal-Zonal Mixed 414 

Statistics as an example, the interface is divided into four main sections, and the detailed 415 

description of the user interface design is given as follows. 416 

 417 

Figure 2. User interface design of FZStats v1.0 418 
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(1) Input and output design 419 

Users can load the value raster and UV-ECZR layers as inputs. Additionally, the output 420 

path and filename for the result raster can be specified. 421 

(2) Neighborhood window design 422 

Users can define the shape (e.g., rectangular, circular, elliptical) and and size of the 423 

neighborhood window. For rectangular and circular windows, size is controlled by the half-side 424 

length and radius, respectively. Elliptical windows are configured via three parameters: the 425 

length of the major axis, the ratio of the minor axis to the major axis, and the deflection angle 426 

of major axis. 427 

(3) Statistical measure design 428 

A dropdown menu allows users to choose from various statistical measures (mean, max, 429 

std, etc.). For percentile-based statistics, the desired percentile value (e.g., 50th, 75th, 98th) 430 

must be specified. 431 

(4) Optimization settings 432 

This section presents optimized parameter configurations to enhance computational 433 

efficiency: 434 

Chunk processing: Divide large raster layers into smaller chunks to manage memory usage 435 

efficiently. 436 

Parallel processing: Specify the number of processors to enable parallel computation and 437 

reduce runtime on multi-core systems. 438 

Threshold setting: Define a minimum sample threshold for statistical operations to ensure 439 

robust and meaningful results.  440 

Additionally, a batch processing mode is provided for automation. Users can prepare a 441 

configuration file (config.ini) to set parameters for multiple runs. This facilitates efficient task 442 

management, parameter reuse, and error tracking. 443 
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4 Experimental study 444 

4.1 Background of the case 445 

Geothermal resources, similar to coal, oil, and natural gas, are valuable energy mineral 446 

resources whose development and utilization play a crucial role in alleviating energy supply 447 

pressures and improving the global environment (Huang and Liu, 2010; Goldstein et al., 2011). 448 

The primary indicator for geothermal exploration is the detection of thermal anomalies 449 

(Romaguera et al., 2018; Gemitzi et al., 2021). In recent years, with the rapid advancement of 450 

remote sensing technologies, land surface temperature (LST) derived from thermal infrared 451 

bands has become a key parameter for identifying geothermal anomalies. However, LST is 452 

influenced not only by geothermal activity but also by environmental factors such as slope, 453 

aspect, and surface vegetation cover (Tran et al., 2017; Duveiller et al., 2018; Zhao and Duan, 454 

2020). 455 

To effectively extract LST anomalies directly related to geothermal activity, it is essential 456 

to suppress the confounding effects of surface environmental variables. Within the analytical 457 

framework of the Focal–Zonal Mixed Statistics developed in this study, terrain features are 458 

incorporated into environmental zoning, and the spatial sliding window technique is employed 459 

to mitigate environmental interference and enhance the detection of geothermal anomaly 460 

signals. 461 

4.2 Data preprocessing 462 

4.2.1 Spatial distribution of LST 463 

In this study, Landsat 8 imagery (Orbit Number: 116031) acquired during the spring, summer, 464 

and autumn seasons of 2015, 2019, and 2023, covering the Changbai Mountain region, was 465 

utilized for land surface temperature (LST) mapping and geothermal anomaly detection. The 466 

selection of multi-temporal images across different seasons and years was intended to robustly 467 

validate the effectiveness of the proposed method and to explore the temporal evolution patterns 468 
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of geothermal anomalies, thereby providing improved support for geothermal exploration.  469 

Following standard preprocessing procedures, including radiometric calibration and 470 

atmospheric correction, the Universal Single-Channel Algorithm (Jiménez-Muñoz et al., 2009, 471 

2014; Zhang et al., 2016b) was applied to retrieve LST across the study area. The resulting LST 472 

distributions are illustrated in Fig. 3. 473 

Taking the LST retrieved from the Landsat 8 image acquired on March 20, 2023, as an 474 

example, a comparison between Fig. 3 and the terrain information presented in Fig. 4 reveals a 475 

strong spatial correlation between LST patterns and topographic factors, particularly slope 476 

aspect. Given that the local overpass time of Landsat 8 over the study area was approximately 477 

11:00 AM, with a corresponding solar azimuth angle of 153°, LST values were significantly 478 

higher on southeast-facing slopes compared to northwest-facing slopes (Fig. 4a). This 479 

highlights the pronounced influence of solar radiation on the spatial variability of LST within 480 

the study area. 481 
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 482 

Figure 3. Spatial distribution of land surface temperature (LST) in the study area on March 20, 2023. 483 

4.2.2 Mapping of unique-value environmental characteristic zones 484 

Slope and aspect were selected as the environmental factors for constructing the UV-ECZR (see 485 

Fig. 4a and 4b). As previously discussed, these two variables exhibit a strong spatial coupling 486 

relationship with LST. Although elevation and vegetation coverage were not directly included 487 

in the environmental zoning process, their variability can be considered relatively homogeneous 488 

within the defined neighborhood window (Zhang et al., 2019). Thus, their confounding effects 489 

are indirectly mitigated. In the framework of Focal–Zonal Mixed Statistics modeling, sample 490 

heterogeneity arising from long-range spatial variables can be effectively controlled by spatial 491 
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proximity, while heterogeneity caused by short-range spatial variables is suppressed through 492 

environmental similarity. 493 

 494 

Figure 4. Maps of environmental factors: (a) Slope aspect, (b) Slope degree, and (c) the composite Unique-495 

Value Environmental Characteristic Zonal Raster (UV-ECZR). 496 

4.3 Enhancement of geothermal anomalies based on Focal-Zonal Mixed Statistics 497 

In mineral prospectivity mapping, standard deviation normalization (Z-score transformation) is 498 

commonly employed to assist in constructing indicator variables for anomaly detection (Journel 499 

& Huijbregts, 1978; Goovaerts, 1997). This procedure involves subtracting the mean from the 500 

original value and then dividing by the standard deviation, rescaling variables to a uniform 501 
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range to mitigate scale-dependent biases and enhance comparability of multi-source 502 

geochemical data in predictive modeling (Carranza, 2008). The resulting standardized value 503 

quantifies the deviation of the original measurement from the mean in units of standard 504 

deviations. The core principle lies in defining an appropriate sample range for calculating local 505 

background statistics (e.g., mean and standard deviation), which ensures meaningful 506 

comparisons between the current value and its spatial context (Cheng, 2007; Wang et al., 2011). 507 

In this study, Focal–Zonal Mixed Statistics was adopted to define the comparable sample 508 

range by simultaneously considering spatial proximity and environmental similarity. 509 

Specifically, for each current location, the level of land surface temperature (LST) was assessed 510 

within a sample set determined jointly by the local moving window and similar terrain features. 511 

This method effectively suppresses the influence of terrain, vegetation, and other confounding 512 

factors, allowing the resulting LST anomaly distribution to predominantly reflect geothermal 513 

activity. Using a circular moving window with a radius of 4.2 km, the enhanced geothermal 514 

anomaly map derived from Fig. 3 is shown in Fig. 5. 515 
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 516 

Figure 5. Enhanced geothermal anomaly map based on Focal-Zonal Mixed Statistics with a local window 517 

radius of 4.2 km. 518 

By comparing Figs. 5 and 3, it is evident that the LST anomalies enhanced through Focal-519 

Zonal Mixed Statistics show a stronger spatial correlation with known geothermal wells (as 520 

referenced by Yan et al., 2017). The higher values in Fig. 5 more effectively highlight these 521 

geothermal wells, suggesting that areas with high values in this figure have an increased 522 

likelihood of indicating new geothermal resources. 523 

4.4 Performance Comparison 524 

Following the standard deviation normalization approach described above, Zonal Statistics and 525 

Focal Statistics were also applied to the LST dataset (Fig. 3) to enhance geothermal anomalies, 526 
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thereby facilitating comparative evaluation of the models. Specifically, the Receiver Operating 527 

Characteristic (ROC) curve was employed to assess the predictive performance of the original 528 

LST and the three enhancement indices derived from Focal Statistics, Zonal Statistics, and 529 

Focal–Zonal Mixed Statistics. 530 

The ROC curve plots the False Positive Rate (FPR) against the True Positive Rate (TPR) 531 

(Fawcett, 2006; Hanczar et al., 2010), and the Area Under the Curve (AUC) is used as a 532 

quantitative metric for model evaluation. AUC values range from 0.5 to 1, where higher values 533 

indicate better predictive accuracy and model performance. 534 

The ROC curves for the LST dataset and the three enhancement indices are presented in 535 

Fig. 6, where subfigures a–d correspond to the four observation dates: March 20, June 24, 536 

September 28, and December 25, 2023. Focal Statistics and Focal–Zonal Mixed Statistics were 537 

both implemented using a circular window with a radius of 4.2 km. It is evident that, across all 538 

seasons, the enhancement indices derived from the Focal–Zonal Mixed Statistics approach 539 

consistently outperform the others. For instance, in Fig. 6a, the AUC value under Focal–Zonal 540 

Mixed Statistics reaches 0.734, notably higher than that of Zonal Statistics (0.508), Focal 541 

Statistics (0.669), and the original LST (0.474). Although both Zonal Statistics and Focal 542 

Statistics demonstrate slight improvements over the raw LST, their enhancement effects remain 543 

limited. Furthermore, comparison of Fig. 6a–d indicates that our enhanced model performs best 544 

in autumn, as evidenced by the highest AUC value observed in this season. 545 
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 546 

Figure 6. Receiver Operating Characteristic (ROC) curves of the Land Surface Temperature (LST) and its 547 

three enhancement indicators derived from Focal Statistics, Zonal Statistics, and Focal–Zonal Mixed 548 

Statistics, respectively. A Parameter settings: the local window used for both Focal Statistics and Focal–Zonal 549 

Mixed Statistics is a circle with a radius of 4.2 km; the zoning categories used for Zonal Statistics are identical 550 

to those employed in Focal–Zonal Mixed Statistics; and a geothermal well represents an area of 0.035 km2 551 

surrounding it. 552 

5 Discussion 553 

5.1 Significance and Necessity of the New Statistical Method 554 

Firstly, from a theoretical standpoint, traditional methods each address only one aspect of spatial 555 

variation: Focal Statistics primarily captures SPD, while Zonal Statistics is designed to account 556 
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for SSH. However, real-world spatial problems often exhibit both characteristics 557 

simultaneously. This underscores the theoretical necessity and practical relevance of developing 558 

the new method—Focal–Zonal Mixed Statistics—which bridges the methodological gap 559 

between Focal Statistics and Zonal Statistics. 560 

Secondly, from a conceptual perspective, Focal–Zonal Mixed Statistics can be viewed as 561 

a generalization of the two conventional approaches. When the moving window encompasses—562 

or far exceeds—the entire study area (i.e., the window size approaches infinity), the method 563 

converges to Zonal Statistics, effectively capturing stratified heterogeneity. Conversely, when 564 

the analysis is confined to a single environmental zone, the method reduces to Focal Statistics, 565 

thereby focusing on spatial positional dependence. This flexibility enables the new method to 566 

seamlessly adapt to different spatial structures. 567 

Thirdly, in terms of practical performance (see Fig. 6), although traditional methods show 568 

some ability to enhance geothermal anomaly detection—for example, Focal Statistics improves 569 

AUC values by 3.9% to 41.1% over the original LST—the proposed method demonstrates 570 

significantly greater efficacy, with AUC improvements ranging from 9.9% to as high as 54.9%. 571 

These results clearly highlight the superior performance of Focal–Zonal Mixed Statistics. 572 

Finally, regarding broader applicability, although geothermal anomaly enhancement 573 

serves as the illustrative case in this study, the utility of the proposed method extends well 574 

beyond this specific context. It is particularly well suited for applications requiring both 575 

improved sample purity and simultaneous control over SSH and SPD. Potential domains 576 

include mineral resource potential evaluation, vegetation restoration potential assessment, 577 

cropland productivity analysis, and terrestrial vegetation carbon sink estimation. Furthermore, 578 

the method can be employed to assess the spatial variability of target variables under specific 579 

environmental constraints, and to evaluate the effectiveness of environmental factors in 580 

delineating spatial patterns of interest. 581 



 31 

5.2 Robustness of the new method 582 

To ensure that the superior performance of the proposed method, as demonstrated in Sect. 4.4, 583 

is not due to chance, it is essential to test its robustness under varying conditions. This involves 584 

adjusting key parameters such as the size of the local analysis window, the year and season of 585 

image acquisition, and the representative area assigned to geothermal wells. Through multi-586 

scenario comparative experiments, the consistency and reliability of the model’s advantages 587 

can be systematically evaluated. 588 

To rigorously assess the robustness of the proposed method, we conducted a series of 589 

controlled experiments involving multiple scenarios. Specifically, Landsat imagery from the 590 

years 2015, 2019, and 2023 was selected, covering all four seasons—spring, summer, autumn, 591 

and winter—for each year. Due to cloud contamination and other data quality issues, some 592 

missing seasonal scenes were replaced with imagery from adjacent years and similar months. 593 

In addition, two representative areas were defined for individual geothermal wells: 0.0009 km² 594 

(equivalent to a single 30 m × 30 m pixel) and 0.035 km². To further test the model's sensitivity 595 

to spatial scale, we varied the radius of circular local windows from 0.3 km to 9 km in 0.3 km 596 

increments. These selections of years, seasons, neighborhood sizes, and point 597 

representativeness were all deliberately designed to evaluate the stability and generalizability 598 

of the proposed method relative to the two traditional approaches. 599 

When the representative area for a geothermal well is defined as a circle with an area of 600 

0.035 km², and imagery from the year 2023 is used for modeling, the AUC values of the original 601 

LST and its enhancement indices are calculated across different seasons and a range of local 602 

window sizes. Specifically, circular windows with radii ranging from 0.3 km to 9 km (at 0.3 km 603 

intervals) are applied to evaluate model performance. The AUC values obtained under these 604 

varying seasonal and spatial conditions—across different models—are plotted in a Cartesian 605 

coordinate system, as illustrated in Fig. 7. 606 
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 607 

Figure 7. Variations in AUC values with increasing local window radius (measured in pixel units) for Land 608 

Surface Temperature (LST) and its three enhancement indices derived from Focal Statistics, Zonal Statistics, 609 

and Focal–Zonal Mixed Statistics. The geothermal wells are represented as circles with an area of 0.035 km². 610 

Panels (a) through (d) correspond to the LST data acquired in the spring, summer, autumn, and winter of 611 

2023, respectively. 612 

Appendix Figs. S1 and S2 present the modeling results for the years 2015 and 2019, 613 

respectively, under the condition that each geothermal well is represented by a circular area of 614 

0.035 km². 615 

Appendix Figs. S3 to S5 show the results for the years 2015, 2019, and 2023, respectively, 616 

where the representative area for each geothermal well is defined as a single pixel (30 m × 30 m, 617 

i.e., 0.0009 km²). 618 

Overall, the two enhancement models incorporating neighborhood windows—Focal 619 

Statistics and Focal–Zonal Mixed Statistics—consistently outperform both the Zonal Statistics 620 

model and the original, unenhanced LST. The relatively poor performance of Zonal Statistics 621 

is primarily attributed to the strong spatial variability of LST and the limitations of the simple 622 
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classification scheme employed. Moreover, since neighborhood-based methods are inherently 623 

sensitive to spatial scale, the effectiveness of both Focal Statistics and Focal–Zonal Mixed 624 

Statistics varies with changes in window size. 625 

However, regardless of the specific modeling configuration—including different years 626 

(2015, 2019, or 2023), seasons (spring, summer, autumn, or winter), definitions of the 627 

geothermal well representative area (either a single pixel of 0.0009 km² or a circular area of 628 

0.035 km²), and a wide range of local window sizes (radii from 0.3 km to 9 km in 0.3 km 629 

intervals)—Focal–Zonal Mixed Statistics consistently delivers superior performance compared 630 

to Focal Statistics. This consistent advantage across diverse scenarios and parameter settings 631 

clearly demonstrates the robustness and broader applicability of the proposed method. 632 

5.3 Advancements of the Toolbox 633 

The FZStats v1.0 toolbox developed in this study not only integrates traditional Focal Statistics 634 

and Zonal Statistics—addressing SPD and SSH, respectively—but also innovatively 635 

implements Focal–Zonal Mixed Statistics by combining spatial proximity and environmental 636 

similarity, enabling simultaneous handling of both SPD and SSH. This toolbox thus offers a 637 

novel and versatile solution for spatial statistical analysis. 638 

To enhance its applicability across diverse scenarios and computing environments, the 639 

toolbox provides a variety of parameter-setting interfaces. In terms of neighborhood window 640 

configuration, users can select from rectangular, circular, or elliptical windows, with the 641 

elliptical option allowing the expression of spatial anisotropy through adjustable parameters. 642 

Regarding statistical measures, the toolbox supports traditional metrics such as mean, standard 643 

deviation, minimum, and maximum, as well as flexible calculation of arbitrary percentiles to 644 

suit specific analytical needs. To optimize memory usage and computational efficiency, FZStats 645 

v1.0 supports both raster chunk processing and multi-process operation modes. This design 646 

accommodates different hardware capacities and enables efficient parallel processing on multi-647 
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core CPUs. Additionally, users can specify a minimum number of cells for valid statistics 648 

through the "Threshold" parameter, effectively preventing low-precision and unreliable results 649 

caused by insufficient sample sizes. 650 

Finally, to improve automation and multitasking efficiency, the toolbox offers a batch 651 

processing solution. Users can define processing parameters within a multi-section INI-format 652 

configuration file, thus avoiding repetitive manual operations. This functionality supports one-653 

time parameter setup, automatic execution of multiple tasks, parameter reuse, and error tracking, 654 

significantly enhancing operational efficiency and reliability. 655 

6 Conclusions 656 

This study developed the FZStats v1.0 toolbox based on Python 3 and QT5, integrating 657 

traditional Focal Statistics, Zonal Statistics, and the newly proposed Focal–Zonal Mixed 658 

Statistics. Detailed algorithmic implementations and modeling processes for these methods 659 

were presented, and their performance was evaluated through geothermal anomaly detection 660 

experiments. The main conclusions are summarized as follows: 661 

First, the development of Focal–Zonal Mixed Statistics is crucial, as it addresses the 662 

limitations of traditional Focal Statistics and Zonal Statistics, providing a unified solution for 663 

simultaneously handling SPD and SSH. 664 

Second, FZStats v1.0 offers extensive parameter-setting capabilities, supporting flexible 665 

configurations of window shapes and statistical measures. Additionally, through adjustable 666 

processing options such as raster chunking and multi-processing, the toolbox can maintain 667 

efficient performance across a range of computing environments. 668 

Third, case study analyses demonstrate that Focal–Zonal Mixed Statistics significantly 669 

enhance the detection of geothermal anomalies compared to conventional Zonal and Focal 670 

Statistics methods, with this advantage proving robust across different conditions. 671 

In summary, FZStats v1.0 not only contributes theoretical innovation to spatial statistical 672 
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methods but also exhibits strong functionality and flexibility in practical applications. It holds 673 

considerable promise for geothermal anomaly detection and broader fields requiring integrated 674 

spatial statistical solutions. 675 
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