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Abstract: Based on the traditional Focal Statistics and Zonal Statistics tools of mainstream GIS 10 

software, we developed a raster statistics toolbox named FZStats v1.0 using Python3 and QT5. 11 

The main contributions of this study are as follows. Firstly, the development of a specialized 12 

spatial analysis toolset designed to comprehensively address stratified heterogeneity, positional 13 

dependence, and their combinations, thereby addressing gaps in existing Focal and Zonal 14 

methods that individually tackle stratified heterogeneity and positional dependence problems. 15 

Secondly, our toolset features a user-friendly interface and structure, integrates both existing 16 

and enhanced spatial statistical methods, supports multi-processing and batch processing 17 

capabilities, and provides users with the flexibility to select calculation methods tailored to their 18 

computer configurations and application requirements. Thirdly, the newly proposed Focal-19 

Zonal Mixed Statistics method demonstrates superior predictive accuracy compared to the 20 

traditional Focal Statistics and Zonal Statistics methods in geothermal detection, which 21 

preliminarily showcases the advantages of this new approach. Additionally, we discussed the 22 

advantages, robustness, and advancements of the Focal-Zonal Mixed Statistics method, 23 

concluding that the development of this new method and toolset is necessary and holds 24 

substantial potential for applications across diverse fields.  25 

Abstract: Focal and Zonal Statistics are fundamental tools in GIS for characterizing spatial 26 

patterns, yet they have traditionally addressed spatial stratified heterogeneity (SSH) and spatial 27 
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positional dependence (SPD) in isolation. To overcome this limitation, we introduce FZStats 28 

v1.0, a Python 3/QT5–based toolbox that not only integrates conventional Focal and Zonal 29 

statistics, but also implements a novel Focal–Zonal Mixed Statistics approach capable of jointly 30 

capturing both SSH and SPD. First, we formally develop the Focal–Zonal Mixed Statistics 31 

model to address stratified heterogeneity, spatial dependence, and their interactions within a 32 

unified framework—filling a key methodological gap left by traditional approaches that cannot 33 

accommodate their co-occurrence in real-world spatial data. Second, FZStats v1.0 provides a 34 

user-friendly graphical interface for flexible configuration of neighborhood window shapes 35 

(e.g., rectangular, circular, elliptical), sizes, and statistical operations (e.g., mean, percentiles). 36 

It also supports multiprocessing and batch operations, enabling scalable computation across 37 

diverse spatial analysis tasks. Third, we validate the effectiveness and robustness of the new 38 

method through a geothermal anomaly detection case study. Across multiple years, seasons, 39 

representative target sizes, and local window radii, the Focal–Zonal Mixed Statistics 40 

consistently outperforms both Focal and Zonal Statistics, demonstrating its superior capability 41 

in enhancing anomaly signals under complex spatial conditions. In summary, FZStats v1.0 is 42 

not only a theoretically grounded and methodologically novel tool, but also a highly adaptable 43 

and practical solution for spatial data analysis in diverse application domains. 44 

Keywords: Spatial Statistics; Raster Operations; Spatial Stratified Heterogeneity; (SSH); 45 

Spatial Positional Dependency; (SPD); Focal/Zonal Statistics. 46 

1 Introduction 47 

The advent of Geographic Information Systems (GIS) marksrepresent a milestone in the 48 

evolution of geography. by providing a new paradigm for the integrated management, analysis, 49 

and visualization of spatial data (Goodchild, 1992; Bernhardsen, 2002; Longley et al., 2015). 50 

As a core function of vital analytical module within GIS software, spatial statistics provide 51 

powerful methods and tools that enable researchers to quantify and decision-makers to 52 

analyzeinterpret spatial patterns and associationsrelationships on the Earth's surface 53 
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comprehensively and accurately. Spatial heterogeneity and positional dependence are two 54 

fundamental characteristics to be considered in spatial data processing (Goodchild and Haining, 55 

2004). with unprecedented precision (Fischer & Getis, 2010; Fotheringham & Rogerson, 2013). 56 

With continued advances in GIS technology, investigators can now more easily explore the 57 

distribution, temporal evolution, and driving mechanisms of spatial variables; and spatial 58 

statistical theories and methods play an increasingly prominent role in geographical studies. 59 

Two foundational concepts in spatial statistical analysis are spatial heterogeneity and positional 60 

dependence (Goodchild & Haining, 2004). Correspondingly, Zonal Statistics and Focal 61 

(Neighborhood) Statistics areoffer two essential methods of spatial statistical analysis. The 62 

former can be achieved through a model that involves partitioningcomplementary approaches. 63 

Zonal Statistics partitions raster dataunits representing the target variable into severaldiscrete 64 

zones based on predefined rules or attributes, performing statistical analyses on the raster 65 

cellsschemes, computes summary metrics such as mean, maximum, minimum, and sum within 66 

each zone, and then outputtingrenders the results as a mosaic raster layer (Singla and& Eldawy, 67 

2018; Haag et al., 2020; Winsemius and& Braaten, 2024). The latter, also known as In contrast, 68 

Focal Statistics defines a neighborhood or local window statistics, takesaround each raster cell 69 

as the center and extends a specified range surrounding the center to form a local window 70 

according to the designatedspecified window shape and size; it performs statistical analyses on 71 

the raster cells, calculates the same set of summary metrics within that neighborhood, and 72 

assigns the resulting value to the central cell; by sliding this window and then outputs the results 73 

as a mosaic raster layeracross all locations, it thereby quantifies how these statistics vary with 74 

the window's movement (Mathews and& Jensen, 2012; Kassawmar et al., 2019; Zhang et al., 75 

2021). The calculated statistics for both zonal and focal methods are similar, including the mean, 76 

maximum, minimum, sum, and so on.  77 

Currently, the mainstreamMainstream GIS software platforms includingsuch as ArcGIS 78 
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and QGIS provide toolinclude dedicated modules such as for Zonal Statistics and Focal 79 

Statistics and Zonal Statistics, both of which have promoted the usage of these two 80 

methodsbeen widely adopted in practice. From an application perspectivestandpoint, Zonal 81 

Statistics primarily addressdeals with spatial stratified heterogeneity (SSH), which can be 82 

detected) by dividingpartitioning the target variable thoughstudy area into zones based on 83 

environmental characteristic classified variablescharacteristics, thereby capturing SSH (Wang 84 

et al., 2016; Wang and Xu, 2017; Gao et al., 2022). For instance, the actual vegetation growth 85 

or potential growth of vegetation may vary significantly due to different environmental 86 

conditions such as often varies markedly among zones delineated by slope and aspect, which 87 

are key drivers of vegetation dynamics (Zhang et al., 2018, 2019; Xu et al., 2020). With respect 88 

toConversely, Focal Statistics, it focuses on spatial positionpositional dependence (SPD), which 89 

can be addressed or at least weaken by introducing the local windows or geographic weights ) 90 

by employing moving‐window or geographically weighted techniques to detect and mitigate 91 

positional effects (Tobler, 1970; Wolter et al., 2009; Wagner et al., 2018). For example, even 92 

soils or rocks with the same texture generally exhibit variations in geochemical element content 93 

due to their different spatial locations; however, these differences variations that diminish with 94 

decreasing distance, indicating that these attributes are dependent on spatial positionreflecting 95 

underlying positional dependence; consequently, spatial interpolation of element concentrations 96 

typically assigns greater weight to nearer samples (Krige and Magri, 1982; Trangmar et al., 97 

1986; Zuo, 2014). 98 

In our real worldpractice, SSH and SPD may coexist, with the former exhibiting often co-99 

occur, manifesting as abrupt changes and the latter exhibiting and gradual changes. For example, 100 

due to variations in land-sea distribution, solar radiation, and altituderespectively. At broad 101 

scales, terrestrial vegetation exhibits strong patterns illustrate SPD through meridional, 102 

latitudinal, and vertical zonalaltitudinal gradients driven by land–sea distribution patterns 103 
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respectively, solar radiation, and elevation (Qiu et al., 2013; Dong et al., 2019; Eddin and Gall, 104 

2024), which explains the significant SPD in vegetation coverage. Meanwhile, due to the 105 

influence of). Conversely, local topography, microclimate, and human activities, the activity 106 

introduce sharp boundaries in vegetation coverage differences caused by these factors do not 107 

entirely manifest as gradual changes. Typical evidence includes phenomena such as vegetation 108 

on cover, generating SSH—for example, stark contrasts between shady and sunny slopes 109 

generally shows SSH (Álvarez-Martínez et al., 2014; Zhang and Zhang, 2022; ) and significant 110 

differences between urban and rural landscapes (Zhang et al., 2023b). Furthermore, due to 111 

differences in formation age, there are significant variationsSimilarly, in material across strata, 112 

which is a major reason for the SSH of mineral resourcesgeology, stratigraphic age differences 113 

produce SSH in resource distribution (Zhao Pengda, 2006; Zuo, 2020). Subsequently, under the 114 

influence of), while internal and external geological processes, the distribution of  impart SPD 115 

to mineralization elements often exhibits SPD characteristicspatterns (Cheng, 2006, 2012), and 116 

Geostatistics and Kriging methods were developed to explain this phenomenonas modeled by 117 

geostatistics and kriging (Krige, 1951; Goovaerts, 1997; Müller et al., 2022). Therefore, when 118 

dealing with problems involving spatial statistics, it is necessary to considereffective spatial 119 

statistical analysis must integrate both SSH and SPD simultaneously. 120 

Some scholars have noted this issue and developed certain improved models in their 121 

respective fields to overcome the To address these challenges posed by solely considering SSH 122 

or SPD. Professor Zhu and his group expanded upon, previous studies have integrated SSH and 123 

SPD, developing specialized hybrid models for specific spatial-statistical objectives. For 124 

example, Zhu et al. (2019) extended traditional spatial interpolation methods, which typically 125 

focus—normally focused solely on spatial dependence, —by introducing constraints derived 126 

from environmental similarity (Zhu et al., 2019). They further proposedconstraints, and 127 

formalized the “Third Law of Geography”, which states that the more geographically similar 128 
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contexts yield similar the geographic configurations of locations, the more similar the values 129 

(processes) of the target-variable at these locations (values (Zhu et al., 2018; Zhu et al., 2020). 130 

Meanwhile, ProfessorIn a similar vein, Zhang and his group enhanced traditionalet al. (2019) 131 

incorporated spatial sliding-window techniques into vegetation potential assessment models, 132 

which typically only consider similar habitat conditions, by incorporating spatial sliding 133 

window techniques (Zhang et al., 2019). This development led to a model for assessing 134 

vegetation restoration potential based on local windows, simultaneously considering , resulting 135 

in a model that simultaneously considers spatial proximity and environmental similarity (Xu et 136 

al., 2020; Zhang, 2023a). The most recent attempt at spatial statistical modeling that considers 137 

both SSH and SPD is by More recently, Lessani and Li (2024), who developed) developed the 138 

Similarity and Geographically Weighted Regression (SGWR) model, which combines distance-139 

based and similarity and geographically weighted regression model. This new model integrates 140 

distance weights and similarity weights to address the -based weights to overcome limitations 141 

of traditional geographically weighted modelingmethods that address only considers spatial 142 

dependency.  143 

These studies focused on specific issues such as spatial interpolation, regression, and 144 

extreme values. Although these models effectively address the combination of both SSH and 145 

SPD, there is currently a lack of a universal spatial statistics tool similar to Focal Statistics and 146 

Zonal Statistics. This study aims to develop a spatial statistical model, termed the Focal-Zonal 147 

Mixed Statistics, within the framework of GIS spatial statistics. The newly developed toolbox, 148 

FZStats v1.0, integrates traditional Focal Statistics and Zonal Statistics, as well as Focal-Zonal 149 

Mixed Statistics. In terms of algorithm design, we employ multiprocessing and batch 150 

processing techniques, which promise to enhance operational efficiency and user experience. 151 

We believe that the FZStats v1.0 toolbox, especially the newly proposed Focal-Zonal Mixed 152 

Statistics, has the potential to offer methods and tools to better understand and address SSH and 153 



 7 

SPD issues. 154 

Although these methods successfully integrate SSH and SPD in specific tasks such as 155 

interpolation and regression, there is still no general-purpose GIS toolbox comparable to Focal 156 

and Zonal Statistics within standard GIS workflows. To fill this gap, this study presents FZStats 157 

v1.0, which unifies traditional Zonal Statistics and Focal Statistics with the novel Focal–Zonal 158 

Mixed Statistics model. Leveraging multiprocessing and batch-processing capabilities, FZStats 159 

v1.0 improves computational efficiency and optimizes usability. Moreover, from a logical 160 

perspective, Focal–Zonal Mixed Statistics can be viewed as a generalization of the two 161 

traditional approaches. Specifically, when the moving window covers—or substantially 162 

exceeds—the entire study area (i.e., window size → ∞), the method converges to Zonal 163 

Statistics, effectively addressing SSH. Conversely, when only a single zone is defined, it 164 

simplifies to Focal Statistics, capturing SPD. In the more common and complex scenarios where 165 

both SSH and SPD coexist, only the mixed approach is capable of simultaneously accounting 166 

for both characteristics. Consequently, FZStats v1.0 is positioned to function as a 167 

comprehensive analytical framework for spatial studies necessitating simultaneous evaluation 168 

of SSH and SPD parameters across diverse application domains. 169 

2 Models 170 

2.1 Focal Statistics model 171 

The modeling of Focal Statistics method addresses spatial positional dependence by computing 172 

summary statistics within a defined neighborhood around each raster cell. The implementation 173 

involves three functional methodsmain steps: (1) defining the neighborhood window,—174 

specifying its shape (e.g., square, circular, elliptical) and size; (2) identifying the neighboring 175 

cells located—locating all raster cells  within the neighborhood, of the focal cell; and (3) 176 

calculating the neighborhood statisticscomputing statistics—applying a selected statistical 177 

function (e.g., mean, sum, minimum, maximum) to the identified neighboring cells and 178 
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assigning the result to the focal cell. 179 

2.1.1 Defining the neighborhood window 180 

Defining the neighborhood window is a crucial prerequisite for fundamental step in Focal 181 

Statistics. There are This step involves specifying two key parameters to define: the 182 

neighborhood window: its window's shape and size. These can be adjusted based onparameters 183 

should be determined according to the spatial characteristics of the data and the research 184 

objectives of the research. Commonly used shapes. Common shape options include circular, 185 

square, and rectangular, while the window size is typically specified in terms of defined by the 186 

number of cells. 187 

Formally, let 𝑁𝑊  denote the neighborhood window, the following expression can be 188 

obtained. 189 

𝑁𝑊 = 𝑓(𝑆ℎ𝑎𝑝𝑒, 𝑆𝑖𝑧𝑒)                                                     (1) 190 

where 𝑓(. )  represents the function used to characterize the To implement these 191 

neighborhood windows in a computational framework, we developed three distinct each 192 

corresponding to a different geometric shape: rectangular, circular, and elliptical. These window 193 

classes are outlined in Listing 1. 194 
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 195 

Listing 1. Code fragment for the three types of neighborhood window, Sℎ𝑎𝑝𝑒 refers to the geometric 196 

configuration of the  classes: the rectangular window, while 𝑆𝑖𝑧𝑒  specifies class 197 

(KDGeoRectNbhWindow), the circular window class (KDGeoCircleNbhWindow), and the elliptical window 198 

class (KDGeoEllipseNbhWindow). 199 

The mathematical essence of a neighborhood window lies in its formal specification of a 200 

spatial domain of influence, which is typically discretized as a two-dimensional binary mask 201 

matrix. This matrix defines the inclusion of neighboring cells within a fixed spatial extent. 202 

centered on a focal cell. Specifically, it indicates whether each cell in the local neighborhood 203 

should be considered for subsequent analysis or computation. The matrix can be formally 204 

expressed as: 205 

𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = {
1 if (𝑥, 𝑦) ∈ Ω𝑊
0 otherwise

                                      (1) 206 

where Ω𝑊  denotes the neighborhood spatial domain centered on cell (𝑐𝑥, 𝑐𝑦) , whose 207 
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geometric properties are jointly determined by the shape and size parameters of the window. As 208 

shown in Listing 1, the _generate_mask_matrix method implemented in each window class is 209 

responsible for generating the neighborhood mask matrix according to the specified window 210 

parameters (e.g., height, width, radius). 211 

2.1.2 Identifying cells within the neighborhood 212 

OnceAfter the mathematical formulation of the neighborhood window is 213 

determined,established (as defined in Eq. (1)), the spatial sliding window technique can be 214 

usedemployed to identify the cells located within thepredefined neighborhoods defined by the 215 

neighborhood window centered around given cells on each focal cell for localized analysis 216 

(Hyndman and Fan, 1996). For each current location 𝐶𝑒𝑙𝑙(𝑖, 𝑗), a given focal cell located at 217 

position (i, j), the effective neighborhood cell set can be obtained through the following two 218 

computational stages. 219 

(1) Alignment of the neighborhood can be expressed as:mask matrix 220 

𝑁𝑏ℎ(To ensure accurate spatial correspondence, the geometric center of the neighborhood 221 

mask matrix 𝑵𝑴 ∈ {0, 1}𝑚×𝑛 is aligned with the focal cell located at (i, j) on the raster grid. 222 

A mapping is then established from each element in the mask matrix to its corresponding 223 

location in the raster data domain. Let the center of the mask matrix be located at (𝑐𝑥, 𝑐𝑦), and 224 

let (𝑢, 𝑣) denote the row and column offsets from the center. Then, the mapping from mask 225 

coordinates to raster coordinates is defined as:  226 

(𝑥, 𝑦) = (𝑖 +  𝑢, 𝑗) = 𝑛𝑏ℎ(𝐶𝑒𝑙𝑙(𝑖, 𝑗), 𝑁𝑊)               +𝑣)                                                 227 

(2) 228 

where i and j denote (𝑥, 𝑦)  denotes the row and column numbercoordinate of currenta 229 

neighboring cell at location (𝑖, 𝑗), respectively; 𝑛𝑏ℎ(. )is in the function for determiningraster 230 

grid, derived from the neighborhood of 𝐶𝑒𝑙𝑙(𝑖, 𝑗), and 𝑁𝑊 representsrelative offset (𝑢, 𝑣) 231 

with respect to the focal cell. This mapping ensures that the neighborhood window is precisely 232 
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aligns with the focal cell. 233 

Then cells located within 𝑁𝑏ℎ(𝑖, 𝑗) form a cell set, which can be described as follows: 234 

𝐶𝑆𝐹 (2) Identification of the valid neighborhood cell set 235 

To handle boundary effects when the neighborhood window extends beyond the raster 236 

extent, a boundary-clipping strategy is adopted. That is, only the cells that are entirely located 237 

within the raster data domain Ω𝐷 are retained. The valid neighborhood cell set 𝑪𝐹_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) 238 

is defined as: 239 

𝑪𝐹_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) =240 

{𝐶𝑒𝑙𝑙(𝑖′, 𝑗′)  ∈ 𝑹𝑣 | 𝑖𝑠_𝑖𝑛_𝑛𝑏ℎ(𝐶𝑒𝑙𝑙(𝑖
′, 𝑗′), 𝑁𝑏ℎ(𝑖, 𝑗)) == 𝑇𝑅𝑈𝐸}{(𝑥, 𝑦) ∈ Ω𝐷 |𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = 1}     241 

                      (3) 242 

where 𝑖𝑠_𝑖𝑛_𝑛𝑏ℎ(. ) 𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) ∈ {0, 1} is the indicator function used to identify whether 243 

𝐶𝑒𝑙𝑙(𝑖′, 𝑗′)  is located withincorresponding value in the neighborhood 𝑁𝑏ℎ(𝑖, 𝑗) ; 𝑖′  and 𝑗′ 244 

aremask matrix. A value of 1 indicates inclusion as a valid neighbor for the row and column 245 

number of the input value raster 𝑹𝑣, respectively. 246 

 In Eq. (3), the detailed formsubsequent analysis, while a value of 𝑖𝑠_𝑖𝑛_𝑛𝑏ℎ(. ) depends 247 

on the shape of the neighborhood window. For example, when the window is circular, 248 

𝑖𝑠_𝑖𝑛_𝑛𝑏ℎ(. ) can be expressed as: 249 

√(𝑖′ − 𝑖)2 + (𝑗′ − 𝑗)2  ≤ 𝑑                                        0 250 

signifies exclusion         (4) 251 

where 𝑑 is the radius of the circular window, i.e. window size, and i and j, and 𝑖′ and 𝑗′ are 252 

as explained above. 253 

2.1.3 Calculating the focal statistics 254 

Suppose that 𝑆𝑇𝐹(𝑇𝑦𝑝𝑒, 𝑆𝑒𝑡) denotes the statistical function of Focal Statistics, and 𝑇𝑦𝑝𝑒 255 

and 𝑆𝑒𝑡 are for the statistical parameter and the cell set to be processed. At the location of 256 

𝐶𝑒𝑙𝑙(𝑖, 𝑗) and under the Focal Statistics model, 𝑆𝑒𝑡 can be specified as 𝐶𝑆𝐹(𝑖, 𝑗). Then the 257 
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output of the Focal Statistics for 𝐶𝑒𝑙𝑙(𝑖, 𝑗) can be expressed as: 258 

𝑂𝐹(𝑖, 𝑗) = 𝑆𝑇𝐹(𝑇𝑦𝑝𝑒, 𝐶𝑆𝐹(𝑖, 𝑗))                                              (5) 259 

Expressed in terms of raster layer operations, Eq. (5) can be further formulated as: 260 

𝑹𝐹_𝑜𝑢𝑡 = 𝐹𝑜𝑐𝑎𝑙_𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠(𝑹𝑣, 𝑁𝑊, 𝑇𝑦𝑝𝑒)                                   (6) 261 

where 𝑹𝑣 and 𝑹𝐹_𝑜𝑢𝑡represent the input value raster and the output raster for Focal Statistics, 262 

respectively, while 𝑁𝑊  and 𝑇𝑦𝑝𝑒  denote the functions for neighborhood window and 263 

statistical type in that order. 264 

After identifying the valid neighborhood cells, their corresponding values are retrieved from 265 

the raster dataset and organized into a two-dimensional array. Based on these values, statistical 266 

measures such as mean, percentiles, and other user-defined metrics can be computed. The 267 

resulting statistic is then assigned to the corresponding position in the output raster.  268 

This procedure can be implemented through a function that obtains the neighborhood mask 269 

matrix, identifies valid neighborhood values for the focal cell, and computes the specified 270 

statistic. Listing 2 presents a representative implementation of this workflow. 271 

The computation is performed for every cell in the input raster, and the resulting values 272 

are written to the output raster, producing the final focal statistics result. 273 

 274 

Listing 2. Python function calculate_focal_statistics_result for computing focal statistics. The function 275 

identifies valid values from a neighborhood centered at the focal cell, filters them using a predefined mask, 276 

and then calculates the specified statistics. 277 
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2.2 Zonal Statistics model 278 

Unlike Focal Statistics, which require only a operate solely on a single value raster as input, 279 

Zonal Statistics requirerequires two input raster layers: one as thea value raster and the other as 280 

thea zone raster. The zone raster defines the shapespatial configuration and 281 

distributioncategorical labels of the zones, andwhere each cell can only belongis assigned to a 282 

singleexactly one zone. Zonal Statistics calculates the statistics computes summary metrics (e.g., 283 

mean, sum, minimum, maximum) for each zone based onby summarizing the values of the 284 

corresponding cells fromin the value raster, and the calculated. The resulting statistic is then 285 

uniformly assigned as the output value forto all cells within thethat zone. Finally, the output 286 

values of differentAfter all zones are assembled into theprocessed, the individual results are 287 

combined to generate the final output raster. 288 

The implementation of Zonal Statistics modelingtypically involves two functional 289 

methods, which are forprimary steps: (1) identifying the set of cells in the value raster 290 

bycorresponding to each zone based on the zone raster, and (2) calculating zonalsummary 291 

statistics respectivelyacross those cell values within each zone. 292 

2.2.1 Identifying cells in the value raster falling into each zone 293 

In Zonal Statistics, spatial overlay analysis can be usedis employed to find the zone code 294 

forassociate each cell in the value raster with a specific zone, as defined by a corresponding 295 

zone raster (Hyndman and Fan, 1996): 296 

𝑍𝑘(𝑖
′, 𝑗′) = 𝑍𝑜𝑛𝑒(𝐶𝑒𝑙𝑙(𝑖′, 𝑗′))                 ). This process maps each cell in the 297 

value raster to its corresponding                               (7) 298 

where 𝑍𝑘(𝑖
′, 𝑗′) represents the zone code at location (𝑖′, 𝑗′), and 𝑍𝑜𝑛𝑒(. ) is the function that 299 

returns the zone code for the value raster cell at location (𝑖′, 𝑗′).  300 

For a given zone 𝑍𝑘, the corresponding based on spatial alignment. Based on this mapping, 301 

cells in the value raster form a cell are grouped according to their zone membership, resulting 302 
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in a set 𝐶𝑆𝑍(𝑍𝑘), which can be expressed as:of raster cells for each zone. 303 

𝐶𝑆𝑍(𝑍𝑘) = { 𝐶𝑒𝑙𝑙(𝑖
′, 𝑗′) ∈ 𝑹𝑣 | 𝑍𝑜𝑛𝑒(𝐶𝑒𝑙𝑙(𝑖

′, 𝑗′)) == 𝑍𝑘 }                      (8) 304 

2.2.2 Calculating the zonal statisticsZonal Statistics 305 

The calculation of statistics for a given zone 𝑍𝑘 can be represented as: 306 

𝑂𝑍(𝑍𝑘) = 𝑆𝑇𝑍(𝑇𝑦𝑝𝑒, 𝐶𝑆𝑍(𝑍𝑘))                                              (9) 307 

It is important to note that the calculated statistics are Once the set of raster cells belonging to 308 

each zone has been identified, a summary statistic is computed based on the corresponding cell 309 

values. The result is then uniformly assigned to all cells within eachthat zone, and the statistics 310 

for. After all zones are ultimately processed, the individual zone-level results are mosaicked 311 

intoto generate the final output raster.  312 

Using 𝑹𝑣 and 𝑹𝑍 to denote the input layers of value raster and zone raster, respectively. 313 

Zonal Statistics can be expressed as: 314 

𝑹𝑍_𝑜𝑢𝑡 = 𝑍𝑜𝑛𝑎𝑙_𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠(𝑹𝑣, 𝑹𝑧 , 𝑇𝑦𝑝𝑒)                                    (10) 315 

where 𝑹𝑍_𝑜𝑢𝑡 represents the output raster, and 𝑇𝑦𝑝𝑒 is for the statistic type. 316 

Listing 3 demonstrates the implementation of this zonal statistics procedure. The 317 

calculate_zonal_statistics_result function accepts a value raster (data_arr), a zone raster 318 

(feature_arr), and a list of statistical parameters. For each unique zone code identified in the 319 

zone raster, the function identifies the corresponding cell values from the value raster, performs 320 

the specified statistical computation, and assigns the result to all cells within the zone, 321 

ultimately yielding a complete zonal statistics output raster. 322 
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 323 

Listing 3. Python implementation of the zonal statistics computation. The calculate_zonal_statistics_result 324 

function computes a specified statistic for each zone defined in the zone raster and assigns the result to all 325 

corresponding cells in the output raster. 326 

2.3 Focal-Zonal Mixed Statistics 327 

Similar to Zonal Statistics, Focal-Zonal Mixed Statistics also requireoperates on two input 328 

raster layers,inputs: a value raster and a zone raster. However, this method uniquely integrates 329 

spatial and categorical criteria, combining the specific modeling processlocalized analysis of 330 

Focal Statistics with the zone-based constraints of Zonal Statistics. The computation involves 331 

the following two functional methods.primary stages: 332 

2.3.1 Identifying cells within the neighborhood that belongcells belonging to the same zone 333 

ActuallyIn this step, the determinationselection of the target relevant cells for analysis is 334 

governed by two criteria, the spatial proximity, as defined by a neighborhood window centered 335 

on the focal cell, and zone homogeneity, requiring that all selected cells belong to the same 336 

zone as the focal cell. 337 
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For a focal cell located at position (i, j), the valid neighborhood cell set 𝑪𝐹𝑍_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗)  338 

can be defined as:  339 

𝑪𝐹𝑍_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) = {(𝑥, 𝑦) ∈ Ω𝐷 |𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = 1 Ʌ 𝑍(𝑥, 𝑦) = 𝑍(𝑖, 𝑗)}         (4) 340 

where 𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) ∈ {0, 1} is the corresponding value in the neighborhood mask matrix. A 341 

value of 1 indicates inclusion as a candidate valid neighbor for subsequent analysis, whereas a 342 

value of 0 indicates that the cell is excluded. Ω𝐷 denotes the spatial domain of the raster dataset, 343 

(𝑥, 𝑦) are the relative positions of candidate neighboring cells, and 𝑍(𝑖, 𝑗) is the zone code of 344 

the focal cell, which serves as the categorical constraint. 345 

2.3.2 Calculating the Focal-Zonal Mixed Statistics combines 346 

Once the set of valid neighboring cells has been determined based on both the spatial proximity 347 

condition from Focal Statistics, and zone membership, the next step is to compute the 348 

environmental characteristic similarity condition from Zonal Statistics. For 𝐶𝑒𝑙𝑙(𝑖, 𝑗) 349 

atdesired statistical measures using the current location, if its neighborhood is 𝑁𝑏ℎ(𝑖, 𝑗) and 350 

its zone code is 𝑍𝑘(𝑖, 𝑗), then itsidentified cell set consists of allvalues. For each focal cell, only 351 

those neighboring cells that lie within the neighborhood that belong todefined spatial window 352 

and share the same zone as the cellcode are included in the statistical calculation. This dual 353 

constraint ensures that the resulting Focal-Zonal Mixed Statistics. Mathematically, this can be 354 

expressed as: reflects localized variation while maintaining consistency within categorical 355 

spatial units. 356 

𝐶𝑆𝐹−𝑍(𝑖, 𝑗) = {𝐶𝑒𝑙𝑙(𝑖
′, 𝑗′) ∈ 𝑹𝑣  |

𝑖𝑠_𝑖𝑛_𝑛𝑏ℎ(𝐶𝑒𝑙𝑙(𝑖′, 𝑗′), 𝑁𝑏ℎ(𝑖, 𝑗)) == 𝑇𝑅𝑈𝐸

𝑍𝑜𝑛𝑒(𝐶𝑒𝑙𝑙(𝑖′, 𝑗′)) == 𝑍𝑘(𝑖, 𝑗)
}      (11) 357 

2.3.2 Calculating the focal-zonal mixed statistics 358 

Still using 𝑇𝑦𝑝𝑒 Listing 4 demonstrates the implementation of the Focal-Zonal Mixed 359 

Statistics procedure. The   calculate_focal_zonal_statistics_result function computes a 360 

localized statistic for a given focal cell by integrating both spatial and zonal constraints. It first 361 
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identifies the neighborhood data and associated zone codes based on the predefined window 362 

mask centered at the target position. Then, it applies a zonal constraint by retaining only those 363 

neighboring cells whose zone codes match that of the focal cell. After applying the combined 364 

focal-zonal mask, the specified statistic is computed on the resulting valid value set. 365 

The computation is performed for every cell in the input raster, where the neighborhood is 366 

constrained both spatially and categorically. The resulting values are written to represent the 367 

statistical type, the output result of Focal-Zonal Mixed Statistics for the current 𝐶𝑒𝑙𝑙(𝑖, 𝑗) can 368 

be expressed as: 369 

𝑂𝐹−𝑍(𝑖, 𝑗) = 𝑆𝑇𝐹−𝑍(𝑇𝑦𝑝𝑒, 𝐶𝑆𝐹−𝑍(𝑖, 𝑗))                                       (12) 370 

In the form of raster layer operations, Eq. (12) can be further expressed as: 371 

𝑹𝐹𝑍_𝑜𝑢𝑡 = 𝐹𝑜𝑐𝑎𝑙_𝑍𝑜𝑛𝑎𝑙_𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠(𝑹𝑣, 𝑹𝑧, 𝑁𝑊, 𝑇𝑦𝑝𝑒)                       (13) 372 

where 𝑹𝑣, 𝑹𝑧, and 𝑹𝐹𝑍_𝑜𝑢𝑡 represent the value raster, zone raster, and output raster for 373 

producing the final Focal-Zonal Mixed Statistics, respectively; 𝑁𝑊  is the neighborhood 374 

window, and 𝑇𝑦𝑝𝑒 is for statistical parameter result. 375 
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 376 

Listing 4. Python implementation of the Focal-Zonal Mixed Statistics computation. The function filters 377 

neighborhood cells based on both spatial proximity and zone code consistency, then calculates a user-378 

specified statistic on the resulting valid subset. 379 

3 Module design 380 

3.1 Modeling process for Focal-Zonal Mixed Statistics 381 

The flowchart detailed modeling process for the newly proposed Focal-Zonal Mixed Statistics 382 

is presented in Fig. 1, and the detailed modeling process is described as follows. 383 
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 384 

Figure 1. Flowchart for the modeling of Focal-Zonal Mixed Statistics 385 

(1) Preparation of the value raster and the environmental factor rasters 386 

This initial step involves collecting and preprocessing the spatial datadatasets required for 387 

the analysis. The value raster typically represents the primary variable of interest, i.e., the target 388 

layer, such as temperature, pollution levels, or vegetation indices. EnvironmentalThe 389 

environmental factor rasters include various influencing factors, such ascharacterize variables 390 

that potentially influence the spatial heterogeneity of the target variable, including elevation, 391 

slope, land cover, and other relevant geographical features that may contribute to the 392 

heterogeneous distribution of the target layer.or ecological attributes. Preprocessing methods 393 

mayprocedures typically include resampling, reprojectingreprojection, and normalizing the 394 

datanormalization to ensure consistency and compatibility among thethat all raster layers, so 395 

that they share the samea consistent spatial extent, resolution, and coordinate reference system. 396 

(2) Construction of unique-value environmental characteristic zonal rasterUnique-Value 397 

Environmental Characteristic Zonal Raster (UV-ECZR) 398 

This process can be achieved using the “Reclassify” tool in ArcGIS to transform 399 

Preparation of the value raster and the environmental factor rasters

Construction of unique-value environmental characteristic zonal raster

Determination of neighborhood window and statistical parameters

Preparation of output raster

Calculation of Focal-Zonal Mixed Statistics

Save of output raster
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continuous or categorical environmental factor rasters into discrete classes based on predefined 400 

criteria. Subsequently, the UV-ECZR is generated through spatial overlay analysis and unique-401 

value encoding. Cells in the UV-ECZR that share the same unique-value environmental 402 

characteristic code (UV-ECC) form a similar environmental unit (SEU). A detailed 403 

implementation of this process is described in the following Sect.In this step, environmental 404 

factor rasters—whether continuous or categorical—are reclassified into discrete categories 405 

using a well-defined discretization scheme. For continuous variables, the classification method 406 

should be selected according to the data distribution and research objectives: natural breaks 407 

(Jenks) are recommended for datasets exhibiting clear clustering, equal interval classification 408 

suits uniformly distributed data, and quantile classification ensures balanced representation 409 

across value ranges. For categorical variables, original classes are typically retained unless 410 

aggregating categories improves analytical validity. The optimal number of classes, usually 411 

between 5 and 8, should balance environmental heterogeneity with adequate sample size within 412 

each zone. Classification performance can be evaluated by minimizing within-zone variance, 413 

maximizing between-zone variance, and assessing clustering validity through the silhouette 414 

coefficient. After reclassification, the final UV-ECZR is produced via spatial overlay analysis, 415 

wherein each unique combination of reclassified layers is assigned a Unique-Value 416 

Environmental Characteristic Code (UV-ECC). Cells sharing the same UV-ECC form a Similar 417 

Environmental Unit (SEU), ensuring that resulting zones capture meaningful ecological 418 

thresholds while maintaining sufficient sample sizes for statistical reliability. A detailed 419 

methodological workflow for this process is provided in Sect. 3.2.1. 420 

(3) Determination of neighborhood window and statistical parameters 421 

This process involves defining the neighborhood window and specifying the statistical 422 

parameters for Focal-Zonal Mixed Statistics. 423 

This process involves specifying the neighborhood window and specifying the selecting 424 
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appropriate statistical parameters for the Focal-Zonal Mixed Statistics. The window size should 425 

be selected based on several considerations, including the spatial scale of the studied 426 

phenomenon (e.g., local versus regional patterns), the resolution of the input rasters (with 427 

coarser resolution favoring larger windows), and computational efficiency (as larger windows 428 

significantly increase processing time). The window shape should be chosen according to the 429 

nature of spatial anisotropy (elliptical for directional patterns), processing efficiency 430 

(rectangular shapes are computationally faster), mitigation of edge effects (circular windows 431 

help reduce boundary artifacts), and data characteristics (rectangular for grid-aligned features 432 

and circular for isotropic phenomena). The selection of the statistical function should align with 433 

the analytical objectives: the mean is suitable for general smoothing and trend detection; the 434 

standard deviation is appropriate for identifying variability and anomalies; the minimum and 435 

maximum help detect extreme values; percentiles (such as the 90th percentile) support robust 436 

threshold analyses; and the sum is useful for aggregation tasks. 437 

(4) Preparation of output raster 438 

This step involves creatinggenerating an output raster withthat matches the sameinput 439 

rasters in terms of spatial extent, resolution, and coordinate reference system as the input rasters. 440 

Thisto ensure seamless spatial alignment. The output raster willserves as a container to store 441 

the results of the Focal-–Zonal Mixed Statistics calculationscomputations. Before processing, 442 

the output raster is typically initialized with null values (e.g., NoData or NaN) to indicate that 443 

no computation has yet been performed. As the computation proceeds, each computed statistic 444 

is written into the output raster at the spatial location corresponding to the focal cell. 445 

(5) Calculation of the statistics 446 

In this step, the moving window technique is appliedemployed to locatesystematically 447 

traverse each currentfocal cell and its local window.across the study area. For each currentfocal 448 

cell, identify theits local neighborhood cells is first determined based on the definedpredefined 449 
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neighborhood window parameters (refer to Sect. 2.1.1). Within this neighborhood, isolate the 450 

cells withinbelonging to the same SEU as the currentfocal cell. Subsequently, calculate the are 451 

identified by comparing their UV-ECC values. The specified statistic for these cells in the 452 

statistical measure is then calculated using the corresponding values from the value raster that 453 

correspond to those isolated cellsfor the selected cells. The computed statistic is assigned to the 454 

focal cell's position in the output raster. This procedure is repeated iteratively for all focal cells 455 

until the output layer is fully generated. 456 

(6) Save of output raster 457 

Write the statistical result to each corresponding cell in the output raster one at a time, and 458 

save the raster file after all cells have been processed. 459 

The core algorithm involved in the above steps is described in the following section. 460 

After the computation is complete for all focal cells, the finalized output raster is written 461 

to disk. After all cells have been iteratively processed, the complete output raster is finalized 462 

and saved to disk. Ensuring proper saving procedures, such as specifying an appropriate file 463 

format (e.g., GeoTIFF) and maintaining consistent georeferencing information, is essential to 464 

preserve data integrity and facilitate subsequent spatial analyses. 465 

3.2 Core algorithm design for Focal-Zonal Mixed Statistics 466 

3.2.1 Algorithm design for the UV-ECZR construction 467 

Assume that there are 𝑝  continuous environmental variables, i.e., 𝐸1 denoted as 468 

{𝐸1, 𝐸2, . . . , 𝐸𝑝 , with } , and their corresponding reclassified variables being 𝐶𝐸1 are 469 

{𝐶𝐸1, 𝐶𝐸2, . . . , 𝐶𝐸𝑝.}. The number of categories for 𝐶𝐸𝑞 is denoted as 𝑆𝑞, and the required 470 

digit lengths of these categories are denoted as 𝑆1, 𝑆2, . . . , 𝑆𝑝  andlength 𝐷1, 𝐷2, . . . , 𝐷𝑝 , 471 

respectively. The method for calculating the digit lengths of the categories is as follows𝐷𝑞 is 472 

computed as: 473 

𝐷𝑞 = ⌊lg𝑆𝑞⌋ + 1                                                          474 
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(14(5) 475 

where lg  denotes the logarithm with base 10, ⌊. ⌋  represents the floor function, and 𝑞 =476 

1, 2, . . . , 𝑝. The categoriescategory values for the q-theach environmental variable shouldmust 477 

be a positive integerintegers, and the value range of cell value infor the reclassified raster (𝑪𝑬q) 478 

can be expressed as𝑪𝑬q is [1, 𝑆𝑞]. It is necessary to prepend a sufficient number of “0”s to 479 

ensure the code has a consistent digit length of 𝐷q. 480 

Then, the UV-ECCThus, each pixel at location (𝑖, 𝑗)  in the raster can be defined 481 

asrepresented by the vector of its 𝑝 reclassified environmental category values: 482 

𝑪𝑬(𝑖, 𝑗) = (𝐶𝐸1(𝑖, 𝑗), 𝐶𝐸2(𝑖, 𝑗), . . . , 𝐶𝐸𝑝(𝑖, 𝑗))                                (6) 483 

𝑈𝑉 − 𝐸𝐶𝐶 (𝑖, 𝑗) = 1𝑋⋯𝑋⏞  
𝐷1

𝑋⋯𝑋⏞  
𝐷2

⋯𝑋⋯𝑋⏞  

𝐷𝑞

⋯𝑋⋯𝑋⏞  

𝐷𝑝

                            (15) 484 

where 𝑋⋯𝑋⏞  

𝐷𝑞

  represents the each component 𝐶𝐸𝑞(𝑖, 𝑗)  is the integer category code of 485 

𝑪𝑬𝑞 the p-th environmental variable at location (𝑖, 𝑗) , 𝐷𝑞  is obtained through Eq. (14). To 486 

keep the consistency in the UV-ECC format, itpixel (𝑖, 𝑗). 487 

The UV-ECC at pixel (𝑖, 𝑗) is necessary to prependdefined as a sufficient number of “0”s 488 

to ensure unique scalar encoding of the vector 𝑪𝑬(𝑖, 𝑗). One efficient way to construct this 489 

code is by decimal digit length of category code equals 𝐷q.concatenation: 490 

In 𝑈𝑉 − 𝐸𝐶𝐶 (𝑖, 𝑗) = ∑ 𝐶𝐸𝑞(𝑖, 𝑗) ∙ 10
∑ 𝐷k
𝒑
𝒌=𝒒+𝟏𝑝

𝑞=1                               491 

(7) 492 

 the form of raster calculator, the UV-ECZR can be expressed as: 493 

𝑼𝑽 − 𝑬𝑪𝒁𝑹 = 𝑪𝑬1 ∪ 𝑪𝑬2 ∪ …∪ 𝑪𝑬𝑝                                      (16) 494 

where ∪ represents the spatial overlay. 495 

Based on the framework of raster map algebra, the UV-ECZR is constructed through a 496 

spatial overlay operation applied to the p reclassified environmental variable layers. This 497 
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process corresponds to a local operation in raster algebra, where the categorical values from 498 

each layer are combined on a cell-by-cell basis to generate a multi-dimensional representation. 499 

A more realistic and pertinent code sample is provided in Listing 5. 500 

 501 

Listing 5. Python implementation of UV-ECZR generation using arcpy-based raster map algebra. Each input 502 

raster layer represents a reclassified environmental variable (e.g., slope or aspect), and the local overlay 503 

operation combines their category codes to produce a unique zone identifier for each pixel. 504 

3.2.2 Algorithm design for determining the valid range for statistics under the sliding 505 

window technique 506 

A rectangular windowRectangular windows, which alignsalign with the rowsrow and 507 

columnscolumn structure of raster data and is both easy and efficient to implement, is 508 

commonly, are widely used in the sliding window technique.operations due to their simplicity 509 

and computational efficiency. However, its drawback is also evident: the grid cells located at 510 

the four corners are muchsignificantly farther from the current locationfocal cell than those on 511 

the horizontal and vertical axes (Zhang et al., 2016a). Despite this, rectangular windows remain 512 
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one ofamong the most popular forms of spatial sliding windows. commonly employed window 513 

shapes.  514 

In this study, we consider not only rectangular windows along withbut also circular and 515 

elliptical windows.window shapes. Since a circle is a special formcase of an ellipse, we use the 516 

ellipse is used as ana generalized example to illustrate the algorithm design for determining the 517 

valid range of cells for statistics under the sliding window technique in the context of Focal-–518 

Zonal Mixed Statistics. 519 

(1) Mask matrix for elliptical window 520 

An elliptical window is defined by three key parameters: the length of major axis, the ratio 521 

of the minor axis to the major axis, and the deflection angle of major axis. Let  (𝑥0, 𝑦0) 522 

represent the center of the ellipse, i.e., the current location, 𝑎  denotes the semi-major axis 523 

length, 𝑟 be the minor-to-major axis ratio, and 𝜃 be the deflection angle. Then the elliptical 524 

window can be mathematically expressed as: 525 

𝐸𝑙𝑙𝑖𝑝𝑠𝑒((𝑥0, 𝑦0), 𝑎, 𝑟, 𝜃)  =  
[(𝑥−𝑥0) cos𝜃+(𝑦−𝑦0) sin𝜃]

2

𝑎2
+
[−(𝑥−𝑥0) sin𝜃+(𝑦−𝑦0) cos𝜃]

2

(𝑟𝑎)2
    526 

(17(8) 527 

Based on Eq. (158), the bounding box of the elliptical window can be represented as 528 

𝐵𝐵𝑜𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑒(𝑚𝑖𝑛𝑋,𝑚𝑎𝑥𝑋,𝑚𝑖𝑛𝑌,𝑚𝑎𝑥𝑌), where 𝑚𝑖𝑛𝑋,𝑚𝑎𝑥𝑋,𝑚𝑖𝑛𝑌,𝑚𝑎𝑥𝑌 are as follows: 529 

{
 

 𝑚𝑖𝑛𝑋,𝑚𝑎𝑥𝑋 =𝑥0 ±√
4𝐶𝐹

𝐵2−4𝐴𝐶
     

𝑚𝑖𝑛𝑌,𝑚𝑎𝑥𝑌 =𝑦0 ±√
4𝐴𝐹

𝐵2−4𝐴𝐶
    

                                        530 

(18(9) 531 

herewhere, 532 

{
 
 

 
 
𝐴 = 𝑎2 ( 𝑠𝑖𝑛2 𝜃 + 𝑟2 𝑐𝑜𝑠2 𝜃) 

𝐵 = 2𝑎2(𝑟2 − 1) 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 

𝐶 = 𝑎2 ( 𝑐𝑜𝑠2 𝜃 + 𝑟2 𝑠𝑖𝑛2 𝜃) 

𝐹 = −
1

2
(𝐷𝑥0 + 𝐸𝑦0) − 𝑟

2𝑎4

                                             533 
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(19(10) 534 

The bounding box 𝐵𝐵𝑜𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑒  provides a simplified and direct spatial reference for 535 

constructing a Boolean mask matrix for the elliptical window, i.e., 𝑀𝑎𝑡𝑟𝑖𝑥𝐸𝑙𝑙𝑖𝑝𝑠𝑒_𝑚𝑎𝑠𝑘, where 536 

cells inside and outside the 𝐵𝐵𝑜𝑥𝑒𝑙𝑙𝑖𝑝𝑠𝑒  are assigned values of “True” and “False”, 537 

respectively. In Focal Statistics, this binary mask is used directly to defineidentify the area of 538 

interestvalid neighborhood cells for statistics, statistical operations (see Fig. 2a.1a). 539 

 540 

 541 
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 542 

Figure 21. Heatmaps for the Boolean mask matrix: (a) the elliptical window of Focal Statistics, (b) the 543 

similar environmental unit (SEU) of Zonal Statistics, and (c) the elliptical window similar environmental 544 

unit (EW-SEU) of Focal-Zonal Mixed Statistics. 545 

(2) Mask matrix for similar environment in the bounding box 546 

SEU is the basic object of Zonal Statistics. In Focal-Zonal Mixed Statistics, for the current 547 

cell, the elliptical window similar environmental unit (EW-SEU) is established according to the 548 

environmental characteristic code within the initial neighborhood window defined by the 549 

bounding box. Using 𝑀𝑎𝑡𝑟𝑖𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑠𝑘  to represent this unit, cells with the same 550 

environmental characteristic code as the current cell are assigned a value of “True”, while others 551 

are assigned a value of “False”, as shown in Fig. 2b1b. 552 

(3) Mask matrix for similar environment in the elliptical window 553 
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The matrices of steps (1) and (2) shares the same dimensions, and thus the similar 554 

environment mask matrix for the current cell in the elliptical window can be constructed using 555 

a logical “AND” operation between these two matrices, as expressed in the following equation: 556 

𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘 = 𝑀𝑎𝑡𝑟𝑖𝑥𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑚𝑎𝑠𝑘  ∧  𝑀𝑎𝑡𝑟𝑖𝑥𝐸𝑙𝑙𝑖𝑝𝑠𝑒_𝑚𝑎𝑠𝑘                  557 

(20(11) 558 

where ∧  denotes the logical “AND” operator. 𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘  serves as the basis for 559 

determining the valid range for Focal-Zonal Mixed Statistics, as illustrated in Fig. 2c1c. 560 

3.2.3 Algorithm design for the statistics calculation 561 

The core algorithm for statistical computation within the statistics calculation is designed as 562 

followsFocal-Zonal Mixed Statistics framework consists of the following steps: 563 

(1) Determination of valid statistical cells in the value raster 564 

Using 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑢𝑒 to represent the cell array from the value raster within the bounding 565 

box defined above, then by performing a bitwise multiplication of 𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘  with 566 

𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑢𝑒, the final valid statistical value matrix 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 is obtained: 567 

𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 = 𝑀𝑎𝑡𝑟𝑖𝑥𝐸_𝑆_𝑚𝑎𝑠𝑘  ⊗𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑢𝑒                               568 

(21(12) 569 

where⊗denotes bitwise multiplication. This operation collects cells from the value raster that 570 

are located within the neighborhood and share the same UV-ECC as the current cell, while 571 

masking out other cells that could interfere with the statistical results. In 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 , the 572 

masked cells can be represented with “NaN”.  573 

(2) Design of the calculation function for the statistics 574 

Taking 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 as the final input, the calculation functions for Focal-Zonal Mixed 575 

Statistics can be designed based on scientific computing tools such as NumPy. This library 576 

provides a range of statistical methods, including minimum, maximum, mean, standard 577 

deviation, percentiles, and more. For instance, the “numpy.nanmax()” method can ignore “NaN” 578 
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values and return the maximum value of 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑 , while the “numpy.nanpercentile()” 579 

method, also ignoring “NaN” values, calculates the n-th percentile of 𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑎𝑙𝑖𝑑. 580 

3.3 User interface design 581 

The Focal-Zonal Mixed Statistics, along with traditional Zonal Statistics and Focal 582 

Statistics, are included in the newly developed toolbox, FZStats v1.0, using Python3 and QT5. 583 

The user interface is organized into three tabs, each dedicated to one of the three methods, 584 

allowing users to switch among them (see Fig. 32). Taking the tab for Focal-Zonal Mixed 585 

Statistics as an example, the interface is divided into four main sections, and the detailed 586 

description of the user interface design is given as follows. 587 

 588 

Figure 2. User interface design of FZStats v1.0 589 
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(1) Input and output design 590 

Users can selectload the value raster and UV-ECZR layers as input data from their 591 

datasets.inputs. Additionally, they can specify the output path and filename for the 592 

resultingresult raster datacan be specified. 593 

(2) Neighborhood window design 594 

Users can configuredefine the shape (e.g., rectangular, circular, elliptical) and and size 595 

(e.g., number of cells or spatial units) of the neighborhood window. For rectangular and circular 596 

windows, size is specifiedcontrolled by the half-side length and radius, respectively. Elliptical 597 

windows are characterized usingconfigured via three morphological parameters: the length of 598 

the major axis, the ratio of the minor axis to the major axis, and the deflection angle of major 599 

axis. 600 

(3) Statistical measure design 601 

Users can select a specified statistical measure from the A dropdown menu. allows users 602 

to choose from various statistical measures (mean, max, std, etc.). For percentile calculations, 603 

users are required to specify the exact-based statistics, the desired percentile values of interest, 604 

such as thevalue (e.g., 50th, 75th, or 98th percentiles) must be specified. 605 

(4) Optimization settings 606 

In this section, users can fine-tune various parameters to optimize the calculation 607 

performance. Key settings include: 608 

This section presents optimized parameter configurations to enhance computational 609 

efficiency: 610 

Chunk processing: Users can divide the input Divide large raster layers into smaller chunks, 611 

which can enhance performance by reducing the to manage memory load and making it easier 612 

to handle large datasetsusage efficiently. 613 

Parallel processing: Users can configureSpecify the number of processors used forto 614 
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enable parallel processing to reduce computation time. On computers with higher 615 

configurations, increasing the number of processors allows for the utilization of more cores, 616 

enabling simultaneous task execution and significantly reducing processing timesand reduce 617 

runtime on multi-core systems. 618 

Threshold setting: Users can specifyDefine a minimum sample threshold for statistical 619 

calculations, which defines the minimum number of cells required for performing the statistical 620 

measure. This threshold ensures that the statistical computations are based on a sufficient 621 

sample size, thereby enhancing the reliability and robustness of theoperations to ensure robust 622 

and meaningful results.  623 

Additionally, to further improve multitasking efficiency and achieve a certain degree of 624 

automation, a batch processing featuremode is provided in the toolbox.for automation. Users 625 

can define parameters in an INI-formatprepare a configuration file (config.ini), which simplifies 626 

the process by eliminating repetitive configurations. This feature allows users to set up and 627 

execute ) to set parameters for multiple tasks in a single operation, supportsruns. This facilitates 628 

efficient task management, parameter reuse, and provides a means forerror tracking errors. 629 
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 630 

Figure 3. User interface design of FZStats v1.0 631 

4 Experimental study 632 

4.1 Background of the case 633 

Geothermal, like resources, similar to coal, oil, and natural gas, is aare valuable energy mineral 634 

resource, and itsresources whose development and utilization play a significantcrucial role in 635 

alleviating energy supply pressurepressures and improving the global environment (Huang and 636 

Liu, 2010; Goldstein et al., 2011). The most importantprimary indicator for geothermal resource 637 

exploration is the detection of thermal anomalies (Romaguera et al., 2018; Gemitzi et al., 2021). 638 

In recent years, with the rapid developmentadvancement of remote sensing, Land Surface 639 
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Temperature technologies, land surface temperature (LST) derived from thermal infrared bands 640 

has become a key methodparameter for identifying geothermal anomalies. However, LST is 641 

influenced by various factors, including not only by geothermal activity but also by 642 

environmental factors such as slope, aspect, and surface vegetation cover , among other 643 

environmental factors (Tran et al., 2017; Duveiller et al., 2018; Zhao and Duan, 2020). 644 

To effectively extract LST anomalies caused by directly related to geothermal activity, it 645 

is necessaryessential to suppress the influenceconfounding effects of surface environmental 646 

variables. Within the analytical framework of the Focal-–Zonal Mixed Statistics developed in 647 

this study, terrain features are incorporated into environmental zoning, and the spatial sliding 648 

window technique is employed to mitigate environmental interference and enhance the 649 

abnormal information fromdetection of geothermal activityanomaly signals. 650 

4.2 Data preprocessing 651 

4.2.1 Spatial distribution of LST 652 

In this study, Landsat 8 imagesimagery (Orbit Number: 116031) observed on September 16, 653 

2013acquired during the spring, summer, and autumn seasons of 2015, 2019, and 2023, 654 

covering the study area, i.e., Changbai Mountain region, were usedwas utilized for land surface 655 

temperature (LST) mapping and geothermal anomaly detection. The selection of multi-656 

temporal images across different seasons and years was intended to robustly validate the 657 

effectiveness of the proposed method and to explore the temporal evolution patterns of 658 

geothermal anomalies, thereby providing improved support for geothermal exploration in this 659 

study. After.  660 

Following standard preprocessing operations such asprocedures, including radiometric 661 

calibration and atmospheric correction, the Universal Single-Channel Algorithm (Jiménez-662 

Muñoz et al., 2009, 2014; Zhang et al., 2016b) was employed to retrieve the LST of the study 663 

area, as shown in Fig. 4. By comparing Figs. 4 and 5, it can be seen that there is a strong spatial 664 
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correlation between LST and terrain factors, especially the slope aspect. Since the local time of 665 

the satellite passing over the study area was 10:43 AM, and the solar azimuth angle was 153°, 666 

the LST exhibited significantly higher values on the southeast-facing slopes than on the 667 

northwest-facing slopesapplied to retrieve LST across the study area. The resulting LST 668 

distributions are illustrated in Fig. 3. 669 

 670 

Taking the LST retrieved from the Landsat 8 image acquired on March 20, 2023, as an 671 

example, a comparison between Fig. 3 and the terrain information presented in Fig. 4 reveals a 672 

strong spatial correlation between LST patterns and topographic factors, particularly slope 673 

aspect. Given that the local overpass time of Landsat 8 over the study area was approximately 674 

11:00 AM, with a corresponding solar azimuth angle of 153°, LST values were significantly 675 

higher on southeast-facing slopes compared to northwest-facing slopes (Fig. 4a). This 676 

highlights the pronounced influence of solar radiation on the spatial variability of LST within 677 
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the study area. 678 

 679 

Figure 43. Spatial distribution of land surface temperature (LST) in the study area on March 20, 2023. 680 

4.2.2 Mapping of unique-value environmental characteristic zones 681 

The slopeSlope and aspect were usedselected as the environmental factors to constructfor 682 

constructing the UV-ECZR (see Fig. 5a4a and b4b). As previously mentioneddiscussed, these 683 

two factors havevariables exhibit a strong spatial coupling relationship with LST. Although 684 

elevation and vegetation coverage were not directly appliedincluded in the environmental 685 

zoning, they process, their variability can be considered similarrelatively homogeneous within 686 

the defined neighborhood window (Zhang et al., 2019). ThereforeThus, their confounding 687 
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effects are indirectly suppressedmitigated. In other words, in the framework of Focal-–Zonal 688 

Mixed Statistics modeling, sample heterogeneity caused byarising from long-range spatial 689 

variables can be effectively controlled throughby spatial proximity, while that 690 

broughtheterogeneity caused by short-range spatial variables can beis suppressed through 691 

environmental similarity. 692 

 693 
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 694 

Figure 54. Maps of environmental factors: (a) slopeSlope aspect, (b) Slope degree, and (c) the composite 695 

unique-value environmental characteristic zonal rasterUnique-Value Environmental Characteristic Zonal 696 

Raster (UV-ECZR). 697 

4.3 Enhancement of geothermal anomalies based on Focal-Zonal Mixed Statistics 698 

In mineral prospectivity mapping, standard deviation standardizationnormalization (Z-score 699 

transformation) is oftencommonly employed to assist in constructing indicator variables for 700 

prospecting.anomaly detection (Journel & Huijbregts, 1978; Goovaerts, 1997). This 701 

processprocedure involves subtracting the mean from the original value and then dividing the 702 

result by the standard deviation. This indicator reveals how many standard deviations the 703 



 38 

original , rescaling variables to a uniform range to mitigate scale-dependent biases and enhance 704 

comparability of multi-source geochemical data in predictive modeling (Carranza, 2008). The 705 

resulting standardized value deviatesquantifies the deviation of the original measurement from 706 

the mean. The essence of this method  in units of standard deviations. The core principle lies 707 

in determining thedefining an appropriate sample range for calculating thelocal background 708 

statistics (e.g., mean and standard deviation, enabling a comparison of the ), which ensures 709 

meaningful comparisons between the current value against the mean and using the standard 710 

deviation to quantify this difference. and its spatial context (Cheng, 2007; Wang et al., 2011). 711 

In this study, Focal-–Zonal Mixed Statistics was used for this purpose, i.e., defining 712 

adopted to define the comparable sample range based on bothby simultaneously considering 713 

spatial proximity and environmental similarity. Specifically, in this case, the level of LST at for 714 

each current location is, the level of land surface temperature (LST) was assessed within the 715 

rangea sample set determined jointly by both the local moving window and the similar terrain 716 

features. This approach mitigatesmethod effectively suppresses the influence of factors such as 717 

terrain and, vegetation, thereby producing a and other confounding factors, allowing the 718 

resulting LST anomaly distribution map of LST anomalies thatto predominantly reflectsreflect 719 

geothermal activity.When the current Using a circular moving window is a circle with a radius 720 

of 74.2 km, the final enhanced geothermal anomaly map derived from Fig. 3 is shown in Fig. 721 

65. 722 
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 723 
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 724 

Figure 65. Enhanced geothermal anomaly map based on Focal-Zonal Mixed Statistics with a local window 725 

radius of 74.2 km. 726 

 ComparingBy comparing Figs. 5 and 63, it is evident that the LST anomalies enhanced 727 

using through Focal-Zonal Mixed Statistics exhibitshow a betterstronger spatial correlation 728 

with known geothermal wells (obtained from as referenced by Yan et al., 2017), and their high 729 

values indicate known). The higher values in Fig. 5 more effectively highlight these geothermal 730 

wells more effectively. Therefore, we have reason to believe, suggesting that the high-value 731 

areas with high values in Fig. 6this figure have a higher probabilityan increased likelihood of 732 

revealingindicating new geothermal resources. 733 

4.4 Performance Comparison 734 
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Following the standard deviation normalization approach described above, Zonal Statistics and 735 

Focal Statistics were also applied to the LST dataset (Fig. 3) to enhance geothermal anomalies, 736 

thereby facilitating comparative evaluation of the models. Specifically, the Receiver Operating 737 

Characteristic (ROC) curve was employed to assess the predictive performance of the original 738 

LST and the three enhancement indices derived from Focal Statistics, Zonal Statistics, and 739 

Focal–Zonal Mixed Statistics. 740 

The ROC curve plots the False Positive Rate (FPR) against the True Positive Rate (TPR) 741 

(Fawcett, 2006; Hanczar et al., 2010), and the Area Under the Curve (AUC) is used as a 742 

quantitative metric for model evaluation. AUC values range from 0.5 to 1, where higher values 743 

indicate better predictive accuracy and model performance. 744 

The ROC curves for the LST dataset and the three enhancement indices are presented in 745 

Fig. 6, where subfigures a–d correspond to the four observation dates: March 20, June 24, 746 

September 28, and December 25, 2023. Focal Statistics and Focal–Zonal Mixed Statistics were 747 

both implemented using a circular window with a radius of 4.2 km. It is evident that, across all 748 

seasons, the enhancement indices derived from the Focal–Zonal Mixed Statistics approach 749 

consistently outperform the others. For instance, in Fig. 6a, the AUC value under Focal–Zonal 750 

Mixed Statistics reaches 0.734, notably higher than that of Zonal Statistics (0.508), Focal 751 

Statistics (0.669), and the original LST (0.474). Although both Zonal Statistics and Focal 752 

Statistics demonstrate slight improvements over the raw LST, their enhancement effects remain 753 

limited. Furthermore, comparison of Fig. 6a–d indicates that our enhanced model performs best 754 

in autumn, as evidenced by the highest AUC value observed in this season. 755 
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 756 

Figure 6. Receiver Operating Characteristic (ROC) curves of the Land Surface Temperature (LST) and its 757 

three enhancement indicators derived from Focal Statistics, Zonal Statistics, and Focal–Zonal Mixed 758 

Statistics, respectively. A Parameter settings: the local window used for both Focal Statistics and Focal–Zonal 759 

Mixed Statistics is a circle with a radius of 4.2 km; the zoning categories used for Zonal Statistics are identical 760 

to those employed in Focal–Zonal Mixed Statistics; and a geothermal well represents an area of 0.035 km2 761 

surrounding it. 762 

5 Discussion 763 

5.1 AdvantagesSignificance and Necessity of the new statisticsNew Statistical Method 764 

Based on the standard deviation standardization approach described above, we also employed 765 

Zonal Statistics and Focal Statistics to enhance geothermal anomalies for further model 766 
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comparison. Specifically, the Receiver Operating Characteristic (ROC) curve was used to 767 

compare the performance of LST itself and its three enhancement indices in geothermal 768 

prospectivity mapping. 769 

The ROC curve is plotted with the False Positive Rate (FPR) and True Positive Rate (TPR) 770 

as the x-axis and y-axis, respectively (Fawcett, 2006; Hanczar et al., 2010), and the resulting 771 

Area Under Curve (AUC) is used for quantitative evaluation of certain indices or models. AUC 772 

values range from [0.5, 1], where higher values indicate better predictive performance and 773 

accuracy of the model, and vice versa. 774 

The ROCs of LST and its three enhancement indices obtained by Focal Statistics, Zonal 775 

Statistics, and Focal-Zonal Mixed Statistics, respectively, are depicted in Fig. 7. It can be 776 

observed that the enhancement effect based on Focal-Zonal Mixed Statistics is significantly 777 

better than that based on the other two models, as the AUC of Focal-Zonal Mixed Statistics is 778 

0.731, which is much higher than that of Zonal Statistics (0.638) and Focal Statistics (0.657). 779 

Moreover, the AUC values of the latter two are also higher than that of LST, although marginally. 780 

 781 

Figure 7. The ROCs of Land Surface Temperature (LST) and its three enhancement indicators obtained by 782 

Focal Statistics, Zonal Statistics, and Focal-Zonal Mixed Statistics, respectively. Parameter Settings: the local 783 

window for Focal Statistics and Focal-Zonal Mixed Statistics is a circle with a radius of 7.2 km; the categories 784 
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used for Zonal Statistics are the same as those for Focal-Zonal Mixed Statistics; and a geothermal well 785 

represents an area of 0.1 km surrounding it. 786 

Firstly, from a theoretical standpoint, traditional methods each address only one aspect of spatial 787 

variation: Focal Statistics primarily captures SPD, while Zonal Statistics is designed to account 788 

for SSH. However, real-world spatial problems often exhibit both characteristics 789 

simultaneously. This underscores the theoretical necessity and practical relevance of developing 790 

the new method—Focal–Zonal Mixed Statistics—which bridges the methodological gap 791 

between Focal Statistics and Zonal Statistics. 792 

Secondly, from a conceptual perspective, Focal–Zonal Mixed Statistics can be viewed as 793 

a generalization of the two conventional approaches. When the moving window encompasses—794 

or far exceeds—the entire study area (i.e., the window size approaches infinity), the method 795 

converges to Zonal Statistics, effectively capturing stratified heterogeneity. Conversely, when 796 

the analysis is confined to a single environmental zone, the method reduces to Focal Statistics, 797 

thereby focusing on spatial positional dependence. This flexibility enables the new method to 798 

seamlessly adapt to different spatial structures. 799 

Thirdly, in terms of practical performance (see Fig. 6), although traditional methods show 800 

some ability to enhance geothermal anomaly detection—for example, Focal Statistics improves 801 

AUC values by 3.9% to 41.1% over the original LST—the proposed method demonstrates 802 

significantly greater efficacy, with AUC improvements ranging from 9.9% to as high as 54.9%. 803 

These results clearly highlight the superior performance of Focal–Zonal Mixed Statistics. 804 

Finally, regarding broader applicability, although geothermal anomaly enhancement 805 

serves as the illustrative case in this study, the utility of the proposed method extends well 806 

beyond this specific context. It is particularly well suited for applications requiring both 807 

improved sample purity and simultaneous control over SSH and SPD. Potential domains 808 

include mineral resource potential evaluation, vegetation restoration potential assessment, 809 

cropland productivity analysis, and terrestrial vegetation carbon sink estimation. Furthermore, 810 
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the method can be employed to assess the spatial variability of target variables under specific 811 

environmental constraints, and to evaluate the effectiveness of environmental factors in 812 

delineating spatial patterns of interest. 813 

5.2 Robustness of the new method 814 

To ensure that the superior performance of the new modelproposed method, as demonstrated in 815 

Sect. 5.14.4, is not coincidentaldue to chance, it is necessary to adjustessential to test its 816 

robustness under varying conditions. This involves adjusting key parameters such as the size of 817 

the local analysis window size, the year and the geothermal well season of image acquisition, 818 

and the representative area and conductassigned to geothermal wells. Through multi-scenario 819 

comparisoncomparative experiments. This will help analyze, the robustnessconsistency and 820 

reliability of the new model'smodel’s advantages can be systematically evaluated. 821 

To rigorously assess the robustness of the proposed method, we conducted a series of 822 

controlled experiments involving multiple scenarios. Specifically, Landsat imagery from the 823 

years 2015, 2019, and 2023 was selected, covering all four seasons—spring, summer, autumn, 824 

and winter—for each year. Due to cloud contamination and other data quality issues, some 825 

missing seasonal scenes were replaced with imagery from adjacent years and similar months. 826 

In addition, two representative areas were defined for individual geothermal wells: 0.0009 km² 827 

(equivalent to a single 30 m × 30 m pixel) and 0.035 km². To further test the model's sensitivity 828 

to spatial scale, we varied the radius of circular local windows from 0.3 km to 9 km in 0.3 km 829 

increments. These selections of years, seasons, neighborhood sizes, and point 830 

representativeness were all deliberately designed to evaluate the stability and generalizability 831 

of the proposed method relative to the two traditional approaches. 832 

When the representative area for a geothermal well is determined by 0.1km, 0.2km, and 833 

0.3km buffers, respectivelydefined as a circle with an area of 0.035 km², and imagery from the 834 

year 2023 is used for modeling, the AUC values forof the original LST and its enhancement 835 
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indices are calculated. These values,  across different seasons and a range of local window 836 

sizes. Specifically, circular windows with radii ranging from 0.3 km to 9 km (at 0.3 km intervals) 837 

are applied to evaluate model performance. The AUC values obtained through under these 838 

varying seasonal and spatial conditions—across different models under various local window 839 

radii, are —are plotted onin a Cartesian coordinate system, as shownillustrated in Fig. 8. 7. 840 

 841 

 842 

Figure 8. The changes7. Variations in AUC values with the window size ofincreasing local window radius 843 

(measured in pixel units) for Land Surface Temperature (LST) and its three enhancement indicators obtained 844 
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byindices derived from Focal Statistics, Zonal Statistics, and Focal-–Zonal Mixed Statistics, when a. The 845 

geothermal wells are represented as circles with an area of 0.035 km². Panels (a) through (d) correspond to 846 

the LST data acquired in the spring, summer, autumn, and winter of 2023, respectively. 847 

Appendix Figs. S1 and S2 present the modeling results for the years 2015 and 2019, 848 

respectively, under the condition that each geothermal well is represented by a circular area of 849 

0.035 km². 850 

Appendix Figs. S3 to S5 show the results for the years 2015, 2019, and 2023, respectively, 851 

where the representative area for each geothermal well represents circles with a radius of (a) 0.1km, 852 

(b) 0.2km, and (c) 0.3km, respectively.is defined as a single pixel (30 m × 30 m, i.e., 0.0009 km²). 853 

Overall, the two enhancement models incorporating neighborhood windows, i.e., —Focal 854 

Statistics and Focal-–Zonal Mixed Statistics, perform better than—consistently outperform 855 

both the Zonal Statistics model and the original, unenhanced LST without enhancement.. The 856 

relatively poor performance of Zonal Statistics is dueprimarily attributed to the strong spatial 857 

variability of LST and the simplicitylimitations of the simple classification scheme used. 858 

Additionallyemployed. Moreover, since local windowneighborhood-based methods are 859 

inherently sensitive to spatial scale, the performanceeffectiveness of both Focal Statistics and 860 

Focal-–Zonal Mixed Statistics varies with thechanges in window size. 861 

However, regardless of whetherthe specific modeling configuration—including different 862 

years (2015, 2019, or 2023), seasons (spring, summer, autumn, or winter), definitions of the 863 

geothermal well representative area is 0.1km, 0.2km, or 0.3km, the performance of (either a 864 

single pixel of 0.0009 km² or a circular area of 0.035 km²), and a wide range of local window 865 

sizes (radii from 0.3 km to 9 km in 0.3 km intervals)—Focal-–Zonal Mixed Statistics 866 

consistently surpasses that of delivers superior performance compared to Focal Statistics. This 867 

consistent advantage across diverse scenarios and parameter settings clearly demonstrates the 868 

robustness and broader applicability of the proposed method. 869 

5.3 Advancements of the Toolbox 870 
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The FZStats v1.0 toolbox developed in this study not only integrates traditional Focal Statistics 871 

and Zonal Statistics, which deal with —addressing SPD and SSH, respectively, —but also 872 

innovatively implements Focal-–Zonal Mixed Statistics based onby combining spatial 873 

proximity and environmental similarity, addressing enabling simultaneous handling of both 874 

SPD and SSH. Therefore, thisThis toolbox is expected to providethus offers a novel and 875 

versatile solution tofor spatial statisticsstatistical analysis. 876 

A To enhance its applicability across diverse scenarios and computing environments, the 877 

toolbox provides a variety of parameter-setting interfaces are provided to enhance the statistical 878 

applicability of the developed toolbox, ensuring it meets the requirements of different 879 

application scenarios and computing conditions.. In terms of neighborhood window settings, in 880 

addition toconfiguration, users can select from rectangular and, circular windows, an, or 881 

elliptical window is also available,windows, with the elliptical option allowing users to express 882 

the expression of spatial anisotropy in the neighborhood through ellipticaladjustable parameters. 883 

Regarding statistical parametersmeasures, the new toolbox supports traditional metrics likesuch 884 

as mean, standard deviation, minimum, and maximum values, as well as calculations for 885 

flexible calculation of arbitrary percentiles. To make the best use of  to suit specific analytical 886 

needs. To optimize memory usage and CPU capabilities, the toolboxcomputational efficiency, 887 

FZStats v1.0 supports both raster data chunk processing and multi-process operation modes, 888 

accommodating. This design accommodates different computer memoryhardware capacities 889 

and enabling enables efficient parallel processing on multi-core CPUs. Additionally, users can 890 

setspecify a minimum cell number of samplescells for valid statistics through the “"Threshold”" 891 

parameter to avoid, effectively preventing low statistical -precision and unreliable results due 892 

tocaused by insufficient sample size. sizes. 893 

LastlyFinally, to enhanceimprove automation and efficiency in multitasking efficiency, the 894 

toolbox providesoffers a batch processing solution. Users can writedefine processing 895 
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parameters into an INI-formatwithin a multi-section INI-format configuration file, which 896 

avoidsthus avoiding repetitive and tedious manual operations. This can not only 897 

enablefunctionality supports one-time parameter setup and, automatic execution of multiple 898 

tasks, but support parameter reuse, and error tracingtracking, significantly enhancing 899 

operational efficiency and reliability. 900 

6 Conclusions 901 

This study developed the FZStats v1.0 toolbox using Python3based on Python 3 and QT5. The 902 

new toolbox integrates, integrating traditional Focal Statistics, Zonal Statistics, and the newly 903 

developedproposed Focal-–Zonal Mixed Statistics. We provided detailed algorithmDetailed 904 

algorithmic implementations and modeling processes for these methods were presented, and 905 

evaluated their performance inwas evaluated through geothermal anomaly 906 

identification.detection experiments. The main conclusions are summarized as follows: 907 

First, the development of the Focal-–Zonal Mixed Statistics is essentialcrucial, as it 908 

addresses gaps thatthe limitations of traditional Focal Statistics and Zonal Statistics cannot fill. , 909 

providing a unified solution for simultaneously handling SPD and SSH. 910 

Second, FZStats v1.0 offers extensive parameter-setting optionscapabilities, supporting 911 

different flexible configurations of window shapes and types of statistics; simultaneously, by 912 

adjustingstatistical measures. Additionally, through adjustable processing parameters, it options 913 

such as raster chunking and multi-processing, the toolbox can ensuremaintain efficient 914 

performance on computers with varying configurations. across a range of computing 915 

environments. 916 

Third, case study analyses showdemonstrate that Focal-–Zonal Mixed Statistics 917 

significantly enhance the detection of geothermal anomalies compared to conventional Zonal 918 

Statistics and Focal Statistics methods, with this advantage beingproving robust across different 919 

conditions. 920 
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In summary, FZStats v1.0 not only innovatescontributes theoretical innovation to spatial 921 

statistical methods theoretically but also demonstrates powerfulexhibits strong functionality 922 

and flexibility in practical applications, making it a promising tool in the field of . It holds 923 

considerable promise for geothermal anomaly identificationdetection and other areasbroader 924 

fields requiring integrated spatial statistical solutions. 925 
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