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Text S1. TINT algorithm 

Tracking convective rainfall cores initiated during DCC days in the anticyclonic regime is 
accomplished using the TINT algorithm, developed by Raut et al. (2021). TINT, an open-
source tracking tool, automatically estimates the trajectories of moving cloud objects in 
sequential images, applicable to various two-dimensional datasets, including remote 
sensing measurements and model simulations (Fridlind et al. 2019). For a detailed 
explanation of the TINT algorithm, refer to Raut et al. (2021). 

The inputs for TINT are derived from the 2-km Z values derived from gridded NEXRAD 
KHGX-Houston radar data (1 km horizontal resolution). The selection of the 2 km level is 
made to accurately sample precipitation areas, following the method presented in Oue 
et al. (2022). The position of each cell is determined as the difference-weighted center of 
the region with Z exceeding a certain threshold value. Tracking is conducted for all 
selected DCC days, starting from 0500 LT and continuing until 0459 LT the following day. 
To ensure the optimal performance of TINT, several thresholds are applied: 

• Definition of contiguous object: To mitigate signal noise contamination, a single 
object is characterized as a contiguous area including a minimum of eight radar 
grid points (1 km × 1 km) with a minimum Z threshold of 10 dBZ, signifying the 
presence of precipitation echoes. 

• Identification of convective cells: An object is labeled as a convective cell if its 
highest 2-km Z exceeds 30 dBZ. This threshold is widely used by radar systems 
for detecting convective clouds, as demonstrated in studies such as Petersen et 
al. (1996), Kumar et al. (2016), and Gupta et al. (2023). 

• Definition of deep convective event: A deep convective event is defined as a track 
with a 2-km Z exceeding 40 dBZ and a 30-dBZ echo top height (ETH) higher than 
5 km at any point during its lifespan, following a similar definition to Dixon and 
Wiener (1993). Convective cells during these events are called convective rainfall 
cores which are used in our study.  

• Domain exclusion: Convective rainfall cores that move into or out of the radar 
domain (400 km × 400 km) during their life cycle are excluded from the statistical 
analysis.  

• Lifetime duration: To minimize potential misidentification due to uncertainties in 
radar data or the tracking method, the analysis primarily focuses on deep 
convection with rainfall cores lasting longer than 40 minutes. This criterion 
ensures that the convective rainfall cores are detected in at least 7 or 8 
consecutive radar scans. 
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Text S2. Definitions of key DCC parameters 

Several key parameters are derived and analyzed for these tracked convective rainfall 
cores, including the maximum 2-km Z, rainfall core area, 30-dBZ ETH/15-dBZ ETH, core 
lifetime, and core propagation speed. Here is a summary of these key parameters: 

1. Maximum 2-km Z: This parameter represents the highest intensity of radar 
reflectivity observed within the convective cells. It indicates the strength of the 
precipitation and provides information about the intensity of the convective 
activity. 

2. Core lifetime: The lifetime of a convective rainfall core is determined by the 
duration between its first identification time and its last identification time. This 
parameter provides insights into how long the precipitating cells persist in the 
study region on average. 

3. Core area: The core area is calculated by multiplying the number of continuous 
grid points with 2-km Z greater than 30 dBZ by the grid resolution. It provides an 
estimate of the spatial extent covered by the convective rainfall cores and 
indicates the size of the area experiencing moderate precipitation. 

4. 30-dBZ ETH/15-dBZ ETH: The ETH is defined as the maximum height at which the 
radar echo reaches a Z of 30 dBZ/15 dBZ. It serves as a proxy for the strength of 
the convective updraft or upward mass flux, providing information about the 
vertical extent and intensity of the convective activity (Heymsfield et al., 2010). 

5. Core propagation speed: The propagation speed of a convective rainfall core is 
determined as the mean rate at which a cell advances from its first radar detected 
location to its final radar detected position. 

6. Initiation timing and location: These parameters indicate when and where the 
rainfall cores first develop. They provide insights into the preferred timing and 
spatial distribution of rainfall initiation in the radar region. 

It is important to note that the TINT algorithm used in our study is not designed to 
efficiently identify the splitting and merging of convective cores, which can be more 
prevalent in organized convective systems. As a result, this limitation may have some 
impact on the estimation of convective properties in those clouds. However, our study 
specifically focuses on relatively isolated DCCs, which is a common type of DCC in 
southeastern Texas during the summer months in the anticyclonic regime (Fridlind et al., 
2019). In these isolated cases, the occurrence of mergers and splitters is relatively less 
frequent compared to organized DCCs. Therefore, we anticipate that the impact of this 
limitation of TINT on our statistical analysis of convective rainfall core life cycle 
characteristics will be minimal. 
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Text S3. Sensitivity tests of tracking thresholds 

We conducted sensitivity tests to evaluate the robustness of the criteria used in defining 
and tracking convective rainfall cores in the prior subsection. The tests were performed 
using data from June to August 2022 (regardless of SOM regimes), and the results are 
summarized in Table S3. Here are the details of the sensitivity tests and their impact on 
DCC properties: 

1. Single object definition: In this test, a single object was defined as a contiguous 
area of at least 10 radar grid points with a minimum 2-km Z threshold of 10 dBZ. 
This resulted in a 5% reduction in the total number of cells, and a slight increase 
of 5 km² in the median core area compared to the original criteria. 

2. Tracking using 3-km Z: In this test, the tracking of cells was performed using a 3-
km Z threshold. No significant changes were found in terms of the convective 
properties of interest. 

3. Decreased lifetime threshold: The DCC lifetime limit was decreased from 40 
minutes to 30 minutes in this test. As expected, the number of cores significantly 
increased by 32%, and the median rainfall core lifetime was shortened by 8 
minutes. 

4. Calibration offset: To account for the possible NEXRAD Z offset mentioned in 
previous studies (Gourley et al., 2003; Ryzhkov et al., 2005), an offset of 3 dBZ was 
applied to the data. This test aimed to investigate the potential impact of the 
calibration issue on derived convective properties. The results showed that this 
calibration offset had only a slight impact on the number of cores and core 
properties of interest. 
 

Overall, the mean state of core properties was somewhat sensitive to the thresholds used 
in the tracking model, but most of the changes were insignificant according to results 
from a t-test. The most significant changes in cell core area occurred when the lifetime 
threshold was loosened. However, no significant differences are found in terms of 30-
dBZ ETH when using different thresholds. 
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Text S4. Key assumptions of the MLR models 
 
We evaluate the MLR models by assessing and validating the key assumptions. These 
assumptions include linearity, homoscedasticity, normality, independence, and 
multicollinearity. In the following paragraphs, we provide a detailed analysis and 
explanation of these tests and plots. Overall, the results indicate that the data meet the 
essential assumptions of the MLR model. This fulfillment of assumptions strengthens the 
reliability of the following estimated causal effects of aerosols. 
 
To test for linearity, we examine whether there is a linear relationship between the 
predictor variable and the outcome variable by plotting the model residuals as a function 
of the fitted variables. The residuals are the differences between the observed and 
predicted values of the outcome variable after fitting a linear model to the data. The 
fitted values, on the other hand, are the predicted values of the outcome variable based 
on the MLR model. As illustrated in Figure S6, when using DCC cases identified within a 
radius of 50 km from the M1 site, the residuals are evenly spread around a horizontal line 
with no distinct patterns when considering different exposures, indicating the absence of 
non-linear relationships. Similar patterns are shown for other scenarios considered in the 
study. This provides some evidence for linearity between the outcome and predictor 
variables in our data. 
 
To validate the assumption of homoscedasticity in the MLR model, we create a Spread-
Location or Scale-Location plot as shown in Figure S7. The plot is generated by plotting 
the square root of the absolute value of the standardized residuals on the y-axis against 
the fitted values on the x-axis. The standardized residuals were calculated by dividing 
the residuals by their estimated standard deviation, resulting in a mean of zero and a 
standard deviation of one. When the assumptions of linearity and constant variance are 
met, the Spread-Location plot will show a roughly horizontal line with no discernible 
pattern, indicating that the residuals have a constant variance across the range of fitted 
values. In Figure S7, the red line is close to being horizontal, and the points are equally 
and randomly spread, indicating good homoscedasticity. We find similar results for 
other scenarios considered in the study. 
 
For validating the assumption of normality in the MLR model, we employ a quantile-
quantile (QQ) plot of standardized residuals plotted against theoretical quantiles. The 
theoretical quantiles are the expected values if the data followed a normal distribution. 
If the standardized residuals are normally distributed, the plot will show a linear 
relationship between the two sets of values, as depicted in Figure S8. Based on the plot, 
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we observe that the data closely follows a straight line, indicating that the residuals are 
normally distributed. Thus, we can conclude that the assumption of normality has been 
met for our MLR regression model. 
  
Multicollinearity refers to the situation where two or more independent variables in a 
MLR model are highly correlated with each other. This can lead to unstable regression 
coefficients, inflated standard errors, and inaccurate predictions. To check for the 
presence of little or no multicollinearity in this study, we used the Variance Inflation 
Factor (VIF). The VIF measures the extent to which the variance of the estimated 
regression coefficient is increased due to multicollinearity. A VIF of 1 indicates no 
multicollinearity, while a VIF greater than 1 suggests the presence of multicollinearity. 
Typically, a VIF greater than 5 or 10 is a cause for concern.  
  
When using the most-unstable parcel and the first data pairing method, the VIF values 
for three covariates in the model for predicting 30-dBZ ETH are all around 1, which 
suggest limited multicollinearity. Note that standardizing the covariates significantly 
reduces the VIF value for all predictors, and we, therefore, used the standardized 
covariates for subsequent calculations of g-computation. When using different parcels 
as the surface or mixed-layer parcel, the VIF values only change slightly, but are all 
below 2.  
 
The independence of observations in the MLR model is assessed using the Durbin-
Watson test. This test is a statistical method used to test for the presence of 
autocorrelation in the residuals. Autocorrelation refers to the situation where the 
residuals are correlated with each other over time, which violates the assumption of 
independence. The Durbin-Watson test calculates a test statistic that ranges from 0 to 4. 
A value of 2 indicates that there is no autocorrelation, while a value below 2 indicates 
positive autocorrelation, and a value above 2 indicates negative autocorrelation. 
Typically, a value between 1.5 and 2.5 is considered acceptable. The Durbin-Watson 
values for all scenarios are around 2, which indicates that our observations are 
independent of each other. Therefore, we can conclude that there is no evidence of 
autocorrelation in the residuals of our MLR models. 
  
Assessing the influence of individual observations on the results of a regression analysis 
is crucial in identifying and eliminating any strong influencers. To accomplish this, a 
leverage plot is conducted to show the leverage values of each case against the 
standardized residuals. Leverage values represent the degree to which an observational 
point can affect the slope of the regression line. Observations with high leverage values 
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and large standardized residuals have the potential to strongly impact the slope, 
coefficients, or other aspects of the model, such as the statistical significance of the 
predictors. These observations may be outliers or may have extreme values of the 
predictor variables, meaning that they do not follow the trend observed in most cases. 
Cook's distance, which measures the influence of an observation on the regression 
coefficients, is used in conjunction with the leverage plot to identify influential 
observations. Typically, a cutoff value of 1 is used, which is plotted as a red dashed line 
in Figure S9. This means that any observation with a Cook's distance greater than 1 is 
considered influential. In our dataset, all cases are below the Cook’s distance cutoff 
values, indicating that they have low Cook’s distance scores and do not have a large 
impact on the estimated regression results. Similar results are shown for other scenarios 
as well.  
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Table S1. Intense operation days during the TRACER Intense Operation Period in 2022. 

Date (MMDD) 

0601, 0602, 0604, 0617, 0621, 0622, 0626, 0629, 0706, 0710, 0711, 0712, 0713, 0727, 0729, 
0730, 0801, 0802, 0804, 0807, 0808, 0809, 0810, 0821, 0822, 0826, 0827, 0828, 0831, 0901, 
0902, 0906, 0907, 0916, 0917, 0918, 0919, 0925                                          
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Table S2. Correlation coefficients between meteorological variables and ETH when the 
surface parcel or mix-layer parcel is used in the calculations of the meteorological 
variables.  

Distance to M1 LNB CAPE LCL LFC ELR3 ELR6 LWS RH 

30-dBZ ETH, Surface Parcel 

20 km x x x x x x x x 

30 km x x 0.3 x 0.3 x x x 

40 km x 0.3 0.3 x 0.3 x x x 

50 km 0.3 0.2 0.4 x 0.4 x x x 

30-dBZ ETH, Mixed-layer Parcel 

20 km x x x -0.3 x x x x 

30 km x x 0.4 x 0.3 x x x 

40 km x x 0.3 x 0.3 x x x 

50 km 0.2 x 0.4 x 0.4 x x x 

15-dBZ ETH, Surface Parcel 

20 km x x x x x x -0.3 x 

30 km x x x x x x x x 

40 km x x x x x x x x 

50 km x x x x x x x x 

15-dBZ ETH, Mixed-layer Parcel 

20 km x x x x x x -0.3 x 

30 km x x x x x x x x 

40 km x x x x x x x x 

50 km 0.3 0.3 x x x x x x 
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Table S3. DCC properties from several sensitivity tests performed on three-month data 
from June to August in 2022. 

Z 
threshold 
[dBZ] 

Min. 
no. of 
grid 

Min. 
lifetime 
[min] 

Level of 
Z for 
tracking 
[km] 

No. of 
samples 

Median 
max. Z 
[dBZ] 

Median 
core 
area 
[km2] 

Median 
30-dBZ 
ETH 
[km] 

Median 
lifetime 
[min] 

30 8  40 2 9568 46.4 47 6.5 80 

30 10  40 2 9149 46.8 52 7 80 

30  8  40 3 9689 46.4 47 7 80 

30  8  30 2 12635 46.0 42 6.5 72 

33 8  40 2 8434 47.5 45 6.5 78 
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Figure S1. Maps of locations of precipitation core formation and cell tracks identified for 
cells initiated within a radius of 30 km (a), 40 km (b), 50 km (c) from the M1 site using the 
first data pairing method.  
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Figure S2. Synoptic regimes as a function of day for 2022, classified using the Self-
Organizing Map.   
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Figure S3. Correlation matrix between the meteorological variables and aerosol number 
concentrations for DCC cases identified within a radius of 50 km from the M1 site. The 
meteorological variables are calculated using ARM soundings when assuming the 
surface parcel would rise to form a convection. 
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Figure S4. Same as Figure S3 but using a mixed-layer parcel.  
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Figure S5. Averaged percentage contribution of aerosol mass concentrations measured 
during a one-hour period following sounding launches on selected DCC days. 
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Figure S6. MLR model residuals as a function of fitted values for DCCs formed within a 
radius of 50 km from the M1 site using the post-sounding data averaging method. The 
most unstable parcel is used for the calculations of meteorological variables. The 
outcome variable is 30-dBZ ETH.  
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Figure S7. Standardized residuals as a function of fitted values for DCCs formed within a 
radius of 50 km from the M1 site using the post-sounding data averaging method. The 
most unstable parcel is used for the calculations of meteorological variables. The 
outcome variable is 30-dBZ ETH. 
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Figure S8. Quantile-quantile plot for DCCs formed within a radius of 50 km from the M1 
site using the post-sounding data averaging method. The most unstable parcel is used 
for the calculations of meteorological variables. The outcome variable is 30-dBZ ETH.  
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Figure S9. leverage plot for DCCs initiated within a radius of 50 km from the M1 site 
using the post-sounding data averaging method. The most unstable parcel is used for 
the calculations of meteorological variables. The outcome variable is 30-dBZ ETH.  
 

 
 


