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Abstract: Focal and Zonal Statistics are fundamental tools in GIS for characterizing spatial

patterns, vet they have traditionally addressed spatial stratified heterogeneity (SSH) and spatial




28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

positional dependence (SPD) in isolation. To overcome this limitation, we introduce FZStats

v1.0, a Python 3/QT5-based toolbox that not only integrates conventional Focal and Zonal

statistics, but also implements a novel Focal-Zonal Mixed Statistics approach capable of jointly

capturing both SSH and SPD. First, we formally develop the Focal-Zonal Mixed Statistics

model to address stratified heterogeneity, spatial dependence, and their interactions within a

unified framework—filling a key methodological gap left by traditional approaches that cannot

accommodate their co-occurrence in real-world spatial data. Second, FZStats v1.0 provides a

user-friendly graphical interface for flexible configuration of neighborhood window shapes

(e.q., rectanqular, circular, elliptical), sizes, and statistical operations (e.q., mean, percentiles).

It also supports multiprocessing and batch operations, enabling scalable computation across

diverse spatial analysis tasks. Third, we validate the effectiveness and robustness of the new

method through a geothermal anomaly detection case study. Across multiple years, seasons,

representative target sizes, and local window radii, the Focal-Zonal Mixed Statistics

consistently outperforms both Focal and Zonal Statistics, demonstrating its superior capability

in enhancing anomaly signals under complex spatial conditions. In summary, FZStats v1.0 is

not only a theoretically grounded and methodologically novel tool, but also a highly adaptable

and practical solution for spatial data analysis in diverse application domains.

Keywords: Spatial Statistics; Raster Operations; Spatial Stratified Heterogeneity; (SSH);
Spatial Positional Dependency; (SPD); Focal/Zonal Statistics.

1 Introduction

Fhe—advent—of-Geographic Information Systems (GIS) marksrepresent a milestone in the

evolution of geography- by providing a new paradigm for the integrated management, analysis,

and visualization of spatial data (Goodchild, 1992: Bernhardsen, 2002; Longley et al.. 2015).

As a eorefunetion—of-vital analytical module within GIS-seftware, spatial statistics provide

powerful-metheds—and—teels—that—enable researchers to quantify and deeision-makers—to

anabyzeinterpret spatial patterns and asseeiationsrelationships on the Earth's surface
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2004)-with unprecedented precision (Fischer & Getis, 2010; Fotheringham & Rogerson, 2013).

With continued advances in GIS technology, investigators can now more easily explore the

distribution, temporal evolution, and driving mechanisms of spatial variables; and spatial

statistical theories and methods play an increasingly prominent role in geographical studies.

Two foundational concepts in spatial statistical analysis are spatial heterogeneity and positional

dependence (Goodchild & Haining, 2004). Correspondingly, Zonal Statistics and Focal

(Neighborhood) Statistics areoffer two essential-methods—efspatial-statistical-anabysis—The

g complementary approaches.

Zonal Statistics partitions raster dataunits representing the target variable into seweraldiscrete

zones based on predefined rules—or—attributes—performingstatistical-analyses—on—theraster

eelsschemes, computes summary metrics such as mean, maximum, minimum, and sum within

each zone, and then-eutputtingrenders the results as a mosaic raster layer (Singla and& Eldawy,

2018; Haag et al., 2020; Winsemius and& Braaten, 2024). Fhelatteralso-knewn-as-In contrast

Focal Statistics defines a neighborhood erlecal-window-statistiestakesaround each rastercell

according to the-destgnatedspecified window shape and size-it-performs-statistical-anabyses-on

the—raster—eels, calculates the same set of summary metrics within that neighborhood, and

assigns the resulting value to the central cell; by sliding this window and-then-outputs-theresults

as-a-meosaterastertayeracross all locations, it thereby quantifies how these statistics vary with

the window's movement (Mathews and& Jensen, 2012; Kassawmar et al., 2019; Zhang et al.,

2021).

max—fmwﬁ,—mmﬁum,—smﬂ,—&nd—se—eﬁ.—

Currenthy—the-mainstreamMainstream GIS seftware-platforms ineludingsuch as ArcGIS
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and QGIS previde—teolinclude dedicated modules sueh—as—for Zonal Statistics and Focal

Statistics—and—Zenal—Statisties, both of which have premeted—the—usage—ofthese—twe

methedsbeen widely adopted in practice. From an application perspeetivestandpoint, Zonal

Statistics primarily addressdeals with spatial stratified heterogeneity (SSH);—which—ean—be

deteeted) by dividingpartitioning the target—variable-theughstudy area into zones based on

environmental eharaeteristie-elassified-variablescharacteristics, thereby capturing SSH (Wang

et al., 2016; Wang and Xu, 2017; Gao et al., 2022). For instance, the-aetaal-vegetation growth

or potential ¢

conditions—suehas-often varies markedly among zones delineated by slope and aspect, which

are key drivers of vegetation dynamics (Zhang et al., 2018, 2019; Xu et al., 2020). Withrespeet

teConversely, Focal Statistics;it focuses on spatial pesitienpositional dependence (SPDy;-which

by employing moving-window or geographically weighted techniques to detect and mitigate

positional effects (Tobler, 1970; Wolter et al., 2009; Wagner et al., 2018). For example, even

soils or rocks with the same texture generally-exhibit variationsin-geochemical element-content

due-to-their-different spatial- Hocations:-however-these-differenees-variations that diminish with
decreasing distance, indicating-that-these-attributes-are-dependent-on-spatial-pesitienreflecting

underlying positional dependence: consequently, spatial interpolation of element concentrations

typically assigns greater weight to nearer samples (Krige and Magri, 1982; Trangmar et al.,

1986; Zuo, 2014).

In eurrealworldpractice, SSH and SPD may-eoexistwith-the former-exhibitingoften co-
occur, manifesting as abrupt ehanges-and-thelatterexhibiting-and gradual ehanges—FHorexample;

due—to-variations i—land-sea—distribution;—seolarradiation—and-altitaderespectively. At broad

scales, terrestrial vegetation exhibits—streng—patterns illustrate SPD through meridional,

latitudinal, and wertical-zenalaltitudinal gradients driven by land—sea distribution—patterns
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respeetively, solar radiation, and elevation (Qiu et al., 2013; Dong et al., 2019; Eddin and Gall,

influenee-of). Conversely, local topography, microclimate, and human aetivities;—the-activity

introduce sharp boundaries in vegetation eeverage-differences-eaused-by-these-factors-do-not

en—cover, generating SSH—for example, stark contrasts between shady and sunny slopes

senerally-shows-SSH-(Alvarez-Martinez et al., 2014; Zhang and Zhang, 2022:-) and-sigrificant
differenees between urban and rural landscapes (Zhang et al., 2023b). Furthermore,—due—te
ditferences in formation age. there are signilicant varfationsSimilarly, in matertal across strata,
which-ts-a-majorreasonfor-the SSH-ef mineral resetreesgeology, stratigraphic age differences
produce SSH in resource distribution (Zhao-Pengda, 2006; Zuo, 2020)—Subsequenthyunder-the

influenee-of), while internal and external geological processes;the-distribution-of—_ impart SPD

to mineralization elements-often-exhibits SPD-charaeteristiespatterns (Cheng, 2006, 2012), anéd

as modeled by

geostatistics and kriging (Krige, 1951; Goovaerts, 1997; Miiller et al., 2022). Therefore, swhen

nsidereffective spatial

respeetive-fieldsto-overcome-the-To address these challenges-pesed-byselely-considering SSH
or-SPD-Professor Lhuand-his-group-expanded-upen, previous studies have integrated SSH and

SPD. developing specialized hybrid models for specific spatial-statistical objectives. For

example, Zhu et al. (2019) extended traditional spatial interpolation methods;—which-typieatty

feeus—normally focused solely on spatial dependences——by introducing eenstraints—derived

frem—environmental similarity (Zhu—et—al—2019)—They further propesedconstraints, and

formalized the “Third Law of Geography”, which states that the-mere-geographically similar
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contexts yield similar
(processes)-ofthe-target-variable at-these-loeations{values (Zhu et al., 2018; Zhu et al., 2020).
Meanwhile; Professerln a similar vein, Zhang and-his-group-enhanced-traditionalet al. (2019)

incorporated spatial sliding-window techniques into vegetation potential assessment-medels;

g, resulting
in a model that simultaneously considers spatial proximity and environmental similarity (Xu et
al., 2020; Zhang, 2023a). Themostrecent-attemptatspatiab-sttistieab-modeling that-constders
beth-SSH-and-SPD-is-by-More recently, Lessani and Li (2024),-whe-developed) developed the

Similarity and Geographically Weighted Regression (SGWR) model, which combines distance-

based and similarity-a

distance-weights-and-similarity-weightsto-address-the-based weights to overcome limitations
of traditional geographically weighted medelngmethods that address only eensiders—spatial

dependency.
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SPDissues-

Although these methods successfully integrate SSH and SPD in specific tasks such as

interpolation and regression, there is still no general-purpose GIS toolbox comparable to Focal

and Zonal Statistics within standard GIS workflows. To fill this gap, this study presents FZStats

v1.0, which unifies traditional Zonal Statistics and Focal Statistics with the novel Focal-Zonal

Mixed Statistics model. Leveraging multiprocessing and batch-processing capabilities, FZStats

v1.0 improves computational efficiency and optimizes usability. Moreover, from a logical

perspective, Focal-Zonal Mixed Statistics can be viewed as a generalization of the two

traditional approaches. Specifically, when the moving window covers—or substantially

exceeds—the entire study area (i.e., window size — o). the method converges to Zonal

Statistics, effectively addressing SSH. Conversely, when only a single zone is defined, it

simplifies to Focal Statistics, capturing SPD. In the more common and complex scenarios where

both SSH and SPD coexist, only the mixed approach is capable of simultaneously accounting

for both characteristics. Consequently, FZStats v1.0 is positioned to function as a

comprehensive analytical framework for spatial studies necessitating simultaneous evaluation

of SSH and SPD parameters across diverse application domains.

2 Models
2.1 Focal Statistics model

The medeling-efFocal Statistics method addresses spatial positional dependence by computing

summary statistics within a defined neighborhood around each raster cell. The implementation

involves three funetional-methedsmain steps: (1) defining the neighborhood windows—

specifying its shape (e.g., square, circular, elliptical) and size; (2) identifying the neighboring

cellsJoeated—locating all raster cells within the neighborhood;_of the focal cell; and (3)

calewlating—the netghberhoed statistiescomputing statistics—applying a selected statistical

function (e.g., mean, sum, minimum, maximum) to the identified neighboring cells and
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assigning the result to the focal cell.

2.1.1 Defining the neighborhood window

Defining the neighborhood window is a erusetal-prerequisitefor-fundamental step in Focal

Statistics. There—are—This step involves specifying two key parameters—to—define: the

netghborhoed-windowits-window's shape and size. These ean-be-adjusted-based-onparameters

should be determined according to the spatial characteristics of the data and the research

objectives-ef-the-research—Commentyused-shapes. Common shape options include circular,

square, and rectangular, while the window size is typically speeified-interms-of defined by the

number of cells.

70 (1)

T

where—f{)—represents—the—funetion—used—to—charaeterize—the—To implement these

neighborhood windows in a computational framework, we developed three distinct each

corresponding to a different geometric shape: rectangular, circular, and elliptical. These window

classes are outlined in Listing 1.
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class KDGeoRectNbhWindow:
def __init__(self, height: int, width: int):
self.height = height
self.width = width
self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

class KDGeoCircleNbhWindow:
def __init__(self, radius: int):

self.radius = radius
self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

class KDGeoEllipseNbhWindow:
def __init__(self, semi_major_axis: int, axis_ratio: float, azimuth: float):
self.semi_major_axis = semi_major_axis
self.axis_ratio = axis_ratio
self.azimuth = azimuth
self.mask_matrix = self._generate_mask_matrix()

def _generate_mask_matrix(self):...

Listing 1. Code fragment for the three types of neighborhood window;—Sheape—refers-to-the-geometrie
configuration—of—the— classes: the rectangular windows;—while—Size—speetfies  class

(KDGeoRectNbhWindow), the circular window class (KDGeoCircleNbhWindow), and the elliptical window

class (KDGeoEllipseNbhWindow).

The mathematical essence of a neighborhood window lies in its formal specification of a

spatial domain of influence, which is typically discretized as a two-dimensional binary mask

matrix. This matrix defines the inclusion of neighboring cells within a fixed spatial extent:

centered on a focal cell. Specifically, it indicates whether each cell in the local neighborhood

should be considered for subsequent analysis or computation. The matrix can be formally

expressed as:

1 if (x,y) € Qy
0 otherwise

NMcx,cy(xJY) = { 1)

where (), denotes the neighborhood spatial domain centered on cell (cx,cy). whose
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geometric properties are jointly determined by the shape and size parameters of the window. As

shown in Listing 1, the _generate_mask_matrix method implemented in each window class is

responsible for generating the neighborhood mask matrix according to the specified window

parameters (e.g., height, width, radius).

2.1.2 Identifying cells within the neighborhood

OneeAfter the mathematical formulation of the neighborhood window is

determined;established (as defined in Eq. (1)), the spatial sliding window technique can be

uwsedemployed to identify the-cells loeated-within thepredefined neighborhoods defined-by-the

neighboerhoed-windew—centered areundgiven—eels-on each focal cell for localized analysis
(Hyndman and Fan, 1996). For each-—eurrentdocation—Cell{ij)-a given focal cell located at

position (i, j), the effective neighborhood cell set can be obtained through the following two

computational stages.

(1) Alignment of the neighborhood ean-be-expressed-as:mask matrix

Mbh{To ensure accurate spatial correspondence, the geometric center of the neighborhood

mask matrix NM € {0, 1}"**"_is aligned with the focal cell located at (i, j) on the raster grid.

A mapping is then established from each element in the mask matrix to its corresponding

location in the raster data domain. Let the center of the mask matrix be located at (cx, cy), and

let (u,v)_denote the row and column offsets from the center. Then, the mapping from mask

coordinates to raster coordinates is defined as:

(xy) = (+ ujy=nbitCell) M)}——+V)
)
where i—and—7—denote-(x,y) denotes the row—and—eolamnnumbercoordinate of eurrenta
neighboring cell atlocation—(ij)-respectiveb—nbh{is-in the functionfor-determiningraster
grid, derived from the neighberhoed-ofCell(ij)—andNW —representsrelative offset (u,v)

with respect to the focal cell. This mapping ensures that the neighborhood window is precisely

10



233 aligns with the focal cell.

234
235 &S—(2) Identification of the valid neighborhood cell set
236 To handle boundary effects when the neighborhood window extends beyond the raster

237  extent, a boundary-clipping strategy is adopted. That is, only the cells that are entirely located

238  within the raster data domain Qj,_are retained. The valid neighborhood cell set Cr 14554 (i, )

239  is defined as:

240 CF_valid (i'j) =

241 {(x,y) € Qp |NMcx,cy(x;Y) =1}

242 (3)

243 where isHnnbh{-NM_ ., (x,y) € {0, 1} is the indicator function-used-to-identify-whether
244 CellG5§5—isteeated—withincorresponding value in the neighborhood MNbh{)——and -

245  aremask matrix. A value of 1 indicates inclusion as a valid neighbor for the+row-and-column

246 number of the input value raster Ry respectively.
247 —nEg3);the-detaledformsubsequent analysis, while a value of is—in-nbh{)—depends

248

249

250

251

252

253
254  2.1.3 Calculating the feecalstatisties

255  Suppese-that-ST{Type,Set)—denotes-the statistical-funetion-of Focal Statistics;—and-—Type
256

257
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260
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262
263

264

265  After identifying the valid neighborhood cells, their corresponding values are retrieved from

266  the raster dataset and organized into a two-dimensional array. Based on these values, statistical

267  measures such as mean, percentiles, and other user-defined metrics can be computed. The

268  resulting statistic is then assigned to the corresponding position in the output raster.

269 This procedure can be implemented through a function that obtains the neighborhood mask

270  matrix, identifies valid neighborhood values for the focal cell, and computes the specified

271  statistic. Listing 2 presents a representative implementation of this workflow.

272 The computation is performed for every cell in the input raster, and the resulting values

273  are written to the output raster, producing the final focal statistics result.

def calculate_focal_statistics_result(
nbh_window_mask: np.ndarray,
data_arr: np.ndarray,
data_align_pos: Tuple[int, int],
stats_parameters_list: List[str]
) -> float:
# Extract neighborhood mask and data centered at the target position
cur_nbh_mask, cur_nbh_data = calculate_current_nbh(nbh_window_mask, data_arr, data_align_pos)

# Apply the mask to filter out invalid values
valid_value_arr = cur_nbh_data[cur_nbh_mask]

# Delegate the statistical computation to the external function
274 return calculate_statistics(valid_value_arr, stats_parameters_list)

275 Listing 2. Python function calculate focal_ statistics result for computing focal statistics. The function

276 identifies valid values from a neighborhood centered at the focal cell, filters them using a predefined mask,

277 and then calculates the specified statistics.
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2.2 Zonal Statistics model

Unlike Focal Statistics, which reguire-only-a-operate solely on a single value raster-as—input,

Zonal Statistics reguirerequires two input raster layers: ene-as-thea value raster and the-other-as

thea zone raster. The zone raster defines the shapespatial configuration and

distributioncategorical labels of the-zones, andwhere each cell ean-only-belongis assigned to a

singleexactly one zone. Zonal Statisties-caletlatesthe-statistics computes summary metrics (e.g.,

mean, sum, minimum, maximum) for each zone based-oenby summarizing the values of the

corresponding cells fromin the value raster;-and-the-ealeulated. The resulting statistic is then

uniformly assigned as-the-eutput—valae—forto all cells within thethat zone. Finalhy—the-output

values—of-differentAfter all zones are assembledinto-theprocessed, the individual results are

combined to generate the final output raster.

The implementation of Zonal Statistics medehngtypically involves two funetional

methods—which—are—forprimary steps: (1) identifying the set of cells in the value raster

bycorresponding to each zone based on the zone raster, and_(2) calculating zenalsummary

statistics respeetivelyacross those cell values within each zone.

2.2.1 Identifying cells in the value raster falling into each zone
In Zonal Statistics, spatial overlay analysis ean—-be—usedis employed to find-thezone—code

forassociate each cell in the value raster with a specific zone, as defined by a corresponding

zone raster (Hyndman and Fan, 1996):

E= B ). This process maps each cell in the

value raster to its corresponding 5

returns-the-zone i A AR

For-agivenzone—4 ;-the-correspending-based on spatial alignment. Based on this mapping,

cells in the value raster ferm-a-cel-are grouped according to their zone membership, resulting

13
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in a set &S {Z);-which-eanbe-expressed-as:of raster cells for each zone.

0
\=4

(7 \ — QT
\ / JT

(Z- ) (0)
“k \FkJJ 77

z

Hisimpertant to-nete-that-the-caleulated-statisticsare-Once the set of raster cells belonging to

each zone has been identified, a summary statistic is computed based on the corresponding cell

values. The result is then uniformly assigned to all cells within eachthat zone;and-the-statisties

for. After all zones are utimately-processed, the individual zone-level results are mosaicked

inteto generate the final output raster.

Listing 3 demonstrates the implementation of this zonal statistics procedure. The

calculate zonal statistics result function accepts a value raster (data arr), a zone raster

(feature arr), and a list of statistical parameters. For each unique zone code identified in the

zone raster, the function identifies the corresponding cell values from the value raster, performs

the specified statistical computation, and assigns the result to all cells within the zone,

ultimately vielding a complete zonal statistics output raster.

14
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def calculate_zonal_statistics_result(
data_arr: np.ndarray, feature_arr: np.ndarray, stats_parameters_list: List[str]
) -> np.ndarray:
# Initialize the output array with NaNs to represent undefined statistics
stats_result_arr = np.full_like(data_arr, np.nan)

# Identify all unique zone codes in the feature array
zone_code_1list = np.unique(feature_arr)

for code in zone_code_list:
# Create a boolean mask identifying all pixels belonging to the current zone

code_mask = (feature_arr == code)

# Extract the data values corresponding to the current zone
masked_data_arr = data_arr[code_mask]

# Compute statistics for the zone
stats_result = calculate_statistics(masked_data_arr, stats_parameters_list)

stats_result_arr[code_mask] = stats_result

return stats_result_arr

Listing 3. Python implementation of the zonal statistics computation. The calculate zonal statistics_result

function computes a specified statistic for each zone defined in the zone raster and assigns the result to all

corresponding cells in the output raster.

2.3 Focal-Zonal Mixed Statistics
Similar to Zonal Statistics, Focal-Zonal Mixed Statistics alse—reguireoperates on two put

raster fayers;inputs: a value raster and a zone raster. However, this method uniguely integrates

spatial and categorical criteria, combining the specific-modeling-proecesslocalized analysis of

Focal Statistics with the zone-based constraints of Zonal Statistics. The computation involves

the-folowing-two funectional-metheds.primary stages:

2.3.1 Identifying eels-within-theneighborhood thatbelengcells belonging to the same zone

Actuallyln this step, the determinationselection of the-target-relevant cells for analysis is

governed by two criteria, the spatial proximity, as defined by a neighborhood window centered

on the focal cell, and zone homogeneity, requiring that all selected cells belong to the same

zone as the focal cell.

15



338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

For a focal cell located at position (i, ), the valid neighborhood cell set Crz ,q:i4 (i, j)

can be defined as:

CFZ_valid(irj) = {(x’y) € Qp |NMcx,cy(xfy) =1A Z(X'Y) = Z(i'j)}%l

where NM ., ., (x,y) € {0,1} is the corresponding value in the neighborhood mask matrix. A

value of 1 indicates inclusion as a candidate valid neighbor for subsequent analysis, whereas a

value of 0 indicates that the cell is excluded. ), denotes the spatial domain of the raster dataset,

(x,y)_are the relative positions of candidate neighboring cells, and Z(i, j)_is the zone code of

the focal cell, which serves as the categorical constraint.

2.3.2 Calculating the Focal-Zonal Mixed Statistics-combines

Once the set of valid neighboring cells has been determined based on both the-spatial proximity

condition—from—Focal-Statistics,—and zone membership, the next step is to compute the

atdesired statistical measures using the eurrent-location,—+-its-neighberhoedis—-Nbh{i)—and

HszenecodeisZ (i) theptsidentified cell seteonsists-ofalvalues. For each focal cell, only

those neighboring cells that lie within the neighborheod-that-belengtodefined spatial window

and share the same zone as-the-cellcode are included in the statistical calculation. This dual

constraint ensures that the resulting Focal-Zonal Mixed Statistics—Mathematicalhy-this-can-be

expressed—as: reflects localized variation while maintaining consistency within categorical

spatial units.

Stil-using—TypeListing 4 demonstrates the implementation of the Focal-Zonal Mixed

Statistics procedure. The _calculate focal zonal_statistics result function computes a

localized statistic for a given focal cell by integrating both spatial and zonal constraints. It first

16
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374

375

identifies the neighborhood data and associated zone codes based on the predefined window

mask centered at the target position. Then, it applies a zonal constraint by retaining only those

neighboring cells whose zone codes match that of the focal cell. After applying the combined

focal-zonal mask, the specified statistic is computed on the resulting valid value set.

The computation is performed for every cell in the input raster, where the neighborhood is

constrained both spatially and categorically. The resulting values are written to represent-the

O (G i\ — QT (Tyne £S (N (1
YE=Z\"TJ U E—2Z T Py Y E=£\" T T =)

T raster, zone raster, and output raster for
producing the final Focal-Zonal Mixed Statistics;,—Fespectively;—A/ —is—the—neighborheod
window-and-T ype—is-Tor statistical-parameter result,
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def calculate_focal_zonal_statistics_result(
nbh_window_mask: np.ndarray,
data_arr: np.ndarray,
feature_arr: np.ndarray,
data_align_pos: Tuple[int, int],
stats_parameters_list: List[str]
) -> float:
# Extract neighborhood mask and data centered at the target center position
cur_nbh_mask, cur_nbh_data = calculate_current_nbh(nbh_window_mask, data_arr, data_align_pos)

# Extract the environmental feature values over the same neighborhood window
_, cur_nbh_feature = calculate_current_nbh(nbh_window_mask, feature_arr, data_align_pos)
# Retrieve the environmental feature value at the center pixel

cur_feature = feature_arr[data_align_pos]

# Create a mask for pixels in the neighborhood that match the center's feature value
cur_feature_mask = (cur_nbh_feature == cur_feature)

# Combine the neighborhood shape mask with the feature (zonal) mask
fz_mask = cur_nbh_mask & cur_feature_mask

# Filter data values using the combined focal-zonal mask
valid_value_arr = cur_nbh_data[fz_mask]

# Compute statistics only on valid data values
return calculate_statistics(valid_value_arr, stats_parameters_list)

Listing 4. Python implementation of the Focal-Zonal Mixed Statistics computation. The function filters

neighborhood cells based on both spatial proximity and zone code consistency, then calculates a user-

specified statistic on the resulting valid subset.

3 Module design
3.1 Modeling process for Focal-Zonal Mixed Statistics

The flowechart-detailed modeling process for the-rewhyproposed-Focal-Zonal Mixed Statistics

is presented-inFig—1-and-the-detailed-modehing-processis-described as follows.
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391

392

393

394

395

396
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398

399

Preparation of the value raster and the environmental factor rasters

A 4

Construction of unique-value environmental characteristic zonal raster

A 4

Determination of neighborhood window and statistical parameters

}

Preparation of output raster

}

Calculation of Focal-Zonal Mixed Statistics

}

Save of output raster

. A : line of | i -

(1) Preparation of the value raster and the environmental factor rasters

This initial step involves collecting and preprocessing the spatial datadatasets required for
the analysis. The value raster typically represents the primary variable of interest, .e-the-target
fayer,—such as temperature, pollution levels, or vegetation indices. EnvirenmentalThe
environmental factor rasters include-various-influencing-factors,-such-ascharacterize variables
that potentially influence the spatial heterogeneity of the target variable, including elevation,
slope, land cover, and other relevant geographical features—that—may—contribute—to—the
heterogeneous-distribution-of-the-target-tayer-or ecological attributes. Preprocessing methods
mayprocedures typically include resampling, reprojectingreprojection, and nermalizing—the
datanormalization to ensure eensistency-and-compatibihity-ameng-thethat all raster layers;—se

that-they share the-samea consistent spatial extent, resolution, and_coordinate reference system.

(2) Construction of unique-value-environmental-characteristic zopalrasterUnique-Value

Environmental Characteristic Zonal Raster (UV-ECZR)
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wrplementabon-olthisprocess—sdeseribed-n-thetolewing-SeckIn this slep, environmental

factor rasters—whether continuous or categorical—are reclassified into discrete categories

using a well-defined discretization scheme. For continuous variables, the classification method

should be selected according to the data distribution and research objectives: natural breaks

(Jenks) are recommended for datasets exhibiting clear clustering, equal interval classification

suits uniformly distributed data, and quantile classification ensures balanced representation

across value ranges. For categorical variables, original classes are typically retained unless

aqgqgregating cateqgories improves analytical validity. The optimal number of classes, usually

between 5 and 8, should balance environmental heterogeneity with adequate sample size within

each zone. Classification performance can be evaluated by minimizing within-zone variance,

maximizing between-zone variance, and assessing clustering validity through the silhouette

coefficient. After reclassification, the final UV-ECZR is produced via spatial overlay analysis,

wherein each unigue combination of reclassified layers is assigned a Unique-Value

Environmental Characteristic Code (UV-ECQC). Cells sharing the same UV-ECC form a Similar

Environmental Unit (SEU), ensuring that resulting zones capture meaningful ecological

thresholds while maintaining sufficient sample sizes for statistical reliability. A detailed

methodological workflow for this process is provided in Sect. 3.2.1.

(3) Determination of neighborhood window and statistical parameters

This process involves specifying the neighborhood window and specifying the selecting
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appropriate statistical parameters for the Focal-Zonal Mixed Statistics. The window size should

be selected based on several considerations, including the spatial scale of the studied

phenomenon (e.q., local versus regional patterns), the resolution of the input rasters (with

coarser resolution favoring larger windows), and computational efficiency (as larger windows

significantly increase processing time). The window shape should be chosen according to the

nature of spatial anisotropy (elliptical for directional patterns), processing efficiency

(rectangular shapes are computationally faster), mitigation of edge effects (circular windows

help reduce boundary artifacts), and data characteristics (rectangular for grid-aligned features

and circular for isotropic phenomena). The selection of the statistical function should align with

the analytical objectives: the mean is suitable for general smoothing and trend detection; the

standard deviation is appropriate for identifying variability and anomalies; the minimum and

maximum help detect extreme values; percentiles (such as the 90th percentile) support robust

threshold analyses; and the sum is useful for aggregation tasks.

(4) Preparation of output raster
This step involves ereatinggenerating an output raster withthat matches the sameinput

rasters in terms of spatial extent, resolution, and coordinate reference system as-the-irputrasters:

Fhisto ensure seamless spatial alignment. The output raster wiHserves as a container to store

the results of the Focal-—Zonal Mixed Statistics caleulationscomputations. Before processing,

the output raster is typically initialized with null values (e.q., NoData or NaN) to indicate that

no computation has vet been performed. As the computation proceeds, each computed statistic

is written into the output raster at the spatial location corresponding to the focal cell.

(5) Calculation of the statistics
In this step, the moving window technique is apptedemployed to lecatesystematically

traverse each eurrentfocal cell and-tslocalwindow-across the study area. For each eurrentfocal

cell, identify-theits local neighborhood eeHs-is first determined based on the definredpredefined
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neighborhood window parameters (refer to Sect. 2.1.1). Within this neighborhood, iselate-the

cells withinbelonging to the same SEU as the eurrentfocal cell-Subseguenthycaleulate-the are

identified by comparing their UV-ECC values. The specified statisticfortheseceHs—in-the

statistical measure is then calculated using the corresponding values from the value raster that

correspond-to-those-tsolated-celsfor the selected cells. The computed statistic is assigned to the

focal cell's position in the output raster. This procedure is repeated iteratively for all focal cells

until the output layer is fully generated.

(6) Save of output raster

After the computation is complete for all focal cells, the finalized output raster is written

to disk. After all cells have been iteratively processed, the complete output raster is finalized

and saved to disk. Ensuring proper saving procedures, such as specifying an appropriate file

format (e.qg., GeoTIFF) and maintaining consistent georeferencing information, is essential to

preserve data integrity and facilitate subsequent spatial analyses.

3.2 Core algorithm design for Focal-Zonal Mixed Statistics
3.2.1 Algorithm design for the UV-ECZR construction
Assume that—there are p continuous environmental variables, ies—#y denoted as

Ei E,, ..., E,——with- and their corresponding reclassified variables i _are
p — dand p g

{CE1,CEy, ..., CE,-}. The number of categories for CE,_is denoted as S,. and the required

digit lengths—of—these—categories—are—denoted—as—S5Sy—~—Sp—andlength DDy—Pps

computed as:

D, = |1gS,| + 1 —
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F4(05)

where 1g denotes the logarithm with base 10, |.| represents the floor function, and q =

1,2,...,p. The eategeriescategory values for the-¢-theach environmental variable sheuldmust

be a-positive integerintegers, and the value range efeet-valueinfor the reclassified raster (€E4)

can-be-expressed-asCE_is [1,5,]. It is necessary to prepend a sufficient number of “0”s to

ensure the code has a consistent digit length of Dg.

Then—the UV-E€CThus, each pixel at location (i,j) in the raster can be defined

asrepresented by the vector of its » reclassified environmental category values:

CE(i,j) = (CE1(i.), CE; (i, ), ., CEp (i, ) (6)
Dy Dz By by
UV —ECC (i,j) =3X XXX X X Y X ——
Dy
where X-X—represents—the—each component CE,(i,j)_is the integer category code of

CEzthe p-th environmental variable at leeation—i)—PDy—is—obtained-through-Eq—14)—To
keep-the-consisterey-the UNV-ECCHormattpixel (I, /).
The UV-ECC at pixel (i,j) is neeessaryto-prependdefined as a sufficientnumberof<02s

to—ensure-unique scalar encoding of the vector CE(i,j). One efficient way to construct this

code is by decimal digit length-efcategory-code-equals—Dg-concatenation:

N .. Zp= Dy
In UV —ECC (i,)) = Xg=1 CE4(i,)) - 10%k=a+1

Based on the framework of raster map algebra, the UV-ECZR is constructed through a

spatial overlay operation applied to the p reclassified environmental variable lavers. This
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process corresponds to a local operation in raster algebra, where the categorical values from

each layer are combined on a cell-by-cell basis to generate a multi-dimensional representation.

A more realistic and pertinent code sample is provided in Listing 5.

import os
import arcpy

feature_dir = r"E:\rn\paper\pl\A_data\f_z\L_20230928\feature"

# List of preclassified environmental variable layers (raster files)
ce_layers = ["slope_rc9.tif", "aspect_rc9.tif"]

# Read the environmental variable layers into a list of Raster objects
ce_rasters = [arcpy.sa.Raster(raster) for raster in ce_layers]

# Perform a cell-by-cell overlay operation (local operation in raster algebra)
uv_eczr_raster = ce_rasters[0]
for raster in ce_rasters[1:]:

uv_eczr_raster += praster

# Save the resulting UV-ECZR (multi-dimensional raster)
uv_eczr_path = os.path.join(feature_dir, "slope_rc9_aspect_rc9.tif")
uv_eczr_raster.save(uv_eczr_path)

Listing 5. Python implementation of UV-ECZR generation using arcpy-based raster map algebra. Each input

raster layer represents a reclassified environmental variable (e.g., slope or aspect), and the local overlay

operation combines their category codes to produce a unique zone identifier for each pixel.

3.2.2 Algorithm design for determining the valid range for statistics under the sliding
window technique
A—rectanglar—windowRectangular windows, which alignasalign with the rewsrow and

eolamnscolumn structure of raster data—and—is—beth—easy—andefficientto—implement—is

ecommeonly, are widely used in the sliding window teehntgue-operations due to their simplicity

and computational efficiency. However, its drawback is also evident: the-grid—cells located at

the four corners are muehsignificantly farther from the ewrrentloeationfocal cell than those on

the horizontal and vertical axes (Zhang et al., 2016a). Despite this, rectangular windows remain
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ene-efamong the most pepularforms-ofspatial shding-windews—commonly employed window

shapes.

In this study, we consider not only rectangular windows ateng-withbut also circular and

elliptical windews-window shapes. Since a circle is a special formcase of an ellipse, we-use-the

ellipse is used as ana generalized example to illustrate the algorithm desiga-for determining the

valid range of cells for statistics under the sliding window technique in the context of Focal—
Zonal Mixed Statistics.

(1) Mask matrix for elliptical window

An elliptical window is defined by three key parameters: the length of major axis, the ratio
of the minor axis to the major axis, and the deflection angle of major axis. Let (xq, Vo)
represent the center of the ellipse, i.e., the current location, a denotes the semi-major axis
length, r be the minor-to-major axis ratio, and 6 be the deflection angle. Then the elliptical

window can be mathematically expressed as:

[(x—x0) cos B+(y—yg)sin 81?2 = [-(x—xg) sin B+(y—y,) cos 8]
2 + 2
a (ra)

Ellipse((x0,¥0),a,7,0) =

&7(8)
Based on Eq. (458), the bounding box of the elliptical window can be represented as

BBox,yipse(minX, maxX, minY, maxY), where minX, maxX, minY, maxY are as follows:

minX, maxX =x, + 324_C:Ac
k minY, maxY =y, + ﬁ
309
herewhere,

(A =a?(sin*0 +r?cos?0)
B =2a?(r?—-1)sin6cos b
C = a?(cos?0 +r?sin?0)

LF = —%(on + Eyy) —r2a*
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&5(10)

The bounding box BB0X.yipse provides a simplified and direct spatial reference for
constructing a Boolean mask matrix for the elliptical window, i.e., Matrixgipse mask> Where
cells inside and outside the BBoxXpse are assigned values of “True” and “False”,

respectively. In Focal Statistics, this binary mask is used directly to defireidentify the area—ef

interestvalid neighborhood cells for statistiess-statistical operations (see Fig. 2a-1a).
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Figure 21. Heatmaps for the Boolean mask matrix: (a) the elliptical window of Focal Statistics, (b) the
similar environmental unit (SEU) of Zonal Statistics, and (c) the elliptical window similar environmental

unit (EW-SEU) of Focal-Zonal Mixed Statistics.

(2) Mask matrix for similar environment in the bounding box

SEU is the basic object of Zonal Statistics. In Focal-Zonal Mixed Statistics, for the current
cell, the elliptical window similar environmental unit (EW-SEU) is established according to the
environmental characteristic code within the initial neighborhood window defined by the
bounding box. Using MatriXsimiiarity mask to represent this unit, cells with the same
environmental characteristic code as the current cell are assigned a value of “True”, while others
are assigned a value of “False”, as shown in Fig. 2bl1b.

(3) Mask matrix for similar environment in the elliptical window
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The matrices of steps (1) and (2) shares the same dimensions, and thus the similar
environment mask matrix for the current cell in the elliptical window can be constructed using
a logical “AND” operation between these two matrices, as expressed in the following equation:

Matrixg s mask = MatrixXsimiarity mask N MatrixXguipse mask —
£26(11)
where A denotes the logical “AND” operator. Matrixg g mask serves as the basis for
determining the valid range for Focal-Zonal Mixed Statistics, as illustrated in Fig. 2elc.

3.2.3 Algorithm design for the statistics calculation

The core algorithm for statistical computation within the statistics-caleulationis-desighed-as

follewsFocal-Zonal Mixed Statistics framework consists of the following steps:

(1) Determination of valid statistical cells in the value raster

Using Matrixy .. to represent the cell array from the value raster within the bounding
box defined above, then by performing a bitwise multiplication of Matrixg s ;mase With
Matrixyqe, the final valid statistical value matrix Matrixy,;;q 1S obtained:

Matrixygig = Matrixg s mask @ Matrixyqpe —
2+(12)
where®denotes bitwise multiplication. This operation collects cells from the value raster that
are located within the neighborhood and share the same UV-ECC as the current cell, while
masking out other cells that could interfere with the statistical results. In Matrixy ;4. the
masked cells can be represented with “NaN”.

(2) Design of the calculation function for the statistics

Taking Matrixy4iq as the final input, the calculation functions for Focal-Zonal Mixed
Statistics can be designed based on scientific computing tools such as NumPy. This library
provides a range of statistical methods, including minimum, maximum, mean, standard

deviation, percentiles, and more. For instance, the “numpy.nanmax()” method can ignore “NaN”
p g
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values and return the maximum value of Matrixy 4, While the “numpy.nanpercentile()”
method, also ignoring “NaN” values, calculates the n-th percentile of Matrixy ;4.
3.3 User interface design

The Focal-Zonal Mixed Statistics, along with traditional Zonal Statistics and Focal
Statistics, are included in the newly developed toolbox, FZStats v1.0, using Python3 and QT5.
The user interface is organized into three tabs, each dedicated to one of the three methods,
allowing users to switch among them (see Fig. 32). Taking the tab for Focal-Zonal Mixed
Statistics as an example, the interface is divided into four main sections, and the detailed
description of the user interface design is given as follows.

Focal Zonal Statistics ot

Focal Stats Zonal Stats FZ Mized Stats

Rasters Setting

Value Raster  E:/rr/3_works/CBS/LST/LST_STD. tif B
Zone Raster E:frn/3_works/CBSHITEAASAAS_olazs. tif E}
Result Raster E:/rn/3_works/CBS/AS as_rst/eirZ40_mean fz. tif ™ |
Feighbourhood Setting Statistics Setting
Window Tvpe CIECLE w Statistics Type MEAH w
Radins 240

fdvanced Setting

Sub—gridding 1,1
Tnits o Cell .::::. Map Frocess Humber 16
Threzhold 1

Tznore Wodata

Frocessing Mezzage

Value Raster: E:/rn/3_works/CES/LST/LST_STD. tif

Tome Raster: E:/vne/S_works/CES/HJTEZ S 03_olass tif

Result Raster: E:/frn/3_weorks/CES/AS/as_rst/cirf40_mean fz. tif
Tnit: Cell

Heighbourhood Window: CIRECLE

Radius: 240

Statizties Type: MEAN

Columns: 1

Rows: 1

Frocezs Humber: 16
m1 111

Add to Confiz File > > Quit

Figure 2. User interface design of FZStats v1.0
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(1) Input and output design
Users can selectload the value raster and UV-ECZR layers as input-data—from—their
datasets-inputs. Additionally, they—ean—speeify—the output path and filename for the

resultingresult raster datacan be specified.

(2) Neighborhood window design
Users can eenfiguredefine the shape (e.g., rectangular, circular, elliptical) and and size

{e-g—numberofcelsorspatialunits)-of the neighborhood window. For rectangular and circular

windows, size is speeifiedcontrolled by the half-side length and radius, respectively. Elliptical
windows are eharacterized-usingconfigured via three-merpholegical parameters: the length of
the major axis, the ratio of the minor axis to the major axis, and the deflection angle of major
axis.

(3) Statistical measure design

Users-can-select-a-specified-statistical-measure-from-the-A dropdown menu-_allows users

to choose from various statistical measures (mean, max, std, etc.). For percentile-ealeulations;

users-arerequired-to-specify-the-exaet-based statistics, the desired percentile values-ef-interest;
sueh-as-thevalue (e.g., 50th, 75th, er-98th-percenties) must be specified.

(4) Optimization settings

This section presents optimized parameter configurations to enhance computational

efficiency:

Chunk processing: Users-can-divide the-input-Divide large raster layers into smaller chunks;
wihich-ean-ophanec-portormanec-byroduetrg-the 10 manage memory leadkand-making-onsior
to-handle-large-datasetsusage efficiently.

Parallel processing: Users—ean—cenfigureSpecify the number of processors used—feorto
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enable parallel processing—to—reduce—computation time—On—computers—with—higher

runtime on multi-core systems.

Threshold setting: YUsers—ean-speeifyDefine a minimum sample threshold for statistical

sample-size;-thereby-enhaneing-thereliability-and-robustness-of theoperations to ensure robust

and meaningful results.

Additionally,

attomation—a batch processing featuremode is provided in-the-teotbox-for automation. Users

can define-parametersranHNH-formatprepare a configuration file (config.ini}; which-simplifies

exeeute-) to set parameters for multiple tasksir-a-single-operationsuppertsruns. This facilitates

efficient task management, parameter reuse, and prevides-a-means-foererror tracking-errors.
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Focal Zonal Statistics *

Focal Stats Zonal Stats FI Mixed Stats

Razterz Setting

Value Raster B Aro 3 _works/CESAISTALST_STD. tif E:-'
Zone Raster B ros 3 _works/CESAHITZ AAS /RS _class. tif Ef,'
Rezult Raster E: rneS_works/CES/AS/as rst/oir?40_mean fr tif
Heighbourhood Setting Statisties Setting
Windew Tupe CIECLE - Statizsties Type MEANW w
Radius 240

Advanced Setting

Sub—gridding 1.1
Uni ts Ocell O Map Frocess Number 16
Threshald 1

B Izmore Wodats

Frocessing Message

Value Raster: E:frn/3_works/CES/LST/LST_STD. tif

Zone Raster: E:/rn/3_works/CBS/HITZ AAS/AS_class. tif

Result Raster: E:/rn/3_works/CBS/AS/as_rst/eir240_mean fz tif
Unit: Cell

Feighbourheod Windew: CIECLE

Radius: 240

Statistics Tupe: MEAN

Columns: 1

Rows: 1

Process Humber: 16
.1 1 . | 4

Add te Conmfig File > > Duit
MMMM O i i 0
4 Experimental study
4.1 Background of the case

Geothermal;tike resources, similar to coal, oil, and natural gas, is-aare valuable energy mineral

reseuree;-and-itsresources whose development and utilization play a stgnifieantcrucial role in

alleviating energy supply pressurepressures and improving the global environment (Huang and
Liu, 2010; Goldstein et al., 2011). The mestimpertantprimary indicator for geothermal reseuree

exploration is the detection of thermal anomalies (Romaguera et al., 2018; Gemitzi et al., 2021).

In recent years, with the rapid developmentadvancement of remote sensing;—tand-Surface
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TFemperature technologies, land surface temperature (LST) derived from thermal infrared bands

has become a key methedparameter for identifying geothermal anomalies. However, LST is

influenced by—varieus—factors;,—ineluding—not only by geothermal activity but also by

environmental factors such as slope, aspect, and surface vegetation cover —ameng—other

envirenmental-faetors-(Tran et al., 2017; Duveiller et al., 2018; Zhao and Duan, 2020).

To effectively extract LST anomalies eaused-by-directly related to geothermal activity, it

is neeessaryessential to suppress the influeneeconfounding effects of surface environmental

variables. Within the analytical framework of the Focal-—Zonal Mixed Statistics developed in
this study, terrain features are incorporated into environmental zoning, and the spatial sliding
window technique is employed to mitigate environmental interference and enhance the

abnormalinformationfremdetection of geothermal aetivityanomaly signals.

4.2 Data preprocessing

4.2.1 Spatial distribution of LST

In this study, Landsat 8 #magesimagery (Orbit Number: 116031) ebserved-on-September16;

2013acquired during the spring, summer, and autumn seasons of 2015, 2019. and 2023,

covering the study-area;+e5-Changbai Mountain region, were-usedwas utilized for land surface

temperature (LST) mapping and geothermal anomaly detection. The selection of multi-

temporal images across different seasons and years was intended to robustly validate the

effectiveness of the proposed method and to explore the temporal evolution patterns of

geothermal anomalies, thereby providing improved support for geothermal exploration--this

stady—Adter.

Following standard preprocessing eperations—sueh—asprocedures, including radiometric

calibration and atmospheric correction, the Universal Single-Channel Algorithm (Jiménez-

Muioz et al., 2009, 2014; Zhang et al., 2016b) was empleyed-toretrieve-the LSTof thestudy
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668  nerthwest-facing—slopesapplied to retrieve LST across the study area. The resulting LST

669  distributions are illustrated in Fig. 3.
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671 Taking the LST retrieved from the Landsat 8 image acquired on March 20, 2023, as an

672 example, a comparison between Fig. 3 and the terrain information presented in Fig. 4 reveals a

673  strong spatial correlation between LST patterns and topographic factors, particularly slope

674  aspect. Given that the local overpass time of Landsat 8 over the study area was approximately

675 11:00 AM, with a corresponding solar azimuth angle of 153°, LST values were significantly

676  higher on southeast-facing slopes compared to northwest-facing slopes (Fig. 4a). This

677  highlights the pronounced influence of solar radiation on the spatial variability of LST within
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Figure 43. Spatial distribution of land surface temperature (LST) in the study area_on March 20, 2023.

4.2.2 Mapping of unique-value environmental characteristic zones

The-slopeSlope and aspect were usedselected as the environmental factors te—eenstruetfor

constructing the UV-ECZR (see Fig. 5a4a and b4b). As previously mentieneddiscussed, these

two faeters—havevariables exhibit a strong spatial coupling relationship with LST. Although

elevation and vegetation coverage were not directly appledincluded in the environmental

zoning;-they process, their variability can be considered simiarrelatively homogeneous within

the defined neighborhood window (Zhang et al., 2019). FhereforeThus, their confounding
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effects are indirectly suppressedmitigated. In ether-werds—n-the framework of Focal-—Zonal

Mixed Statistics modeling, sample heterogeneity eaused-byarising from long-range spatial
variables can be effectively controlled threughby spatial proximity, while that

breughtheterogeneity caused by short-range spatial variables ean—beis suppressed through

environmental similarity.
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Figure 54. Maps of environmental factors: (a) stepeSlope aspect, (b) Slope degree, and (c) the composite

unique-value—environmental-characteristie zonal-rasterUnique-Value Environmental Characteristic Zonal

Raster (UV-ECZR).

4.3 Enhancement of geothermal anomalies based on Focal-Zonal Mixed Statistics

In mineral prospectivity mapping, standard deviation standardizatiennormalization (Z-score

transformation) is eftercommonly employed to assist in constructing indicator variables for

prospeeting-anomaly detection (Journel & Huijbregts, 1978; Goovaerts, 1997). This

proeessprocedure involves subtracting the mean from the original value and then dividing the

restlt-by the standard deviation—TFhis—indicatorrevealshow—manystandard-deviations—the
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eriginal-, rescaling variables to a uniform range to mitigate scale-dependent biases and enhance

comparability of multi-source geochemical data in predictive modeling (Carranza, 2008). The

resulting standardized value deviatesquantifies the deviation of the original measurement from

the mean—The-essence-of thissnethod— in units of standard deviations. The core principle lies

in HH defining an appropriate sample range for calculating thelocal background

statistics (e.g., mean and standard deviation;-enabling-a—comparison—of-the-), which ensures

meaningful comparisons between the current value against-the-mean-andusing-thestandard

deviation-to-quantify-this-differenee—and its spatial context (Cheng, 2007; Wang et al., 2011).
In this study, Focal-—Zonal Mixed Statistics was usedfor—this—purpese;—t-e—defining

adopted to define the comparable sample range based-en-bethby simultaneously considering

spatial proximity and environmental similarity. Specifically, i#n-thisease;thelevelof ESTatfor

each current locations, the level of land surface temperature (LST) was assessed within the

rangea sample set determined jointly by beth-the local moving window and the-similar terrain

features. This appreach-mitigatesmethod effectively suppresses the influence of faetors-suech-as

terrain—and, vegetation, therebyproduetng—a—and other confounding factors, allowing the

resulting L.ST anomaly distribution map-efESTFanemalies-thatto predominantly refleetsreflect

geothermal activity. When-the-eurrent Using a circular moving window is-a-eirele-with a radius

of 74.2 km, the final-enhanced geothermal anomaly map derived from Fig. 3 is shown in Fig.

65.
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Figure 65. Enhanced geothermal anomaly map based on Focal-Zonal Mixed Statistics with a local window

radius of 74.2 km.

—ComparingBy comparing Figs. 5 and 63, it is evident that the LST anomalies enhanced
using-through Focal-Zonal Mixed Statistics exhibitshow a betterstronger spatial correlation

with known geothermal wells (ebtained-frem-as referenced by Yan et al., 2017);-and-theirhigh

valuesindicate known). The higher values in Fig. 5 more effectively highlight these geothermal

wells-more—etfectveheFherefore—wve-have reason—to-beheve, suggesting that the-hich—alue

areas with high values in Eig—6this figure have a-higherprebabtlityan increased likelihood of

revealingindicating new geothermal resources.

4.4 Performance Comparison
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Following the standard deviation normalization approach described above, Zonal Statistics and

Focal Statistics were also applied to the LST dataset (Fig. 3) to enhance geothermal anomalies,

thereby facilitating comparative evaluation of the models. Specifically, the Receiver Operating

Characteristic (ROC) curve was employed to assess the predictive performance of the original

LST and the three enhancement indices derived from Focal Statistics, Zonal Statistics, and

Focal—Zonal Mixed Statistics.

The ROC curve plots the False Positive Rate (FPR) against the True Positive Rate (TPR)

(Fawcett, 2006: Hanczar et al., 2010), and the Area Under the Curve (AUC) is used as a

quantitative metric for model evaluation. AUC values range from 0.5 to 1, where higher values

indicate better predictive accuracy and model performance.

The ROC curves for the LST dataset and the three enhancement indices are presented in

Fig. 6. where subfigures a—d correspond to the four observation dates: March 20, June 24,

September 28, and December 25, 2023. Focal Statistics and Focal-Zonal Mixed Statistics were

both implemented using a circular window with a radius of 4.2 km. It is evident that, across all

seasons, the enhancement indices derived from the Focal-Zonal Mixed Statistics approach

consistently outperform the others. For instance, in Fig. 6a, the AUC value under Focal—Zonal

Mixed Statistics reaches 0.734, notably higher than that of Zonal Statistics (0.508), Focal

Statistics (0.669), and the original LST (0.474). Although both Zonal Statistics and Focal

Statistics demonstrate slight improvements over the raw LST, their enhancement effects remain

limited. Furthermore, comparison of Fig. 6a—d indicates that our enhanced model performs best

in autumn, as evidenced by the highest AUC value observed in this season.
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Figure 6. Receiver Operating Characteristic (ROC) curves of the Land Surface Temperature (LST) and its

three enhancement indicators derived from Focal Statistics, Zonal Statistics, and Focal-Zonal Mixed

Statistics, respectively. A Parameter settings: the local window used for both Focal Statistics and Focal-Zonal

Mixed Statistics is a circle with a radius of 4.2 km; the zoning categories used for Zonal Statistics are identical

to those employed in Focal-Zonal Mixed Statistics; and a geothermal well represents an area of 0.035 km?

surrounding it.

5 Discussion

5.1 AdvantagesSignificance and Necessity of the new-statistiesNew Statistical Method
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Firstly, from a theoretical standpoint, traditional methods each address only one aspect of spatial

variation: Focal Statistics primarily captures SPD, while Zonal Statistics is designed to account

for SSH. However, real-world spatial problems often exhibit both characteristics

simultaneously. This underscores the theoretical necessity and practical relevance of developing

the new method—Focal-Zonal Mixed Statistics—which bridges the methodological gap

between Focal Statistics and Zonal Statistics.

Secondly, from a conceptual perspective, Focal-Zonal Mixed Statistics can be viewed as

a generalization of the two conventional approaches. When the moving window encompasses—

or far exceeds—the entire study area (i.e., the window size approaches infinity), the method

converges to Zonal Statistics, effectively capturing stratified heterogeneity. Conversely, when

the analysis is confined to a single environmental zone, the method reduces to Focal Statistics,

thereby focusing on spatial positional dependence. This flexibility enables the new method to

seamlessly adapt to different spatial structures.

Thirdly, in terms of practical performance (see Fig. 6), although traditional methods show

some ability to enhance geothermal anomaly detection—{for example, Focal Statistics improves

AUC values by 3.9% to 41.1% over the original LST—the proposed method demonstrates

significantly greater efficacy, with AUC improvements ranging from 9.9% to as high as 54.9%.

These results clearly highlight the superior performance of Focal—Zonal Mixed Statistics.

Finally, regarding broader applicability, although geothermal anomaly enhancement

serves as the illustrative case in this study, the utility of the proposed method extends well

bevond this specific context. It is particularly well suited for applications requiring both

improved sample purity and simultaneous control over SSH and SPD. Potential domains

include mineral resource potential evaluation, vegetation restoration potential assessment,

cropland productivity analysis, and terrestrial vegetation carbon sink estimation. Furthermore,
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the method can be emploved to assess the spatial variability of target variables under specific

environmental constraints, and to evaluate the effectiveness of environmental factors in

delineating spatial patterns of interest.

5.2 Robustness of the new method

To ensure that the superior performance of the rew-medelproposed method, as demonstrated in

Sect. 5-14.4, is not eeineidentaldue to chance, it is neeessary—to—adjustessential to test its

robustness under varying conditions. This involves adjusting key parameters such as the size of

the local analysis window-size, the year and the-geethermal-wel-season of image acquisition,

and the representative area and-eonduetassigned to geothermal wells. Through multi-scenario

comparisencomparative experiments—Fhis—wil-help-analyze, the rebustnessconsistency and

reliability of the rew-medel'smodel’s advantages_can be systematically evaluated.

To rigorously assess the robustness of the proposed method, we conducted a series of

controlled experiments involving multiple scenarios. Specifically, Landsat imagery from the

years 2015, 2019, and 2023 was selected, covering all four seasons—spring, summer, autumn

and winter—for each year. Due to cloud contamination and other data quality issues, some

missing seasonal scenes were replaced with imagery from adjacent years and similar months.

In addition, two representative areas were defined for individual geothermal wells: 0.0009 km?

(equivalent to a single 30 m x 30 m pixel) and 0.035 km?. To further test the model's sensitivity

to spatial scale, we varied the radius of circular local windows from 0.3 km to 9 km in 0.3 km

increments. These selections of vears, seasons, neighborhood sizes, and point

representativeness were all deliberately designed to evaluate the stability and generalizability

of the proposed method relative to the two traditional approaches.

When the representative area for a geothermal well is determined-by-0-Ham0-2kmand

03kem-buffers;respeetrvelydefined as a circle with an area of 0.035 km?, and imagery from the

year 2023 is used for modeling, the AUC values forof the original LST and its enhancement
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indices are calculated—These—values;— across different seasons and a range of local window

sizes. Specifically, circular windows with radii ranging from 0.3 km to 9 km (at 0.3 km intervals)

are applied to evaluate model performance. The AUC values obtained thretgh-under these

varying seasonal and spatial conditions—across different models-undervariouslocal window

radii;-are—are plotted enin a Cartesian coordinate system, as shewsillustrated in Fig. 8-7.
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(measured in pixel units) for Land Surface Temperature (LST) and its three enhancement indicators-ebtained
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byindices derived from Focal Statistics, Zonal Statistics, and Focal-—Zonal Mixed Statistics;-when—a. The

geothermal wells are represented as circles with an area of 0.035 km?. Panels (a) through (d) correspond to

the LST data acquired in the spring, summer, autumn, and winter of 2023, respectively.

Appendix Figs. S1 and S2 present the modeling results for the vyears 2015 and 2019,

respectively, under the condition that each geothermal well is represented by a circular area of

0.035 km?.

Appendix Figs. S3 to S5 show the results for the years 2015, 2019, and 2023, respectively,

where the representative area for each geothermal well represents-cireles-with-aradius-of (a)-0-Ham;

(b)-02km;-and-(e)-0-3km;respeetively:1s defined as a single pixel (30 m x 30 m, i.e., 0.0009 km?).

Overall, the two enhancement models incorporating neighborhood windows;-+e5—Focal

Statistics and Focal-—Zonal Mixed Statistics;—perform—better—than—consistently outperform

both the Zonal Statistics model and the original, unenhanced LST-witheut-enhancement:. The

relatively poor performance of Zonal Statistics is dueprimarily attributed to the strong spatial

variability of LST and the simpliettylimitations of the simple classification scheme used-

Additionallyemployed. Moreover, since leeal—windewneighborhood-based methods are

inherently sensitive to spatial scale, the perfermaneeeffectiveness of both Focal Statistics and

Focal-—Zonal Mixed Statistics varies with thechanges in window size.

However, regardless of whetherthe specific modeling configuration—including different

years (2015, 2019, or 2023), seasons (spring, summer, autumn, or winter), definitions of the

geothermal well representative area is—0-Ham;-0-2km;—er03km;the performanee-of-(either a

single pixel of 0.0009 km? or a circular area of 0.035 km?), and a wide range of local window

sizes (radii from 0.3 km to 9 km in 0.3 km intervals)—Focal-—Zonal Mixed Statistics

consistently surpasses-thatef-delivers superior performance compared to Focal Statistics. This

consistent advantage across diverse scenarios and parameter settings clearly demonstrates the

robustness and broader applicability of the proposed method.

5.3 Advancements of the Toolbox
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The FZStats v1.0 toolbox developed in this study not only integrates traditional Focal Statistics

and Zonal Statistics;—which-deal-with——addressing SPD and SSH, respectively,—but also

innovatively implements Focal-—Zonal Mixed Statistics based—enby combining spatial

proximity and environmental similarity, addressing-enabling simultaneous handling of both
SPD and SSH. Fherefore;—thisThis toolbox is—expeeted—to—previdethus offers a novel and

versatile solution tefor spatial statistiesstatistical analysis.

A-To enhance its applicability across diverse scenarios and computing environments, the

toolbox provides a variety of parameter-setting interfaces-are-provided-to-enhance the-statistical

applicationseenarios-and-computing-eonditions-. In terms of neighborhood window settings;1

additien—teconfiguration, users can select from rectangular—and, circular—windews,—an, or

elliptical windew-is-alse-available;windows, with the elliptical option allowing users-to-express

the expression of spatial anisotropy in-the-neighberhoedthrough eliptiealadjustable parameters.

Regarding statistical parametersmeasures, the rew-toolbox supports traditional metrics }kesuch
as mean, standard deviation, minimum, and maximum-valaes, as well as ealewlatiens—for

flexible calculation of arbitrary percentiles—Fo-make-the-bestuse-of—_to suit specific analytical

needs. To optimize memory usage and EPU-eapabilities;—the-toeltbexcomputational efficiency,

FZStats v1.0 supports both raster data—chunk processing and multi-process operation modes;

accommeodating. This design accommodates different eemputermemeryhardware capacities

and enabling-enables efficient parallel processing on multi-core CPUs. Additionally, users can

setspecify a minimum eel-number of samplescells for valid statistics through the =" Threshold>"

parameter-te-avetd, effectively preventing low-statistieal--precision and unreliable results due

tocaused by insufficient sample size—sizes.

LastlyFinally, to enhareeimprove automation and effieieney-r-multitasking efficiency, the

toolbox previdesoffers a batch processing solution. Users can witedefine processing
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parameters inte—an—NHFermatwithin a multi-section INI-format configuration file, whieh

avoidsthus avoiding repetitive and—tedious—manual operations. This ean—not—only

enablefunctionality supports one-time parameter setup-and, automatic execution of multiple

tasks, but—suppert—parameter reuse, and error traeingtracking, significantly enhancing

operational efficiency and reliability.

6 Conclusions

This study developed the FZStats v1.0 toolbox usingPythen3based on Python 3 and QT5-Fhe

new-toolbox—integrates, integrating traditional Focal Statistics, Zonal Statistics, and the newly

developedproposed Focal-—Zonal Mixed Statistics. We—provided-detatedalgorithmDetailed

algorithmic implementations and modeling processes for these methods were presented, and

evaluated——their  performance #was  evaluated through  geothermal anomaly

identification-detection experiments. The main conclusions are summarized as follows:

First, the development of the-Focal-—Zonal Mixed Statistics is essentialcrucial, as it

addresses gaps-thatthe limitations of traditional Focal Statistics and Zonal Statistics-eannotfiH-,

providing a unified solution for simultaneously handling SPD and SSH.

Second, FZStats v1.0 offers extensive parameter-setting eptienscapabilities, supporting

different-flexible configurations of window shapes and types-ef-statisties:stmultaneoustyby

adjastingstatistical measures. Additionally, through adjustable processing parameters;t-options

such as raster chunking and multi-processing, the toolbox can easuremaintain efficient

performance en—ecomputers—with—varying—econfigurations—across a range of computing

environments.

Third, case study analyses shewdemonstrate that Focal-—Zonal Mixed Statistics

significantly enhance the detection of geothermal anomalies compared to conventional Zonal

Statisties-and Focal Statistics methods, with this advantage beirgproving robust across different

conditions.
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In summary, FZStats v1.0 not only irnnevatescontributes theoretical innovation to spatial

statistical methods theeretically—but also demenstrates—pewerfulexhibits strong functionality
and flexibility in practical applications;-makingit-a-promisingteolin-thefield-of-. It holds

considerable promise for geothermal anomaly identificationdetection and ether-areasbroader

fields requiring integrated spatial statistical solutions.
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