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Abstract. Numerical models used to simulate the evolution of the Antarctic Ice Sheet require the specification of basal bound-

ary conditions on stress and local deviations in the assumed material properties of the ice. In general, scalar fields representing

::::::
relevant

::
to

:
these unknown components of the system are found by solving an inverse problem given observations of model state

variables - typically ice flow speed. However, these optimisation problems are ill-posed
::
ill

:::::
posed, resulting in degenerate solu-

tions and poor conditioning. In this study, we propose the use of fracture and strain rate data to provide prior information to the5

inverse problem, in an effort to better constrain the inferred ice softness compared to more heuristic regularisation techniques.

We use Pine Island Glacier as a case study and consider both a ‘snapshot ’
:::::::
snapshot

:
inverse problem in which ice softness

and basal slip parameters are sought simultaneously over the glacier as a whole, and a ‘time-dependent ’ problem in which

ice softness alone is sought over the floating ice shelf at regular intervals. In the first case, we construct a prior encoding the

assumption that the ice softness will be close to our initial guess except from where we see fractures or high shear strain rates10

in satellite data. We investigate the solutions and conditioning of this data-informed inverse problem versus alternatives. In the

:::
The

:
second proposed method , we make

:::::
makes the assumption that changes to ice softness occurring on monthly-to-annual

timescales are
:::
will

::
be

:
dominated by the fracturing of ice. We show that these methods

:::
can result in softness fields on floating

ice that visually mimic fracture patterns without significantly affecting the quality of the solution misfit, perhaps leading to

greater confidence in the softness fields as a representation of the true material properties of the ice shelf.15

1 Introduction

Large-scale ice sheet models commonly treat ice within the paradigm of continuum mechanics - as a shear thinning viscous

fluid; an approach that has been successful in modelling the behaviour of large ice masses relatively cheaply (e.g. Seroussi et al.

(2020)). Within this framework, the flow of the ice can be accounted for in large part by a balance between gravity, viscous

stress due to internal deformation and frictional stress at ice/bedrock interfaces. To close the system and allow the model to20

solve for ice speed, equations relating viscous and frictional stresses to ice speed are specified, informed by laboratory data

and physical arguments.
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The former ‘constitutive relation’ very often takes the form of Glen’s flow law:

τij = 2ηε̇ij , where η =
1

2
A(T )−

1
n ϵ

1
n−1 (1)25

where τij is the deviatoric stress tensor, ε̇ij is the strain rate tensor, ϵ is its second invariant, η is the strain-rate-dependent

effective ice viscosity ,
::
and

:
A(T ) is a temperature-dependent rate factor

:
.
::::
The

:::::
value

::
of

:::
the

::::::::
exponent

::
n

::
is

:::::::::
dependent

:::
on

:::
the

::::::::
particular

::::::::::
mechanisms

:::
by

:::::
which

:::::
creep

::::::
occurs

:::::
within

:::
the

:::
ice

::::
and

::::::
various

:::::::::
properties

::
of

:::
the

::::::
crystal

:::::
grains

::::
(e.g.

:::::::::::::
Haefeli (1961)

:
),

:::
and

:::::
takes

:
a
:::::
value

:::::::
between

::
1 and n≈ 3.

:
4
:::

in
::::
most

:::::
cases.

::::::
(Here,

:::
we

::::
take

:::
the

:::::::
common

::::::::
reference

:::::
value

::
of
:::::::
n= 3.) It is possible

to treat A(T ) and/or n as free parameters that can be fitted to observations, given the uncertainties involved in both and the30

different physical mechanisms that distinguish them. Here, we consider the approach in which
:::::::::
Frequently,

::::::::
however,

:
these are

prescribed a priori and a ‘stiffness ’
:
a
:::::
priori

::::
and

:
a
:::::::
stiffness

:
field ϕ(x) , that scales the effective ice viscosity η, is defined over

the domain to account for unknown deviations in the expected ice rheology.
::
As

:::::
such,

:::
eq.

:::
(1)

:::::::
becomes

::::::::::::
τij = 2ϕηε̇ij . Used in

this way, ϕ approximates the effect of uncertainties in the temperature and thickness fields, regional changes in the temperature

dependence of Glen’s flow law, deviations from the assumed isotropy of creep deformation and, of particular interest to this35

study, fractures in the ice at different lengthscales.
:::::
Often,

:
a
::::::::

softness
::::
field

::
φ

::
is

:::::::
defined

::
in

:::::::
relation

::
to

:::
the

::::::::
stiffness

::::
field

:::
by

::::::::::
φ= (1−ϕ).

The relation between frictional stress and basal sliding speed is known as a ‘sliding law’
::::::
sliding

:::
law, and has a functional

form that depends on a number of often poorly constrained factors such as the expected amount of deformation
::
of

:::
ice around

topographic features in the bed, sliding over smooth bedrock, and shearing of the sub-glacial till. A single sliding law is often40

combined with a spatially varying ‘basal slip ’
::::
basal

:::
slip

:
parameter C(x) to approximate this stress:

τ b = Cf(u). (2)

Taken together
:::::
Given

:
a
:::::::::::
consititutive

::::::
relation

::::
and

::::::
sliding

:::
law

:::::::
defined

::
as

:::::
above, the equations considered here take the form

of the shallow-stream approximation to the Cauchy momentum equations:

∇ · [ϕhη̄(∇u+(∇u)⊤ +2(∇ ·u)I)]−Cf(u)− ρigh∇s= 0,45

where u= (ux,uy)
⊤ is the horizontal velocity, η̄ is the vertically-integrated effective ice viscosity, ρi is the density of ice, h

is the ice thickness and s is the ice surface. In this study we use a linear sliding law f(u) = u for ease of computing adjoint

sensitivities during the inverse problem. In this article, we also refer to the “softness” field φ - related to the stiffness by

φ= (1−ϕ).

In order to
:::::
solved

:::
by

::::
most

::::::::::
large-scale

:::
ice

:::::
sheet

::::::
models

:::::::
contain

::
a

:::::::::
component

:::::::::
dependent

:::
on

::
ϕ
:::
(or

::
a
::::::
related

:::::
scalar

:::::
field50

:::::::::
performing

:::
an

::::::::
equivalent

:::::
role)

::::
that

::::::::
represents

:::::::
viscous

::::::
stress,

:
a
::::::::::
component

:::::::::
dependent

::
on

:::
C

:::
that

:::::::::
represents

::::::::
frictional

::::::
stress,

:::
and

:
a
::::::::::
component

::::::::::
representing

:::::::::::
gravitational

:::::::
driving.

:::::::::
Therefore,

:::
for

::
an

:::
ice

:::::
sheet

:::::
model

::
to
:

simulate real ice masses accurately,

the fields C and ϕ are
::::
these

::::::
scalar

:::::
fields

:::::
must

::
be

:::::::::::::::
well-constrained.

::
In

::::::::
practice,

::::
they

:::
are

::::::::
typically

:
inferred simultaneously
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from observations of ice speed using inverse methods - a suite of techniques for inferring model control parameters from ob-

served state variables (MacAyeal, 1992) - (e.g. Petra et al. (2012); Arthern et al. (2015); Cornford et al. (2015); Gudmundsson55

et al. (2019)). Unfortunately, this inverse problem is
:::
Ice

:::::::
velocity

::::
data,

:::::
rather

:::::
than

:::
ice

:::::
speed

::::
data,

::
is
::::
also

::::::
widely

::::
used

:::
in

:::
the

:::::::::
community,

::::
and

:::::
some

:::::::
methods

::
of

::::::::::
establishing

:::::::
current

:::::
values

:::
for

::
C
::::

and
::
ϕ

:::
also

::::::::::
incorporate

:::::
rates

::
of

::::::::
thickness

::::::
change

::::
into

:::
the

::::::
inverse

:::::::
problem

::::
(e.g.

::::::::::::::::::::::::::::::::::::
Larour et al. (2014); Goldberg et al. (2015))

:::::::
(though

::::
this

:::::
relies

::
on

::::
the

:::::
model

:::::::
having

::
an

::::::::::::
automatically

:::::::::::
differentiable

:::::::
forward

::::::
solver).

::::
We

::::
don’t

::::::::
explicitly

::::::::
consider

:::::
these

::::
latter

:::::
kinds

:::
of

::::::::
‘transient’

:::::::
inverse

:::::::
problem

::::
here,

:::::::
though

:::
the

::::::::
arguments

:::
we

::::::
present

::::
still

:::::
apply.60

:::::::::
Regardless

::
of

:::
its

::::::
precise

::::::::::::::
implementation,

:::
this

:::::::
inverse

:::::::
problem

::
is
:
ill-posed: the two fields (C,ϕ) are calculated from the

single observed field u (the problem is “underdetermined”)and the results are
:
,
:::::::
resulting

:::
in

:::::::
solutions

::::
that

:::
are

:::::::::
degenerate

::::
and

highly dependent on noise in the input data (the problem, at least in its discrete form, is “ill-conditioned”
::::::::::::
ill-conditioned). To

obtain reliable control fields, it is beneficial to replace this ill-posed problem by
:::
with

:
a nearby well-posed one before solving65

it. The problem is sometimes simplified by solving for C only on grounded ice, and ϕ on floating ice, thereby separating the

two fields spatially
:::
and

:
removing a portion of the degeneracy that arises from the mixing of C and ϕ

::::
these

:::::
fields (e.g. Goldberg

et al. (2019)). However, though you would often expect C to be the dominant control on grounded ice speed, there is little

reason to be especially confident in the guess of ϕ= 1, and getting this wrong can
:::
this

:::
may

::::
well

:::
not

:::
be

:::
true

::::::::::
everywhere

:::
and

:::
an

:::::::
incorrect

:::::
guess

:::
for

::
ϕ

:::::
could have consequences for transient simulations. Another approach , and one that shall be taken here,70

is to regularise the solution by providing additional constraints on the control fields. Such a regularised inverse problem takes

the
::::::
general form of the following optimisation:

(C,ϕ) = argmin
C,ϕ

{Jm(u,uo)+αCJC(C)+αϕJϕ(ϕ)} , s.t. G(u,C,ϕ) = 0 (3)

where Jm(u,uo) = ∥u−uo∥22 :::::::::
Jm(u,uo):is a misfit function

::::::::
functional

:
calculating the distance of the modelled ice speed

:::::
model

::::::
output u from the observed ice speed

:::
data uo :::::

(often
:::
ice

::::::
speed), JC and Jϕ are regularisation functions

:::::
terms for the75

C and ϕ fields, with strengths controlled by the parameters αC and αϕ respectively, and G(u,C,ϕ) = 0 are the momentum

balance equations (5)
:::::
solved

::
in

:::
the

:::::::
model’s

:::::::
forward

:::::::
problem.

A popular approach, aimed at improving the conditioning of the problem by suppressing the amplification of high-frequency

components of the input data, is to use Tikhonov regularisation in a form that favours either low spatial frequency or low80

amplitude components of the solution (e.g. Morlighem et al. (2013); Habermann et al. (2013); Brinkerhoff and Johnson (2013);

Cornford et al. (2015)), e.g.:

αϕJϕ(ϕ) = αϕ

∫
Ω

|∇ϕ|2 d2Ω
:
. (4)
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However, this kind of regularisation is entirely heuristic and, when it comes to distinguishing C and ϕ, relies on assumed

differences in the lengthscales over which changes in the control fields can influence strain rates. Generally, in regions without85

significant shear, these lengthscales are not easily distinguished, and degeneracies between solutions for C and ϕ proliferate.

Additional difficulties arise when a control field contains distinct contributions with different spatial frequencies. For example,

uncertainty in englacial temperature can vary on the scales of long-term atmospheric or geothermal heat sources, or over the

width of a shear margin. Often, an imperfect but acceptable lengthscale is found by searching parameter space informed by

heuristics such as L-curve analysis (Hansen and O’Leary, 1993; Hansen, 1994).90

The aim of this study is to investigate whether the introduction of genuine prior information into the inverse problem can

result in substantively different solutions , and whether these solutions
:::::
results

:::
in

:::::::
solutions

::::
that

:
are more appealing than those

found using other, heuristic regularisation methods.

95

Previous studies have investigated instances in which softness fields found through solving inverse problems have mirrored

observed fracture features (Borstad et al., 2013; Surawy-Stepney et al., 2023a) - suggesting that the presence of fractures has

the potential to dominate ϕ. With recent advancements in observational methods for locating fractures in remote sensing data

(Lai et al., 2020; Izeboud and Lhermitte, 2023; Zhao et al., 2022; Surawy-Stepney et al., 2023b), we are moving towards reli-

able data that can be used to inform us at least about this specific component of the softness field. Ranganathan et al. (2021)100

showed previously that the use of strain rate data to weight the regularisation of C and ϕ has the potential to reduce mixing

between these control fields. The work presented here follows quite naturally from these results.

Here, we investigate two ways in which fracture and strain-rate observations can be used to inform the inverse problem

to replace or complement existing heuristic methods. The first is to use fracture maps (obtained from Sentinel-1 imagery -105

described in Surawy-Stepney et al. (2023b))
::::
maps

::
of

:::::::
surface

:::::::
fracture along with estimates of surface strain-rates to construct

a prior distribution for ϕ for use in snapshot inverse problems (single optimisations carried out for a set of geometry and

speed data collected at a specific instant in time). This prior simply says that we expect ϕ≈ 1 away from regions of observed

fracture, or where there are high shear strain rates (which can contribute the effects of enhanced anisotropy, shear heating and

microfracturing to ϕ). In practise, this is equivalent to a form of Tikhonov regularisation using a diagonal Tikhonov matrix110

with entries weighted away from where we expect soft ice.

We also
::::
Next,

:::
we investigate the use of timeseries of fracture maps in constraining the solutions to inverse problems carried

out over multiple timesteps
::
on

:::::::
floating

:::
ice.

:::
We

:::::
make

:::
the

::::::::::
assumption

:::
that

:::::::
softness

:::::
fields

::::::
should

::::
vary

::
on

::::
long

:::::::::
timescales

::::::
except

::::
from

:::::
where

:::
we

:::
see

:::::::
changes

::
to

::
the

::::::
pattern

:::
of

::::::
fracture. The use of fracture maps as a prior in the snapshot inverse problems makes

an assumption about the relative contributions of different uncertainties to ϕ. For example, we have to have a certain amount115

of trust in the 3D temperature field we use. A more easily justified belief is that changes to ϕ on monthly-to-annual timescales

are dominated by the fracturing of ice, as other contributions to ϕ are likely to vary on significantly longer timsescales. With

this in mind, we initialise the inverse problem with heuristic regularisation, before imposing a regularisation that penalises the

4



changes to ϕ except where we have seen the evolution of fractures in the observational data. We show, with this method
::::
these

:::::::
methods, that one can generate softness fields that mimic, in certain ways, the changing fracture patterns on the Pine Island Ice120

Shelf between 2016 and 2021, without substantially affecting the misfit of the problem
:::::::
solution

:::::
misfit. This may have potential

uses in constraining models that aim to evolve softness fields in response to englacial stresses.

2 Methods

The simulations presented in this article were performed using the BISICLES ice sheet model (Cornford et al., 2013). This is an

adaptive mesh, finite volume model which we choose here to solve discretized versions of the two-dimensional shallow-stream125

equations(5).
:
:

∇ · [ϕhη̄(∇u+(∇u)⊤ +2(∇ ·u)I)]−Cf(u)− ρigh∇s= 0,
::::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

:::::
where

::::::::::::
u= (ux,uy)

⊤
::
is

:::
the

:::::::::
horizontal

:::::::
velocity,

::̄
η

::
is

:::
the

::::::::::::::::
vertically-integrated

::::::::
effective

:::
ice

::::::::
viscosity,

::
ρi::

is
:::
the

::::::
density

:::
of

:::
ice,

::
h

:
is
:::
the

:::
ice

::::::::
thickness

::::
and

:
s
::
is
:::
the

:::
ice

:::::::
surface.

::
In

::::
this

:::::
study

::
we

::::
use

:
a
:::::
linear

::::::
sliding

::::
law

::::::::
f(u) = u

:::
for

::::
ease

::
of

::::::::::
computing

::::::
adjoint

:::::::::
sensitivities

::::::
during

:::
the

::::::
inverse

::::::::
problem.130

::::
Each

::::::
inverse

:::::::
problem

:::
we

:::::::
consider

::
in

:::
this

::::::
article

:
is
::
of

:::
the

::::
form

::
of

:::
eq.

:::
(3),

::::
with

::
a

:::::
misfit

:::::::
funtional

::
of

:::
the

::::
form

::::::::::::::::::::
Jm(u,uo) = ∥u−uo∥22.

:::
The

::::::
inverse

::::::::
problems

:::::
differ

::::::
solely

::
in

:::
the

::::
form

::
of

:::
the

::::::::::::
regularisation

:::::
terms

:::
Jϕ.

:::
We

:::::
solve

::::
each

::
in
::::::::::
BISICLES

:::::
using

:
a
:::::::::
non-linear

::::::::
conjugate

:::::::
gradient

::::::
method

:::::::::::::::::::
(Cornford et al., 2015).

135

Each simulation is carried out over Pine Island Glacier
::::
(PIG)

:
in the Amundsen Sea Sector of West Antarctica with a domain

encompassing the whole present-day drainage basin (Zwally et al., 2012). This region was chosen as it represents a potentially

strong correspondence between fracturing and ice softness, given the abundant crevasses in the shear margins, upstream of

the grounding line and the regular formation of rifts near the terminus, as well as the established dynamic impact of some of

this fracturing (Joughin et al., 2021; Sun and Gudmundsson, 2023). Across the rest of Antarctica, we expect the link between140

the dynamics of ice and the extent of fracturing to be weaker in general. We use a form of the rate factor A(T ) described

in Cuffey and Paterson (2010), with an internal energy field generated using a 100 000 year calculation in which surface

temperature, thickness and velocity are held at present day values and the combined ice temperature and moisture fraction

field E = CT +Lw evolves toward equilibrium. We used
:
a
:
geometry defined by BedMachine-v3 (Morlighem, 2022), with

prescribed
:::::::::::
time-evolving

:
calving front positions extracted from Sentinel-1 backscatter images. Each simulation used velocity145

and fracture data from within a five-year period between November 2016 and November 2021. We used 200 m resolution,

monthly-averaged ice velocity observations made using feature tracking applied to Sentinel-1 image pairs (Wuite et al., 2021)

(https://cryoportal.enveo.at/data/) as the input data to the cost function and to estimate shear strain rates.Crevasse data was
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:::::::
Crevasse

::::
data

:::::
were generated according to the methods described in Surawy-Stepney et al. (2023b). The inverse problem150

we consider at each stage takes the form of eq. (3) and is solved in BISICLES using anon-linear conjugate gradient method

(Cornford et al., 2015).
::::
This

:::::::
involves

:::
the

:::::::::
application

::
of

:::::::::::::::::
deep-learning-based

:::
and

:::::
other

::::::::
computer

:::::
vision

:::::::::
techniques

::
to

::::::::
synthetic

:::::::
aperture

::::
radar

::::::
(SAR)

:::::::::
backscatter

:::::::
images

::::
from

:::
the

:::::::::
Sentinel-1

:::::::
satellite

:::::::
clusters,

::
at

::::
50 m

::::::
spatial

:::::::::
resolution.

::::
This

::::::::
produces

:::::
maps

:::::::
showing

:::
the

:::::::
locations

::
at
::::::
which

:::
the

::::::
surface

::::::::::
expressions

::
of

::::::::
crevasses

:::
and

::::
rifts

:::
are

::::::
visible

::
in

:::
the

::::
SAR

::::
data

:::
and

:::::::
include

::::::::
crevasses

::
on

:::::::
floating

:::
and

:::::::::
grounded

:::
ice.

:::
Of

::::::::
particular

:::::::
interest

::
to

::::
this

:::::
study

:::
are

::::
rifts

::
on

:::
the

:::::
Pine

:::::
Island

:::
ice

:::::
shelf,

::::::::
fractures

::
in

:::
its

:::::
shear155

:::::::
margins,

::::
and

:::
the

::::
large

:::::
field

::
of

::::::::
grounded

::::::::
crevasses

:::::::::
extending

:::::::::
∼ 100 km

::::::::
upstream

::
of

:::
the

:::::::::
grounding

::::
line

:::::
(Fig.

:
1
:::
a).

:::
We

::::
use

::::::::
composite

:::::::
fracture

::::
maps

::::
that

:::::::
combine

::::
data

::::
from

::
a

:::::
month

::
of

::::
SAR

::::::::::
backscatter

::::::
images,

::::::
taking

:::
into

:::::::
account

:::
the

:::::::
differing

::::::::
visibility

::
of

::::::::
crevasses

::::::
imaged

:::::
from

:::::::
different

::::::
angles.

::::
The

:::::::
presence

:::
of

::::::::
obliquely

::::::::::
overlapping

:::::::::
Sentinel-1

::::::
frames

:
is
:::::::

another
::::::
reason

:::
for

:::
the

:::::
choice

::
of

::::
PIG

::
as

:::
the

:::::::
location

:::
for

:::
this

::::::
study.

2.1 Fracture data assimilation in snapshot inverse problems160

The snapshot problem we consider is the joint estimation of C and ϕ over Pine Island Glacier in May 2019. We use mean

velocities
::::
2019

:::::
from

::::
mean

:::
ice

::::::
speeds

:
over the monthand median composite fracture maps.

To construct a prior
:::
The

::::
prior

:::
we

::::::::
construct

:
for ϕ , we

::::::
encodes

:::
the

::::::::::
assumption

::::
that

:::::
ϕ≈ 1

:::::
away

::::
from

:::::::
regions

::
of

::::::::
observed

::::::
fracture

::
or

::::::
where

::::
there

:::
are

::::
high

:::::
shear

:::::
strain

:::::
rates

::::::
(which

:::
can

:::::::::
contribute

:::
the

:::::
effects

:::
of

::::::::
enhanced

:::::::::
anisotropy,

:::::
shear

::::::
heating

::::
and165

:::::::::::::
microfracturing

::
to

:::
ϕ).

::
In

:::::::
practise,

::::
this

::
is

:::::::::
equivalent

::
to

::
a

::::
form

::
of
:::::::::

Tikhonov
:::::::::::
regularisation

:::::
using

::
a
::::::::
diagonal

::::::::
Tikhonov

::::::
matrix

::::
with

:::::
entries

::::::::
weighted

:::::
away

::::
from

::::::
where

::
we

::::::
expect

::::
soft

:::
ice.

::
To

::::::::
construct

::::
this,

:::
we

:
first form a field ξ which is

:::
goes

:::
to 0 in regions which have high shear strain rates

:::::::
(defined

::::::
below)

or where fractures have been observed and
:
to
:
1 elsewhere. For the surface fracture contribution to ξ, we use monthly mosaics170

of fracture maps covering grounded and floating ice - slightly smoothed
::
In

:::::::
essence,

:::
this

::::::
should

::::::
reflect

:::
our

:::::::::
confidence

::
in
::::

our

:::::
initial

:::::
guess

::
for

:::
the

:::
ice

::::::::
rheology.

:::
We

::::::::
construct

::
it

::
as:

:

ξ = min{ξfrac, ξshear}
:::::::::::::::::

(6)

:::::
where

::::
ξfrac::

is
:::
low

::::::
where

:::
we

:::
see

:::::::
fractures

::
in

:::::::
satellite

:::::::
imagery

:::::
(Fig.

:
1
:::
b),

:::
and

:::::
ξshear::

is
::::
low

:::::
where

:::
we

:::
see

::::
high

:::::
strain

::::
rates

:::::
(Fig.

:
1
:::
c).175

::
To

::::::::
construct

:::::
ξfrac,

:::
we

::::
first

:::::::
smooth

:::
the

:::::::
fracture

::::
map

:::
for

:::::
May

:::::
2019,

:::
by

::::::::::
convolving

::::
with

::
a
::::::::
Gaussian

::::::
kernel,

:
to produce

contiguous fracture fields on the grounded ice. We call these fracture maps fi. The fracture-map contribution to ξ is simply

ξfrac = 1− fi:::
this

:::::::
fracture

::::
map

::
f .

::::
Then

:::::::::::
ξfrac = 1− f

:
(Fig. 1 b). There are a few things to note in these fracture data of potential

relevance to the stress-balance of the glacier. Firstly, we see a large contiguous area of surface fractures extending upstream180

from the grounding line and widening to cover a region in which previous studies have suggested membrane stresses are impor-
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Figure 1. Contributions to the field ξ, representing, in our prior for the softness field, where we have observations of surface fracture or high
shear strain rates. a) SAR backscatter images over grounded and floating parts of Pine Island Glacier from May 2019 showing regions of
visible crevassing: 1) surface crevasses on the grounded ice, 2) two almost-connected rifts near the Pine Island calving front, 3) the heavily
‘damaged’ southern shear margin of Pine Island Ice Shelf. b) The component of ξ due to the observation of crevasse features, made from
fracture maps developed in Surawy-Stepney et al. (2023b). Black boxes anticlockwise from the top show the locations of the SAR images a1,
a2 and a3 respectively. c) The component of ξ due to the presence of high shear strain rates. Background images to b and c are the MODIS
Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in black) are according to Rignot et al. (2016).

tant in the stress-balance as basal stresses become small (Joughin et al., 2009) -
:::::::::
something

:::
we

:::
see

::
in

:::
our

::::
own

:::::::
solutions

:::
for

:::::
basal

::::
stress. SAR images of this region show uniform coverage by closely-spaced surface fractures, almost identical in appearance

(Fig. 1 a1).
:
If
::::
this

::
is

:::::
indeed

:::
an

:::
area

::
in

::::::
which

::::::::
membrane

:::::::
stresses

::::
form

::
a

::::::::
significant

::::::::::
component

::
of

:::
the

::::
stress

:::::::
balance,

:::
the

::::::::
presence

::
of

::::::::
crevasses

::::::
deeper

::::
than

:::
the

:::
firn

:::::
layer

:::::
could

::::
have

:::::::::::
implications

:::
for

:::
the

::::::::
dynamics

:::
by

::::::::
changing

:::
the

:::::::::
horizontal

::::::::::
transmission

:::
of185

:::::
stress.

:
Additionally, there is a rift (really, two rifts that are almost connected) near to the ice shelf terminus that led to the

calving of a large tabular iceberg in February 2020 (Fig. 1 a2) - part of a series of calving events regarded to have had signifi-

cant consequences for the dynamics of Pine Island Glacier (Joughin et al., 2021). Finally, there are a large number of fractures

on the southern shear margin of Pine Island Ice Shelf (Fig. 1 a3).
::::::
Viscous

:::::::::::
deformation

::
in

:::::
shear

:::::::
margins

:::
can

:::::::
account

:::
for

::
a

::::::::
significant

:::::::
portion

::
of

:::
the

:::::
stress

::::::
budget

::
of

:::
an

:::
ice

:::::
shelf,

::
so

:::::::
changes

::
to

:::
the

:::::::::
large-scale

::::::::
rheology

::
in

::::
such

::::::::
locations

::::
will

::::::::
influence190

::
the

::::::::::
distribution

::
of

:::::
stress

::::::::::
throughout

::
the

:::
ice

:::::
shelf.

We create
::::::
ξshear, the strain-rate contribution to ξ

:
, using the same velocity data that we use in our misfit function

::::::::
functional.

To estimate the derivatives ∂iuj , we differentiated the velocity components using a method described in Chartrand (2017),

using Tikhonov regularisation to promote smoothness (regularisation parameters were chosen with some trial-and-error, where195

7



preference was given to solutions in which regions of high shear varied smoothly over lengthscales comparable to the widths

of visible shear margins). Aligning the x-coordinate with local flow direction, we define regions of high shear to be those in

which |ε̇xy|> 0.1 a−1. This threshold is a bit discretionary, though it corresponds to stresses within the range 90− 320 kPa

of tensile strength suggested in Vaughan (1993) for a wide range of englacial temperatures. Then ξshear = max{0,1−10|ε̇xy|}
(Fig. 1 c) and ξ = min{ξfrac, ξshear} . This data picks out the shear margins of the glacier, as well as the velocity discontinuity200

associated with the rift close to the ice shelf calving front.
:::
(this

:::::
looks

::::
like

:
a
:::::::::::
combination

::
of

:::
Fig.

::
1
:
b
::::
and

::
c).

In the case of the snapshot inverse problem, the assumption we wish to encode in our prior for ϕ is that ϕ→ 1+ ϵ as
::
is

:::
that

::::::::::::
ϕ∼N (1,γ2)

::::::::
whenever ξ → 1, where ϵ∼N (0,γ2) and γ is a small number . Such a prior over the ϕ field

::::::
related

::
to

:::
the

::::::
strength

:::
of

:::
the

::::
prior.

::::
This

:
can be written:205

pΦ(ϕ)∝ exp(− 1

2γ2

∫
Ω

(1−ϕ)2ξ dΩ). (7)

Assuming the distribution of measurement errors is isotropic, with covariance σ2I, this translates to a regularisation term:

αϕ =
σ2

γ2
, Jϕ(ϕ) =

∫
Ω

(1−ϕ)2ξ dΩ. (8)

A greater exposition of this link between priors and regularisation parameters is given in appendix ??.

210

We solve the inverse problem for the regularisation term shown in (8), as well as the heuristic regularisation (4) and no

regularisation
::
To

:::::::::
understand

::::
how

:::
the

:::::::::::
introduction

::
of

::::
prior

::::::::::
information

::
in

:::
the

:::::
form

::
of

:::::::
crevasse

:::
and

:::::::::
strain-rate

::::
data

:::::::
changes

:::
the

:::::::
solutions

::
to
::::

the
::::::
inverse

::::::::
problem,

:::
we

:::::::
compare

:::
the

::::::::
solutions

::
to
:::::

those
::::::
found

:::::
using

:::::::::
alternative

:::::::::::
regularisation

::::::::
methods.

::::
For

:::
the

:::::::
snapshot

::::
case,

:::
we

:::::::
perform

:::::
three

::::::
inverse

::::::::
problems

::::
over

::
the

::::
full

:::::::
domain,

::::::
starting

::::
with

:::
the

:::::
same

:::::
initial

::::::
guesses

:::
for

::
C

::::
and

::
ϕ,

::::
with

::
the

:::::
same

::::::::::::
regularisation

::
on

:::
C,

::::
with

:::
the

::::::::
following

:::::::::::
regularisation

:::::
terms

:::
for

::
ϕ,

:::::::
defined

::
in

::::::::
reference

::
to

:::
eq.

:::
(3):215

1.
::
No

::::::::::::
regularisation:

::::::::::
Jϕ(ϕ) = 0.

2.
:::
The

::::::::::
widely-used

::::::::
heuristic

::::::::::::
regularisation:

:::::::::::::::::::
Jϕ(ϕ) =

∫
Ω
|∇ϕ|2 dΩ.

3.
:::
Our

::::::::::::
data-informed

::::::::::::
regularisation:

:::::::::::::::::::::
Jϕ(ϕ) =

∫
Ω
(1−ϕ)2ξ dΩ

:

:::
The

::::::
results

:::
are

:::::
shown

:::
in

::::::
section

:::
3.1.

220

The
::
We

::::
note

::::
that

:::
the initial guess for the control fields can have a large influence on the optimisation problem,

::
as
:::

the
::::::
closer

:
it
::
is

::
to

:::
the

:::::::
desired

:::::::
solution,

:::
the

:::::
more

:::::
likely

::
it

:
is
::::

that
:::
the

:::::::::::
optimisation

:::
will

::::::::
converge

:::::
close

::
to

::::
that

:::::::
solution. For the ϕ field, we

use an initial guess of 1 everywhere . For
:::
(this

::
is
:::::
likely

::
to
:::

be
::::::
within

::
an

:::::
order

::
of

:::::::::
magnitude

::
of

:::
the

::::::::
solution).

::::
The

:
C ,

:::
field

::::
can

::::
vary

::
by

::::::
orders

::
of

:::::::::
magnitude,

::
so

::
a
:::::::
uniform

:::::
initial

:::::
guess

:::::
would

:::
be

:
a
::::
poor

::::::
choice.

:::::::
Instead,

:
we take the view that the initial guess

8



should be the field required to reproduce the observations on grounded ice as closely as possible with a uniform ϕ= 1.
::::
This

::
is225

:::::::
reflective

:::
of

::
an

::::::::::
assumption

:::
that

:::::::::
grounded

::
ice

::::::
speed

:
is
:::::::

largely
::::::::
accounted

:::
for

:::
by

:::::::
balance

::::::::
between

::::::
gravity

:::
and

:::::::
friction

:::::::
(though

::
we

:::::
know

::::
this

::
to

::
be

:::::::
untrue). Hence, before carrying out the full optimisation including both control fields, we solve an inverse

problem for C with fixed ϕ= 1, matching speeds only on grounded ice and use this as the initial guess
::
for

:::
the

::::
joint

:::::::
inverse

:::::::
problem. This has the effect of considerably reducing the deviation of ϕ from 1 in the solution . This

:::
and

:
has the added bonus

of allowing us to search independently for the regularisation parameters αC and αϕ.
::
In

:::::::
general,

:::
we

:::::
carry

:::
out

:::
the

::::::
search

:::
for230

:::::::::::
regularisation

:::::::::
parameters

:::::
using

:::::::
L-curve

:::::::
analysis

:::::::::::::::::::::::
(Hansen and O’Leary, 1993)

:
,
::::::
though

::
we

::::::::
consider

:::
this

:
a
::::::::
heuristic

::::::
method

::::
that

:::::
should

:::
be

::::
used

::::::::
alongside

:::::
other

:::::::
methods

:::::
where

:::::::::
necessary

::::::
(section

:::::
4.3).

2.2 Fracture data assimilation through time

:::
The

:::
use

:::
of

::::::
fracture

:::::
maps

::
as

::
a
::::
prior

::
in
:::
the

::::::::
snapshot

::::::
inverse

::::::::
problems

::::::
makes

::
an

::::::::::
assumption

:::::
about

:::
the

::::::
relative

:::::::::::
contributions

:::
of235

:::::::
different

:::::::::::
uncertainties

::
to

::
ϕ.

::::
For

::::::::
example,

:::
we

::::
have

::
to

::::
have

::
a
::::::
certain

:::::::
amount

::
of

::::
trust

::
in
::::

the
:::
3D

::::::::::
temperature

::::
field

:::
we

::::
use.

:
As

previously noted, the field ϕ
::::
also contains contributions from sources that cannot easily be distinguished by the spatial scales

on which they vary. However, it seems likely that the contribution
:
of

:::::::::
fracturing to ice softness due to fracturing varies on a

shorter temporal scale than any other contribution. Hence, while attributing ice softness to the presence of fractures requires

a large number of assumptions, we can reasonably attribute changes in ice softness required by the model to fit observations240

over monthly-annual
::::
over

:::::::::::::::
monthly-to-annual

:
timescales to the fracturing or ‘healing ’ of ice.

Given a
::::::
healing

::
of

:::
ice,

::::
and

:::
the

::::::::
advection

::
of

::::::::
fractures.

:::::
With

:::
this

::
in

:::::
mind,

:::
we

::::::::
consider

:::
the

::::
case

::
of

::::::::
imposing

:
a
::::::::::::
regularisation

:::
that

::::::::
penalises

:::::::
changes

::
to

::
ϕ

::
in

:::::::::
successive

::::::::
timesteps,

::::::
except

:::::
where

:::
we

:::::
have

::::
seen

:::
the

::::::::
evolution

::
of

:::::::
fractures

::
in
:::

the
::::::::::::
observational

::::
data.

::::::::::
Concretely,

:::::
given

::
a series of timesteps with times {ti|i= 1, ...,n}, separated by ∆t (e.g. one month), we solve the

following inverse problem for the control parameters (Ci,ϕi) at each timestep:245

(Ci,ϕi) = argmin
Ci,ϕi

{Jm(ui,uoi)+αCJC(Ci)+
αϕ

∆t
::

Jϕ(ϕi)+
αt

∆t
Jt(ϕi,ϕi−1)}, (9)

where we have introduced the regularisation through time Jt(ϕi,ϕi−1) relating the softness
::::
This

::
is

:::::
much

:::
the

:::::
same

:::
as

:::
the

:::::::
snapshot

::::::
inverse

::::::::
problem

::::::
defined

:::
by

:::
eq.

:::
(3),

::::::
though

:::
our

::::::::::::
regularisation

::::
term

:::::::::::
Jϕ(ϕi,ϕi−1)::::

now
::::::::
includes

:::
the

:::::::
softness

:::::
fields in

the current timestep to that of the previous timestep
:::
and

:::::::
previous

:::::::::
timesteps. Though not particularly sophisticated, a method

such as described by Eq. (9) is immediately amenable to the introduction of fracture data in the form of Jt ::::::
through

:::
its250

:::::::
inclusion

:::
in

:::
the

:::::::::::
regularisation

:::::
term

:::
Jϕ. Previous studies (Hogg et al., 2017; Selley et al., 2021) have used such a method

with Jt =
∫
Ω
|ϕi −ϕi−1|2dΩ ::::::::::::::::::::

Jϕ =
∫
Ω
|ϕi −ϕi−1|2dΩ:

and we modify this only slightly here. We propose the regularisation

function:

J tϕ
:
=

∫
Ω

(1− |fi − fi−1|)× |ϕi −ϕi−1|2dΩ (10)

9



where fi is the map showing the locations of fractures over the domain at time ti. Hence, changes to the softness field are255

preferred in regions in which the fracture pattern has changed, with a strength that depends on the length of the timestep and

the regularisation parameter αt.For these problems, we also set αϕ = 0.

We carry out such a procedure on Pine Island Glacier with 5 years of speed and fracture observations from December 2016

to December 2021, and timesteps of one month. This captures three calving events and the major disintegration of the south-260

ern shear margin of the ice shelf, and that of the calving front of Piglet Glacier (Joughin et al., 2021; Surawy-Stepney et al.,

2023b). For each month, we use the mean speeds measured over that month as our observed speeds, and median fracture map

composites.

:::
We

:::::
carry

:::
out

::::
two

:::::
series

:::
of

::::::
inverse

:::::::::
problems,

:::::
both

::::::
starting

:::::
with

:::
the

:::::
same

::::::
initial

:::::
guess

:::
(ϕ

::::
field

::::::
found

:::::
using

::::::::
heuristic265

::::::::::::
regularisation).

::::
One

::
to

:::
act

::
as

:
a
::::::::
baseline,

:::
and

:::
the

:::::
other

::::::::
reflecting

:::
our

::::
new

::::::::
approach:

:

1.
:::::::
Heuristic

::::::::::::
regularisation:

:::::::::::::::::::::
Jϕ =

∫
Ω
|ϕi −ϕi−1|2dΩ.

:

2.
::::::::::::
Data-informed

::::::::::::
regularisation:

:::::::::::::::::::::::::::::::::::
Jϕ =

∫
Ω
(1− |fi − fi−1|)× |ϕi −ϕi−1|2dΩ:

:::
The

::::::
results

:::
for

::::
these

::::::::::
simulations

:::
are

::::::
shown

::
in

::::::
section

:::
3.2.

:

3 Results270

3.1 Snapshot inverse problems

We begin with the results of fracture data assimilation applied to a snaphot inverse problem on Pine Island Ice Shelf . We

::::::::
described

::
in

::::
Sect.

::::
2.1.

:::
As

:
a
:::::::::

reminder,
:::
we consider how using the data-informed regularisation alters the problem compared

to a case of no regularisation, and the heuristic regularisation of eq. (4). We
::
As

::
in

:::
the

:::
list

::::::
shown

::
in

:::::::
section

:::
2.1,

:::
we

:
refer to

optimisations in which ϕ is unregularised as ‘case 1’, those in which we apply heuristic Tikhonov regularisation as ‘case 2’275

and those in which we apply the data-informed regularisation given by eq. (8) as ‘case 3’. We look at the misfits, the output

control fields and changes to the problem conditioning.

3.1.1 Softness fields

The ϕ fields in each case are substantively different
::::
cases

::::
1-3

:::::
differ

:::::::::::
substantively

::::
from

::::
each

:::::
other

:
on Pine Island Glacier for

this set of geometry and speed data (Fig. 2). This is true for both the grounded and floating ice. Firstly, in both cases 1 and 2280

there are large deviations of ϕ from 1 far upstream of the grounding line including substantial softening in the shear margins

of even slow-flowing ice streams
::::
parts

::
of

:::
the

:::::::
glacier (Fig. 2 a, b). This is completely absent in the solution to case 3 (Fig. 2

c). Given the lower misfits in these regions (Fig. 2 e, f
::
d,

:
e) compared to case 3 (Fig. 2 g

:
f), it appears that the model finds it

difficult to compensate for the velocity gradients at the margins of the tributary ice streams by enhancing gradients in C where

10
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Figure 2. Solutions to the inverse problem with three methods of regularisation. a-c) Stiffness fields for the unregularised, heuristically
regularised and data-informed inverse problems respectively. d-f) Misfits for the unregularised, heuristically regularised and data-informed
inverse problems respectively. Background images are the MODIS Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in
black) are according to Rignot et al. (2016).

it is encouraged not to alter ϕ.
::::
This

:::::
misfit

::
is,

:::
on

:::::::
average,

:::::::::
1.75 ma−1

::::
and

:::::::::
2.03 ma−1

:::::
larger

:::
on

::::::::
grounded

::
ice

::
in
::::
case

::
3
::::
than

::::
case285

:
1
:::
and

::
2
::::::::::
respectively

::::
(Fig.

::
3

::
b).

:
In the large fractured region upstream of the grounding line (Fig. 1 a, b), the solution for case 3

shows higher amplitude deviations of ϕ from 1 than in cases 1 and 2.

The differences in ϕ between the different forms of regularisation are just as pronounced on the floating ice shelf. In cases

1 and 2, softnesses on the ice shelf are smooth and spread to large distances either side of the shear margins. In contrast, in290

the solution to case 3, softness is concentrated in the shear margin with larger amplitude deviations of ϕ from 1 confined to a

11
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Figure 3.
::::::::::
Distributions

::
of

:::::
misfits

::
for

:::
the

::::
three

::::::::::
regularisation

:::::::
methods

:::
for

::
the

:::::::
snapshot

:::::
inverse

:::::::
problem

::
for

::::::
floating

:::
(a)

:::
and

:::::::
grounded

:::
(b)

:::
ice.

::::
Boxes

:::::
show

:::::
median

:::
and

::::::::::
inter-quartile

:::::
range,

:::::::
whiskers

::::
show

:::
the

::::
10th

:::
and

:::
90th

::::::::
percentiles

::::
and

:::::
crosses

::::
show

:::::
mean

:::::
values.

:

smaller area. A portion of the solution degeneracy for ϕ on Pine Island Glacier occurs because the central shelf moves almost

entirely by pure advection. In the absence of any significant strain rates, most solutions for ϕ in this region fit the data equally

well. The inclusion of an explicit prior appears to help with this by encouraging stiff ice on the central shelf.

295

The rift that propagated across the ice shelf at the time the speed data was collected caused a discontinuity in the data.

The feature is much more clearly resolved in the solution to case 3 than case 2, and even case 1. Hence, it appears difficult

for the model to assign low values of ϕ to a region very local to the rift unless encouraged to do so. This is perhaps due to

the distributed influence of the ice at the terminus on the dynamics of the ice shelf as a whole (Joughin et al., 2021; Bevan

et al., 2023). On
::::
The

:::
idea

::::
that

:
a
:::::
good

:::::
misfit

:::::::
indicates

::
a

::::
good

:::::::
solution

::
is

:::
true

::::
only

:::
for

::::::::::::::
well-conditioned

:::::::::
problems,

:::::::
however,

::
it
::
is300

::::::::
interesting

:::
to

::::
note

::::
that,

::
on

:
the floating ice, the misfit for case 3 isconsiderably better than

:
,
::
on

:::::::
average,

::::::::::
8.38 ma−1

:::::
lower

::::
than

::
in case 2 (Fig. 2 e-f).

:
,
:::
Fig.

::::
3a).

:::
The

::::::
figure

:::
also

::::::
shows

:::
that

::::
this

:
is
::::::
largely

::::
due

::
to

:::
the

::::::::
reduction

::
of

:::
the

:::::::
extremal

::::::
misfits

:::::::::
associated

::::
with

::
the

::::::::
presence

::
of

::::::::
fractures

:::
and

:::::::::
associated

::::::::::::
discontinuities

::
in

:::
the

:::::
speed

:::::
field.

3.1.2 The effect on problem conditioning

A well conditioned problem damps the contribution of oscillatory, high frequency components of the input data, such as uncor-305

related noise in the measured speed, while an ill-conditioned problem is highly sensitive to it. Bringing prior information into
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Figure 4. Variation in the solutions for the three methods of regularisation. a-c) Standard deviation in the softness fields between 10 opti-
misations with Gaussian noise added to the speed data for the unregularised, heuristically regularised and data-informed inverse problems
respectively. d-f) Associated standard deviations in the modelled speed for the unregularised, heuristically regularised and data-informed
inverse problems respectively.

the inverse problem has the potential to change the conditioning by enhancing gradients in previously flat regions of the cost

landscape. In order to test this change in conditioning, we investigated the impact of perturbations in the input velocity data on

the spread of resulting ϕ and u fields.

310

We performed 10 inverse problems with the addition of uncorrelated Gaussian noise to the input data for the case of data-

informed regularisation, heuristic regularisation and no regularisation. Noise was added with a mean of zero and standard

deviation of 10% of the local speed. In each case, we measured the cell-wise standard deviation over the 10 ϕ and u output

fields (Fig. 4).

315
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Unsurprisingly, the regularised problems show a smaller spread in the solutions for the control fields - suggesting improved

conditioning (Fig. 4 a-c). The spread of solutions for ϕ is confined in the case of the data-informed regularisation to the regions

of very low ξ, while in those regions, the standard deviations are of similar magnitude to the unregularised case. This is expected

because in essence, the data-informed regularisation separates regions in which high-amplitude deviations of ϕ from from 1

are penalised (where ξ → 1) from regions that are entirely unregularised. The heuristic regularisation, case 2, that is explicitly320

devised to improve the problem conditioning indeed looks to result in the most well-conditioned problem on grounded ice.

However, this is not the case on the central ice shelf, where the degeneracy described above leads to a larger solution variance

than in the data-informed case. The spreads of speed (Fig. 4 d-f) reflect the spreads of the control fields.

3.2 Inverse problems through time

We
:::
As

:::::
listed

::
in

::::
Sec.

::::
2.2,

:::
we

:
consider two instances of temporal regularisation of the type described in eq. (9): the ‘data-325

informed’ case:

J tϕ
:
=

∫
Ω

(1− |fi − fi−1|)× |ϕi −ϕi−1|2dΩ and αϕ = 0, αt = 5× 106, (11)

and the ‘heuristic’ case:

J tϕ
:
=

∫
Ω

|ϕi −ϕi−1|2dΩ and αϕ = 1.5× 109, αt = 104, (12)

equivalent to that used in Selley et al. (2021).330

Using fracture data in successive timesteps to weight the temporal regularisation has a significant effect on the softness fields

over the five years of observations compared with the simpler approach (Fig. 5 a, b). The data-informed case leads to features

of low ϕ which resemble crevasses starting to appear in the southern shear margins after ∼ 18 months (black dotted arrow

Fig. 5 b). Rifts that led to the calving of large icebergs in October 2018 and February 2020 are visible as highly linear features335

of soft ice in the solutions to the data-informed problem (black dashed arrows Fig. 5 b). These features are visible in Fig. 5

a, though are less easily discernible as rifts. The softness fields in the two cases appear similar by May 2021, with that of the

heuristic regularisation looking essentially like a blurred out version of the data-informed case. Both show the southerly mi-

gration of the seaward end of the southern shear margin through the time period, and, by 2021, a stripe of soft ice that connects

the shear margins of Pine Island and Piglet Ice Shelves. It is only clear in Fig. 5 b (black solid arrow) that this stripe of soft ice340

corresponds to a number of long, parallel rifts. Diffuse blobs of softness can be seen on the central ice shelf in Fig. 5 a (May

2021, grey arrow) which are not present in the data-informed case. As the simulation contains no thickness advection and no

accumulation rate is specified, it is possible that these , which are not present in the data-informed case, could be the result of

localised thinning. Otherwise they could once more be the result of under-determinedness
:::::::::::
ill-posedness. This latter possibility

is perhaps more likely given how agnostic the model is to the values of ϕ in the central trunk and that the gravitational forcing345
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Figure 5. The evolution of the stiffness on Pine Island Ice Shelf between June 2018 and May 2021 for heuristic (a) and data-informed
(b) regularisation. c) Mean misfit over the ice shelf for the two cases through time. d) Mean misfit over the ice shelf for the heuristically-
regularised problem. e) Timeseries of mean misfit over the ice shelf for the data-informed and heuristically-regularised problems. Background
images in a and b are the MODIS Mosaic of Antarctica (Haran et al., 2021), and grounding lines (shown in black) are according to Rignot
et al. (2016).

is not modified by a change in stiffness.

Throughout the simulation period, the misfits associated with each case are very similar, with generally slightly larger mean

misfits over the region in the data-informed case (Fig. 5 c, d). The exceptions to this are in the months in which calving

events occur - where the misfit is generally elevated as the model struggles to deal with the sudden appearance of large velocity350

15



gradients near the glacier terminus. At these times, the data-informed case does slightly better as the observations of rift growth

nudge the model towards the right pattern of softening near the terminus.

4 Discussion

The problem of accurately estimating ice softness and basal slip fields from observations of ice speed is dogged by the spector

of ill-posedness. In an effort to improve this, we have presented two simple ways of assimilating fracture data
:::
(and

::
in
::::
one

::::
case355

::::::::
strain-rate

:::::
data) into the inverse problem for a marine-terminating ice stream, as a way of providing the problem with genuine

prior information. In a number of ways, the effect of these methods, their success and what we learn from the experiments

carried out in this study differ
:::
we

::::
have

::::::
carried

:::
out

::::::
differs for grounded and floating ice, so we first review these separately.

4.1 Grounded ice

As discussed above, the presence and evolution of fractures is only a contributing factor in determining ϕ, and the efficacy of360

the methods presented here depend
:::::
aimed

::
at

:::::::::
improving

:::::::
snapshot

::::::
inverse

::::::::
problems

:::::::
depends on the extent to which we apportion

softness to fracturing. We have seen in our example of snapshot problems over Pine Island that softness fields on grounded

ice found using the data-informed regularisation vary considerably within contiguous areas of observed fracture (Fig. 2 c). If

fracturing in these regions were truly the main contributor to ice softness, one would expect ϕ to be uniformly less than 1

this region - visually mimicking the uniform coverage of the region by surface fractures (Fig. 1 a1). This suggests that here365

at least, the dominant contribution to our uncertainty in the material properties of the ice softness is not the unaccounted for

presence of fractures, but some combination of other factors. This is consistent with the fact that prescribing the data-informed

regularisation on the grounded ice dampens the softness away from these regions of fracture but does not change the shape

of the solution greatly within them. This suggests that observations of surface fracture on grounded ice have limited use in

reducing the degeneracy between solutions caused by overlapping
::::::::
associated

::::
with

::::::
mixing

::::::::
between C and ϕ fields, directly370

answering in the negative a suggestion made in Surawy-Stepney et al. (2023b).

In addition, this constitutes a certain amount of evidence that this kind of grounded surface crevasse has a limited impact

on ice dynamics, despite the very low basal frictions we find in this part of Pine Island Glacier (Joughin et al., 2009) and the

enhanced membrane stresses required to compensate for this. This is consistent with previous assumptions that the depths of375

these crevasses is only a small fraction of the ice thickness (Benn and Evans, 2014).

Finally, it is worth noting that the softness fields on grounded ice (and also substantially on floating ice) found using heuristic

regularisation (Fig. 2 b) mimic many of the features of the strain rate map in Fig. 1 c. This suggests greater potential for this

data to be used to constrain the softness and that the prior we are currently using doesn’t fully capture our assumption that380

softness should be related to shear (as that of Ranganathan et al. (2021) might, for example). A better prior might, for example,
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be to assume softness is linear in princpal strain rate. Future work should look to investigate different priors that better utilise

the strain rate data at our disposal.

4.2 Floating ice

We have shown in both snapshot inverse problems and time-dependent inverse problems that the softness fields over floating385

ice, resulting from use of our proposed regularisation methods, appear more like what we would expect if the softening were

due to fracturing/shearing compared to more heuristic regularisation methods. When encouraged to do so, the model is happy

to concentrate softness in regions of observed fracture or high shear without suffering a worse misfit with the prescribed speed

data. It is tempting to think that this results in softness fields that appear more likely to accurately represent the material

properties of the ice shelf at the time the ice speed data was collected. Unfortunately, the ill-posedness of the problem means390

that methods of evaluating whether this is true do not extend far beyond a visual assessment of whether the solutions ‘look

right’ in the context of our priors, however this is a technique that should not be ignored!
:::::::
valuable

:::::::::
technique. Though the

correlation between rheological parameters, inferred in a manner similar to that described in the heuristic regularisation case

here, and crevasse data has previously been shown to be limited (Gerli et al., 2024), we have shown in both the snapshot and

time-dependent cases that there are solutions to the inverse problem with at least equally good misfit in which this correlation395

is undoubtedly strong.

4.2.1 When would we use these methods?

The example we have chosen for the snapshot inverse problem, where a large rift can be seen on the central trunk of Pine Island

Ice Shelf along with an associated discontinuity in uo, is somewhat contrived to show the differences between the regularisation

methods discussed. It is unlikely that a model-user looking to initialise a century-long simulation would choose such data, and400

would do better to choose data from a time more representative of a typical state of the glacier. Even if a typical state does

include fractures and speed discontinuities, without a method of sensibly evolving the softness field through time, it would be

reasonable to initialise a model with a smoother solution for (C,ϕ) that might be less representative of the true initial state, but

is also less specific to it. Hence, softness fields found with the use of fracture data and regularisation procedures we propose

here are more likely to be useful in diagnostic simulations, or transient simulations with timescales on the order of years.405

A major motivation for investigating these methods of constraining the inverse problem is that the time-varying solutions

have potential use in evaluating models that take a continuum damage mechanics approach to parameterising the effect of

fractures on large-scale ice rheology (e.g. Sun et al. (2017)). In particular, the softness fields shown in Fig. 5 b could be used to

constrain the way in which a scalar damage field, that acts isotropically on the rheology, is evolved by such a model (Borstad410

et al., 2016).
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4.3 A note on L-curves

lo
g	(
𝛼 !
)

1

12

log	(𝒥")

lo
g	(
𝒥 !
)

2

3

4

5

6

7

8

9

10

11

5e8

1e6

1e8

5e6

1e7

5e7

2e8

2e9 1e10

5e10 1e11

5e11

5e5

2e5
1e5
5e4
1e4
1e3

Figure 6. L-curve for the data-informed regularisation. Solution norm (y) and misfit (x) are plotted on a logarithmic scale for different
choices of the regularisation parameter αϕ.

Fig. 6 shows, on a logarithmic scale, solution and misfit norms at convergence for a number of possible regularisation

parameters αϕ for eq. (8), known as an L-curve (Hansen and O’Leary, 1993). Intuition suggests that one should choose415

the regularisation parameter at the corner of the L-curve, which balances the regularisation and misfit components of the

cost function. This can be shown in some circumstances to be the point at which contributions to the solution are balanced

between errors in the data and errors in the regularisation (Hansen, 2000). In our case,
:::
for

:::
the

:::::::
snapshot

:::::::
inverse

::::::::
problems

::::
with

:::::::::::
data-informed

::::::::::::
regularisation,

:
this is αϕ ≈ 5× 108. However, this choice of parameter results in solutions with fewer crevasse

features than we expect to see - such as the rift near the ice shelf terminus (Fig. 5 b). Hence, in practise, we choose a parameter420

an order of magnitude smaller, where we are satisfied with the misfit (staying on the ‘vertical branch’ of the L-curve) but can

see some of the detail we believe should be present in the softness field. Though very useful, L-curve analysis can be a blunt

instrument and should always be used alongside other heuristics such as visual assessment of the control fields in deciding the

regularisation parameter. Its use is based on the assertion that the preferred solution to an inverse problem is one that contains

the least extraneous structure (Wolovick et al., 2023). However, for structure to be deemed ‘extraneous’
:::::::::
extraneous, a cost425

function that encodes a good deal of your prior knowledge is required, which is not often available. This tendency for L-curve

analysis to produce over-regularised solutions has been noted previously (e.g. Chamorro-Servent et al. (2019); Milovic et al.

(2021), and notably in Recinos et al. (2023)).
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4.4
:::

Next
:::::
steps

::::
This

:::::
article

::
is

::::::::
relatively

::::
light

::
on

::::::::::
quantitative

:::::::
metrics

::::::::
regarding

:::
the

::::::
success

::
of

:::
the

::::::::
proposed

:::::::
methods

::::
and

:::::
future

::::
work

:::::
could

::::
aim430

::
to

::::::
change

:::
this.

:::
In

::::::
general,

:::
the

:::::::
success

::
of

:
a
::::::
method

::
is
:::::::
difficult

::
to

:::::::
quantify

:::::::
without

:::::
having

::
a

::
set

::
of

:::::::::::
experiments

::
for

::::::
which

:::
the

::::
right

::::::
answer

:
is
:::::
know

::
a

:::::
priori.

:::
We

:::::
chose

::
to

::::
look

::
at

:::::::::
real-world

::::
data

::
for

::::::
which

:::
this

::
is

:::
not

:::
the

::::
case.

:::
We

::::
have

::::::
looked

::
at

:::::
some

::::::::::
quantitative

:::::
results

:::
on

:::
the

::::::
stability

::
of

:::
the

::::::::
solutions

:::::
under

:::::
noise

::
in

::
the

:::::
input

::::
data

::::
(Sec.

:::::
3.1.2)

::::
and

::
the

::::::
misfits

::::::::
achieved

::
by

:::::::
different

::::::::::
approaches

::::
(Sec.

:::::
3.1.1,

::::
3.2)

:::
but

:::
we

::::::
cannot

::::
push

::::
these

::::
too

:::
far.

::
As

:::::::::
mentioned

::::::
above,

:::
for

::::::::::::
ill-conditioned

::::::::
problems

::::
such

:::
as

::::::
inverse

::::::::
problems

::::::::
involving

::::::
viscous

:::::
flow,

::::
there

:::
are

:::
no

:::::::::
guarantees

::::
that

:::
the

::::::
quality

::
of

:::
the

:::::
misfit

:::::::
reflects

:::
the

::::::
quality

::
of

:::
the

::::::::
solution,

::
so

:::
we

::::::
cannot435

:::
rely

:::
on

:
it
:::
(or

::::::
similar

:::::::
metrics)

::
to

::::::::::
differentiate

:::::::
between

::::::::
methods.

:::
As

::::
such,

:::
we

::::
have

:::::
opted

::::::
largely

:::
for

:::::::::
qualitative

:::::::::
discussion

:::::
about

::::::
whether

:::
the

::::::::
solutions

::::::
reflect

:::::::
expected

::::::::
patterns,

:::::
which

:::
we

:::::
deem

::::
more

::::::::::
appropriate.

::
An

::::::::
approach

::::
one

::::
could

::::
take

:::::
might

:::
be

::
to

:::
use

:::::::
synthetic

::::
data

::::::::
generated

:::::
from

::::::
known

::::::::
solutions.

:::
For

::::::::
example,

::::::::
assuming

:::::::
crevasse

:::::
depths

:::
for

::
a
::::::
known

::::::::
crevasse

::::::
pattern

::::
and

:::::::::
computing

::::::
speed

:::::
given

:::::
some

::::::::
assumed

::::::::::
relationship

:::::::
between

::::::::
crevasse

:::::
depth

::::
and440

:::::::
softness.

::::
The

:::::::
difficulty

::::
here

::
is

::
in

::::::::::
generalising

:::
the

::::::
results

::
of

::::
such

:::
an

:::::::::
experiment

::
to

:::
the

:::::::::
real-world

::::
case,

::::
due

::
to

:::
the

::::
large

:::::::
number

::
of

::::::::::
assumptions

::
of

::::::::
unknown

:::::::
validity

:::
one

::::::
would

::::
have

::
to

:::::
make

:::::
along

:::
the

::::
way.

:::
For

::::::::
example,

:::
the

:::::::
methods

:::
by

:::::
which

:::
you

::::::::
generate

:
a
:::::::
crevasse

:::::::
pattern,

:::
the

::::::::
crevasses

::::
you

::::::
choose

::
to

:::::
have

::
an

:::::
effect

:::
on

:::
the

::::::::
softness,

:::
the

:::::::::::
contributions

::
to

:::
the

:::::::
softness

:::
do

::::
you

::::
take

::
to

::
be

:::::
from

::::::
sources

:::::
other

::::
than

:::::::::
crevasses,

:::
the

::::::
choice

::
of

::
an

::::::::
isotropic

:::::::
softness

::::
field

:::
in

:::::::::
generating

:::
the

::::::::
synthetic

:::::
speed

::::
data,

::::
etc.

:::::::::
Ultimately,

::::::
though

::::::::
tempting,

:::
we

:::
do

:::
not

:::::::
consider

:::
this

::::
kind

:::
of

::::::::
approach

::
to

::
be

::::::
useful

:
at
:::

the
::::::::

moment,
:::
but

::
it

:::::
would

:::
be

:::::::
valuable

::
if445

:::::
others

:::::
could

:::::
think

::
of

:::::
ways

::
of

::::::::::
quantifying

:::
the

::::::
effects

::
of

:::::
these

:::::::::::
assumptions.

::
Of

:::::::
course,

:::
this

::::::::
becomes

:::::
easier

:::
the

:::::
better

:::
we

::::
can

:::::
model

:::
the

:::::::
different

:::::::::
processes

:::
that

:::::::::
contribute

::
to

:::
the

:::::::
softness

:::::
field;

:::
this

::::::
should

::::::::
continue

::
to

:::
be

:
a
:::::
focus

::
of

:::::
work

::
in

:::
the

:::
ice

:::::
sheet

::::::::
modelling

::::::::::
community.

5 Conclusions450

We have introduced two ways in which fracture location data, and in one case strain rate data, can be used as prior information

to inform the estimation of basal slip and ice softness fields from observations of ice speed. Applications of these methods to

snapshot and time-dependent inverse problems over Pine Island Glacier show that little is gained in their use compared to the

use of popular heuristic regularisation methods when considering the solutions on grounded ice. This suggests that a failure to

account for the presence
::
of

:
fracturing does not dominate our uncertainties in the material properties of grounded ice. This is455

not true, however, on floating ice, where we see the resolution of fracture features in the static and time-varying softness fields

without impacting the misfit, and a reduction in solution degeneracy in regions of low strain rates. This suggests that such

methods can be used to provide us with softness fields that better represent the true material properties of the ice shelf at the

time of the acquisition of the ice speed data. Such softness fields have potential use in diagnostic modelling, and in constraining

models seeking to evolve softness fields in time.460
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Deriving a regularisation term from a prior distribution

Consider a version of the inverse problem in which the C field is known. Then the forward model solves u(x) = f(ϕ(x)). We can replace585

this with the stochastic model:

U = f(Φ)+E

where U , Φ and E are random variables representing modelled speed, the stiffness ϕ and an additive error respectively (Calvetti and Somersalo, 2018)

. Let the error be governed by the probability distribution pE . Eq. (??) then implies:

pU|Φ(u|ϕ) = pE(u− f(ϕ))590

and Bayes’ rule gives:

pΦ|U (ϕ|u)∝ pE(u− f(ϕ))pΦ(ϕ),

where pΦ(ϕ) constitutes our prior for the distribution of Φ.

We assume that as ξ → 1, ϕ→ 1+ ϵ, where ϵ∼N (0,γ2). We can encode this as the following relation for Φ:

ξ(1−Φ) = γW595

where γ controls how much we allow Φ to vary, and W is a Gaussian random field with zero mean and identity covariance. Then

pΦ(ϕ)∝ exp(− 1

2γ2

∫
Ω

(1−ϕ)2ξ2 dΩ).

Assuming Gaussian error distribution with zero mean and isotropic covariance σ2I, gives

pE(u− f(ϕ))∝ exp(− 1

2σ2

∫
Ω

(u− f(ϕ))2 dΩ)

Hence, from eq. (??):600

pΦ|U (ϕ|u)∝ exp
{
− 1

2σ2

(∫
Ω

(u− f(ϕ))2 dΩ +
σ2

γ2

∫
Ω

(1−ϕ)2ξ dΩ)
)}

,

making the assumption that ξ2 ≈ ξ.

A maximum a posteriori estimate for ϕ(x) given u(x) is, therefore, the solution to:

ϕMAP = argmin
{∫

Ω

(u− f(ϕ))2 dΩ +
σ2

γ2

∫
Ω

(1−ϕ)2ξ dΩ
}
,
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i.e. a minimisation over our original cost function with:605

αϕ =
σ2

γ2
, Jϕ(ϕ) =

∫
Ω

(1−ϕ)2ξ dΩ.

A reasonable prior might be to allow ϕ to vary from 1 away from fractured areas (ξ → 1) with a standard deviation of 0.1, corresponding

to γ2 = 0.01. Taking σ to be of order 100 m/y, this gives us a value of αϕ ∼ 106 for the coefficient of the ϕ regularisation term in our initial

cost function. Note, we have assumed in this analysis a spatially uniform estimate of uncertainty in our velocity observations. If a more

reliable estimate of this uncertainty existed, it could be included as a modification to ξ.610

Derivatives of Jϕ

The inverse problem is solved using a nonlinear conjugate gradient method. This requires the projection of the Jacobian ∇J (ϕ) along the

direction of the residual u−uo.

Let ϕ= ϕ0e
q so that ϕ > 0.

Define the stiffness part of the cost function as:615

Jϕ =

∫
Ω

(1−ϕ)2ξdΩ

The Gâteaux differential is defined by the projection of the functional gradient onto the direction defined by a perturbation δq:

⟨δJϕ, δq⟩= lim
ϵ→0+

Jϕ(q+ ϵδq)−Jϕ(q)

ϵ
,

where the binary operator ⟨·, ·⟩ is the inner product over the space of functions. In our case:

⟨δJϕ, δq⟩=−
∫
Ω

δqϕ(1−ϕ)ξdΩ620

and we interpret ϕ(1−ϕ)ξ as the functional gradient. This is calculated in each iteration of the non-linear conjugate gradient method, and is

used to update the value of q.
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