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ABSTRACT. In Antarctica, the presence of sea ice not only plays a critical role in the climate system 12 

but also contributes to enhancing the stability of the floating ice shelves. Hence, investigating past ice-13 

proximal sea-ice conditions, especially across glacial-interglacial cycles, can provide crucial information 14 

pertaining to sea-ice variability and deepen our understanding of ocean-ice-atmosphere dynamics and 15 

feedback. In this study, we apply a multiproxy approach, in combination with numerical climate 16 

modeling, to explore glacial-interglacial environmental variability. We analyze the novel sea ice 17 

biomarker IPSO25 (a di-unsaturated highly branched isoprenoid (HBI)), open-water biomarkers (tri-18 

unsaturated HBIs; z-/e-trienes), and the diatom assemblage and primary productivity indicators in a 19 

marine sediment core retrieved from Powell Basin, NW Weddell Sea. These biomarkers have been 20 

established as reliable proxies for reconstructing near-coastal sea-ice conditions in the Southern 21 

Ocean, where the typical use of sea ice-related diatoms can be impacted by silica dissolution. We 22 

present the first continuous sea-ice records, in close proximity to the Antarctic continental margin, since 23 

the penultimate deglaciation. Our data shed new light on the (seasonal) variability of sea ice in the 24 

basin, and reveal a highly dynamic glacial-interglacial sea-ice setting characterized by significant shifts 25 

from perennial ice cover to seasonal sea-ice cover and open marine environment over the last 145 kyrs. 26 

Our results also unveil a stronger deglacial amplitude and warming during the Last Interglacial (MIS 5e) 27 

compared to the current one (Holocene). A short-term sea ice readvancement also occurred towards 28 

the end of each deglaciation. Finally, despite similar findings between the proxy and model data, notable 29 

differences persist between both interglacials – emphasizing the necessity for different Antarctic ice-30 

sheet configurations to be employed and more robust paleoclimate data to enhance climate model 31 

performance close to the Antarctic continental margin.         32 
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1 Introduction 33 

Sea ice plays a vital role within Earth’s climate system, exerting significant influence on air-sea 34 

interactions, ocean circulation and ecosystem dynamics. Its presence alters the surface albedo of the 35 

ocean through the reflectance of incoming solar radiation, thereby minimizing ocean warming (Ebert et 36 

al., 1995). Likewise, sea ice affects the atmosphere-ocean interaction by inhibiting the exchange of 37 

heat, gas and water vapor between both media (Dieckmann and Hellmer, 2010). During sea-ice 38 

formation, brine rejection occurs and leads to the production of high-saline shelf water. This dense high-39 

saline shelf water then sinks towards the deeper ocean. Consequently, this process results in 40 

redistribution of salinity within the water column and has a profound impact on the stratification and 41 

ventilation of the ocean (Vaughan et al., 2013). For example, in a few locations in the Southern Ocean 42 

(SO), such as the Weddell Sea, the high-saline shelf water – depending on its route and mixing process 43 

– becomes the precursor of Antarctic Bottom Water (AABW), which is a major driver of the global 44 

thermohaline circulation and an important water mass that ventilates the deep ocean basins (Naveira 45 

Garabato et al., 2002; Rintoul, 2018; Seabrooke et al., 1971). Furthermore, when sea ice melts, the 46 

freshened surface water mixes with the upwelled deep water, contributing to the mode and intermediate 47 

waters in the Atlantic, Indian and Pacific sectors of the SO (Abernathey et al., 2016; Pellichero et al., 48 

2018). Sea ice also serves as a crucial buttressing force at the ice front, effectively preventing or 49 

delaying the occurrence of potential calving events (Robel, 2017). This phenomenon was evident at 50 

locations such as the Mertz Glacier Tongue (Massom et al., 2015) and the Totten Ice Shelf (Greene et 51 

al., 2018) in East Antarctica. Furthermore, the presence of a sea-ice buffer in front of the ice terminus 52 

acts to diminish ocean swells as they propagate towards land. For instance, Massom et al. (2018) 53 

observed a substantial increase (orders of magnitude) in wave energy experienced at the fronts of the 54 

Larsen ice shelves and the Wilkins Ice Shelf when the sea-ice buffer was removed. In this regard, any 55 

changes to the sea-ice cover can potentially alter ice-ocean-atmosphere dynamics and ocean 56 

circulation patterns, making analyses of sea-ice variability over glacial-interglacial cycles, covering 57 

periods of less and more pronounced sea-ice cover, crucial.  58 

Presently, numerous methods are used to reconstruct past sea-ice conditions, including biogenic 59 

proxies (e.g., biomarkers, diatoms, dinoflagellate cysts, foraminifera and ostracods) and 60 

sedimentological proxies (e.g., ice-rafted debris) in marine sediments, as well as chemical compounds 61 

archived in ice cores (e.g., methanesulfonic acid and sea-salt (ssNa+); de Vernal et al., 2013 and 62 

references therein). Determination of methanesulfonic acid or ssNa+ concentrations in Antarctic ice 63 

cores permits well-dated and temporally high-resolution regional sea-ice reconstructions but is often 64 

affected by other sea ice independent factors such as atmospheric transport (Abram et al., 2013). In 65 

particular, direct proxies, originating from sea-ice dwelling microorganisms, which are preserved in 66 

marine sediments are often preferred as they increase the reliability of sea-ice estimation (Leventer, 67 

1998). Despite this, our understanding of past sea ice changes in the SO remains limited. The Cycles 68 

of Sea-Ice Dynamics in the Earth System working group (C-SIDE; Chadwick et al., 2019; Rhodes et al., 69 

2019) consolidated a list of published Antarctic marine sea-ice records, as outlined in the review paper 70 

by Crosta et al. (2022). The compilation documents 20 studies on sea-ice variability during the Holocene 71 

(0-12 ka before present (BP)), 150 records detailing changes at the Last Glacial Maximum (LGM; ca. 72 



 3 

21 ka BP or Marine Isotope Stage (MIS) 2), and a mere 14 sea-ice records dating back to around 130 73 

ka BP. Notably, just two records extend beyond MIS 6 (ca. 191 ka BP; see also Fig. 3 in Crosta et al., 74 

2022). Their work underscores the pronounced dearth of (paleo) sea-ice reconstructions, particularly in 75 

regions south of 60°S, notably in the Atlantic sector, and during the Last Interglacial (LIG) and beyond. 76 

This scarcity of records, in particular proximal to the continental margin, is attributable to difficulties in 77 

recovering marine sediment cores in the polar regions that at present are still subject to heavy year-78 

round ice cover, and a lack of continuous sedimentary records due to erosion and disturbance at the 79 

sea floor during past glaciations. Moreover, limited preservation potential of silica frustules in SO 80 

regions outside of the opal belt further hampers sea-ice reconstructions using diatom assemblages 81 

(Ryves et al., 2009; Vernet et al., 2019). As such, important feedback mechanisms related to the sea 82 

ice-ice shelf system during warmer-than-present periods and throughout climate transitions, remain 83 

poorly understood. Ultimately, this lack of knowledge on how Antarctic ice sheets/shelves respond(ed) 84 

to oceanic forcing may disadvantage climate models’ ability to faithfully reproduce dynamics in the 85 

ocean-sea ice-ice system, and limit our confidence in future projections of the Antarctic Ice Sheet’s 86 

contribution towards global sea level rise (Deconto and Pollard, 2016; Naughten et al., 2018). Despite 87 

similar LIG winter sea-ice (WSI) retreats in marine records, inconsistency with regard to the position of 88 

the sea-ice edge, in particular in the Atlantic sector, remains evident when the proposed spatial structure 89 

of the δ18O-agreed WSI extent is compared to published marine records (Holloway et al., 2017). 90 

Holloway et al. (2017) and Crosta et al. (2022) opined that this discrepancy may result from the marine 91 

records (Bianchi and Gersonde, 2002; Chadwick et al., 2020; 2022) being located too far north to 92 

adequately validate the δ18O-agreed WSI extent. Thus, they emphasized the need for additional marine 93 

records closer to the continental margin to adequately constrain the spatial pattern of the LIG sea-ice 94 

extent.         95 

In recent years, the use of a novel sea-ice biomarker has been found increasingly applicable as a 96 

suitable proxy for Antarctic sea-ice reconstructions (Belt et al., 2016; Smik et al., 2016). This sea-ice 97 

biomarker, a di-unsaturated C25 highly branched isoprenoid (HBI) alkene, introduced as an Antarctic 98 

sea-ice proxy by Massé et al. (2011), was later termed Ice Proxy for the Southern Ocean with 25 carbon 99 

atoms (IPSO25), drawing parallel to the Arctic IP25 (Belt et al., 2016). IPSO25 is a lipid molecule produced 100 

by the sympagic diatom Berkeleya adeliensis, which lives in the sea-ice matrix and is generally 101 

abundant during late spring and early summer (Belt et al., 2016; Riaux-Gobin and Poulin, 2004), hence, 102 

making the biomarker a good indicator for spring/summer sea ice. Furthermore, the biomarker is well-103 

preserved in the sediment and widely identified in areas near to the Antarctic continent (for more details, 104 

see Belt, 2018; Belt et al., 2016). Nevertheless, there remains a risk of under-/overestimating the 105 

presence of sea ice when relying solely on the IPSO25 proxy. Thus, Vorrath et al. (2019) proposed 106 

combining open-water phytoplankton markers like dinosterol or a HBI-triene with the IPSO25 proxy, to 107 

calculate the phytoplankton-IPSO25 index (PIPSO25). This enhances the quantitative application of the 108 

IPSO25 proxy. For example, in cases where the IPSO25 concentration is minimal or absent, this may 109 

imply either an open ocean condition (substantiated by a high phytoplankton signal) or the presence of 110 

a perennial ice cover (evident by a low/absent phytoplankton signal). As such, the use of the PIPSO25 111 

proxy proves to be a more reliable approach to distinguish contrasting sea-ice settings (Belt and Müller, 112 
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2013; Lamping et al., 2020). To substantiate this application, Lamping et al. (2021) compared PIPSO25-113 

derived sea-ice estimates close to the Antarctic continental margin against satellite sea-ice 114 

observations and modeled sea-ice patterns, revealing strong correlation between the proxy, satellite 115 

and modeled data. Until now, the majority of HBI-based sea-ice reconstructions has focused on 116 

Holocene and deglacial/LGM time scales (e.g., Barbara et al., 2013; 2016; Denis et al., 2010; Etourneau 117 

et al., 2013; Lamping et al., 2020; Sadatzki et al., 2023; Vorrath et al., 2020, 2023) and one 118 

reconstruction dates back to the last ca. 60 ka BP (Collins et al., 2013). Yet, this tool has not been 119 

applied towards studying sea-ice variability in the Antarctic during warm climates beyond the current 120 

interglacial.  121 

Here, we aim to investigate the glacial-interglacial environmental variability in the Powell Basin, 122 

NW Weddell Sea through a multiproxy approach, and provide the first continuous ice-proximal Antarctic 123 

sea-ice record covering the last ca. 145 kyrs. We present biomarker-based reconstructions of sea ice, 124 

subsurface ocean temperature, total organic carbon (TOC) and biogenic silica (bSiO2) content, as well 125 

as diatom-based sea-ice concentration and summer sea surface temperature (SSST). This information 126 

is complemented by reconstructions of sea ice, primary productivity and SSST records from a 127 

neighboring core in the South Scotia Sea as well as numerically modeled sea ice, sea surface and 128 

subsurface temperatures to track latitudinal shifts in the environmental development in the Atlantic 129 

sector of the SO.   130 

2 Study area 131 

The Powell Basin (Fig. 1a) is a semi-isolated basin situated in the northwestern part of the Weddell 132 

Sea. It has an area of approximately 5x104 km2 and an average water depth of 3.3 km (Coren et al., 133 

1997; Viseras and Maldonado, 1999). The basin, enclosed by the Antarctic Peninsula to the west, the 134 

South Scotia Sea to the north, the South Orkney Microcontinent to the east, and the Weddell Sea to 135 

the South, is at present subject to the clockwise-circulating regime of the Weddell Gyre. As described 136 

in Orsi et al. (1993) and Vernet et al. (2019), the gyre involves four main water masses, namely Antarctic 137 

Surface Water, Warm Deep Water (WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea 138 

Bottom Water (WSBW; Fig. 1b). The Antarctic Surface Water generally consists of shelf waters formed 139 

over the continental shelf, such as winter water, high salinity shelf water from brine rejection due to sea-140 

ice formation, and ice-shelf water from glacial melt. The shelf waters travel along the Weddell Sea 141 

continental shelf via the Antarctic Coastal Current while denser shelf water cascades down and along 142 

the continental slope as the Antarctic Slope Current (Deacon, 1937; Fahrbach et al., 1992; Jacobs, 143 

1991; Thompson et al., 2018). The WDW originates from the warm, saline and low-oxygen Antarctic 144 

Circumpolar Current that is advected and subsequently integrated into the gyre’s circulation at its 145 

eastern front (Orsi et al., 1993; 1995). Along the southern boundary of the Weddell Gyre, the WDW 146 

upwells close to the Antarctic margin and mixes with the Antarctic Surface Water. The admixture cools 147 

and becomes denser, giving rise to the formation of WSDW and WSBW water masses at deeper water 148 

depths (Carmack and Foster, 1975; Dorschel, 2019; Huhn et al., 2008). In the Powell Basin, part of the 149 

WSDW flows out into the Scotia Sea through channels on the western slope of the basin (namely Philip, 150 
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Bruce and Discovery Passages; Morozov et al., 2020). The remaining WSDW and a part of WSBW 151 

navigate around the southern and eastern South Orkney Plateau, progressing northward via the Orkney 152 

Passage as AABW, while the residual WSBW recirculates within the Weddell Gyre (Fedotova and 153 

Stepanova, 2021; Gordon et al., 2001; Orsi et al., 1999).      154 

 155 

 156 
Figure 1. a) Map of the study area showing the locations of marine sediment cores PS118_63-1 (yellow 157 
star), PS67/219-1 (red star) and EDML ice core (light blue circle) discussed in this paper. Mean winter and 158 
summer sea-ice extent (1981-2010; Fetterer et al., 2017) are illustrated by blue and yellow dotted lines, 159 
respectively. Map was adapted from the Norwegian Polar Institute’s Qantarctica package using QGIS 3.28 160 
(Matsuoka et al., 2018). b) Diagram of the Weddell Gyre water masses with vertical spring/summer 161 
temperature profiles collected near to our core sites in Powell Basin (-61.125ºS, -47.675ºW) and South 162 
Scotia Sea (-57.125ºS, -42.375ºW; World Ocean Atlas 18; Locarnini et al., 2018). Pathways of ocean currents 163 
(ACC: Antarctic Circumpolar Current – black; ACoC: Antarctic Coastal Current – grey) and water masses 164 
(ISW: Ice Shelf Water – light blue; HSSW: High Saline Shelf Water – blue; WDW: Warm Deep Water – green; 165 
WSDW: Weddell Sea Deep Water – red and WSBW: Weddell Sea Bottom Water – dark magenta) are 166 
represented by the colored arrows. AASW: Antarctic Surface Water, PB: Powell Basin, SOM: South Orkney 167 
Microcontinent.   168 

3 Materials and methods 169 

3.1 Sediment core and age model 170 

Gravity core PS118_63-1 was recovered from the Powell Basin during the RV Polarstern cruise 171 

PS118 to the Weddell Sea in 2019 (Fig. 1a; Table 1; Dorschel, 2019). Physical properties, such as 172 

magnetic susceptibility (MS) and wet-bulk density, were provided by Frank Niessen (shipboard data; 173 

Dorschel, 2019). The age model of core PS118_63-1 is based on 14C radiocarbon dates, the 174 

identification of the biostratigraphic marker Rouxia leventerae, as well as tuning against records from 175 

the EDML ice core (δ18O and ssNa+) and nearby marine sediment core U1537 (MS, XRF-Fe and opal; 176 

Weber et al., 2022). Refer also to Fig. 2 and Supplementary Table S2 for the tie points. Our age model 177 

is further substantiated by age constraints of the uranium series disequilibrium, in particular the 178 

constant-rate-of-supply model for 230Th-excess (Geibert et al., 2019). Further details on the 179 

establishment of the age model and methods are provided in Supplement S1 and S2. 180 
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 181 

Table 1. Locations and details of investigated and discussed cores. 182 

Station Latitude Longitude 
Water depth / 

Elevation (m) 
Recovery (m)  Data source 

Marine sediment cores 

PS118_63-1 61° 07.421'S 47° 44.028'W 2626.5 6.88 this study 

PS67/219-1 57° 13.22’S 42° 28.02’W 3619 20.71 
this study; Xiao et al, 

2016a; Xiao et al, 2016b 

Ice core 

EDML 75°S 0° 2891  

EPICA Community 

Members, 2006; Fischer 

et al, 2007 

 183 

 184 

Figure 2.Tie points used for the age-depth model of PS118_63-1 and sedimentation rates. EDML ice core 185 
data is indicated by green circles, marine core U1537 data is marked by navy blue square, and available 186 
AMS 14C dates and the biostratigraphic marker (R. leventerae) from core PS118_63-1 are depicted by red 187 
triangles (14C dates) and a red star (R. leventerae).     188 

3.2 Bulk and organic geochemical analyses 189 

A total of 108 sediment samples, each with an approximate thickness of 1 cm, were collected from 190 

core PS118_63-1. These samples were then freeze-dried and homogenized using an agate mortar and 191 

pestle. All samples were stored in glass vials at -20 C to prevent degradation. To analyze total organic 192 

carbon (TOC), about 0.1 g of sediment was treated with 500 L of hydrochloric acid to remove any 193 

inorganic carbon, including carbonates. After the treatment, the TOC content was measured using a 194 

carbon-sulfur analyzer (ELTRA CS800). Routine analyses of standard sediments were conducted 195 

before and during each measurement yielding an error of ±0.02%. Biogenic opal was determined using 196 

the automated continuous wet-chemical leaching method prescribed in Müller and Schneider (1993) 197 

with an error of ±2 wt.%.For biomarker analyses, around 5-8 g of sediment were extracted and purified 198 

in accordance with well-established protocols (Belt et al., 2012; Lamping et al., 2021). Prior to 199 
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extraction, internal standards, 7-hexylnonadecane (7-HND) and C46-GDGT, were added for subsequent 200 

quantification of HBIs and glycerol dialkyl glycerol tetraether (GDGT) lipids. The biomarkers were 201 

extracted via ultrasonication (3 x 15 min) using DCM:MeOH (3 x 10 mL; 2:1 v/v) as solvent. Thereafter, 202 

the extracts were fractionated via open-column chromatography, with SiO2 as the stationary phase, with 203 

the HBI-containing fractions eluted with 5 mL n-hexane and the GDGT fractions with 5 mL DCM:MeOH 204 

(1:1 v/v).  205 

Compound analyses of HBIs were performed using an Agilent 7890B Gas Chromatograph (GC; 206 

fitted with a 30 m DB 1MS column; 0.25 mm diameter and 0.250 μm film thickness) coupled to an 207 

Agilent 5977B Mass Selective Detector (MSD; with 70 eV constant ionization potential, ion source 208 

temperature of 230°C). The GC oven temperature was first set to 60°C (3 min), then to 150°C (heating 209 

rate of 15°C/min), and finally to 320°C (heating rate of 10°C/min), at which it was held for 15 min for the 210 

analysis. Helium was used as the carrier gas. Specific compound identification was based on their 211 

retention times and mass spectra characteristics (Belt, 2018; Belt et al., 2000).  212 

Quantification of each biomarker was based on setting the manually integrated GC-MS peak area 213 

relative to corresponding internal standards and instrumental-compound response factors. The 214 

concentrations were subsequently corrected to the extracted sediment weight. For HBI quantification, 215 

the molecular ions m/z 348 (IPSO25) and m/z 346 (z-/e-trienes) were used in relation to its internal 216 

standard 7-HND (m/z 266). Finally, all biomarker mass concentrations were normalized to the TOC 217 

content of each sample. For calculating PIPSO25, we adopted the equation as described in Vorrath et 218 

al. (2019):  219 

 PIPSO25 = IPSO25 / (IPSO25 + (phytoplankton marker x c)),  (1) 

where c is the ratio between the mean concentrations of IPSO25 and phytoplankton marker and 220 

balances any significant offsets between both biomarker concentrations (Müller et al., 2011).        221 

The GDGT fraction was dried (N2) and redissolved in 120 µL hexane-isopropanol alcohol (99:1 222 

v/v), followed by filtration through a polytetrafluoroethylene (PTFE) filter with 0.45 μm pore size 223 

membrane. GDGT measurement was performed using an Agilent 1200 series high-performance liquid 224 

chromatograph coupled to an Agilent 6120 atmospheric pressure chemical ionization mass 225 

spectrometer. Identification of isoprenoid GDGTs (isoGDGTs) and branched GDGTs (brGDGTs) was 226 

based on retention times and mass-to-charge ratios (isoGDGTs: m/z 1302, 1300, 1298, 1296 and 1292; 227 

brGDGTs: m/z 1050, 1036 and 1022). The late eluting hydroxylated-GDGTs (OH-GDGTs) with 228 

molecular ions m/z 1318, 1316 and 1314 were also determined during the scan of related isoGDGTs, 229 

namely m/z 1300, 1298 and 1296, respectively (Liu et al., 2012a; 2012b). The relative abundances 230 

were subsequently quantified relative to internal standard C46 (m/z 744), instrumental response factors 231 

and the amount of sediment extracted. Mass content of all GDGTs were normalized to the TOC content 232 

of each sample.   233 

The isoGDGT-based index, TEX86
L (Eq 2) was calculated following Kim et al. (2010) while the 234 

conversion to subsurface ocean temperature (OT; 0 - 200 m water depth; Eq 3) was conducted in 235 

accordance to Hagemann et al. (2023): 236 
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TEX86
L   = Log10 

[isoGDGT−2]

[isoGDGT−1]+[isoGDGT−2]+[isoGDGT−3]
   

(2) 

OT (°C) = 14.38 x TEX86
L  + 8.93; with a calibration error of ±0.6°C (3) 

The OH-GDGT-based index, RI-OH’ (Eq 4) and the OT estimation (Eq 5) were determined following Lü 237 

et al. (2015). In their study, they determined that the RI-OH’ is significantly correlated with temperature 238 

compared to other indices such as TEX86 and RI-OH, producing a lower and less scattered residual sea 239 

surface temperature (SST) of ±6ºC.     240 

RI-OH’ = 
[OH−GDGT−1]+2 x [OH−GDGT−2]

[OH−GDGT−0]+[OH−GDGT−1]+[OH−GDGT−2]
  

(4) 

RI-OH’ = 0.0382 x OT (°C) + 0.1 (R2 = 0.75, n = 107, p <0.01)  (5) 

The index of relative contribution of terrestrial organic matter against that of marine input (branched-241 

isoprenoid tetraether, BIT; Eq 6) was calculated based on Hopmans et al. (2004): 242 

BIT = 
[brGDGT−I]+[brGDGT−II]+[brGDGT−III]

[Crenarchaeol]+[brGDGT−I]+[brGDGT−II]+[brGDGT−III]
    

(6) 

Lastly, we utilize the ring index (RI; Eqs 7 - 9; Zhang et al., 2016) and methanogenic source indicator 243 

index (%GDGT-0; Eq 10; Inglis et al., 2015) to validate against possible non-thermal GDGT sources 244 

contribution:  245 

RIsample = 0x[isoGDGT-0] + 1x[isoGDGT-1] + 2x[isoGDGT-2] +  

               3x[isoGDGT-3] + 4x[crenarchaeol] + 4x[regio. crenarchaeol’] 

(7) 

RIcalculated = -0.77 x TEX86 + 3.32 x (TEX86)2 + 1.59 (8) 

|ΔRI| = RIcalculated - RIsample (9) 

%isoGDGT-0 = 
[isoGDGT−0]

[isoGDGT−0]+[Crenarchaeol]
 x 100%   

(10) 

3.3 Diatom analyses 246 

41 smear slides were prepared for a quantitative diatom assemblage analysis at respective depths 247 

of the core. Between 400-600 diatom valves, inclusive of those from Chaetoceros resting spores 248 

(Chaetoceros rs), were counted in each sample to ensure statistical significance of the results. Diatoms 249 

were identified to species or species group level and, if possible, to forma or variety level. The presence 250 

of sea ice is inferred from the percentage of sea-ice indicating diatoms. A combined relative abundance 251 

of Fragilariopsis curta and Fragilariopsis cylindus (hereon referred to as F. curta gp) of >3% is used as 252 

a qualitative threshold to represent presence of WSI, while values between 1 and 3% estimates the 253 
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edge of maximum winter sea ice (Gersonde et al., 2003; 2005). Likewise, Fragilariopsis obliquecostata 254 

is used to indicate summer sea ice (Gersonde and Zielinski, 2000).  255 

We reconstructed WSI concentration (WSIC) by applying a marine diatom transfer function 256 

developed by Esper and Gersonde (2014b; TF MAT-D274/28/4an). This transfer function consists of 257 

274 reference samples from surface sediments in the Atlantic, Pacific and western Indian sectors of the 258 

SO, with 28 diatom taxa and taxa groups, and an average of 4 analogs (Esper and Gersonde, 2014b). 259 

The WSI estimates refer to September sea-ice concentration averaged over a period between 1981 260 

and 2010 at each surface sediment site (National Oceanic and Atmospheric Adminstration, NOAA; 261 

Reynolds et al., 2002; 2007). The reference dataset fits our approach as it uses a 1° by 1° grid, providing 262 

a higher resolution than previously used, and giving a root mean square error of prediction of 5.52% 263 

(Esper and Gersonde, 2014b).  264 

The SSST was estimated using TF IKM-D336/29/3q (standard error of ±0.86ºC), comprising 336 265 

reference samples from surface sediments in the Atlantic, Pacific and western Indian sectors of the SO, 266 

with 29 diatom taxa and taxa groups, and a 3-factor model calculated with quadratic regression (Esper 267 

and Gersonde, 2014a). The SSST estimates refer to summer (January-March) temperatures at 10 m 268 

water depth averaged over a time period from ≤1900 to 1991 (Hydrographic Atlas of the Southern 269 

Ocean; Olbers et al., 1992). The Hydrographic Atlas of the Southern Ocean was used because it 270 

represents an oceanographic reference dataset least influenced by the recent warming in the SO (Esper 271 

and Gersonde, 2014a).      272 

3.4 Comparison with other proxy records    273 

The EDML ice core and the marine sediment core PS67/219-1 are used in this study for regional 274 

comparison due to proximity of both cores to our core site (Fig. 1a; see also Table 1 for details). Water 275 

isotope (δ18O) and ssNa+ records of the EDML ice core were investigated by EPICA Community 276 

Members (2006) and Fischer et al. (2007), respectively. Marine sediment core PS67/219-1, retrieved 277 

from the South Scotia Sea, is located south of the Polar Front and just north of the modern-day winter 278 

sea-ice extent. This core offers data on sea ice, SSST and biogenic opal, which extend at least to the 279 

LIG period, making it suitable for comparison with core site PS118_63-1. The chronology and biogenic 280 

opal data of core PS67/219-1 was described and published in Xiao et al. (2016b), while investigations 281 

on sea-ice reconstruction and SSST for the last 30 ka BP are presented in Xiao et al. (2016a). We 282 

further extend the WSIC and SSST records, back to 150 ka BP, using the transfer functions TF MAT-283 

D274/28/4an and TF IKM-D336/29/3q, respectively (Esper and Gersonde, 2014b; 2014b).     284 

3.5 Comparison with simulations from climate model(s) 285 

Here, we also analyze model-simulated sea ice, SST and OT estimates for further comparison and 286 

evaluation against our proxy results. In this respect, the strength of our modeling approach is twofold. 287 

First, the model shall provide reasonable coverage of our intended studied time slices, mainly 6, 21, 288 

125, 128 and 140 ka BP. Second, the model’s sensitivity to various climate forcings and boundary 289 

conditions across the Quaternary and the entire Cenozoic era must be known. To this end, the 290 

Community Earth System Models (COSMOS; Jungclaus et al., 2006) is chosen over other climate 291 
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models due to its proven track record. For example, the simulation ensemble that has been produced 292 

over the years with COSMOS is extensive and not available from international modeling initiatives like 293 

the Paleoclimate Modeling Intercomparison Project (PMIP; e.g., Braconnot et al., 2012). Likewise, the 294 

model has reproduced various aspects of reconstructed paleoclimate data (see Supplement S3.1 for a 295 

list of paleo-studies using the COSMOS model), is shown to be sensitive to paleogeography and climate 296 

forcing, and is being characterized by a large Climate and Earth System Sensitivity (Haywood et al., 297 

2013; Stepanek and Lohmann, 2012). Additionally, COSMOS has been proven useful for the study of 298 

both warmer (Pfeiffer and Lohmann, 2016) and colder (Zhang et al., 2013; 2017) climates than today 299 

and supported research in sometimes very interdisciplinary frameworks (e.g., Guagnin et al., 2016; 300 

Klein et al., 2023). For some of the periods relevant here – Holocene, Last Glacial Maximum, LIG – 301 

standalone applications of the model are documented (e.g., Pfeiffer and Lohmann, 2016; Wei and 302 

Lohmann, 2012; Zhang et al., 2013). More importantly, results from COSMOS have been extensively 303 

compared to other models, particularly within the framework of the PMIP, with a focus on the 304 

Holocene (Dallmeyer et al., 2013; 2015; Varma et al., 2012) and the Last Interglacial (Bakker et al., 305 

2014; Jennings et al., 2015; Lunt et al., 2013). A relevant inference from comparing PMIP3-class models 306 

is that, from the viewpoint of model performance in the SO, COSMOS has shown to be among the 307 

models with a comparably minor warm bias in SST (see Fig. 4e and f in Lunt et al., 2013). This makes 308 

COSMOS particularly suitable for the studies of ocean temperatures and sea ice around the Weddell 309 

Sea. We refer to additional discussion on the rationale for choosing COSMOS over the PMIP models 310 

in our study in the Supplement S3.3. Additionally, we also provide an in-depth comparison and 311 

evaluation of the simulated results from PMIP3 and PMIP4 ensemble models, within the context of our 312 

study, and agreement between COSMOS and PMIP ensemble models in the Supplement S3.4.  313 

3.5.1 Community Earth System Models 314 

In our study, the model data is derived from climate simulations performed with COSMOS. The 315 

model’s atmospheric module is the fifth generation of the European Centre for Medium-Range Weather 316 

Forecasts’ Model (ECHAM5), a model of the general circulation of the atmosphere, with a spectral 317 

dynamical core, developed at the Max Planck Institute for Meteorology in Hamburg up to the sixth 318 

generation (Stevens et al., 2013). In our model setup, the ECHAM5 is employed at a truncation of T31, 319 

corresponding to a spatial resolution of approximately 3.75°x3.75°, or 400 km at the equator. The 320 

atmospheric column is discretized at a resolution of 19 vertical hybrid sigma-pressure levels. The 321 

ECHAM5 also encompasses a land surface component (JSBACH) that represents multiple land cover 322 

classification types (Loveland et al., 2000; Raddatz et al., 2007). We employ JSBACH‘s capability to 323 

reflect vegetation dynamics (Brovkin et al., 2009) in the course of climate simulations. In our setup, we 324 

consider eight different plant functional types (see Table 1 in Stepanek and Lohmann, 2012) that the 325 

model adapts in response to changes in the simulated climate, thereby reflecting important feedback 326 

processes between vegetation and climate in our simulations (Stepanek et al., 2020). The ocean 327 

module is the Max Planck Institute Ocean Model (MPIOM; Marsland et al., 2003), employed at 40 328 

unevenly spaced pressure levels with a bipolar curvilinear GR30 grid that has a formal resolution of 329 

1.8°x3.0°. This enables the horizontal resolution to reach grid cell dimensions that are as small as 29 330 
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km at high latitudes. Sea ice computation is based on dynamic-thermodynamic processes with viscous-331 

plastic rheology and follows the formulation by Hibler (1979). Various parameterizations improve the 332 

representation of small-scale ocean dynamics in the simulations. For additional information about the 333 

parameterizations utilized in our model setup, and for the steps taken to create geographic setups to 334 

apply the model in paleoclimatological research, see, for example, Stepanek et al. (2020) and 335 

references therein.   336 

3.5.2 COSMOS simulation settings 337 

The simulation ensemble consists of a pre-industrial reference state (simulation piControl, 1850 338 

CE; Wei and Lohmann, 2012), a mid-Holocene climate (simulation mh6k, 6 ka BP; Wei and Lohmann, 339 

2012), an LGM state (simulation lgm21k, 21 ka BP; Zhang et al., 2013), two time-slices of the LIG, 340 

where one refers to conditions at 125 ka BP (simulation lig125k) and one to conditions at 128 ka 341 

(simulation lig128k), and a Penultimate Glacial Maximum (PGM) climate (simulation pgm140k). In order 342 

to filter out short-term climate variability on interannual and multidecadal time scales, and to derive 343 

average climatic conditions that are representative of the respective Quaternary time-slice, we average 344 

the modeled climate state over a period of 100 model years. For interglacial climates we employ a 345 

modern geography. The boundary conditions for the Last and Penultimate Glacial Maximum have been 346 

set up for a study by Zhang et al. (2013) based on the PMIP3 modeling protocol. Details of the ice-347 

sheet reconstruction, that is a blend of ICE-6G v2.0 (Argus and Peltier, 2010), ANU (Lambeck et al., 348 

2010) and GLAC-1a (Tarasov et al., 2012), are described by Abe-Ouchi et al. (2015). For further details 349 

on the climate states and simulation configurations, we refer to the supplement (S3.2 and 350 

Supplementary Table S3, respectively). For analysis, the climate model output is interpolated from the 351 

native grid of the ocean model to a regular resolution of 0.25°x0.25°. High resolution is chosen in order 352 

to preserve the geographic features of the ocean model. Additionally, we also derived climate model 353 

data specifically tailored to the two marine core sites discussed in this paper, achieving this through 354 

interpolating relevant climate fields to the geographic coordinates of each core using a nearest-neighbor 355 

interpolation algorithm. Any reference to the modeled sea-ice edges in this publication specifies the 356 

isoline of 15% of sea-ice cover.   357 

4 Results 358 

4.1 HBIs 359 

The concentration of the sea-ice biomarker (IPSO25; Fig. 3a) in core PS118_63-1 varies 360 

significantly between 0 and 2.41 µg/g OC. Peak concentration is found at ca. 112 ka BP, while very low 361 

concentrations are noted throughout MIS 2-4, 5d, 5e and 6. Moderate to low concentrations are 362 

observed during MIS 1 and through both terminations. The concentration of the ice marginal-open water 363 

phytoplankton biomarkers varies between 0 - 3.03 µg/g OC (z-triene) and 0 - 0.76 µg/g OC (e-triene; 364 

Fig. 3b). Higher concentrations are observed at MIS 1 and 5e, while lower concentrations are noted 365 

throughout MIS 2-4, 5d and 6. In our investigation, we utilized both z- and e-trienes, respectively, to 366 

calculate the semi-quantitative spring/summer sea-ice indices (Pz/eIPSO25). This combined use of 367 
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biomarkers, indicative of ice marginal-open water conditions and IPSO25, helps to circumvent 368 

ambiguous interpretations especially when dealing with scenarios of permanent sea ice and open ocean 369 

conditions. Our PzIPSO25 index ranges between 0.09 and 1, while the PeIPSO25 index varies from 0.06 370 

to 1 (Fig. 3c). Instances, where both values of IPSO25 and z-/e-triene are zero, the Pz/eIPSO25 index is 371 

assigned a value of 1, indicating permanent ice cover. Both index profiles presented a similar trend (r 372 

= 0.98), with higher values (>0.8) throughout MIS 2-4, 5d and 6, while reduced values are noted for MIS 373 

1 and 5e. Notably, the lowest Pz/eIPSO25 values (<0.2) are observed during MIS 5e, specifically between 374 

119 and 128 ka BP, signifying a distinct decline in sea ice and more open ocean conditions during this 375 

time interval. Comparable low Pz/eIPSO25 values are also observed around 4 and 12 ka BP.     376 

 377 

Figure 3. Multiproxy analyses of sea-ice conditions in Powell Basin, reconstructed from marine sediment 378 
core PS118_63-1. Sea-ice (SI) cover scenarios: A - permanent sea-ice cover (dark blue), B - dynamic sea-379 
ice cover (light blue) and C - minimal sea-ice cover (light red). From top to bottom: a) HBI-based sea ice 380 
biomarker (IPSO25), b) HBI-based phytoplankton biomarkers (z-/e-trienes), c) Phytoplankton-IPSO25 index 381 
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(PIPSO25), d) Diatom-based winter sea-ice concentration (WSIC), e) Glacial meltwater indicator 382 
(Chaetoceros resting spores) and f) Biogenic opal (bSiO2), and total organic carbon (TOC). Atmospheric 383 
temperature is implied by g) the δ18O record from the EDML ice core. AMS 14C dates are marked with red 384 
triangles, the biostratigraphic marker (R. leventerae) is indicated by the red star. The black arrows 385 
delineated the time-slices for the model simulations in this study. MIS stages are depicted in alternating 386 
grey (odd) and white (even) shades, while the terminations TI and TII are shown in green.     387 

4.2 GDGTs 388 

Downcore OT estimates using the RI-OH’ index cover a temperature range between -2.5 and 389 

1.0°C (Fig. 4g) while TEX86
L-derived OT fluctuates between -2.6 and 1.0°C (Supplementary Fig. S5a). 390 

These GDGT-based OTs likely reflect (mean) annual ocean temperature between the water depths of 391 

0 and 200 m (Hagemann et al., 2023; Kim et al., 2012; Liu et al., 2020), and this seems to be 392 

corroborated by the modern-day vertical ocean temperature profile nearby core site PS118_63-1 (Fig. 393 

1b). Certainly, these minimum temperatures of less than -1.9°C – freezing temperature of seawater – 394 

need to be considered with caution due to factors influencing the ocean temperature calibration, for 395 

example, bias from terrestrial input, water depth, use of satellite-assigned ocean temperature below the 396 

freezing point of seawater and inadequate samples from polar areas (Fietz et al., 2020; Xiao et al., 397 

2023). Nevertheless, both OT proxies consistently indicate a cold-water subsurface regime (0 – 200 m; 398 

<1°C) with a 0-2°C temperature fluctuation, and no significant glacial/interglacial variability over the last 399 

145 kyrs. We further note that the RI-OH’-based OTs fluctuate within the error range of the temperature 400 

calibration based on a global surface sediment dataset (Lü et al., 2015) and call for attention when 401 

interpreting OT variability. Calculation of terrestrial originated-GDGT (i.e. BIT) and isoGDGT-related 402 

indices (i.e. %isoGDGT-0 and ΔRI; Supplementary Fig. S5b-e) reveals the presence of potential non-403 

thermal influences on the TEX86
L index, which may lead to bias in the temperature reconstruction (see 404 

also S4 in the Supplement). In light of the non-thermal influences on TEX86
L, we have decided not to 405 

further discuss on the TEX86
L-derived OT in this paper. Concerning the RI-OH’ approach, the presence 406 

of OH-GDGT has, thus far, only been observed within the cultivated marine thaumarchaeal group I.1a 407 

(Pitcher et al., 2011; Liu et al., 2012b; Elling et al., 2014; 2015). Its absence in the terrestrial 408 

thaumarchaeal group I.1b (Sinninghe Damsté et al., 2012) suggests a predominantly planktic origin (Lü 409 

et al., 2015). While both isoGDGTs and OH-GDGTs are derived from the phylum Thaumarchaeota, 410 

variances in their ring composition indicate that the OH-GDGTs may be biosynthesized from different 411 

source organisms or differing conditions (Liu et al., 2012b). Additionally, previous studies compared the 412 

relationship between various GDGT-based indices (i.e. RI-OH, RI-OH’, TEX86 and TEX86
L) and 413 

temperature, and determined that the RI-OH’-temperature relationship shows the most significant 414 

correlation in cold-water (<15ºC) regions, making the RI-OH’ a robust temperature proxy for the 415 

(sub)polar regions (Lü et al., 2015; Lamping et al., 2021; Park et al., 2019; Fietz et al., 2020). Therefore, 416 

we suggest that the RI-OH’ index holds promise as a potential OT proxy for our study site. However, 417 

further work on the distribution of OH-GDGT and calibration studies are still essential to enhance the 418 

applicability of RI-OH’ as a (paleo)temperature proxy. 419 

4.3 Diatoms 420 

The diatom-based data for cores PS118_63-1 and PS67/219-1 are presented in Fig. 4c and d. For 421 

core PS118_63-1 from the Powell Basin, the relative abundance of sea ice-related diatoms ranges 422 
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between 2 and 39% for F. curta gp, and from 0 to 6% for F. obliquecostata. The relative abundance of 423 

diatoms between ca. 15 and 70 ka BP, and before 131 ka BP, is rare/absent (Fig. 4c). Such cases 424 

generally indicate the presence of permanent sea ice over the core site (Zielinski and Gersonde, 1997). 425 

We, therefore, assign the diatoms’ relative abundance as 0, and WSIC as 100%, to above-mentioned 426 

time intervals (i.e., MIS 2 - 4 and 6). The abundance of F. curta gp is noted to be above the 3% threshold 427 

(indicative of presence of WSI) throughout the remaining time periods – except at 6 ka BP, where the 428 

lowest abundance (2%) is observed. A relative abundance of F. obliquecostata around the 3% threshold 429 

indicates a dynamic summer sea-ice edge over the area during MIS 1 and 5. The WSIC across the rest 430 

of the time frame, namely MIS 1 and 5, is generally high (>75%) with a couple of lower WSIC observed 431 

at ca. 6 ka BP (71%) and at 119 ka BP (66%). The abundance of Chaetoceros resting spores 432 

(Chaetoceros rs) varies between 0 and 86%, with higher values noted during MIS 1 and 5e (Fig. 3e). 433 

Such increases in the abundance of the Chaetoceros rs imply the presence of glacial meltwater at the 434 

core location (Crosta et al., 1997). The diatom-derived SSST – typically indicating summer ocean 435 

temperature between the water depth of 0 and 10 m – covers a temperature range between -0.8 and 436 

0.4°C (Fig. 4h), and describes a cold-water region during MIS 1 and 5, similar to the RI-OH’-derived OT 437 

(Fig. 4g).  438 

To the north in the South Scotia Sea, core PS67/219-1 documents an overall lower percentage of 439 

sea ice-related diatoms (Fig. 4d). Similar to core PS118_63-1, the relative abundance of F. curta gp 440 

(0.5-20%) is noted to be mostly above the 3% threshold, indicating presence of WSI over the region, 441 

with higher abundance observed for MIS 2 and 3, and lowest abundance (<1%) observed during MIS 442 

5e. However, the relative abundance of F. obliquecostata for core PS67/219-1 remains below the 3% 443 

threshold, between 0 and 3%, suggesting a lack of summer sea ice over the core site. The percentage 444 

of WSIC in the South Scotia Sea is also lower than that of Powell Basin, with a record of 37-82%. The 445 

diatom-based SSST documents a SSST range of -0.7 to 2°C, with colder SSST registered during MIS 446 

2 and 3, and warmer SSST noted during MIS 1 and 5e (Fig. 4i).  447 

4.4 TOC and Biogenic opal 448 

In this study, both TOC and biogenic opal (Fig. 3f) are interpreted to reflect primary productivity (r 449 

= 0.65). The TOC content varies between 0.2 and 0.7% while biogenic opal ranges from 2 to 51%. 450 

Highest productivity is observed during MIS 1 and 5e, indicative of favorably warmer conditions that 451 

promote primary productivity blooms at the core location. A rather moderate productivity level is 452 

observed between MIS 5a to c, while lowest values are noted for MIS 2-4, 5d and 6. Both profiles also 453 

exhibit some differences. For example, peak biogenic opal occurs around 124 ka BP whilst peak TOC 454 

is recorded at 119 ka BP. We also observe a more pronounced increase in the TOC content during the 455 

terminations than in the biogenic opal content. This is likely due to greater input from non-siliceous 456 

organisms, such as archaeal, bacterial and terrestrial input (see Supplementary Fig. S4).    457 
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 458 

Figure 4. Regional sea ice, productivity and temperature variability in the South Atlantic sector of the 459 
Southern Ocean as inferred from EDML ice core, Powell Basin (PS118_63-1) and South Scotia Sea 460 
(PS67/219-1). For sea ice: a) sea-ice estimation (ssNa+; black) from EDML ice core, b) HBI-based sea ice 461 
indicator (PzIPSO25 – dark blue; PeIPSO25 – dotted light blue), c) diatom-based winter sea-ice concentration 462 
(WSIC – dark magenta), F. curta group (F. curta gp – dark magenta), F. obliquecostata (F. obli – light 463 
magenta) from PS118_63-1, and d) diatom-based WSIC (brown), F. curta group (F. curta gp – brown), F. 464 
obliquecostata (F. obli – light brown) from PS67/219-1. For productivity: e) biogenic opal (bSiO2 – dark 465 
green) and total organic carbon (TOC – dotted light green) from PS118_63-1 and f) bSiO2 (brown) from 466 
PS67/219-1. For temperature: g) RI-OH’-derived subsurface ocean temperature with three-point smoothing 467 
(OTRI-OH’ – navy blue) and h) summer sea surface temperature (SSSTDiatom – dark magenta) from PS118_63-468 
1, i) SSSTDiatom (brown) from PS67/219-1 and j) EDML water stable isotope record (δ18O – black). The 3% 469 
threshold for diatom species relative abundance is indicated by a black horizontal line. MIS stages are 470 
depicted in alternating grey (odd) and white (even) shades, while the terminations TI and TII are shown in 471 
green. For the full F. curta gp abundance data, refer to the relevant datasets in Pangaea (refer to Data 472 
availability). 473 
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4.5 Sea-ice conditions – a multiproxy approach 474 

Using a multiproxy approach, our analysis of the data from core PS118_63-1 provides a 475 

continuous glacial-interglacial sea-ice history in the Powell Basin since the PGM. We distinguish three 476 

different sea-ice scenarios spanning the last 145 kyrs (Fig. 3).  477 

A) Perennial sea-ice cover. This scenario is characterized by remarkably low (sea ice) diatom 478 

abundances, minimum IPSO25 and HBI-triene concentrations, as well as minimum bSiO2 and TOC 479 

contents. We deduce the presence of maximum WSIC and spring/summer sea ice (PIPSO25) 480 

cover. These results indicate a glacial setting, with our core site situated under a perennial sea ice 481 

or ice-shelf cover suppressing primary production in the water column. Such a scenario persisted 482 

throughout the glacial periods MIS 2-4, MIS 6, and during MIS stadial 5d. 483 

B) Dynamic sea-ice cover.  This scenario is described by fluctuations in each of the proxy profiles, 484 

in particular WSIC, PIPSO25, HBI-trienes, bSiO2 and TOC contents. These records reflect the 485 

dynamic nature of sea-ice conditions over our core site, with varied primary production at different 486 

time intervals. This scenario is prevalent during periods of climate transition, such as terminations 487 

I and II, and during MIS 1 and 5a-c.      488 

C) Minimal (winter-only) sea-ice cover. This scenario is denoted by a considerably reduced sea-489 

ice diatom (IPSO25) production, WSIC and PIPSO25, coupled with high phytoplankton productivity 490 

(HBI-trienes), bSiO2 and TOC contents. These findings suggest that our core site experienced ice-491 

free or winter-only ice conditions, permitting enhanced primary production in the water column. 492 

This scenario occurs in short time intervals within the MIS 1 and MIS 5e.       493 

4.6 Inferences from COSMOS simulations 494 

Covering the Atlantic sector of the SO, our model-simulated sea ice, SST and OT (at 220 m water 495 

depth) glacial-interglacial time-slices cover the PGM at 140 ka BP, LIG at 128 (sea ice only) and 125 496 

ka BP, LGM at 21 ka BP, Holocene at 6 ka BP and pre-industrial (Fig. 5 - 7). In Fig. 5, the left column 497 

(Fig. 5a) shows the simulated sea-ice cover/extent for the spring/summer seasons (NDJFMA, this 498 

averaging period considers the time lag in sea-ice extent vs. spring/summer temperature evolution) 499 

while the right column (Fig. 5b) illustrates the simulated sea-ice cover/extent for the winter (ASO) 500 

season. In general, a greater sea-ice cover is observed during winter than spring/summer for each time-501 

slice. During the glacial periods, the model highlights a northward expansion of the sea-ice extent 502 

beyond both marine core sites (PGM: Fig. 5.1; LGM: Fig. 5.4). At the more southern site (Powell Basin; 503 

core PS118_63-1), the modeled glacial sea-ice cover varies between ~93 to 94% (winter) and ~79 to 504 

82% (spring/summer), while at the more northern site (South Scotia Sea; core PS67/219-1), sea-ice 505 

cover varies around ~91% (winter) and ~26 to 34% (spring/summer). In contrast, during the 506 

interglacials, fluctuations in sea-ice extent are more pronounced between seasons. WSI extent is 507 

observed to be located north of both core sites (Fig. 5.2b, 5.3b, 5.5b and 5.6b), with the WSI cover 508 

ranging between ~86 and 89% at core site PS118_63-1, and ~52 to 69% at core site PS67/219-1. 509 

During spring/summer, the sea-ice extent retreats to a latitude between both sites (Fig. 5.2a, 5.3a, 5.5a 510 

and 5.6a), with the spring/summer sea-ice cover varying from ~31 to 35% at core site PS118_63-1 and 511 

between ~0 and 4% at core site PS67/219-1.      512 
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 513 

Figure 5. Model-simulated mean a) spring/summer (NDJFMA) and b) winter (ASO) sea-ice cover for the 514 
various time slices: 1) PGM: 140 ka BP, 2) LIG: 128 ka BP, 3) LIG: 125 ka BP, 4) LGM: 21 ka BP, 5) mid-515 
Holocene: 6 ka BP and 6) Pre-industrial. The red line depicts the sea-ice extent and is defined as the isoline 516 



 18 

of 15% sea ice coverage. Locations of marine sediment cores are indicated by stars: PS118_63-1 (yellow) 517 
and PS67/219-1 (red). Proxy-derived winter sea-ice concentration (WSIC) and spring/summer sea ice 518 
(PIPSO25) at each core location are shown in the right-most panel. Additionally, model-simulated sea-ice 519 
values at each core site (yellow and red stars) for each time slice are plotted alongside the proxy data for 520 
comparison.     521 

 522 

Figure 6. Model-simulated mean a) summer (DJF) and b) winter (JJA) sea surface temperature (SST) for 523 
the various time slices: 1) PGM: 140 ka BP, 2) LIG: 125 ka BP, 3) LGM: 21 ka BP, 4) mid-Holocene: 6 ka BP 524 
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and 5) Pre-industrial. Marine sediment cores, PS118_63-1 (yellow) and PS67/219-1(red), are indicated by 525 
the colored stars. Diatom-based summer sea surface temperature (SSSTDiatom) at both core locations is 526 
presented in the middle panel. The corresponding model-simulated SST at each core site (yellow and red 527 
stars) for each time slice is displayed alongside the proxy data for comparison.    528 

 529 

Figure 7. Model-simulated mean a) summer (DJF) and b) winter (JJA) subsurface ocean temperature (OT; 530 
220 m water depth) for the various time slices: 1) PGM: 140 ka BP, 2) LIG: 125 ka BP, 3) LGM: 21 ka BP, 4) 531 
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mid-Holocene: 6 ka BP and 5) Pre-industrial. Marine sediment cores are presented in colored stars: 532 
PS118_63-1 (yellow) and PS67/219-1(brown). Biomarker-based ocean temperature with three-point 533 
smoothing (OTRI-OH’) for core PS118_63-1 is presented in the right panel. For comparison, the model-534 
simulated OT for core PS118_63-1 (yellow star) for each time slice are included alongside the proxy-derived 535 
OT.     536 

For the SST and OT, the left columns (Fig. 6a and 7a) represent the summer (DJF) temperature, 537 

and the right columns (Fig. 6b and 7b) depict the winter (JJA) temperatures, respectively. The 538 

simulated-SST (Fig. 6) appears similar to that of the modeled sea-ice output. In general, widespread, 539 

low SST, close to the freezing point of seawater (that is approximately -1.9°C at salinity values modeled 540 

in the SO in our simulations), is exhibited across all time-slices during winter (Fig. 6b), while in summer 541 

(Fig. 6a), low SST mainly occurs in the Weddell Sea and along the coast of the Antarctic continent. For 542 

instance, at the core site PS118_63-1 in Powell Basin, Weddell Sea, there is no observed difference in 543 

SST between winter and summer during the glacial periods PGM (Fig. 6.1) and LGM (Fig. 6.3). Both 544 

sites were surrounded by sea ice during these periods (Fig. 5.1 and 5.4). However, in interglacials, a 545 

seasonal SST cycle of ~1°C is noted in the basin (Fig. 6.2, 6.4 and 6.5). In contrast, at the more northern 546 

core site PS67/219-1, the model estimates a seasonal SST cycle of ~1°C during the glacial periods 547 

(Fig. 6.1 and 6.3) and ~3.4°C during the interglacial (Fig. 6.2, 6.4 and 6.5). Moreover, the modeled 548 

climate states are characterized by spatial SST gradients between the two core locations of between 549 

0°C (glacial) and ~0.4°C (interglacial) during winter. For summer SST, the gradient between the two 550 

core locations varies between ~1°C (glacial) and ~2.8°C (interglacial). As for the simulated OT, the 551 

model displays a ~1.6 and ~3°C glacial-interglacial variation at core sites PS 118_63-1 and PS67/219-552 

1, respectively, but no appreciable OT change is observed between the winter and summer seasons of 553 

each time slices (Fig. 7). The model also reveals a spatial OT gradient between both marine core sites 554 

of ~0.7°C (glacial) and ~2.1°C (interglacial).           555 

5 Discussion 556 

5.1 Regional sea ice and oceanic conditions 557 

5.1.1 Penultimate Glacial Maximum – Termination II 558 

Our records show that during the PGM, the Powell Basin (core PS118_63-1) remained under a 559 

layer of persistent (sea) ice cover, as evidenced by a 100% WSIC and peak PIPSO25 values inferred 560 

from the absence of diatoms, alongside notable reductions in IPSO25 and HBI-triene concentrations 561 

(see also Sect 4.1 and 4.3). This coincided with the lowest levels of primary production reflected in the 562 

biogenic opal and TOC records (Fig 4b, c and e). This condition persisted until ca. 140 ka BP, when a 563 

decline in spring/summer sea ice (PIPSO25) is observed, accompanied by a rise in TOC and subsurface 564 

ocean temperature (Fig. 4b, e and g). At a more northerly location in the South Scotia Sea, core 565 

PS67/219-1 records a less pronounced sea-ice cover during the PGM with WSIC fluctuating at around 566 

65% and a 1-3% abundance of F. obliquecostata suggesting the proximity of a permanent sea-ice edge 567 

(Fig. 4d). These findings from the geological record are supported by our model simulation for the 140 568 

ka BP time-slice, which shows an overall high simulated-WSI cover (94%; 92%), but slightly lower 569 

simulated-spring/summer sea-ice cover (79%; 27%) at core sites PS118_63-1 and PS67/219-1, 570 
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respectively (Fig. 5a). Likewise, higher ssNa+ concentrations and δ18O values from EDML ice core point 571 

to cold conditions and an extensive sea-ice cover in the Atlantic region (Fig. 4a and j; EPICA Community 572 

Members, 2006; Fischer et al., 2007).  573 

Termination II (TII; 140-130 ka BP) marks the transition from a glacial into an interglacial 574 

environment. The onset of this deglaciation was probably initiated by a warming event caused by a 575 

maximum southern high latitude summer insolation at around 138 ka BP (Bianchi and Gersonde, 2002; 576 

Broecker and Henderson, 1998) and further sustained by the Heinrich Stadial 11 (HS11) event 577 

occurring in the Northern Hemisphere (NH) between 135 and 130 ka BP (Turney et al., 2020). The 578 

HS11 is a prominent North Atlantic meltwater event that may have triggered the eventual shutdown of 579 

the AMOC, thus reinforcing the warming in the SO via the bipolar seesaw effect (Marino et al., 2015).   580 

In the Powell Basin, the WSIC remains high (100%) and only starts to decrease (80%) at ca. 134 581 

ka BP, while gradually declining PIPSO25 values since 140 ka BP accompany the onset of the 582 

deglaciation and mark a shift from a perennial sea ice to a dynamic seasonal sea-ice cover (see Sect 583 

4.5 for definition). A concurrent rise in subsurface ocean temperature is also observed during this 584 

timeframe. In contrast, core PS67/219-1 in the South Scotia Sea recorded a different sea-ice regime 585 

with generally lower and declining WSIC and <1% abundance of F. obliquecostata, suggesting a less 586 

extended sea-ice cover. The different sea-ice conditions in both regions are supported by a higher 587 

biogenic opal production recorded in the South Scotia Sea as compared to the minimum biogenic opal 588 

content observed for the Powell Basin (Fig. 4e and f). The Powell Basin TOC profile is also different 589 

from its opal counterpart, with the former peaking between 135-131 ka BP. We surmise that this peak 590 

may relate to a preferential growth environment for non-siliceous marine organisms and/or increased 591 

input of terrestrial organic matter during this interval.  592 

The persistent warming was interrupted by a short period of spring/summer sea ice (PIPSO25) re-593 

expansion and weakened decline in WSI towards the end of TII (ca. 132-130 ka BP; Fig 4b and c), 594 

along with an increasing Chaetoceros RS abundance that peaks at ca. 131 ka BP (Fig. 3e). These 595 

conditions coincide with the northward shift of the sea-ice edge at ODP Site 1094 around 129.5 ka BP 596 

(Bianchi and Gersonde, 2002). A comparable reduction in SSST at around 131 ka BP is also observed 597 

in the South Scotia Sea (core PS67/219-1, Fig. 4i) and apparent at ODP Site 1089 and core PS2821-1 598 

(Cortese and Abelmann, 2002). In the Powell Basin, however, this cooling event is not reflected in 599 

ocean temperature (Fig. 4g) and we propose that the lack of temperature change during this event may 600 

be attributed to the discharge of meltwater from expanding sub-ice shelf cavities, which caused a 601 

stronger stratification and an effective isolation of the warmer subsurface layer.    602 

5.1.2 Last Interglacial - MIS 5 stadials/interstadials 603 

Following the short-lived sea-ice expansion in Powell Basin at the end of TII, we observe a rapid 604 

decline, and minimum spring/summer sea-ice cover is reached (see Sect 4.5) by ca. 129 ka BP (Fig. 605 

4b). Lowest spring/summer sea ice (PIPSO25) is observed between 126 and 124 ka BP, while minimum 606 

WSIC is observed around 119 ka BP. These conditions promoted primary productivity, as reflected in 607 

the maximum biogenic opal and TOC contents, at the respective timeframes (Fig. 4e). Likewise, sea 608 

ice and temperature profiles from core PS67/219-1, the EDML ice core and model simulations also 609 



 22 

favor a warm and predominantly open ocean condition for the South Atlantic sector throughout the LIG 610 

(Fig. 4d, 4i, 5.3 and 6.3; EPICA Community Members,  2006; Fischer et al., 2007). Holloway et al. 611 

(2017) investigated the simulated-spatial structure of the Antarctic WSI minimum at 128 ka BP with 612 

respect to the δ18O-isotopic peak recorded in the East Antarctic ice cores. They tested numerous WSI 613 

retreat scenarios and concluded that the δ18O maximum could be explained by a significant decline in 614 

Antarctic WSI, with the Atlantic sector experiencing the largest reduction of 67%. Contrastingly, while 615 

our spring/summer sea ice (PIPSO25) data aligns with their δ18O-accorded simulated-findings, our 616 

diatom data - revealing a constant presence of WSI in the Powell Basin and South Scotia Sea with even 617 

minor increases between 130 and 127 ka BP - disagrees. Furthermore, the WSI record from marine 618 

core PS2305-6, located slightly north of our core site, also indicates the presence of WSI during MIS 619 

5e (see also Supplementary Table S1 in Holloway et al., 2017; Bianchi and Gersonde, 2002; Gersonde 620 

and Zielinski, 2000). We assume that the modeled winter sea-ice retreat seems to be valid for more 621 

distal ocean areas, whereas at the core sites in Powell Basin and South Scotia Sea, ice-sheet-derived 622 

meltwater may have acted as a driving mechanism fostering local sea-ice formation during winter, which 623 

is not captured by the simulation in Holloway et al. (2017). Interestingly, the herein simulated sea ice at 624 

the 128 ka BP time-slice corroborates our proxy-based data, indicating the presence of WSI in the 625 

region amidst lower sea-ice concentration and continued retreat of sea ice over the spring/summer 626 

seasons (Fig. 5.2). A similar sea-ice scenario is also established for the 125 ka BP time-slice, 627 

considered to be the warmest period of the LIG (Fig. 5.3; Goelzer et al., 2016; Hoffman et al., 2017), 628 

where Southern Hemisphere (SH) mid- to high-latitude spring insolation forcing reached a maximum 629 

within the period from 130 ka BP to 125 ka BP (Lunt et al., 2013). The contrasting observation between 630 

our marine sediment proxy and model data against that of the ice core δ18O-accorded simulated-finding 631 

emphasizes the need for more robust marine-based reconstructions, especially south of the modern 632 

sea-ice edge, to sufficiently substantiate model results for these regions, and to enable comprehensive 633 

input knowledge for future model simulations and predictions (Holloway et al., 2017; Otto-Bliesner et 634 

al., 2013).  635 

The reconstructed SSST trends in the Powell Basin and the South Scotia Sea are largely 636 

comparable with the atmospheric temperature profile from the EDML ice core (Fig. 4h-j), suggesting 637 

atmosphere-ocean interactions in the study area. The lack of significant glacial-interglacial temperature 638 

variability within the Powell Basin could potentially be linked to its locality and close proximity to the 639 

continental margin, where constant mixing of cold ice-shelf water with the WDW persists. Within the 640 

Powell Basin, both the SSST and subsurface ocean temperature started to decrease around 130 ka 641 

BP. While the SSST appeared to have cooled from -0.2°C to -0.4°C (127 ka BP) and recovered 642 

thereafter – similar to the dip observed in the EDML δ18O profile – the subsurface ocean temperature 643 

declined distinctly from 0 to ca. -1.9°C and remained cold until 124 ka BP (Fig. 4g and h). The variance 644 

in the magnitude of decline observed between the two temperature records (SSST vs. OT) may be 645 

attributed to the distinctly different seasonal signals depicted by the proxies (i.e., summer vs. annual 646 

temperature) and water depths (0-10 m vs. 0-200 m; see also Sect 4.2 and 4.3). We speculate that the 647 

decline in seawater temperature since 130 ka BP may be the result of intense melting of the Antarctic 648 

ice sheet and sea ice, leading to a freshening of coastal waters. Similar to the modern-day Weddell 649 
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Gyre circulation (see Sect 2 for details), the increased discharge of cold (sea) ice-shelf meltwater into 650 

the Powell Basin, via the Antarctic Coastal Current and Antarctic Slope Current, may have deepened 651 

the cold-water stratification in the basin, thus causing the observed dip in ocean temperature between 652 

130 and 124 ka BP. Turney et al. (2020) discovered that the WAIS had retreated from the Patriot Hills 653 

blue ice area by the end of TII (130.1 ± 1.8 ka BP). This area is located 50 km inland from the present-654 

day grounding line of the Filchner-Ronne Ice Shelf. Their investigation revealed a 50 kyrs hiatus in the 655 

blue ice record, indicative of a collapse of the ice shelf at the end of TII, followed by its subsequent 656 

recovery during late MIS 5. Holloway et al. (2016) also propose a maximum ice-sheet retreat at around 657 

126 ka BP based on distinct differences between the isotopic records observed for Mt Moulton and East 658 

Antarctic ice cores. Assuming that the distinct reduction in spring/summer sea-ice recorded in core 659 

PS118_63-1 was not confined to the Powell Basin but may reflect a more extensive sea ice decline in 660 

the Weddell Sea embayment, we posit that this loss of sea ice (i.e., the loss of an effective buffer 661 

protecting ice-shelf fronts) may have accelerated the disintegration of the Weddell Sea ice shelves and, 662 

ultimately, the WAIS.  663 

Following the peak of the LIG around 119 ka BP, the Powell Basin sea-ice records reflect a cycle 664 

of sea ice advance and retreat throughout the remaining MIS 5 substages. WSIC strengthened and 665 

remained at ca. 80%, while spring/summer sea ice (PIPSO25) experienced a substantial increase 666 

between MIS 5e and 5d (reaching PGM values at 5d), and remained elevated (> ca. 0.6) for the rest of 667 

the MIS (Fig. 4b and c). This expansion of sea ice into MIS 5d, and its persisting presence throughout 668 

the remaining MIS 5, is accompanied by a gradual decline in both sea surface and subsurface ocean 669 

temperatures, along with reduced primary production. Likewise, an increasing WSIC, lowered SSST 670 

and primary productivity are also noted in the South Scotia Sea (Fig. 4d-h). However, being more 671 

northerly located, the South Scotia Sea experienced a lower and more varied WSIC (ca. 48 - 68%) 672 

andminimum summer sea-ice cover evident by a lower abundance of F. obliquecostata (<1%) than in 673 

the Powell Basin (Fig. 4d).  674 

5.1.3 Glacial period – Last Glacial Maximum – Termination I   675 

After MIS 5, Antarctica transited into the last glacial period (74-19 ka BP). In our Powell Basin 676 

records, this is reflected in a northward expansion of the sea-ice extent (peak PIPSO25 values and 100% 677 

WSIC). Additionally, the lack of sea ice- and phytoplankton-related biomarkers and diatoms points 678 

towards an extremely suppressed production in the basin (Fig. 3a and b, 4b and c). We postulate that 679 

at that time the basin was likely covered by permanent sea-ice cover or a floating ice shelf, which 680 

inhibited primary production in the underlying water column. The South Scotia Sea record (PS67/219-681 

1) further to the north also points to an overall higher winter and summer sea-ice cover, with elevated 682 

abundance of F. obliquecostata (0 - 3%) during this period suggesting a permanent sea-ice edge close 683 

to the core site (Xiao et al., 2016a). The oscillating patterns observed in both the sea-ice record and the 684 

biogenic opal content further point to alternating advance and retreat phases of the sea-ice edge in the 685 

South Scotia Sea (Fig. 4d and f; Allen et al., 2011).  686 

In the Powell Basin, capped by an overlying (sea) ice cover throughout the glacial period, 687 

subsurface ocean temperatures somewhat resemble the millennial-scale variability in the EDML 688 
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temperature profile (Fig. 4g). We presume that the subsurface temperature variations may possibly 689 

reflect changes in the ocean circulation in the Atlantic sector of the SO (Böhm et al., 2015; Williams et 690 

al., 2021). However, the age uncertainties and the low resolution of our subsurface ocean temperature 691 

record hamper an affirmative conclusion, and more data points will be required to ascertain 692 

corresponding oceanic variability.      693 

The last glacial period culminated during the LGM between 26.5 and 19 ka BP with a most 694 

northwardly extending sea-ice edge, as identified in several marine sediment cores (Fig. 4b and c; 695 

Gersonde et al., 2005; Xiao et al., 2016a) and deduced from maximum ssNa+ concentrations in the 696 

EDML ice core (Fig. 4a; Fischer et al., 2007). Evidence from previous studies indicated the advance of 697 

grounded ice sheet and island ice caps to the edge of the outer continental shelf (Davies et al., 2012; 698 

Dickens et al., 2014). These grounded ice sheets were surrounded by floating ice shelves that extended 699 

seaward to 58°S on the western side of Antarctica (Herron and Anderson, 1990; Johnson and Andrews, 700 

1986). In the Atlantic sector, the 60 - 70% expansion of WSI towards the modern Polar Front (~50°S; 701 

Gersonde et al., 2003) also promoted a northward shift of the summer sea-ice edge beyond core site 702 

PS67/219-1 to around 55°S (Allen et al., 2011; Collins et al., 2012), which lead to restricted primary 703 

productivity as reflected in the minimum biogenic opal content of core PS67/219-1 (Fig. 4f). The LGM 704 

is also considered the coldest interval, with a northward expansion of the (sub)Antarctic cold waters by 705 

4 - 5° in latitude towards the subtropical warm waters (Gersonde and Zielinski, 2000; Gersonde et al., 706 

2003). Sea-ice extent (Fig. 5.4) and SSST (Fig. 6.3) derived from our climate simulation during the peak 707 

of LGM (21 ka BP) align with these findings. This distinct growth of the (sea) ice-field in the SO, coupled 708 

with lower reconstructed and modeled LGM subsurface temperatures (Fig. 4g and 7.3), suggests an 709 

intensified cold-water stratification at our core sites, and a possible northward displacement of the WDW 710 

upwelling zone towards the edge of the summer sea-ice field (Ferrari et al., 2014).          711 

TI began around 18 ka BP, when our records from Powell Basin indicate a transition from a 712 

perennial-ice cover to a dynamic sea-ice scenario (see Sect 4.5), with several cycles of advance and 713 

retreat. Similarly, the sea ice-related records from the South Scotia Sea (PS67/219-1) and the EDML 714 

ssNa+ record depict a decrease in sea-ice cover, along with rapid increases in primary productivity and 715 

ocean temperature (Fig. 4). This deglaciation is attributed to a weakening AMOC circulation as a result 716 

of reduced NADW formation caused by increasing NH summer insolation and significant ice sheet melt 717 

at 18 ka BP, also known as Heinrich Stadial 1 (Clark et al., 2020; Denton et al., 2010; Waelbroeck et 718 

al., 2011). The gradual warming of TI was interrupted by a brief cooling between 14 and 12 ka BP. 719 

During this interval, our records reveal a short-term re-advancement in sea ice, coupled with a drop in 720 

productivity and temperature (Fig. 4). This event seems to coincide with multiple South Atlantic records 721 

(Xiao et al., 2016a) and higher ssNa+ concentrations and a plateau in 18O values recorded in the EDML 722 

ice core (Fischer et al., 2007). We hence propose this event to be the Antarctic Cold Reversal (ACR), 723 

which is linked to the Bølling-Allerød warm interval in the NH via the bipolar seesaw mechanism (Pedro 724 

et al., 2011; 2016).  725 
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5.1.4 Holocene     726 

Following the brief cooling of the ACR, the deglacial warming resumed its pace and Antarctica 727 

transited into the present interglacial (Holocene: 12 ka BP-present), which is marked by intervals of 728 

warming and cooling events (Bentley et al., 2009; Bianchi and Gersonde, 2004; Xiao et al., 2016a). Our 729 

data support these findings and document periods characterized by seasonal/dynamic and minimum 730 

sea-ice cover (see Sect 4.5) since 12 ka BP. We acknowledge that the age constraints and data 731 

availability of core PS118_63-1 for the Holocene is limited and exercise caution on the interpretation of 732 

the Holocene proxy records. Nevertheless, our data still permit the discrimination of Holocene warming 733 

and cooling trends. 734 

The Powell Basin experienced an overall rapid decline in the winter and spring/summer sea-ice 735 

(Fig. 4b and c), concurrent with a rise in SSST (-0.5 to 0.5°C; Fig. 4h) and primary productivity between 736 

12 and 5 ka PB (Fig. 4e), suggesting a seasonal sea-ice cover. The significant reduction in the 737 

abundance of the F. curta gp (below 3%), WSIC and spring/summer sea ice (PIPSO25; Fig. 4b and c) 738 

culminates at ca. 5 ka BP and is accompanied by an elevated primary productivity reflected in rising 739 

biogenic opal and TOC contents, which seems to indicate a brief open-ocean setting for the Powell 740 

Basin during this warm interval. We further note fluctuating SSSTs, while the subsurface ocean 741 

temperature remains relatively stable between 9 and 5 ka BP and the remainder of the Holocene (Fig. 742 

4g and h). This somehow contrasts with a subtle decline in SSSTs recorded in core PS67/219-1 (Fig. 743 

4i) in the South Scotia Sea, substantiated by the elevated presence of Chaetoceros rs recorded in core 744 

PS118_63-1 (Fig. 3e). We may attribute this cooling to a northward export of increased glacial 745 

meltwater. Our model simulation at 6 ka BP depicts a somewhat similar oceanic condition, with <40% 746 

spring/summer sea ice at the studied sites (Fig. 5.5a). However, in comparison with our proxy records, 747 

the model appears to have overestimated the WSI, SST and OT (Fig. 5.5b, 6.4 and 7.4). This 748 

overestimation may be attributed to the complex ice-ocean interactions and feedbacks along the 749 

Antarctic coastal region, which may not be fully represented in the model that has a spatial resolution 750 

in the order of tens of kilometers and does not reflect any ice sheet dynamics.   751 

While the limited age constraints for the Holocene in core PS118_63-1, preclude us from further 752 

allocating short-term climate variations, we propose that the interval around 5 ka BP may reflect the 753 

Holocene climate optimum, while the upper part of the core depicts the later Holocene conditions. Here, 754 

increasing PIPSO25 values and WSI reflect a re-expansion of seasonal sea ice still permitting primary 755 

productivity as derived from elevated biogenic opal and TOC contents (Fig. 4b, c and e). The climate 756 

optimum experienced in the Powell Basin seems to correspond to the mid-Holocene climate optimum 757 

identified in sediment cores from the South Orkney Plateau between 8.2 and 4.8 ka BP and around 758 

Antarctica (Crosta et al., 2008; Denis et al., 2010; Kim et al., 2012; Lee et al., 2010; Taylor et al., 2001). 759 

However, reports of differing timings and mode for the mid-Holocene climate optimum around the 760 

Antarctic Peninsula have been noted in previous studies (Bentley et al., 2009; Davies et al., 2012; 761 

Shevenell et al., 1996; Taylor and Sjunneskog, 2002). Vorrath et al. (2023) determined the mid-762 

Holocene climate optimum to have occurred between 8.2 and 4.2 ka BP, based on biomarker analyses 763 

of a sediment core from the eastern Bransfield Strait. They suggest that the climatic changes at their 764 

core site were influenced predominantly by the warm Antarctic Circumpolar Current rather than the 765 
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cold-water Weddell Sea. This is contrary to a shorter climate optimum (6.8-5.9 ka BP) proposed by 766 

Heroy et al. (2008), where they examined the climate history of western Bransfield Strait using sediment 767 

and diatom analyses. Such diverse research outcomes highlight the complexity of responses to micro-768 

region variations in glacial, atmospheric and oceanic changes in the Antarctic Peninsula throughout the 769 

Holocene (Bentley et al., 2009; Davies et al., 2012; Heroy et al., 2008; Vorrath et al., 2023). 770 

5.2 Comparison between interglacials / transition periods 771 

A comparison of the environmental changes caused by climate warming during TII and TI as well 772 

as the peak LIG and the Holocene, may yield valuable information on common or different driving and 773 

feedback mechanisms. As marine cores PS118_63-1 and PS67/219-1 provide continuous records of 774 

the environmental evolution in the northwestern Weddell Sea and South Scotia Sea, respectively, dating 775 

back to at least 145 ka BP, they offer a distinct opportunity to evaluate (sea-ice) conditions between the 776 

two terminations (TII and TI) and both warm periods (LIG and Holocene), particularly in proximity to the 777 

continental margin. Denton et al. (2010) studied the last four terminations and concluded that the 778 

terminations were triggered by a sequence of comparable events: maximum NH summer insolation that 779 

caused substantial NH ice sheet melting (due to marine ice sheet instability) over an extended (>5 kyrs) 780 

NH stadial interval. The huge release of meltwater slowed the AMOC, thus triggering an intense 781 

warming in the southern high-latitudes through the bipolar seesaw teleconnection, accompanied by a 782 

poleward shift in the southern westerlies. In line with this hypothesis, our records from cores PS118_63-783 

1 and PS67/219-1 portray a consistent and rapid decline in sea ice throughout both terminations (TII 784 

and TI). Interestingly, both deglaciations feature a short-term readvance of sea ice during their latest 785 

stage, at ca. 130 ka BP and during the ACR, respectively, likely due to meltwater-discharge from 786 

retreating ice shelves/ice sheets in the SO. This suggests that short-term sea ice growth stimulated by 787 

deglacial meltwater may be a common feature during glacial terminations. Despite commonalities in the 788 

sea-ice records, some differences are discernible. For instance, during TII, there is an abrupt surge in 789 

biogenic opal in the South Scotia Sea, along a consistent rise in TOC content within the Powell Basin. 790 

In contrast, TI exhibits a pattern characterized by a gradual increase with periodic fluctuations 791 

throughout the termination for both TOC and biogenic opal content. Additionally, the South Scotia Sea 792 

(PS67/219-1) recorded a higher mean biogenic opal content and SSST across TII (35%; 0.7°C) than TI 793 

(26%; 0.5°C). Likewise, in the Powell Basin (PS118_63-1), higher mean TOC and subsurface ocean 794 

temperature are perceived during TII (0.5%; 0°C) than during TI (0.4%; -0.3°C). These data are in 795 

agreement with the EDML δ18O record, which registered a stronger deglacial amplitude (32%) in TII 796 

than TI (Masson-Delmotte et al., 2011). Broecker and Henderson (1998) also speculated that the 797 

amplitude of the SH summer insolation during TII was higher than during TI. Additionally, a delay of 798 

approximately 10 kyrs between the SH and NH summer insolation (and subsequent NH ice sheet 799 

melting) during TII – as compared to TI’s SH summer insolation peak just before the melting of the NH 800 

ice sheet – probably contributed to a more pronounced TII warming in the SO. The differing magnitude 801 

of warming observed between both core sites in the South Atlantic, however, is likely attributed to their 802 

latitudinal differences.  803 
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The climate during the LIG appeared to be warmer than during the Holocene. In the Powell Basin, 804 

the LIG peak interval (i.e., MIS 5e) was characterized by a significantly reduced spring/summer sea-ice 805 

cover and peak productivity, while a higher spring/summer sea-ice cover, along with an only gradually 806 

increasing productivity are observed for the Holocene warm period (Fig. 4b and e). However, no 807 

significant difference in the WSIC between both interglacial was noted. The discrepancy in warming 808 

intensity likely occurred seasonally and coincided with maximum summer insolation (see also Fig. 4 in 809 

Bova et al., 2021). Nonetheless, a lower mean annual regional insolation (-1.1 W/m2 difference; Laskar 810 

et al., 2004) during the LIG does not explain the warmer conditions observed in the region. Bova et al. 811 

(2021) hypothesized that the LIG was relatively warmer than the Holocene as a result of its preceding 812 

deglacial dynamics: specifically, the magnitude of the last deglaciation was half that of the penultimate 813 

deglaciation – where a rapid and intense warming destabilized and significantly reduced the (sea) ice 814 

cover to near modern-day level by the onset of the LIG (Bova et al., 2021), and possibly a collapse of 815 

the WAIS in the first half of the LIG (Pollard and Deconto, 2009; Sutter et al., 2016). As such, we opine 816 

that the lower magnitude of warming during TI was a consequence of spatially and temporally varying 817 

retreats and advances in ice cover (including sea ice, ice shelves and glaciers) in the SO. The higher 818 

ice coverage throughout the Holocene resulted in a higher surface albedo and a cooler Holocene, as 819 

compared to the LIG. This is witnessed in our rather variable Holocene sea-ice proxy records (Fig. 4b 820 

and c) and differing reports of mid-Holocene warming and repeated fluctuations in environmental 821 

conditions around Antarctica (see sect 5.1.4; Bentley et al., 2014; Davies et al., 2012; Ó Cofaigh et al., 822 

2014).  823 

5.3 Evaluating COSMOS performance: Addressing boundary conditions and model selection 824 

With regard to COSMOS simulations, we note very similar sea-ice conditions being depicted for 825 

the peak interglacial 125 ka BP and 6 ka BP time slices (Fig 5.3 and 5.5), while subtle differences are 826 

resolved for SSTs and OTs (Fig. 6.2 and 6.4, 7.2 and 7.4, respectively). When considering the disparity 827 

observed in our proxy data between these two interglacial intervals, we infer that these similarities in 828 

the simulations likely result from using the same geographic boundary conditions for both time slices, 829 

while climate forcing data (e.g., greenhouse gases, orbital parameters) differ, of course. Our study 830 

aligns with the PMIP framework in maintaining a constant modern-day geography across each 831 

interglacial time slice, specifically the mid-Holocene (e.g., 6 ka BP) and the LIG (e.g., 128 and 125 ka 832 

BP). For the 6 ka BP time slice, this decision is supported by evidence indicating that ice sheets had 833 

reached their modern configuration (Otto-Bliesner et al., 2017). In the case of the LIG, the use of the 834 

modern ice-sheet configuration is primarily due to uncertainties in the LIG reconstructions (Otto-Bliesner 835 

et al., 2017). We acknowledge that the consideration of a single geographic configuration throughout 836 

the LIG certainly is a simplification. However, it is also important to note that the changes in the Antarctic 837 

ice sheets’ contribution to global mean sea level were small between 128 and 125 ka BP, compared to 838 

the remainder of the LIG (Barnett et al., 2023). Therefore, we propose that using a constant ice-sheet 839 

configuration for our LIG time slices is a reasonable approximation – in particular when we consider the 840 

lack of robust alternative ice sheet configurations that could have been used as a boundary condition 841 

for the climate model. Similarly, we estimated a constant ice-sheet setting for both the PGM and LGM 842 
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time slices. While there are indications of different NH ice- sheet extents between the two glacial periods 843 

(Rohling et al., 2017), uncertainty remains regarding the exact distribution of ice on Antarctica. 844 

Understanding this distribution is crucial to determine whether different ice-sheet configurations should 845 

be considered for the boundary conditions of the respective glacial climate simulations. Given the varied 846 

trends observed in our proxy data for each glacial and interglacial periods, we propose that future 847 

studies should explore different plausible Antarctic ice-sheet configurations and their effects on glacial-848 

interglacial sea ice and oceanic conditions in the SO, particularly in the coastal regions.        849 

In our modeling approach, we have relied exclusively on simulations from COSMOS rather than 850 

adopting a multi-model approach based on available PMIP simulations. This decision was motivated by 851 

the need to cover specific time slices pertinent to our study (see also Sect 3.5). To validate the reliability 852 

of our results, we conducted a comparison of COSMOS-simulated sea-ice cover and SST results 853 

against those from the PMIP3 and PMIP4 ensemble models. We refer to Supplement S3.4 for full detail. 854 

In general, the model-to-model comparison shows good agreement (<2σ threshold) between our 855 

COSMOS results and those from the PMIP3 ensemble – especially at our study locations, with some 856 

disagreement noted for the 21 ka BP time slice (Supplementary Fig. S4 and S5, S8 and S9). These 857 

deviations largely occur around the sea-ice edge and are primarily due to uncertainties generated within 858 

the PMIP3 ensemble itself. In contrast, our COSMOS-to-PMIP4 ensemble comparison shows greater 859 

disagreement. The COSMOS simulation shows a milder warm bias in the SO compared to various other 860 

PMIP3 models (Lunt et al., 2013), whereas CMIP6 models, which provide the foundation for PMIP4, 861 

are documented to have a warm bias in the SO (Luo et al., 2023). Beyond the difference in warm bias, 862 

the disagreements between COSMOS and PMIP4 may arise from several factors, including evolution 863 

of modeling protocols, boundary conditions, and model development from PMIP3 to PMIP4, with 864 

COSMOS remaining a PMIP3-class model. Based on the comparative outcomes, we demonstrate that 865 

our results align with PMIP in many relevant aspects, though this comparison is limited by the 866 

incomplete coverage of time slices within PMIP. Where our model shows disagreement with the PMIP3 867 

ensemble, the uncertainty within the ensemble itself is quite large. This highlights that the uncertainty 868 

in simulated sea-ice conditions at our core locations, which we acknowledge as a limitation of using 869 

only one model in our study, is not necessarily mitigated by using an ensemble of models instead. Given 870 

that COSMOS is mostly within the 2σ threshold – defined as a measure for agreement with the PMIP3 871 

ensemble – at the study sites, we would not expect to derive substantially different inferences if we 872 

relied on the PMIP3 ensemble instead. Although COSMOS has not undergone the updates that PMIP4 873 

models received and has been exposed to boundary conditions only partly comparable to PMIP4 874 

simulations, to date it remains one of the most extensively utilized models for reconstructing Quaternary 875 

climates and beyond. This enables our study’s results to be considered within the much larger context 876 

of the Cenozoic climate. Despite the aforementioned limitations, it is worth noting that COSMOS has 877 

been successfully employed alongside other PMIP4 models (Stepanek et al., 2020).   878 
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6 Summary and conclusions 879 

Multiproxy analyses on marine sediment core PS118_63-1 from the Powell Basin provide new 880 

insights into the glacial-interglacial environmental variability in proximity to the Antarctic continental 881 

margin. With the use of the novel sea ice and open-water biomarkers and diatom assemblage data, 882 

alongside primary productivity proxies, we are able to reconstruct sea-ice conditions in the Powell Basin 883 

for the past ca. 145 kyrs. Our findings reveal year-round ice-cover with minimal productivity during 884 

glacial periods, while dynamic sea-ice conditions with varied productivity are recorded in the Powell 885 

Basin during climate transitions and interglacial periods, such as the Holocene and MIS 5. Peak 886 

reduction in sea ice and near open ocean conditions are noted for MIS 5e. In contrast, no significant 887 

glacial-interglacial temperature variation was registered in the basin, which is attributed to the cold-888 

water regime of the Weddell Sea. Comparison between the current and last interglacial, and their 889 

respective climate transitions (TI and TII), suggests a relationship between deglacial amplitude and 890 

warming intensity during the corresponding interglacial: in general, an abrupt and intense (gradual and 891 

slow) deglaciation leads to a warmer (cooler) interglacial, with higher (lesser) ice-sheet retreat (Bova et 892 

al., 2021). Our data presented in this study reinforce earlier paleo sea-ice reconstructions in the South 893 

Atlantic sector of the SO and provide new insights into the ice-proximal sea-ice response during varying 894 

climate conditions. Evaluation of both proxy and model data highlights similarities between sea-ice 895 

reconstruction and simulation. However, notable discrepancies remain, such as the differing proxy-896 

model data observed for the Holocene compared to the LIG, and subsurface temperature profile for the 897 

LIG. It is therefore pivotal to explore different Antarctic ice-sheet configurations in future studies, as well 898 

to expand on the paleoclimate data for the region. These will help to close the gap in our understanding 899 

of ocean-ice-atmosphere interactions and dynamics and ultimately enhance climate model predictions 900 

closer to the Antarctic continental margins.       901 
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