
Using observations of surface fracture to address ill-posed ice
softness estimation over Pine Island Glacier
Trystan Surawy-Stepney1, Stephen L. Cornford2, and Anna E. Hogg1

1School of Earth and Environment, University of Leeds, United Kingdom
2Department of Geographical Sciences, University of Bristol, United Kingdom

Correspondence: T. Surawy-Stepney (t.surawystepney@leeds.ac.uk)

Abstract. Numerical models used to simulate the evolution of the Antarctic Ice Sheet require the specification of basal bound-

ary conditions on stress and local deviations in the assumed material properties of the ice. In general, scalar fields representing

these unknown components of the system are found by solving an inverse problem given observations of model state variables -

typically ice flow speed. However, these optimisation problems are ill posed, resulting in degenerate solutions and poor condi-

tioning. In this study, we propose the use of fracture and strain rate data to provide prior information to the inverse problem, in5

an effort to better constrain the inferred ice softness compared to more heuristic regularisation techniques. We use Pine Island

Glacier as a case study and consider both a ‘snapshot’ inverse problem in which ice softness and basal slip parameters are

sought simultaneously over the glacier as a whole, and a ‘time-dependent’ problem in which ice softness alone is sought over

the floating ice shelf at regular intervals. In the first case, we construct a prior encoding the assumption that the ice softness will

be close to our initial guess except from where we see fractures or high shear strain rates in satellite data. We investigate the10

solutions and conditioning of this data-informed inverse problem versus alternatives. The second proposed method makes the

assumption that changes to ice softness occurring on monthly-to-annual timescales will be dominated by the fracturing of ice.

We show that these methods can result in softness fields on floating ice that visually mimic fracture patterns without signifi-

cantly affecting the quality of the solution misfit, perhaps leading to greater confidence in the softness fields as a representation

of the true material properties of the ice shelf.15

1 Introduction

Large-scale ice sheet models commonly treat ice within the paradigm of continuum mechanics - as a shear thinning viscous

fluid; an approach that has been successful in modelling the behaviour of large ice masses relatively cheaply (e.g. Seroussi et al.

(2020)). Within this framework, the flow of the ice can be accounted for in large part by a balance between gravity, viscous

stress due to internal deformation and frictional stress at ice/bedrock interfaces. To close the system and allow the model to20

solve for ice speed, equations relating viscous and frictional stresses to ice speed are specified, informed by laboratory data

and physical arguments.
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The former ‘constitutive relation’ very often takes the form of Glen’s flow law:

τij = 2ηε̇ij , where η =
1
2
A(T )−

1
n ϵ

1
n−1 (1)25

where τij is the deviatoric stress tensor, ε̇ij is the strain rate tensor, ϵ is its second invariant, η is the strain-rate-dependent

effective ice viscosity, A(T ) is a temperature-dependent rate factor and the exponent n≈ 3. It is possible to treat A(T ) and/or

n as free parameters that can be fitted to observations, given the uncertainties involved in both and the different physical

mechanisms that distinguish them. Here, we consider the approach in which these are prescribed a priori and a ‘stiffness’ field

ϕ(x), that scales the effective ice viscosity η, is defined over the domain to account for unknown deviations in the expected ice30

rheology. Used in this way, ϕ approximates the effect of uncertainties in the temperature and thickness fields, regional changes

in the temperature dependence of Glen’s flow law, deviations from the assumed isotropy of creep deformation and, of particular

interest to this study, fractures in the ice at different lengthscales.

The relation between frictional stress and basal sliding speed is known as a ‘sliding law’, and has a functional form that

depends on a number of often poorly constrained factors such as the expected amount of deformation around topographic35

features in the bed, sliding over smooth bedrock, and shearing of the sub-glacial till. A single sliding law is often combined

with a spatially varying ‘basal slip’ parameter C(x) to approximate this stress:

τ b = Cf(u). (2)

Taken together, the equations considered here take the form of the shallow-stream approximation to the Cauchy momentum

equations:40

∇ · [ϕhη̄(∇u + (∇u)⊤+ 2(∇ ·u)I)]−Cf(u)− ρigh∇s = 0, (3)

where u = (ux,uy)⊤ is the horizontal velocity, η̄ is the vertically-integrated effective ice viscosity, ρi is the density of ice, h is

the ice thickness and s is the ice surface. In this study we use a linear sliding law f(u) = u for ease of computing adjoint sen-

sitivities during the inverse problem. In this article, we also refer to the “softness” field φ - related to the stiffness by φ = (1−ϕ).

45

In order to simulate real ice masses accurately, the fields C and ϕ are inferred simultaneously from observations of ice speed

using inverse methods - a suite of techniques for inferring model control parameters from observed state variables (MacAyeal,

1992) - (e.g. Petra et al. (2012); Arthern et al. (2015); Cornford et al. (2015); Gudmundsson et al. (2019)). Unfortunately,

this inverse problem is ill-posed: the two fields (C,ϕ) are calculated from the single observed field u (the problem is “un-

derdetermined”) and the results are highly dependent on noise in the input data (the problem, at least in its discrete form, is50

“ill-conditioned”). To obtain reliable control fields, it is beneficial to replace this ill-posed problem by a nearby well-posed one

before solving it. The problem is sometimes simplified by solving for C only on grounded ice, and ϕ on floating ice, thereby

separating the two fields spatially removing a portion of the degeneracy that arises from the mixing of C and ϕ (e.g. Goldberg
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et al. (2019)). However, though you would often expect C to be the dominant control on grounded ice speed, there is little

reason to be especially confident in the guess of ϕ = 1, and getting this wrong can have consequences for transient simulations.55

Another approach, and one that shall be taken here, is to regularise the solution by providing additional constraints on the

control fields. Such a regularised inverse problem takes the form of the following optimisation:

(C,ϕ) = argmin
C,ϕ

{Jm(u,uo) +αCJC(C) +αϕJϕ(ϕ)} , s.t. G(u,C,ϕ) = 0 (4)

where Jm(u,uo) = ∥u−uo∥22 is a misfit function calculating the distance of the modelled ice speed u from the observed ice

speed uo, JC and Jϕ are regularisation functions for the C and ϕ fields, with strengths controlled by the parameters αC and60

αϕ respectively, and G(u,C,ϕ) = 0 are the momentum balance equations (3).

A popular approach, aimed at improving the conditioning of the problem by suppressing the amplification of high-frequency

components of the input data, is to use Tikhonov regularisation in a form that favours either low spatial frequency or low

amplitude components of the solution (e.g. Morlighem et al. (2013); Habermann et al. (2013); Brinkerhoff and Johnson (2013);65

Cornford et al. (2015)), e.g.:

αϕJϕ(ϕ) = αϕ

∫

Ω

|∇ϕ|2d2x. (5)

However, this kind of regularisation is entirely heuristic and, when it comes to distinguishing C and ϕ, relies on assumed

differences in the lengthscales over which changes in the control fields can influence strain rates. Generally, in regions without

significant shear, these lengthscales are not easily distinguished, and degeneracies between solutions for C and ϕ proliferate.70

Additional difficulties arise when a control field contains distinct contributions with different spatial frequencies. For example,

uncertainty in englacial temperature can vary on the scales of long-term atmospheric or geothermal heat sources, or over the

width of a shear margin. Often, an imperfect but acceptable lengthscale is found by searching parameter space informed by

heuristics such as L-curve analysis (Hansen and O’Leary, 1993; Hansen, 1994).

75

The aim of this study is to investigate whether the introduction of genuine prior information into the inverse problem can re-

sult in substantively different solutions, and whether these solutions are more appealing than those found using other, heuristic

regularisation methods.

Previous studies have investigated instances in which softness fields found through solving inverse problems have mirrored80

observed fracture features (Borstad et al., 2013; Surawy-Stepney et al., 2023a) - suggesting that the presence of fractures has

the potential to dominate ϕ. With recent advancements in observational methods for locating fractures in remote sensing data

(Lai et al., 2020; Izeboud and Lhermitte, 2023; Zhao et al., 2022; Surawy-Stepney et al., 2023b), we are moving towards reli-

able data that can be used to inform us at least about this specific component of the softness field. Ranganathan et al. (2021)
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showed previously that the use of strain rate data to weight the regularisation of C and ϕ has the potential to reduce mixing85

between these control fields. The work presented here follows quite naturally from these results.

Here, we investigate two ways in which fracture and strain-rate observations can be used to inform the inverse problem

to replace or complement existing heuristic methods. The first is to use fracture maps (obtained from Sentinel-1 imagery -

described in Surawy-Stepney et al. (2023b)) along with estimates of surface strain-rates to construct a prior distribution for90

ϕ for use in snapshot inverse problems (single optimisations carried out for a set of geometry and speed data collected at a

specific instant in time). This prior simply says that we expect ϕ≈ 1 away from regions of observed fracture, or where there

are high shear strain rates (which can contribute the effects of enhanced anisotropy, shear heating and microfracturing to ϕ). In

practise, this is equivalent to a form of Tikhonov regularisation using a diagonal Tikhonov matrix with entries weighted away

from where we expect soft ice.95

We also investigate the use of timeseries of fracture maps in constraining the solutions to inverse problems carried out over

multiple timesteps. The use of fracture maps as a prior in the snapshot inverse problems makes an assumption about the relative

contributions of different uncertainties to ϕ. For example, we have to have a certain amount of trust in the 3D temperature field

we use. A more easily justified belief is that changes to ϕ on monthly-to-annual timescales are dominated by the fracturing

of ice, as other contributions to ϕ are likely to vary on significantly longer timsescales. With this in mind, we initialise the100

inverse problem with heuristic regularisation, before imposing a regularisation that penalises the changes to ϕ except where

we have seen the evolution of fractures in the observational data. We show, with this method, that one can generate softness

fields that mimic, in certain ways, the changing fracture patterns on the Pine Island Ice Shelf between 2016 and 2021, without

substantially affecting the misfit of the problem. This may have potential uses in constraining models that aim to evolve softness

fields in response to englacial stresses.105

2 Methods

The simulations presented in this article were performed using the BISICLES ice sheet model (Cornford et al., 2013). This is an

adaptive mesh, finite volume model which we choose here to solve discretized versions of the two-dimensional shallow-stream

equations (3). Each simulation is carried out over Pine Island Glacier in the Amundsen Sea Sector of West Antarctica with

a domain encompassing the whole present-day drainage basin (Zwally et al., 2012). This region was chosen as it represents110

a potentially strong correspondence between fracturing and ice softness, given the abundant crevasses in the shear margins,

upstream of the grounding line and the regular formation of rifts near the terminus, as well as the established dynamic impact

of some of this fracturing (Joughin et al., 2021; Sun and Gudmundsson, 2023). Across the rest of Antarctica, we expect

the link between the dynamics of ice and the extent of fracturing to be weaker in general. We use a form of the rate factor

A(T ) described in Cuffey and Paterson (2010), with an internal energy field generated using a 100 000 year calculation115

in which surface temperature, thickness and velocity are held at present day values and the combined ice temperature and

moisture fraction field E = CT +Lw evolves toward equilibrium. We used geometry defined by BedMachine-v3 (Morlighem,
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2022), with prescribed calving front positions extracted from Sentinel-1 backscatter images. Each simulation used velocity

and fracture data from within a five-year period between November 2016 and November 2021. We used 200 m resolution,

monthly-averaged ice velocity observations made using feature tracking applied to Sentinel-1 image pairs (Wuite et al., 2021)120

(https://cryoportal.enveo.at/data/) as the input data to the cost function and to estimate shear strain rates. Crevasse data was

generated according to the methods described in Surawy-Stepney et al. (2023b). The inverse problem we consider at each stage

takes the form of eq. (4) and is solved in BISICLES using a non-linear conjugate gradient method (Cornford et al., 2015).

2.1 Fracture data assimilation in snapshot inverse problems

The snapshot problem we consider is the joint estimation of C and ϕ over Pine Island Glacier in May 2019. We use mean125

velocities over the month and median composite fracture maps.

a b

10

c
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Figure 1. Contributions to the field ξ, representing, in our prior for the softness field, where we have observations of surface fracture or high
shear strain rates. a) SAR backscatter images over grounded and floating parts of Pine Island Glacier from May 2019 showing regions of
visible crevassing: 1) surface crevasses on the grounded ice, 2) two almost-connected rifts near the Pine Island calving front, 3) the heavily
‘damaged’ southern shear margin of Pine Island Ice Shelf. b) The component of ξ due to the observation of crevasse features, made from
fracture maps developed in Surawy-Stepney et al. (2023b). Black boxes anticlockwise from the top show the locations of the SAR images a1,
a2 and a3 respectively. c) The component of ξ due to the presence of high shear strain rates. Background images to b and c are the MODIS
Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in black) are according to Rignot et al. (2016).

To construct a prior for ϕ, we first form a field ξ which is 0 in regions which have high shear strain rates or where fractures

have been observed and 1 elsewhere. For the surface fracture contribution to ξ, we use monthly mosaics of fracture maps

covering grounded and floating ice - slightly smoothed to produce contiguous fracture fields on the grounded ice. We call130
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these fracture maps fi. The fracture-map contribution to ξ is simply ξfrac = 1− fi (Fig. 1 b). There are a few things to note in

these fracture data of potential relevance to the stress-balance of the glacier. Firstly, we see a large contiguous area of surface

fractures extending upstream from the grounding line and widening to cover a region in which previous studies have suggested

membrane stresses are important in the stress-balance as basal stresses become small (Joughin et al., 2009). SAR images of

this region show uniform coverage by closely-spaced surface fractures, almost identical in appearance (Fig. 1 a1). Additionally,135

there is a rift (really, two rifts that are almost connected) near to the ice shelf terminus that led to the calving of a large tabular

iceberg in February 2020 (Fig. 1 a2) - part of a series of calving events regarded to have had significant consequences for the

dynamics of Pine Island Glacier (Joughin et al., 2021). Finally, there are a large number of fractures on the southern shear

margin of Pine Island Ice Shelf (Fig. 1 a3).

140

We create the strain-rate contribution to ξ using the same velocity data that we use in our misfit function. To estimate the

derivatives ∂iuj , we differentiated the velocity components using a method described in Chartrand (2017), using Tikhonov

regularisation to promote smoothness (regularisation parameters were chosen with some trial-and-error, where preference

was given to solutions in which regions of high shear varied smoothly over lengthscales comparable to the widths of visible

shear margins). Aligning the x-coordinate with local flow direction, we define regions of high shear to be those in which145

|ε̇xy|> 0.1 a−1. This threshold is a bit discretionary, though it corresponds to stresses within the range 90−320 kPa of tensile

strength suggested in Vaughan (1993) for a wide range of englacial temperatures. Then ξshear = max{0,1−10|ε̇xy|} (Fig. 1 c)

and ξ = min{ξfrac, ξshear}. This data picks out the shear margins of the glacier, as well as the velocity discontinuity associated

with the rift close to the ice shelf calving front.

150

In the case of the snapshot inverse problem, the assumption we wish to encode in our prior for ϕ is that ϕ→ 1+ ϵ as ξ → 1,

where ϵ∼N (0,γ2) and γ is a small number. Such a prior over the ϕ field can be written:

pΦ(ϕ)∝ exp(− 1
2γ2

∫

Ω

(1−ϕ)2ξ dΩ). (6)

Assuming the distribution of measurement errors is isotropic, with covariance σ2I, this translates to a regularisation term:

αϕ =
σ2

γ2
, Jϕ(ϕ) =

∫

Ω

(1−ϕ)2ξ dΩ. (7)155

A greater exposition of this link between priors and regularisation parameters is given in appendix A.

We solve the inverse problem for the regularisation term shown in (7), as well as the heuristic regularisation (5) and no

regularisation.

160
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The initial guess for the control fields can have a large influence on the optimisation problem. For the ϕ field, we use an initial

guess of 1 everywhere. For C, we take the view that the initial guess should be the field required to reproduce the observations

on grounded ice as closely as possible with a uniform ϕ = 1. Hence, before carrying out the full optimisation including both

control fields, we solve an inverse problem for C with fixed ϕ = 1, matching speeds only on grounded ice and use this as the

initial guess. This has the effect of considerably reducing the deviation of ϕ from 1 in the solution. This has the added bonus165

of allowing us to search independently for the regularisation parameters αC and αϕ.

2.2 Fracture data assimilation through time

As previously noted, the field ϕ contains contributions from sources that cannot easily be distinguished by the spatial scales

on which they vary. However, it seems likely that the contribution to ice softness due to fracturing varies on a shorter temporal170

scale than any other contribution. Hence, while attributing ice softness to the presence of fractures requires a large number of

assumptions, we can reasonably attribute changes in ice softness required by the model to fit observations over monthly-annual

timescales to the fracturing or ‘healing’ of ice.

Given a series of timesteps with times {ti|i = 1, ...,n}, separated by ∆t (e.g. one month), we solve the following inverse175

problem for the control parameters (Ci,ϕi) at each timestep:

(Ci,ϕi) = argmin
Ci,ϕi

{Jm(ui,uoi) +αCJC(Ci) +αϕJϕ(ϕi) +
αt

∆t
Jt(ϕi,ϕi−1)}, (8)

where we have introduced the regularisation through time Jt(ϕi,ϕi−1) relating the softness in the current timestep to that of

the previous timestep. Though not particularly sophisticated, a method such as described by Eq. (8) is immediately amenable

to the introduction of fracture data in the form of Jt. Previous studies (Hogg et al., 2017; Selley et al., 2021) have used such a180

method with Jt =
∫
Ω
|ϕi−ϕi−1|2dΩ and we modify this only slightly here. We propose the regularisation function:

Jt =
∫

Ω

(1− |fi− fi−1|)× |ϕi−ϕi−1|2dΩ (9)

where fi is the map showing the locations of fractures over the domain at time ti. Hence, changes to the softness field are

preferred in regions in which the fracture pattern has changed, with a strength that depends on the length of the timestep and

the regularisation parameter αt. For these problems, we also set αϕ = 0.185

We carry out such a procedure on Pine Island Glacier with 5 years of speed and fracture observations from December 2016

to December 2021, and timesteps of one month. This captures three calving events and the major disintegration of the southern

shear margin of the ice shelf, and that of the calving front of Piglet Glacier (Joughin et al., 2021; Surawy-Stepney et al.,
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2023b). For each month, we use the mean speeds measured over that month as our observed speeds, and median fracture map190

composites.

3 Results

3.1 Snapshot inverse problems

We begin with the results of fracture data assimilation applied to a snaphot inverse problem on Pine Island Ice Shelf. We

consider how using the data-informed regularisation alters the problem compared to a case of no regularisation, and the heuristic195

regularisation of eq. (5). We refer to optimisations in which ϕ is unregularised as ‘case 1’, those in which we apply heuristic

Tikhonov regularisation as ‘case 2’ and those in which we apply the data-informed regularisation given by eq. (7) as ‘case 3’.

We look at the misfits, the output control fields and changes to the problem conditioning.

3.1.1 Softness fields

The ϕ fields in each case are substantively different on Pine Island Glacier for this set of geometry and speed data (Fig. 2). This200

is true for both the grounded and floating ice. Firstly, in both cases 1 and 2 there are large deviations of ϕ from 1 far upstream

of the grounding line including substantial softening in the shear margins of even slow-flowing ice streams (Fig. 2 a, b). This

is completely absent in the solution to case 3 (Fig. 2 c). Given the lower misfits in these regions (Fig. 2 e, f) compared to case

3 (Fig. 2 g), it appears that the model finds it difficult to compensate for the velocity gradients at the margins of the tributary

ice streams by enhancing gradients in C where it is encouraged not to alter ϕ. In the large fractured region upstream of the205

grounding line (Fig. 1 a, b), the solution for case 3 shows higher amplitude deviations of ϕ from 1 than in cases 1 and 2.

The differences in ϕ between the different forms of regularisation are just as pronounced on the floating ice shelf. In cases

1 and 2, softnesses on the ice shelf are smooth and spread to large distances either side of the shear margins. In contrast, in

the solution to case 3, softness is concentrated in the shear margin with larger amplitude deviations of ϕ from 1 confined to a210

smaller area. A portion of the solution degeneracy for ϕ on Pine Island Glacier occurs because the central shelf moves almost

entirely by pure advection. In the absence of any significant strain rates, most solutions for ϕ in this region fit the data equally

well. The inclusion of an explicit prior appears to help with this by encouraging stiff ice on the central shelf.

The rift that propagated across the ice shelf at the time the speed data was collected caused a discontinuity in the data. The215

feature is much more clearly resolved in the solution to case 3 than case 2, and even case 1. Hence, it appears difficult for

the model to assign low values of ϕ to a region very local to the rift unless encouraged to do so. This is perhaps due to the

distributed influence of the ice at the terminus on the dynamics of the ice shelf as a whole (Joughin et al., 2021; Bevan et al.,

2023). On the floating ice, the misfit for case 3 is considerably better than case 2 (Fig. 2 e-f).

8
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Figure 2. Solutions to the inverse problem with three methods of regularisation. a-c) Stiffness fields for the unregularised, heuristically
regularised and data-informed inverse problems respectively. d-f) Misfits for the unregularised, heuristically regularised and data-informed
inverse problems respectively. Background images are the MODIS Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in
black) are according to Rignot et al. (2016).

3.1.2 The effect on problem conditioning220

A well conditioned problem damps the contribution of oscillatory, high frequency components of the input data, such as uncor-

related noise in the measured speed, while an ill-conditioned problem is highly sensitive to it. Bringing prior information into

the inverse problem has the potential to change the conditioning by enhancing gradients in previously flat regions of the cost

landscape. In order to test this change in conditioning, we investigated the impact of perturbations in the input velocity data on

9

https://doi.org/10.5194/egusphere-2024-2438
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.



a b c

d e f

Δ !
		(
𝑚
	𝑎
"
# )

0

+300

Δ$

0

0.15

Figure 3. Variation in the solutions for the three methods of regularisation. a-c) Standard deviation in the softness fields between 10 opti-
misations with Gaussian noise added to the speed data for the unregularised, heuristically regularised and data-informed inverse problems
respectively. d-f) Associated standard deviations in the modelled speed for the unregularised, heuristically regularised and data-informed
inverse problems respectively.

the spread of resulting ϕ and u fields.225

We performed 10 inverse problems with the addition of uncorrelated Gaussian noise to the input data for the case of data-

informed regularisation, heuristic regularisation and no regularisation. Noise was added with a mean of zero and standard

deviation of 10% of the local speed. In each case, we measured the cell-wise standard deviation over the 10 ϕ and u output

fields (Fig. 3).230

Unsurprisingly, the regularised problems show a smaller spread in the solutions for the control fields - suggesting improved

conditioning (Fig. 3 a-c). The spread of solutions for ϕ is confined in the case of the data-informed regularisation to the regions

of very low ξ, while in those regions, the standard deviations are of similar magnitude to the unregularised case. This is expected
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https://doi.org/10.5194/egusphere-2024-2438
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.



because in essence, the data-informed regularisation separates regions in which high-amplitude deviations of ϕ from from 1235

are penalised (where ξ → 1) from regions that are entirely unregularised. The heuristic regularisation, case 2, that is explicitly

devised to improve the problem conditioning indeed looks to result in the most well-conditioned problem on grounded ice.

However, this is not the case on the central ice shelf, where the degeneracy described above leads to a larger solution variance

than in the data-informed case. The spreads of speed (Fig. 3 d-f) reflect the spreads of the control fields.

3.2 Inverse problems through time240

We consider two instances of temporal regularisation of the type described in eq. (8): the ‘data-informed’ case:

Jt =
∫

Ω

(1− |fi− fi−1|)× |ϕi−ϕi−1|2dΩ and αϕ = 0, αt = 5× 106, (10)

and the ‘heuristic’ case:

Jt =
∫

Ω

|ϕi−ϕi−1|2dΩ and αϕ = 1.5× 109, αt = 104, (11)

equivalent to that used in Selley et al. (2021).245

Using fracture data in successive timesteps to weight the temporal regularisation has a significant effect on the softness

fields over the five years of observations compared with the simpler approach (Fig. 4 a, b). The data-informed case leads to

features of low ϕ which resemble crevasses starting to appear in the southern shear margins after ∼ 18 months (black dotted

arrow Fig. 4 b). Rifts that led to the calving of large icebergs in October 2018 and February 2020 are visible as highly linear250

features of soft ice in the solutions to the data-informed problem (black dashed arrows Fig. 4 b). These features are visible in

Fig. 4 a, though are less easily discernible as rifts. The softness fields in the two cases appear similar by May 2021, with that

of the heuristic regularisation looking essentially like a blurred out version of the data-informed case. Both show the southerly

migration of the seaward end of the southern shear margin through the time period, and, by 2021, a stripe of soft ice that

connects the shear margins of Pine Island and Piglet Ice Shelves. It is only clear in Fig. 4 b (black solid arrow) that this stripe255

of soft ice corresponds to a number of long, parallel rifts. Diffuse blobs of softness can be seen on the central ice shelf in Fig. 4

a (May 2021, grey arrow) which are not present in the data-informed case. As the simulation contains no thickness advection

and no accumulation rate is specified, it is possible that these, which are not present in the data-informed case, could be the

result of localised thinning. Otherwise they could once more be the result of under-determinedness. This latter possibility is

perhaps more likely given how agnostic the model is to the values of ϕ in the central trunk and that the gravitational forcing is260

not modified by a change in stiffness.

Throughout the simulation period, the misfits associated with each case are very similar, with generally slightly larger mean

misfits over the region in the data-informed case (Fig. 4 c, d). The exceptions to this are in the months in which calving
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Figure 4. The evolution of the stiffness on Pine Island Ice Shelf between June 2018 and May 2021 for heuristic (a) and data-informed
(b) regularisation. c) Mean misfit over the ice shelf for the two cases through time. d) Mean misfit over the ice shelf for the heuristically-
regularised problem. e) Timeseries of mean misfit over the ice shelf for the data-informed and heuristically-regularised problems. Background
images in a and b are the MODIS Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in black) are according to Rignot
et al. (2016).

events occur - where the misfit is generally elevated as the model struggles to deal with the sudden appearance of large velocity265

gradients near the glacier terminus. At these times, the data-informed case does slightly better as the observations of rift growth

nudge the model towards the right pattern of softening near the terminus.
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4 Discussion

The problem of accurately estimating ice softness and basal slip fields from observations of ice speed is dogged by the spector

of ill-posedness. In an effort to improve this, we have presented two simple ways of assimilating fracture data into the inverse270

problem for a marine-terminating ice stream, as a way of providing the problem with genuine prior information. In a number

of ways, the effect of these methods, their success and what we learn from the experiments carried out in this study differ for

grounded and floating ice, so we first review these separately.

4.1 Grounded ice

As discussed above, the presence and evolution of fractures is only a contributing factor in determining ϕ, and the efficacy of275

the methods presented here depend on the extent to which we apportion softness to fracturing. We have seen in our example

of snapshot problems over Pine Island that softness fields on grounded ice found using the data-informed regularisation vary

considerably within contiguous areas of observed fracture (Fig. 2 c). If fracturing in these regions were truly the main contrib-

utor to ice softness, one would expect ϕ to be uniformly less than 1 this region - visually mimicking the uniform coverage of

the region by surface fractures (Fig. 1 a1). This suggests that here at least, the dominant contribution to our uncertainty in the280

material properties of the ice softness is not the unaccounted for presence of fractures, but some combination of other factors.

This is consistent with the fact that prescribing the data-informed regularisation on the grounded ice dampens the softness away

from these regions of fracture but does not change the shape of the solution greatly within them. This suggests that observations

of surface fracture on grounded ice have limited use in reducing the degeneracy between solutions caused by overlapping C

and ϕ fields, directly answering in the negative a suggestion made in Surawy-Stepney et al. (2023b).285

In addition, this constitutes a certain amount of evidence that this kind of grounded surface crevasse has a limited impact

on ice dynamics, despite the very low basal frictions we find in this part of Pine Island Glacier (Joughin et al., 2009) and the

enhanced membrane stresses required to compensate for this. This is consistent with previous assumptions that the depths of

these crevasses is only a small fraction of the ice thickness (Benn and Evans, 2014).290

Finally, it is worth noting that the softness fields on grounded ice (and also substantially on floating ice) found using heuristic

regularisation (Fig. 2 b) mimic many of the features of the strain rate map in Fig. 1 c. This suggests greater potential for this

data to be used to constrain the softness and that the prior we are currently using doesn’t fully capture our assumption that

softness should be related to shear (as that of Ranganathan et al. (2021) might, for example). A better prior might, for example,295

be to assume softness is linear in princpal strain rate. Future work should look to investigate different priors that better utilise

the strain rate data at our disposal.
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4.2 Floating ice

We have shown in both snapshot inverse problems and time-dependent inverse problems that the softness fields over floating

ice, resulting from use of our proposed regularisation methods, appear more like what we would expect if the softening were300

due to fracturing/shearing compared to more heuristic regularisation methods. When encouraged to do so, the model is happy

to concentrate softness in regions of observed fracture or high shear without suffering a worse misfit with the prescribed speed

data. It is tempting to think that this results in softness fields that appear more likely to accurately represent the material

properties of the ice shelf at the time the ice speed data was collected. Unfortunately, the ill-posedness of the problem means

that methods of evaluating whether this is true do not extend far beyond a visual assessment of whether the solutions ‘look305

right’ in the context of our priors, however this is a technique that should not be ignored! Though the correlation between

rheological parameters, inferred in a manner similar to that described in the heuristic regularisation case here, and crevasse

data has previously been shown to be limited (Gerli et al., 2024), we have shown in both the snapshot and time-dependent

cases that there are solutions to the inverse problem with at least equally good misfit in which this correlation is undoubtedly

strong.310

4.2.1 When would we use these methods?

The example we have chosen for the snapshot inverse problem, where a large rift can be seen on the central trunk of Pine Island

Ice Shelf along with an associated discontinuity in uo, is somewhat contrived to show the differences between the regularisation

methods discussed. It is unlikely that a model-user looking to initialise a century-long simulation would choose such data, and

would do better to choose data from a time more representative of a typical state of the glacier. Even if a typical state does315

include fractures and speed discontinuities, without a method of sensibly evolving the softness field through time, it would be

reasonable to initialise a model with a smoother solution for (C,ϕ) that might be less representative of the true initial state, but

is also less specific to it. Hence, softness fields found with the use of fracture data and regularisation procedures we propose

here are more likely to be useful in diagnostic simulations, or transient simulations with timescales on the order of years.

320

A major motivation for investigating these methods of constraining the inverse problem is that the time-varying solutions

have potential use in evaluating models that take a continuum damage mechanics approach to parameterising the effect of

fractures on large-scale ice rheology (e.g. Sun et al. (2017)). In particular, the softness fields shown in Fig. 4 b could be used to

constrain the way in which a scalar damage field, that acts isotropically on the rheology, is evolved by such a model (Borstad

et al., 2016).325

4.3 A note on L-curves

Fig. 5 shows, on a logarithmic scale, solution and misfit norms at convergence for a number of possible regularisation pa-

rameters αϕ for eq. (7), known as an L-curve (Hansen and O’Leary, 1993). Intuition suggests that one should choose the
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choices of the regularisation parameter αϕ.

regularisation parameter at the corner of the L-curve, which balances the regularisation and misfit components of the cost330

function. This can be shown in some circumstances to be the point at which contributions to the solution are balanced between

errors in the data and errors in the regularisation (Hansen, 2000). In our case this is αϕ ≈ 5× 108. However, this choice of

parameter results in solutions with fewer crevasse features than we expect to see - such as the rift near the ice shelf terminus

(Fig. 4 b). Hence, in practise, we choose a parameter an order of magnitude smaller, where we are satisfied with the misfit

(staying on the ‘vertical branch’ of the L-curve) but can see some of the detail we believe should be present in the softness335

field. Though very useful, L-curve analysis can be a blunt instrument and should always be used alongside other heuristics

such as visual assessment of the control fields in deciding the regularisation parameter. Its use is based on the assertion that the

preferred solution to an inverse problem is one that contains the least extraneous structure (Wolovick et al., 2023). However,

for structure to be deemed ‘extraneous’, a cost function that encodes a good deal of your prior knowledge is required, which

is not often available. This tendency for L-curve analysis to produce over-regularised solutions has been noted previously (e.g.340

Chamorro-Servent et al. (2019); Milovic et al. (2021), and notably in Recinos et al. (2023)).

5 Conclusions

We have introduced two ways in which fracture location data, and in one case strain rate data, can be used as prior information

to inform the estimation of basal slip and ice softness fields from observations of ice speed. Applications of these methods to

snapshot and time-dependent inverse problems over Pine Island Glacier show that little is gained in their use compared to the345
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use of popular heuristic regularisation methods when considering the solutions on grounded ice. This suggests that a failure

to account for the presence fracturing does not dominate our uncertainties in the material properties of grounded ice. This is

not true, however, on floating ice, where we see the resolution of fracture features in the static and time-varying softness fields

without impacting the misfit, and a reduction in solution degeneracy in regions of low strain rates. This suggests that such

methods can be used to provide us with softness fields that better represent the true material properties of the ice shelf at the350

time of the acquisition of the ice speed data. Such softness fields have potential use in diagnostic modelling, and in constraining

models seeking to evolve softness fields in time.
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Appendix A: Deriving a regularisation term from a prior distribution

Consider a version of the inverse problem in which the C field is known. Then the forward model solves u(x) = f(ϕ(x)). We can replace470

this with the stochastic model:

U = f(Φ)+ E (A1)

where U , Φ and E are random variables representing modelled speed, the stiffness ϕ and an additive error respectively (Calvetti and Somer-

salo, 2018). Let the error be governed by the probability distribution pE . Eq. (A1) then implies:

pU|Φ(u|ϕ) = pE(u− f(ϕ)) (A2)475

and Bayes’ rule gives:

pΦ|U (ϕ|u)∝ pE(u− f(ϕ))pΦ(ϕ), (A3)

where pΦ(ϕ) constitutes our prior for the distribution of Φ.

We assume that as ξ → 1, ϕ→ 1+ ϵ, where ϵ∼N (0,γ2). We can encode this as the following relation for Φ:480

ξ(1−Φ) = γW (A4)

where γ controls how much we allow Φ to vary, and W is a Gaussian random field with zero mean and identity covariance. Then

pΦ(ϕ)∝ exp(− 1

2γ2

∫
Ω

(1−ϕ)2ξ2 dΩ). (A5)

Assuming Gaussian error distribution with zero mean and isotropic covariance σ2I, gives

pE(u− f(ϕ))∝ exp(− 1

2σ2

∫
Ω

(u− f(ϕ))2 dΩ) (A6)485

Hence, from eq. (A3):

pΦ|U (ϕ|u)∝ exp
{
− 1

2σ2

(∫
Ω

(u− f(ϕ))2 dΩ +
σ2

γ2

∫
Ω

(1−ϕ)2ξ dΩ)
)}

, (A7)

making the assumption that ξ2 ≈ ξ.

A maximum a posteriori estimate for ϕ(x) given u(x) is, therefore, the solution to:

ϕMAP = argmin
{∫

Ω

(u− f(ϕ))2 dΩ +
σ2

γ2

∫
Ω

(1−ϕ)2ξ dΩ
}
, (A8)490
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i.e. a minimisation over our original cost function with:

αϕ =
σ2

γ2
, Jϕ(ϕ) =

∫
Ω

(1−ϕ)2ξ dΩ. (A9)

A reasonable prior might be to allow ϕ to vary from 1 away from fractured areas (ξ → 1) with a standard deviation of 0.1, corresponding

to γ2 = 0.01. Taking σ to be of order 100 m/y, this gives us a value of αϕ ∼ 106 for the coefficient of the ϕ regularisation term in our initial

cost function. Note, we have assumed in this analysis a spatially uniform estimate of uncertainty in our velocity observations. If a more495

reliable estimate of this uncertainty existed, it could be included as a modification to ξ.

Appendix B: Derivatives of Jϕ

The inverse problem is solved using a nonlinear conjugate gradient method. This requires the projection of the Jacobian ∇J (ϕ) along the

direction of the residual u−uo.500

Let ϕ = ϕ0e
q so that ϕ > 0.

Define the stiffness part of the cost function as:

Jϕ =

∫
Ω

(1−ϕ)2ξdΩ (B1)505

The Gâteaux differential is defined by the projection of the functional gradient onto the direction defined by a perturbation δq:

⟨δJϕ, δq⟩= lim
ϵ→0+

Jϕ(q + ϵδq)−Jϕ(q)

ϵ
, (B2)

where the binary operator ⟨·, ·⟩ is the inner product over the space of functions. In our case:

⟨δJϕ, δq⟩=−
∫
Ω

δqϕ(1−ϕ)ξdΩ (B3)

and we interpret ϕ(1−ϕ)ξ as the functional gradient. This is calculated in each iteration of the non-linear conjugate gradient method, and is510

used to update the value of q.
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