
Dear Dr Taesam Lee, 

Thank you so much to give us a further revision chance for our manuscript (ID: 

EGUSPHERE-2024-2461). Many thanks also go to the anonymous reviewer for their 

valuable suggestions and comments, which are useful and helpful for revising and 

improving our paper. We have studied all comments and suggestions carefully and 

made corresponding corrections and responses, which we hope could meet the 

requirement of both the reviewers and the journal. Following are the responses to the 

suggestions and comments from the anonymous reviewer (all suggestions and 

comments are colored in red). 

 

Reviewing: 1 

By using Python, this study developed a new spatial statistics toolbox named FZStats 

v1.0. It provides details on the development process, raw code, and a user-friendly 

software product. This toolbox not only includes two categories of traditional general 

spatial statistical tools but also integrates the new developed Focal-Zonal Mixed 

Statistics method, which I believe is the core contribution of this research. The 

manuscript is well-structured, showcasing the necessity and advantages of the proposed 

Focal-Zonal Mixed Statistics method through a comprehensive review of existing 

research, methodology, model development, and applications, with thorough 

discussions, making it a clearly contributive and well-written article. To further 

enhance the quality of this manuscript and better serve its potential readers, I offer the 

following suggestions for the authors’ consideration: 

Thank you very much for your careful reading and encouraging comments. We are 

especially grateful for your constructive suggestions, which have significantly 

contributed to improving the quality of our work. Below, we provide point-by-point 

responses to each of your suggestions and comments. We sincerely hope that the 

revised manuscript meets your expectations and is now more informative and useful to 

potential readers. 



1.As instructed by the authors, the new model requires two input layers: value raster 

and zonal raster. In lines 214-219, the acquisition of the zonal raster is evidently based 

on reclassification, or in other words, the discretization of spatial variable. However, 

how should the discretization scheme, including the number of classes and 

classification methods, be determined? Could the authors provide some 

recommendations on this? Since different reclassification parameters may significantly 

influence the results. 

Thank you for your insightful comment regarding the determination of the 

discretization scheme for the zonal raster. This is indeed a key component of the 

proposed methodology and deserves further clarification. 

First, as a new method, the Focal–Zonal Mixed Statistics inherits the input 

structure and design logic of the two classical methods. From this perspective, its zonal 

raster is essentially consistent with the zonal raster used in traditional Zonal Statistics. 

Second, from an application perspective, it is sometimes necessary to apply 

constraints to the construction of the zonal raster so that the resulting statistics are more 

accurate and meaningful. 

In our specific case study of geothermal anomaly detection, we aim to identify a 

group of highly comparable background samples—i.e., locations that would exhibit 

similar surface temperature values in the absence of geothermal influence. To improve 

this comparability, we considered two aspects: (1) spatial proximity, which we will 

address in response to your next comment; and (2) environmental similarity, which is 

achieved through the construction of Unique-Value Environmental Characteristic 

Zonal Raster (UV-ECZR). 

To construct the UV-ECZR, each environmental variable is first discretized, and 

then these layers are overlaid to form a composite zonal raster. This process involves 

determining both the number of classes for each variable and the appropriate 

classification method. Below are our recommendations: 

(1) Number of Classes 

A good classification scheme should aim to minimize within-zone variance and 



maximize between-zone variance. In practice, we found that using 5–8 classes often 

achieves a good balance between capturing environmental heterogeneity and 

maintaining sufficient sample sizes within each zone. This choice is empirical but has 

proven robust in our tests. 

(2) Classification Methods 

For continuous variables, Natural breaks (Jenks) are suitable when the data show 

clear clustering. Equal interval is appropriate for uniformly distributed variables. 

Quantile classification ensures even representation across the value range. For 

categorical variables, we generally retain their original classes unless aggregation is 

required for specific analytical purposes. 

Finally, a trade-off must be made between similarity and statistical robustness: 

increasing the number of classes or including too many environmental variables can 

yield purer environmental zones but may reduce sample sizes and model stability. 

Therefore, both theoretical considerations and empirical validation are necessary in 

setting up the zonal raster. 

We have added a new description under “(2) Construction of Unique-Value 

Environmental Characteristic Zonal Raster (UV-ECZR)” in Section 3.1 “Modeling 

Process for Focal–Zonal Mixed Statistics,” which provides specific recommendations 

on both classification methods and the number of classes. The relevant content is copied 

below for your reference. 

In this step, environmental factor rasters—whether continuous or categorical—

are reclassified into discrete categories using a well-defined discretization scheme. For 

continuous variables, the classification method should be selected according to the data 

distribution and research objectives: natural breaks (Jenks) are recommended for 

datasets exhibiting clear clustering, equal interval classification suits uniformly 

distributed data, and quantile classification ensures balanced representation across 

value ranges. For categorical variables, original classes are typically retained unless 

aggregating categories improves analytical validity. The optimal number of classes, 

usually between 5 and 8, should balance environmental heterogeneity with adequate 



sample size within each zone. Classification performance can be evaluated by 

minimizing within-zone variance, maximizing between-zone variance, and assessing 

clustering validity through the silhouette coefficient. (Newlines 263-273) 

 

2. Line 220, the configuration of model input parameters is crucial for practical 

applications, but the introduction to how to set and choose window size, window shape, 

and statistic selection is somewhat insufficient, and readers may need guidance on this 

aspect. 

Thank you for this important suggestion. We fully agree with your point. 

Regarding the first part of your comment, as mentioned in our response to your 

previous question, spatial proximity is another key consideration (in addition to 

environmental similarity) for improving the comparability of samples in geothermal 

anomaly detection. The configuration of window parameters directly reflects this 

spatial proximity. Therefore, when setting the window size, it is essential to ensure that 

samples within the window are more consistent in land surface temperature (LST) 

compared to those outside. At the same time, a balance between similarity and statistical 

robustness must be considered: smaller windows tend to ensure stronger internal 

consistency but may result in fewer samples, reducing statistical reliability. 

As for window shape, when the spatial distribution of the variable exhibits evident 

anisotropy, an elliptical window may be more appropriate. Otherwise, circular windows 

are generally recommended due to their simplicity and symmetry. 

Regarding the second part of your question—the selection of the statistical 

measure—it should be tailored to specific application scenarios. In our geothermal case, 

we use the following standardized index as the statistical measure: (T_cell – T_mean) 

/ SD_window, where the numerator reflects how much the target cell’s temperature 

exceeds the neighborhood mean, and the denominator (standard deviation) quantifies 

variability within the window. This standardization improves the comparability of 

anomaly scores across different regions. 

We have added more descriptions under “(3) Determination of neighborhood 



window and statistical parameters” in “Section 3.1 Modeling Process for Focal–Zonal 

Mixed Statistics”, where we now offer concrete recommendations on window size, 

shape, and the selection of statistical functions for different application contexts. Please 

refer to new lines 282-290 for details, as copied below. 

The window size should be selected based on several considerations, including the 

spatial scale of the studied phenomenon (e.g., local versus regional patterns), the 

resolution of the input rasters (with coarser resolution favoring larger windows), and 

computational efficiency (as larger windows significantly increase processing time). 

The window shape should be chosen according to the nature of spatial anisotropy 

(elliptical for directional patterns), processing efficiency (rectangular shapes are 

computationally faster), mitigation of edge effects (circular windows help reduce 

boundary artifacts), and data characteristics (rectangular for grid-aligned features and 

circular for isotropic phenomena). (Newlines 282-290) 

 

3. Line 248, the coding method proposed by the authors is concise and clear, but there 

is an issue: if used over a larger area with many factor classifications, it implies more 

placeholders. Will using this algorithm for coding risk exceeding computer reading 

limits? 

We sincerely appreciate the reviewer's insightful concern regarding computational 

scalability. Here are our detailed explanations: 

(1) Data Type Efficiency 

UV-ECC values are stored as 64-bit integers (not strings), supporting up to 19 

digits (2⁶⁴ ≈ 1.8×10¹⁹). For example, 8 factors with ≤10 classes each require only 8 

digits—well within this limit while ensuring numerical processing efficiency. 

(2) Technical Safeguards 

Memory-mapped I/O: Large rasters are processed by chunks to avoid full loading. 

Parallelization: Multi-core CPU support distributes computational loads. 

We confirm that the method's design and implementation ensure robustness across 

scales. Thank you for this valuable comment! 



4. Line 392, Figure 4 lacks units. 

Thank you for your comments. We have updated Figure 4 (now it is Figure 3) by adding 

the units. Please refer to the new Figure 3, which is copied below. 

 

Figure 3. Spatial distribution of land surface temperature (LST) in the study area on March 20, 

2023. 

 

5. Line 394, the authors only mention the spatial coupling of LST with slope aspect but 

do not empirically test whether slope and aspect are major environmental factors 

influencing LST. Additionally, within a 7.2 km radius, can the effect of elevation on LST 

be ignored, especially in relatively complex mountainous terrain? 

Thank you for your insightful comment. This is indeed an important point that we have 

now addressed by adding an empirical analysis of the relationship between LST and 



several key environmental variables, including slope, aspect, elevation, and vegetation 

index (NDVI). The results demonstrate that slope aspect emerges as the dominant driver 

of land surface temperature (LST) variations at the local window scale, whereas 

elevation and NDVI exhibit less pronounced effects. This observation aligns with 

previous studies showing topographic orientation as a critical modulator of 

microclimate patterns (He et al., 2019). The underlying mechanism likely stems from 

two inherent properties of local landscapes: 

(1) Limited terrain heterogeneity: Elevation differences within localized windows 

typically show constrained variability, diminishing the relative impact of absolute 

elevation on thermal regimes (Zhang et al., 2019). 

(2) Vegetation uniformity: Vegetation composition and density tend to stabilize 

within small topographic units due to similar micro-environmental conditions (Yan et 

al., 2017). 

To enhance topographic characterization, we introduced slope degree as a 

complementary parameter. The synergistic integration of slope aspect and slope degree 

achieves three critical improvements: 

(1) Comprehensive terrain representation: Aspect-direction defines solar exposure 

patterns, while slope steepness governs surface runoff and energy retention. 

(2) Microhabitat homogenization: Land units sharing equivalent aspect-slope 

combinations inherently exhibit reduced vegetation variability through water-energy 

balance constraints. 

(3) Thermal regime differentiation: The aspect-degree matrix creates distinct solar 

radiation geometries that amplify LST contrasts between adjacent terrain units. 

Accordingly, we have revised the manuscript to include these findings and have 

further clarified our rationale for choosing slope aspect and slope degree as the basis 

for constructing the Unique-Value Environmental Characteristic Zonal Raster (UV-

ECZR). This decision ensures that the zonal raster reflects the most relevant terrain-

driven drivers of LST variation at the target spatial scale. 

Taking the LST retrieved from the Landsat 8 image acquired on March 20, 2023, 



as an example, a comparison between Fig. 3 and the terrain information presented in 

Fig. 4 reveals a strong spatial correlation between LST patterns and topographic 

factors, particularly slope aspect. Given that the local overpass time of Landsat 8 over 

the study area was approximately 11:00 AM, with a corresponding solar azimuth angle 

of 153°, LST values were significantly higher on southeast-facing slopes compared to 

northwest-facing slopes (Fig. 4a). This highlights the pronounced influence of solar 

radiation on the spatial variability of LST within the study area. (Newlines 474-481) 
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6. Line 423, while the mapping in the manuscript is very standardized and exquisite, 

some figure fonts are too small, such as in Figure 8. 

Thank you for your helpful suggestion. We have carefully revised the font sizes across 

all figures to ensure consistency and improved readability. Specifically, the font size in 

the original Figure 8 has been enlarged, and this updated figure now appears as new 

Figure 7 in the revised manuscript. A comparison between the old and new versions 

has been provided below for your reference. 



 

Old Figure 8. The changes in AUC values with the window size of Land Surface Temperature (LST) 

and its three enhancement indicators obtained by Focal Statistics, Zonal Statistics, and Focal-Zonal 

Mixed Statistics, when a geothermal well represents circles with a radius of (a) 0.1km, (b) 0.2km, 

and (c) 0.3km, respectively. 

 
New Figure 7. Variations in AUC values with increasing local window radius (measured in pixel 

units) for Land Surface Temperature (LST) and its three enhancement indices derived from Focal 

Statistics, Zonal Statistics, and Focal–Zonal Mixed Statistics. The geothermal wells are represented 

as circles with an area of 0.035 km². Panels (a) through (d) correspond to the LST data acquired in 

the spring, summer, autumn, and winter of 2023, respectively.  

 

 



7. Line 458, I am unclear about the reason for setting different representative areas for 

the mines. 

Thank you for your comment. The initial reason for assigning different representative 

areas to geothermal wells was to address potential spatial inaccuracies in their recorded 

locations. By using a surrounding area instead of a single pixel, we aimed to 

accommodate minor geolocation errors and spatial uncertainty in well positioning. 

However, as shown in our previous analyses, the prediction performance does not 

significantly vary with changes in the representative area. This is likely because modern 

mapping technologies ensure reasonably accurate point locations, and clustered 

geothermal features are often recorded as multiple, partially overlapping points (e.g., 

as seen with the northernmost geothermal site in Figure. 4). 

Based on these findings, in the revised version, we adopt the pixel where the 

geothermal well is located as the default representative area. Nevertheless, we retain 

both settings—a single 30m × 30m pixel (0.0009 km²) and a 0.035 km² circular 

area—as part of our robustness evaluation. This evaluation also includes variations 

across different years (2015, 2019, and 2023), seasons (spring, summer, autumn, 

winter), and a wide range of local window sizes (radii from 0.3 km to 9 km in 0.3 km 

intervals), providing a comprehensive robustness assessment. 

 

8. At last, after testing the software toolbox provided by the authors, I noticed that there 

seems to be no popup 

Thank you for your suggestion. We have added a popup notification feature to the 

software toolbox. Upon completion of a task, a message box will now automatically 

appear indicating that the process has finished, along with the total runtime. This 

enhancement aims to improve user experience and provide more intuitive feedback on 

operation status. Please see the following figure for details. 



  



Reviewing: 2 

1. This manuscript presents a Python-based tool with a graphical user interface that 

integrates Focal and Zonal methodologies, which are commonly used in GIS. These 

two approaches aggregate finer-resolution raster pixels based on different principles—

Zonal methods rely on predefined rules (e.g., different topographies), while Focal 

methods use distance-based criteria (e.g., proximity to the center of a segment). 

Essentially, this tool smooths the original raster using statistical measures.  

Thank you for your comment. You are absolutely right that our method integrates both 

Focal and Zonal methodologies, and that the proposed model inherently includes a 

smoothing effect on the original raster through the use of spatial sliding windows. 

However, we would like to emphasize that smoothing is not the main contribution of 

this study. 

As clarified in the revised abstract (Newlines 15–18), the primary innovation of 

our Focal–Zonal Mixed Statistics method lies in its ability to simultaneously address 

spatial stratified heterogeneity (typically handled by Zonal methods), positional 

dependence (typically handled by Focal methods), and —most importantly— the 

interaction between the two. This joint modeling capability fills a methodological gap 

in current spatial statistics tools, which generally treat these phenomena in isolation and 

fail to handle their co-existence in real-world spatial data.  

First, we formally develop the Focal–Zonal Mixed Statistics model to address 

stratified heterogeneity, spatial dependence, and their interactions within a unified 

framework—filling a key methodological gap left by traditional approaches that cannot 

accommodate their co-occurrence in real-world spatial data. (Newlines 15–18) 

     

2. However, the manuscript lacks a clear motivation for why these specific statistics are 

important. Simply listing potential applications is insufficient to justify their 

significance. Additionally, FZStats appears to operate only on the intersection of focal 

and zonal zones (i.e., \( F == \text{True} \land Z == \text{True} \)), without addressing 

other conditions such as \( F == \text{True} \land Z == \text{False} \) or \( F == 



\text{False} \land Z == \text{True} \). This oversight raises concerns about how corner 

cases are handled. Section 2.3 does not clarify these aspects.  

Thank you for this insightful and thought-provoking comment. It has greatly inspired 

us to better articulate the theoretical motivations behind our proposed method, rather 

than focusing solely on its practical applications. 

As we briefly mentioned in our response to Comment 1, the core motivation for 

developing the Focal-Zonal Mixed Statistics method lies in addressing the limitations 

of existing Focal and Zonal approaches. Specifically:  

(1) Focal methods are designed to capture positional dependence (Case 1: F=True, 

Z=False), 

(2) Zonal methods handle spatial stratified heterogeneity (Case 2: F=False, 

Z=True), and 

(3) The proposed method is capable of addressing both phenomena simultaneously, 

along with their interaction (Case 3: F=True, Z=True). 

From a theoretical perspective, the Focal-Zonal Mixed Statistics model 

generalizes the two traditional methods: 

(1) When the sliding window becomes infinitely large (thus rendering distance 

weights negligible), the method converges to Zonal Statistics, addressing stratified 

heterogeneity. 

(2) When the zonal layer has only one unique value (i.e., no zonal partitioning), 

the method reduces to Focal Statistics, capturing positional dependence. 

(3) Only the proposed method can accommodate the more general and realistic 

situation where both stratified heterogeneity and positional dependence coexist. 

This capability is crucial because, in real-world spatial processes, Case 3 is often 

the norm rather than the exception. Neither Focal nor Zonal methods can handle this 

scenario alone, which underscores the theoretical necessity of our model. We have 

revised the abstract accordingly (Newlines 15–18), and added further elaboration in 

the final paragraph of the introduction section (Newlines 90–104) and the first two 

paragraphs in Section 5.1 (Newlines 555–567). 

Although these methods successfully integrate SSH and SPD in specific tasks such 

as interpolation and regression, there is still no general-purpose GIS toolbox 



comparable to Focal and Zonal Statistics within standard GIS workflows. To fill this 

gap, this study presents FZStats v1.0, which unifies traditional Zonal Statistics and 

Focal Statistics with the novel Focal–Zonal Mixed Statistics model. Leveraging 

multiprocessing and batch-processing capabilities, FZStats v1.0 improves 

computational efficiency and optimizes usability. Moreover, from a logical perspective, 

Focal–Zonal Mixed Statistics can be viewed as a generalization of the two traditional 

approaches. Specifically, when the moving window covers—or substantially exceeds—

the entire study area (i.e., window size → ∞), the method converges to Zonal Statistics, 

effectively addressing SSH. Conversely, when only a single zone is defined, it simplifies 

to Focal Statistics, capturing SPD. In the more common and complex scenarios where 

both SSH and SPD coexist, only the mixed approach is capable of simultaneously 

accounting for both characteristics. We therefore anticipate that FZStats v1.0 will serve 

as a versatile framework for spatial analyses requiring concurrent consideration of 

SSH and SPD across a wide range of applications. (Newlines 90–104) 

Firstly, from a theoretical standpoint, traditional methods each address only one 

aspect of spatial variation: Focal Statistics primarily captures SPD, while Zonal 

Statistics is designed to account for SSH. However, real-world spatial problems often 

exhibit both characteristics simultaneously. This underscores the theoretical necessity 

and practical relevance of developing the new method—Focal–Zonal Mixed 

Statistics—which bridges the methodological gap between Focal Statistics and Zonal 

Statistics. 

Secondly, from a conceptual perspective, Focal–Zonal Mixed Statistics can be 

viewed as a generalization of the two conventional approaches. When the moving 

window encompasses—or far exceeds—the entire study area (i.e., the window size 

approaches infinity), the method converges to Zonal Statistics, effectively capturing 

stratified heterogeneity. Conversely, when the analysis is confined to a single 

environmental zone, the method reduces to Focal Statistics, thereby focusing on spatial 

positional dependence. This flexibility enables the new method to seamlessly adapt to 

different spatial structures. 

(Newlines 555–567) 



Regarding your concern about whether the new model can handle F-only or Z-

only scenarios, we view these as boundary or degenerate forms of our proposed model. 

Thus, they are not excluded, but rather naturally embedded within the broader 

framework. From a practical standpoint, if only one type of spatial dependence is 

expected (e.g., positional dependence or stratified heterogeneity alone), users may still 

opt for the simpler Zonal or Focal approaches—both of which are included in our 

FZStats v1.0 toolbox—for potentially greater computational efficiency in such specific 

contexts. However, this does not diminish the value of our method. The motivation 

behind our model is to address more generalized spatial distribution patterns, 

particularly when positional dependence and stratified heterogeneity coexist. In such 

complex scenarios where traditional methods often fall short, our approach provides a 

distinct advantage and broader applicability. 

We have added a detailed discussion of these theoretical implications and practical 

use cases in the revised Section 5.1 (Newlines 555–567, as mentioned above). These 

additions more clearly demonstrate that our method is not just a software integration of 

two techniques, but rather a meaningful theoretical extension of spatial statistical 

modeling (Newlines 573–581 in new Section 5.1). 

Finally, regarding broader applicability, although geothermal anomaly 

enhancement serves as the illustrative case in this study, the utility of the proposed 

method extends well beyond this specific context. It is particularly well suited for 

applications requiring both improved sample purity and simultaneous control over SSH 

and SPD. Potential domains include mineral resource potential evaluation, vegetation 

restoration potential assessment, cropland productivity analysis, and terrestrial 

vegetation carbon sink estimation. Furthermore, the method can be employed to assess 

the spatial variability of target variables under specific environmental constraints, and 

to evaluate the effectiveness of environmental factors in delineating spatial patterns of 

interest. (Newlines 573–581) 

In summary, this work addresses a fundamental gap in current spatial statistics 

theory by enabling simultaneous treatment of stratified heterogeneity and positional 



dependence. The development of this method is thus both theoretically justified and 

practically necessary. 

 

3. The manuscript’s writing style is unconventional and contains informal expressions. 

For instance, "Some scholars" (Line 77) lacks citations, and "Professor Zhu and his 

group" (Line 79) is too informal for an academic paper. Similarly, phrases like "We 

believe" (Line 102) introduce unnecessary subjectivity. Figure 1 also appears 

redundant. Moreover, the mathematical expressions resemble descriptions of 

implemented Python functions rather than standard equations. It would be more 

appropriate to include code snippets instead. Equations 15 and 16 are not expressed in 

a conventional mathematical form. I recommend revising this section by representing 

each pixel as an indexed high-dimensional array \([CE_1, CE_2, ..., CE_p]\) and 

grouping neighboring raster pixels based on shared label patterns.  

Thank you very much for your detailed comments and suggestions. We have thoroughly 

revised the manuscript’s writing style, including both the specific instances you pointed 

out and other similar issues throughout the text. Below we respond to each item you 

raised： 

(1) Regarding the three examples you noted 

The expression “Some scholars have noted this issue and developed certain 

improved models in their respective fields to overcome the challenges posed by solely 

considering SSH or SPD” (Line 77) has been revised to “To address these challenges, 

previous studies have integrated SSH and SPD, developing specialized hybrid models 

for specific spatial-statistical objectives” (Newlines 78-79). 

The sentence “Professor Zhu and his group expanded upon traditional spatial 

interpolation methods, which typically focus solely on spatial dependence, by 

introducing constraints derived from environmental similarity (Zhu et al., 2019)” (Line 

79) has been modified to “For example, Zhu et al. (2019) extended traditional spatial 

interpolation methods—normally focused solely on spatial dependence—by 

introducing environmental similarity constraints, and formalized the “Third Law of 



Geography”, which states that geographically similar contexts yield similar target-

variable values (Zhu et al., 2018; Zhu et al., 2020)” (Newlines 79-83) 

The subjective expression “We believe that the FZStats v1.0 toolbox, especially 

the newly proposed Focal-Zonal Mixed Statistics, has the potential to offer methods 

and tools to better understand and address SSH and SPD issues” (Line 102) has been 

rephrased to a more neutral academic tone: “Consequently, FZStats v1.0 is positioned 

to function as a comprehensive analytical framework for spatial studies necessitating 

simultaneous evaluation of SSH and SPD parameters across diverse application 

domains.” (Newlines 102-104). 

At last, we have conducted a comprehensive review of the entire manuscript to 

identify and rectify similar instances of non-academic expressions throughout the paper, 

thereby ensuring consistency in scholarly writing standards. 

(2) Figure 1 appears redundant 

The original Figure 1 has been removed as it was identified to be redundant. 

(3) Mathematical and algorithmic expressions 

The original mathematical expressions have been modified to provide clearer 

distinction between theoretical descriptions and algorithmic implementations. Where 

more appropriate, certain formulations have been replaced with code snippets. The 

detailed revisions are presented below: 

Equation (1) Replacement: The original definition of the neighborhood window in old Eq. (1) 

has been replaced by Listing 1. Listing 1 illustrates three types of neighborhood window classes: 

the rectangular window class (KDGeoRectNbhWindow), the circular window class 

(KDGeoCircleNbhWindow), and the elliptical window class (KDGeoEllipseNbhWindow). 

Additionally, the definition of the neighborhood window mask matrix has been introduced in the 

new Eq. (1). 



 
Listing 1. Code fragment for three types of neighborhood window classes: the rectangular 

window class (KDGeoRectNbhWindow), the circular window class (KDGeoCircleNbhWindow), 

and the elliptical window class (KDGeoEllipseNbhWindow). 

 

𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = {
1 if (𝑥, 𝑦) ∈ Ω𝑊

0 otherwise
                    New Equation  (1) 

 

Equation (2) Modification: The definition of the current focal cell's neighborhood in old Eq. (2) 

has been updated to explicitly define the mapping between the spatial coordinates of neighboring 

cells and the index positions in the neighborhood mask matrix. This revision ensures better clarity 

and is reflected in the new Eq. (2). 

(𝑥, 𝑦) = (𝑖 +  𝑢, 𝑗 + 𝑣)                               New Equation  (2) 

 

Equation (3) Revision: The old Eq. (3) defines the set of valid cells within the focal cell's 

neighborhood under the focal statistics framework, has been reformulated to clearly describe the 

spatial coordinates of neighboring cells and the constraints they must satisfy. 

𝑪𝐹_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) = {(𝑥, 𝑦) ∈ Ω𝐷 |𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = 1}          New Equation  (3) 

 

Equation (4) Deletion: The original constraint conditions for cells within a circular 

neighborhood window in old Eq. (4) have been removed. These constraints are now implicitly 

defined within the construction of the circular neighborhood window mask matrix, as shown in 



Appendix Listing 1. 

 

Appendix Listing 1. Construction of the circular neighborhood window mask matrix 

 

Equations (5) and (6) Replacement: The definitions of Focal Statistics and corresponding raster 

operations in old Eqs. (5) and (6) have been replaced by a code implementation provided in 

Listing 2. Listing 2 illustrates the procedure for Focal-Zonal statistical computation at a given 

focal cell, where a Boolean neighborhood mask is applied to filter valid values and the desired 

statistic is computed via a delegated statistical function. 

   

Listing 2. Python function calculate_focal_statistics_result for computing focal statistics. The 

function identifies valid values from a neighborhood centered at the focal cell, filters them using 

a predefined mask, and then calculates the specified statistics. 

 

Equations (7)-(10) Substitution with Code Implementation: The definitions of the focal cell’s 

zone code (old Eq. (7)), the value raster cells associated with a zone (old Eq. (8)), the statistical 

calculation within each zone (old Eq. (9)), and the raster-based zonal statistics operation (old Eq. 



(10)) have been collectively replaced by the code implementation in Listing 3. Listing 3 illustrates 

the implementation of the zonal statistics procedure, where the calculate_zonal_statistics_result 

function computes statistics for each unique zone by applying the specified statistical operations 

on all cells within that zone. 

 

Listing 3. Python implementation of the zonal statistics computation. The 

calculate_zonal_statistics_result function computes a specified statistic for each zone defined in 

the zone raster and assigns the result to all corresponding cells in the output raster. 

 

Equation (11) Update: The set of valid neighborhood cells under the focal-zonal framework has 

been redefined in new Eq. (4) to more precisely specify their spatial coordinates and the 

constraints they must satisfy. 

𝑪𝐹𝑍_𝑣𝑎𝑙𝑖𝑑(𝑖, 𝑗) = {(𝑥, 𝑦) ∈ Ω𝐷 |𝑵𝑴𝑐𝑥,𝑐𝑦(𝑥, 𝑦) = 1 Ʌ 𝑍(𝑥, 𝑦) = 𝑍(𝑖, 𝑗)  }        New Equation  (4) 

 

Equations (12) and (13) Replacement: The definitions of focal-zonal statistics and associated 

raster operations in old Eqs. (12) and (13) have been replaced by Listing 4, which demonstrates 

the implementation of the Focal-Zonal Mixed Statistics procedure. The 

calculate_focal_zonal_statistics_result integrates both spatial and zonal constraints, applies the 

focal-zonal mask, and computes statistics from the filtered valid values. 



 
Listing 4. Python implementation of the Focal-Zonal Mixed Statistics computation. The function 

filters neighborhood cells based on both spatial proximity and zone code consistency, then 

calculates a user-specified statistic on the resulting valid subset. 

 

Equation (14): No changes were made to the old Eq. (14), which corresponds to the new Eq. (5). 

 

Equation (15) Update: The definition of UV-ECC has been modified in response to the 

reviewer’s suggestion. The revised formulation represents each pixel as an indexed high-

dimensional array and explicitly defines the computation of UV-ECC, now shown in the updated 

Eqs. (6) and (7). 

𝑪𝑬(𝑖, 𝑗) = (𝐶𝐸1(𝑖, 𝑗), 𝐶𝐸2(𝑖, 𝑗), . . . , 𝐶𝐸𝑝(𝑖, 𝑗))              New Equation  (6) 

𝑈𝑉 − 𝐸𝐶𝐶 (𝑖, 𝑗) = ∑ 𝐶𝐸𝑞(𝑖, 𝑗) ∙ 10
∑ 𝐷k

𝒑
𝒌=𝒒+𝟏𝑝

𝑞=1             New Equation  (7) 

 

Equation (16) Replacement: The original raster operation definition of UV-ECZR in the old Eq. 

(16) has been replaced by a code implementation provided in Listing 5. Listing 5 uses ArcPy-

based raster algebra to generate UV-ECZR, where input layers represent reclassified 

environmental variables. A local overlay operation is performed to combine categorical codes and 

assign a unique zone identifier to each pixel. 



 

Listing 5. Python implementation of UV-ECZR generation using ArcPy-based raster map algebra. 

Each input raster layer represents a reclassified environmental variable (e.g., slope or aspect), 

and the local overlay operation combines their category codes to produce a unique zone identifier 

for each pixel. 

 

Equation (17)-(21): No changes were made to the old Eqs. (8) - (12). 

 

4. Another major concern is the lack of a systematic performance evaluation. The 

methodology is benchmarked against a single real-world dataset with cross-sectional 

environmental variables, disregarding the fact that such variables often form time 

series. To strengthen the evaluation, the authors should incorporate multiple 

benchmarking datasets. Aside from the AUC metrics, Figure 7 suggests that LST 

outperforms FZStats within the FPR range of approximately 0.1–0.3, raising questions 

about the legitimacy of the FZStats approach, because methods with FPR beyond this 

range may not be desired. The manuscript entirely neglects the trade-off between TPR 

and FPR, which is critical for assessing the method’s robustness.  

Thank you for your comment. We have further enhanced the robustness evaluation. In 

addition to the original considerations of local window size and representative area of 

geothermal wells, we have now incorporated multi-temporal image analysis. 

In the revised manuscript, Landsat 8 imagery (Orbit Number: 116031) from the 



spring, summer, and autumn seasons of 2015, 2019, and 2023 was used for land surface 

temperature (LST) retrieval and geothermal anomaly extraction in the Changbai 

Mountain region. This multi-temporal and multi-seasonal data selection not only 

enables a more comprehensive assessment of the method’s effectiveness and robustness, 

but also facilitates the identification of the optimal season for geothermal anomaly 

detection, thereby supporting more informed geothermal exploration. 

The following description has been added in "Section 4.2.1 Spatial distribution of 

LST": 

In this study, Landsat 8 imagery (Orbit Number: 116031) acquired during the 

spring, summer, and autumn seasons of 2015, 2019, and 2023, covering the Changbai 

Mountain region, was utilized for land surface temperature (LST) mapping and 

geothermal anomaly detection. The selection of multi-temporal images across different 

seasons and years was intended to robustly validate the effectiveness of the proposed 

method and to explore the temporal evolution patterns of geothermal anomalies, 

thereby providing improved support for geothermal exploration. （Newlines 464-469） 

 In addition, by adjusting the size of the local window and the representative area 

of geothermal wells, the new method demonstrated improved performance in ROC 

curve analysis, especially in terms of its accuracy in predicting extreme thermal 

anomalies (as you mentioned that is “within the FPR range of approximately 0.1–0.3”) 

compared to traditional methods. Please refer to the revised Figure 6. 



 

Figure 6. Receiver Operating Characteristic (ROC) curves of the Land Surface Temperature (LST) 

and its three enhancement indicators derived from Focal Statistics, Zonal Statistics, and Focal–

Zonal Mixed Statistics, respectively. A Parameter settings: the local window used for both Focal 

Statistics and Focal–Zonal Mixed Statistics is a circle with a radius of 4.2 km; the zoning 

categories used for Zonal Statistics are identical to those employed in Focal–Zonal Mixed 

Statistics; and a geothermal well represents an area of 0.035 km2 surrounding it. 

Furthermore, several additional observations can be drawn from Figure 6: 

...comparison of Fig. 6a–d indicates that our enhanced model performs best in 

autumn, as evidenced by the highest AUC value observed in this season.（Newlines 

544-545） 

 

5. Overall, I am not convinced that this paper meets the publication standards of GMD 

in its current form. Substantial revisions are necessary to improve the motivation, 

methodology, and evaluation: 



Thank you for your comment. Your observations regarding the motivation, 

methodology, and evaluation are highly constructive.  

We have conducted comprehensive revisions accordingly in three key parts of the 

manuscript: the new Abstract and “1 Introduction”, the revised “2 Models” and “3 

Module Design”, and the updated “4 Experimental Study” and “5 Discussion”. These 

revisions aim to better clarify the theoretical rationale, improve methodological rigor, 

and enhance the comprehensiveness of the empirical evaluation. 

First, regarding the motivation, we have clarified the theoretical foundation of this 

study. Specifically, we frame spatial positional dependence and stratified heterogeneity 

within a unified perspective. Although traditionally treated separately—corresponding 

to focal and zonal statistical methods respectively—these two forms of spatial variation 

often coexist in real-world applications. We argue that the proposed method generalizes 

both classical approaches, which can be seen as special cases of our model. This 

highlights the necessity and theoretical value of developing a unified method that 

accommodates a broader range of spatial analysis needs. 

Second, with respect to the methodology, we have thoroughly revised the text, 

mathematical formulations, and figures to improve clarity, scientific rigor, and 

readability. The expressions now better distinguish theoretical constructs from 

algorithmic implementations, making the paper more accessible to both academic and 

practical audiences. 

Finally, in terms of evaluation, we expanded our experiments to include multi-

temporal Landsat imagery from different years and seasons. This allowed for a more 

robust land surface temperature (LST) inversion and geothermal anomaly detection. 

These selections of years, seasons, neighborhood sizes, and point representativeness 

were all deliberately designed to evaluate the stability and generalizability of the 

proposed method relative to the two traditional approaches. This ensures that the 

conclusions drawn are well-grounded and applicable across diverse conditions. 


