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Abstract. The ocean is forced at the surface by a heat flux and freshwater flux field from the atmosphere. Short time-scale

variability in these fluxes, i.e. noise, can influence long term
::::::::
long-term

:
ocean variability and might even affect the Atlantic

Meridional Overturning Circulation (AMOC). Often this noise is assumed to be Gaussian, but detailed analyses of its statistics

appears
:::::
appear

:
to be lacking. Here we study the noise characteristics in reanalysis data for two fields which are commonly

used to force ocean-only models: evaporation minus precipitation and 2 m air temperature. We construct several noise models5

for both fields, of which a point wise
:::
and

:
a
:::::::::
point-wise

:
Normal Inverse Gaussian distribution models shows

:::::
model

:::::
gives

:::
the

best performance. A comparison with such noise in
:::
An

:::::::
analysis

::
of

:
CMIP6 models shows that these models do a reasonable

job in representing the standard deviation and skewness of the noise, but the excess kurtosis is more difficult to capture. The

point wise
::::::::
point-wise

:
noise model performs better than the CMIP6 models and can be used as forcing in ocean-only models to

study, for example, noise-induced transitions of the AMOC.10

1 Introduction

The ocean is forced at the surface by momentum, heat and freshwater fluxes from the atmosphere. Since the ocean responds

relatively slowly to the atmospheric forcing, anomalies in this forcing can be modelled as a noise process (Hasselmann, 1976).

This study is motivated by the role of such noise in causing noise-induce
:::::::::::
noise-induced

:
transitions in the Atlantic Meridional

Overturning Circulation (AMOC). The AMOC has a major influence on global, and specifically, Northern Hemispheric climate15

and has been identified as one of the potential major tipping points in the Earth System (Lenton et al., 2008; McKay et al.,

2022). A collapse or strong weakening of the AMOC has major consequences for the climate system by changing e.g. global

temperature patterns (van Westen et al., 2024b), atmospheric circulation (Orihuela-Pinto et al., 2022), Arctic sea ice cover (van

Westen et al., 2024b), the global carbon cycle (Zickfeld et al., 2008; Boot et al., 2024b) and marine ecosystems (Schmittner,

2005; Boot et al., 2024a).20

Simple box models have shown that the AMOC can show noise induced
:::::::::::
noise-induced

:
transitions (Castellana et al., 2019;

van Westen et al., 2024a) and probabilities of such transitions could be obtained using rare-event techniques. In these type

::::
types

:
of studies, the noise is applied only in the freshwater flux and is often assumed to be white for simplicity. Recently, also

noise induced transitions have
:::
also

:
been studied in a

::
an Intermediate Complexity Earth System Model (EMIC; Cini et al.,
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2024) usign
::::
using

:
rare event techniques. Ideally, one would want to study the transitions in full complexity, CMIP6-type, Earth25

System Models (ESMs). However, due to the complexity and cost of these models, it is not yet possible to systematically use

these ESMs for these type
:::::
types of studies. Recently, a study did look at AMOC tipping in a 10-member ensemble of the

NASA-GISS ESM, showing that under the same forcing some ensemble members simulate an AMOC recovery under future

emissions, and others show a consistent weakening (Romanou et al., 2023). However, the AMOC does not show a complete

collapse in these ensemble members.30

To determine the probability of noise-induced transitions using rare event techniques one is at the moment restricted to using

ocean-only models and hence the specification of the atmospheric noise is crucial. However, to our knowledge, a detailed study

on the properties of the noise in the actual fields relevant in the forcing of ocean models is lacking. Here we focus on noise

in the freshwater flux (E−P
::::::
E−P ) and in the 2 m air temperature (T2m). Noise in the momentum flux related to surface

winds might also be important for the AMOC. However, we do not consider this here for two main reasons: the statistical35

properties of the surface winds have been studied more thoroughly before (Sura, 2003; Monahan, 2004, 2018), and the noise

in the momentum flux is less important for simulating noise induced
:::::::::::
noise-induced

:
transitions of the AMOC.

Such a study is also be useful to determine whether EMICs and ESMs adequately actually capture there
:::::
capture

:::::
these

:
noise

fields. We know that these type
::::
types

:
of models exhibit, sometimes very large, biases in their mean state, but also in variability

on a whole range of time scales. For example, T2m is biased too warm in the CMIP6 models over the Atlantic sector of the40

Southern Ocean and the Eastern South Atlantic, while there is a cold bias over much of the North Atlantic and Arctic Ocean

(IPCC AR6 Chapter 3). The air temperature biases can also be seen in the sea surface temperatures (Zhang et al., 2023), thereby

directly affecting the density structure of the ocean. For precipitation there is a consistent double Intertropical Convergence

Zone (ITCZ) bias from CMIP3 to CMIP6 models (Tian and Dong, 2020). This means that in the Atlantic, the ITCZ, and

therefore bands of high precipitation extend too much towards the south. Following the double ITCZ bias (Tian and Dong,45

2020; Li et al., 2020), there is a strong positive freshwater flux bias north of the equator and a strong negative bias south of

the equator in the CMIP6 multi model mean (MMM; Liu et al., 2022). Between 10◦ and 60◦N, and the equator and 35◦S the

freshwater flux is typically positively biased in the CMIP6 MMM (Liu et al., 2022). These biases are among the reasons why

the AMOC is thought to be too stable in CMIP6 type models (Weijer et al., 2019; van Westen and Dijkstra, 2024).

In this study we determine the statistical properties of the E−P
::::::
E−P and T2m noise based on the ERA5 reanalysis data.50

We compare this observed
:::::::::::::::
observation-based noise with the noise simulated by coupled CMIP6 ESMs and identify relevant

biases. Based on the observed
:::::
ERA5

:
noise we construct a noise model that can be used to force ocean-only models. This

product can be used to study the influence of short time scale atmospheric variability on long term ocean variability and

eventually to study noise induced
:::::::::::
noise-induced

:
transitions of the AMOC.
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2 Methods55

2.1 ERA5 reanalysis data

We analyse the noise in E−P
:::::
E−P

:
and T2m over the Atlantic Ocean between 60◦S and 80◦N. For this we use ERA5

reanalysis data (Hersbach et al., 2020), which is the most recent reanalysis product of the European Center for Medium-Range

Weather Forecasts (ECMWF) and replaces the ERA-Interim reanalysis product. The ERA5 product is created by combining

both satellite and ground observations with a numerical model used for weather forecasting. For the freshwater flux we de-60

termine the net freshwater forcing by taking the negative of the summing of the
:::
sum

::
of

:::
the

:
variables ‘total precipitation’ and

‘evaporation’, i.e. - (total precipitation + evaporation). Since evaporation is defined negative in ERA5 data, and total precipi-

tation positive, this results in a dataset for E−P
:::::
E−P

:
where net evaporation is positive, and net precipitation is negative.

The datasets contain monthly data from 1940 to 2022 on a 0.25◦ rectilinear grid. To determine the noise in both fluxes, we first

detrend each grid point by subtracting a 5 year
:::::
5-year running mean. Next,

:
we deseasonalise the data by subtracting a monthly65

climatology based on the detrended data. This results in a noisy dataset where each grid point has zero mean and no trend. We

analyze the fields by looking at the standard deviation (σ), skewness and excess kurtosis of the noise, where Gaussian white

noise would have zero skewness and zero excess kurtosis.

2.2 CMIP6 models

We compare the noise in the ERA5 data to that found in CMIP6 ESMs. In total we use 36 different models, where we note that70

we use two different realisations from the UKESM-1-0-LL model that is run by two different model groups (i.e. the Met Office

Headly Centre (MOHC) and National Institute of Meteorological Sciences - Korea Meteorological Administration (NIMS-

KMA)). For each model we determine the evaporation minus precipitation by using the variables ‘evspsbl’ and ‘pr’, and we

use ‘tas’ for T2m:::
T2m. We do this for the historical simulations between 1940 and 2014. We first regrid all models to a 1◦× 1◦

rectilinear grid. Next,
:
we compute the noise in the models by following the same methodology as for the ERA5 data, i.e. we75

detrend and deseasonalise the data. We could also use simulations without forcing, i.e. the piControl simulations. However, for

comparison with the ERA5 data it is better to use a similar methodology for both data sources, which includes the detrending

in the ERA5 data.

When comparing the CMIP6 data to the ERA5 data we use the same time period in the ERA5 data as in the CMIP6 data, i.e.

1940 to 2014, and re-grid the ERA5 data to a 1◦ rectilinear grid. Due to its original higher resolution, the land mask in ERA580

captures small islands that are not captured by the CMIP6 land mask. To account for this, we mask out these small islands in

both the ERA5 and the CMIP6 data. A full list of the models used, including which member and citations can be found in the

Appendix (Table A1).
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Figure 1. Standard deviation (σ), skewness and excess kurtosis over time for the ERA5 noise for the E – P flux (a-c) and T2m (d-f).

3 Results

3.1 ERA5 reanalysis data85

Fig. 1 (a-c) shows the standard deviation, skewness and excess kurtosis in the E−P
:::::
E−P

:
noise. The highest standard

deviation is found north of the equator in the ITCZ. Other
:
,
:::
and

:::::
other

:
regions with relatively high standard deviations are the

western boundary currents. In the Northern Hemisphere, the strongest negative skewness is found between 10◦N and 30◦N

(Fig. 1b). The negative skewness here indicates that the distribution is skewed towards extreme precipitation events, which is

partially related to tropical storm activity in this region. In the Southern Hemisphere there is a strong negative skewness in the90

region of the South Equatorial Current. South of there, there is a small region of moderate postive
::::::
positive

:
skewness. The rest

of the ocean generally shows a small negative or near zero skewness. The excess kurtosis shows a relatively similar pattern

as the skewness except with the opposite sign (Fig. 1c). The storngest positve
:::::::
strongest

:::::::
positive

::::::
excess kurtosis is found over
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the entire latitudinal band 10◦S to 30◦N. Also this is an indication of high extremes, and because of the negative skewness it

means
:::::::
indicates extreme precipitation events. The rest of the ocean has slightly positive or near zero excess kurtosis. Due to95

the non-zero skewness and excess kurtosis in the noise in most grid points, the noise cannot be classified as Gaussian white

noise in these grid points.

For T2m (Fig. 1d-f), the largest standard deviation in the noise is found in the (seasonally) sea ice covered regions in the

high latitude North Atlantic (Fig. 1d). Also the Gulfstream region shows a relatively high standard deviation. Regions around

the sea-ice edge, both in the Northern and Southern Hemispheres, show a relatively strong negative skewness (Fig. 1e), which100

means the distribution in these regions are skewed towards more cooling events. The pattern for the skewness in the South

Atlantic is relatively patchy with both small negative and small positive values. In the North Atlantic, the regions around the

trade winds show positive skewness, and the subtropical gyre shows negative skewness. The (seasonaly
:::::::::
seasonally) sea ice

covered regions show strong negative skewness. For the excess kurtosis (Fig. 1f) most of the Atlantic region shows (strong)

positive values with the strongest signals over the sea ice covered regions and close to the seasonal sea-ice edge (also in the105

South Atlantic), and in the Gulf of Mexico. The combination of negative skewness and positive excess kurtosis in the sea

ice covered regions suggests that in these regions strong cooling events can take place which is likely associated with strong

increases in sea-ice cover. Just as for the freshwater flux, the excess kurtosis deviates from 0
:::
zero

:
in most regions in the ocean,

which means that also the noise in T2m is unlikely to be Gaussian white noise in most grid points.

::
To

:::::
better

:::::::::
understand

:::
the

::::::
results,

:::
we

::::
look

::
in

:::
the

:::::
noise

::::
fields

:::
for

::::::
regions

::::
with

::::::
similar

:::::::::::
distributions.

:::
We

:::
do

:::
this

:::
by

:::::::
dividing

::::
both110

::
the

::::::
E−P

::::
and

::::
T2m:::::

noise
:::::
fields

::::
into

::
12

::::::::
different

::::::
clusters

:::::
(Fig.

::
2).

:::::::
Thereto

:::
we

::::
use

:
a
:::::::
k-means

:::::::::
clustering

::::::::
algorithm

::::::
where

:::
we

:::
use

:::
the

:::::::
standard

::::::::
deviation,

::::::::
skewness

::::
and

:::::::
kurtosis

::
as

:::::
input.

:::
The

::::::::
decision

::
for

:::
12

:::::::
clusters

:
is
:::::
based

:::
on

::::::
several

:::::::
methods

:::::
(Fig.

::::
A1),

::
i.e.

:::
the

::::::
elbow

:::::::
method,

:::
the

::::::::
silhouette

:::::
score,

:::
the

:::
gap

:::::::
statistic

:::
and

:::::::
visually

:::::::::
inspecting

:::
the

:::::::
clusters

:::::
while

:::
the

::::::
number

::
of

:::::::
clusters

::
is

:::::
varied.

::::
The

:::::::::
probability

:::::::
density

::::::::
functions,

:::::::
standard

:::::::::
deviation,

::::::::
skewness

:::
and

::::::
excess

::::::
kurtosis

::
of
:::
the

:::::::
clusters

:::
are

::::::::
displayed

::
in

::::
Fig.

::
A2

::
-
:::
A5115

:::
For

::::::
E−P

:::
we

::::
find

::::::
several

::::::::
relatively

:::::
large

:::::::
clusters.

::::
The

:::::::
subpolar

:::::::
regions

:::
are

::::::
divided

::::
into

::::
two

:::::::
clusters

:::::::
(clusters

::
1
:::
and

:::
4)

:::::
where

::::::
cluster

:
4
::
is
:::::
more

::::::::
poleward.

::::
The

:::::
main

::::::::
difference

:::::::
between

:::
the

::::
two

:::::::
clusters

::
is

:::
the

:::::
lower

:::::::
standard

::::::::
deviation

::
in

:::
the

::::::
higher

::::::
latitude

::::::
cluster.

::::
The

::::
high

::::::::
standard

::::::::
deviation

:::::
region

:::
of

:::
the

:::::
ITCZ

::::
also

::::::
clearly

:::::
stands

::::
out

::
as

:
a
::::::::

separate
::::::
cluster

::::::
(cluster

:::
6).

::::
The

:::::::::
subtropical

::::::
region

:
is
:::::::

divided
::::
into

:
9
::::::::
different

:::::::
clusters.

::::
The

:
6
:::::::
clusters

:::
that

:::::
cover

:::
the

::::::
North

:::
and

:::::
South

:::::::::
Equatorial

:::::::
Current

:::::
stand

:::
out

::::
with

:::::
strong

:::::::
positive

::::::
excess

:::::::
kurtosis

:::
and

::::::
strong

:::::::
negative

::::::::
skewness

::::::::
(clusters

::
2,

::
3,

::
5,

::
9,

:::
10

:::
and

::::
11).

::::::
These

:::
are

::::::
regions

::::
that120

:::::::::
experience

::::::
tropical

::::::
storms

::::
and

:::::::::
hurricanes,

:::::
which

:::
are

::::::::
recorded

::
as

::::
very

::::::
strong

:::::::
extreme

::::::::::
precipitation

::::::
events

::
in

:::
the

::::::
E−P

:::::
noise

:::::
fields.

:::::
These

::::::::
extremes

::::
can

::
be

:::::
very

:::::
local,

:::::::::
explaining

::::
why

::
6
:::::::
clusters

:::
are

:::::::::
necessary

:::
for

:::
this

:::::::
region.

:::
The

:::::::
cluster

::::::
closest

::
to

::
a

:::::::
Gaussian

::::::::::
distribution

::
is

:::
the

::::::
cluster

::
in

:::
the

:::::::::::
Southeastern

::::::::::
subtropical

:::::
region

:::::::
(cluster

:::
12)

::::
with

::
a

::::::::
skewness

::
of

::::
0.16

:::
and

:::
an

::::::
excess

::::::
kurtosis

:::
of

::::
0.90

:::::
(Fig.

:::
2b).

::::
For

:::
all

:::::::
clusters,

:::::::
kurtosis

::
is
::::::
larger

::::
than

:::
1.5

:::::
times

:::
the

::::::
square

:::
of

:::
the

::::::::
skewness

:::::
(Fig.

:::
2b)

::::::
which

::
is

::::::::
consistent

::::
with

::::::::::::
multiplicative

:::::
noise.125

:::
The

:::
12

:::::::
clusters

:::
for

:::
the

::::
T2m:::::

noise
::
do

::::
not

::::
show

:::
an

:::::::
overlap

::::
with

:::
the

::::::
E−P

:::::::
clusters

:::
and

:::::::
several

::
of

:::::
them

::::::
appear

::
to

::::::
follow

::
the

:::::::
general

:::::
ocean

::::::::::
circulation

::::::
pattern.

::::
For

::::::::
example,

:::::
cluster

:::
12

::
is
::::::::
centered

::::::
around

:::
the

:::::
North

:::::::
Atlantic

::::::::
Current,

:::
and

::::::
cluster

:::
10

::::::
around

:::
the

:::::
North

:::::::::
Equatorial

:::::::
Current

:::
and

:::
the

:::::
North

::::::
Brazil

:::::::
Current.

::::::
While

:::
for

:::
the

::::::
E−P

::::
noise

:::::::
several

::::::
clusters

:::
are

:::::::::
necessary

5



::
for

:::
the

:::::::::
subtropics,

:::
for

::::
T2m::::::

several
:::::::
clusters

:::
are

::::::::
necessary

:::
for

::::::
regions

:::::::
covered

:::
by

:::
sea

:::
ice,

::
or

:::::::
adjacent

::
to
:::::
these

:::::::
regions.

::::::
Cluster

::
3

:::::::
describes

:::
the

:::::::
regions

::
in

:::
the

:::::::
Labrador

::::
and

::::::::
Greenland

:::::
Seas

:::
that

:::::::::
experience

:::
sea

:::
ice

:::::::
annually.

:::::::
Clusters

::
2,
::
5,
::::
and

:
6
:::
all

::::
cover

:::::::
regions130

::::
close

::
to

:::
the

:::::::
sea-ice

:::::
edge.

:::
The

:::::
noise

::
in
:::::

these
:::::::
regions

::
is

:::::
likely

:::::::
affected

:::
by

:::::::::
interannual

:::::::::
variability

::
in

:::
the

:::::::
sea-ice

:::::
extent

::::::
which

::::
leads

::
to

::::::::
relatively

::::::
strong

:::::::
positive

::::::
excess

:::::::
kurtosis

:::
and

::::::::
relatively

::::::
strong

:::::::
negative

:::::::::
skewness.

::::
Two

::::::
clusters

:::
(7

:::
and

:::
12)

:::::
have

::::
near

:::
zero

::::
area

::::::::
weighted

::::::::
skewness

::::
and

::::::
excess

:::::::
kurtosis

:::
and

:::
are

::::::::
therefore

:::::
close

::
to

:
a
::::::::

Gaussian
::::::::::

distribution
:::::
(0.00

::::::::
skewness

:::
for

:::::
both,

:::
and

::::
0.06

:::
and

::::
0.13

:::
for

::::::
excess

:::::::
kurtosis,

:::::::::::
respectively;

::::
Fig.

:::
2d).

:::::::
Cluster

:
7
::::::
covers

:::
the

:::::
South

:::::::
Atlantic

:::::::
between

:::::
30◦S

:::
and

:::::
50◦S,

::::
and

::::
parts

::
of

:::
the

::::::
Eastern

:::::
North

:::::::
Atlantic

:::::::
between

:::::
30◦N

::::
and

::::
60◦.

::::::
Cluster

::
12

::
is

:::
the

::::::
cluster

::::::
around

:::
the

:::::
North

:::::::
Atlantic

:::::::
Current,

:::
but

::::
does135

::::
show

:::::
some

:::::::::
variability

::
in

::::
both

::::::::
skewness

:::
and

::::::
excess

:::::::
kurtosis

::
in

:::
the

::::::
cluster.

::::
Just

::
as

:::
for

:::
the

::::::
E−P

:::::::
clusters,

:::
for

:::
all

::::
T2m :::::::

clusters,

::::::
kurtosis

::
is
:::::
larger

::::
than

:::
1.5

:::::
times

:::
the

::::::
square

::
of

:::
the

::::::::
skewness

::::
(Fig.

:::
2d)

:::::::::
consistent

::::
with

:::::::::::
multiplicative

::::::
noise.

3.2 CMIP6 data

In this section we analyze the results for the multi model
::::::::::
multi-model mean (MMM) of the CMIP6 models. We determine the

MMM at the end of the analysis. This means that we for example first determine the skewness for each model, and then average140

over the 2D skewness fields of all the models to create the MMM. Each model has been given the same weight. Results for

individual models can be found in the Appendix (Fig. A10 to Fig. A15).

The MMM for the noise in the E−P
::::::
E−P flux does not always represent the amplitude in the statistics of the ERA5 noise

well (Fig. 3a-f), though the spatial patterns are relatively well resolved in the MMM. The standard deviation is underestimated

over the entire ocean with the strongest underestimation in the ITCZ regions and over the western boundary currents (Fig. 3d).145

The multimodel mean shows a stronger negative skewness over the South Equatorial current that is also shifted more southward

compared to ERA5 noise (Fig. 3e). Furthermore, the positive skewness over the eastern subtropical region is not captured by

the CMIP6 MMM. The excess kurtosis is also positively biased in the CMIP6 MMM over the South Equatorial Current (Fig.

3f). In the region between 10◦S and 25◦N there is a patchy response where most regions see an underestimation of the excess

kurtosis (red colors) and some regions an overestimation (blue colors) compared to the ERA5 noise.150

The CMIP6 MMM does capture the spatial pattern and amplitude of the standard deviation of the noise in T2m well compared

to the ERA5 noise (Fig. 4a,b). The spatial pattern of the skewness is captured reasonably well in the Northern Hemisphere, but

the amplitude is typically smaller than in the ERA5 noise (Fig. 4c, d). In the Southern Hemisphere the CMIP6 MMM shows

mostly slightly positive skewness, whereas the ERA5 noise mostly shows small negative skewness. The absolute differences

are not that large, but there is an important difference in sign. For excess kurtosis the spatial pattern is also relatively similar in155

the CMIP6 MMM compared to the ERA5 noise, however, the regions in the ERA5 noise with small negative kurtosis are not

captured by the CMIP6 MMM (Fig. 4e,f). The amplitude of the excess kurtosis, however, is not as well resolved as the special

:::::
spatial

:
pattern. Most regions in the CMIP6 MMM show a

:
an

:
underestimation of the excess kurtosis compared to ERA5.

6



a b

c d

Figure 2.
:::::::
Overview

::
of

:::
the

::::::
clusters

:::
and

::::::::::
corresponding

:::::::
statistics.

:::
(a)

:::
The

::::::
clusters

::
for

:::
the

:::::
E−P

:::::
noise.

::
(b)

::::
The

:::::::
skewness

::
(S;

::::::
x-axis)

:::
and

:::::
excess

::::::
kurtosis

:::
(K;

:::::
y-axis)

::
of

:::
the

:::::
clusters

::
in
:::
(a).

:::
The

:::::
colors

::
of

:::
the

::::::
markers

::::::::
correspond

::
to
:::
the

::::
color

:::::
coding

::
in
:::
(a).

:::
The

::::
size

::
of

:::
ther

::::::
markers

::::::::
represents

::
the

:::::::
standard

:::::::
deviation

::
in

::::::
mm/day.

:::
(c)

:::
and

::
(d)

::
as
::
in

:::
(a)

:::
and

::
(b)

:::
but

::
for

:::
the

::::
T2m ::::::

clusters.
:::
The

::::
unit

::
of

::::::
standard

:::::::
deviation

::
in

:::
(d)

:
is
:::

◦C.
:::
The

:::::
black

:::
line

::
in

::
(b)

:::
and

:::
(d)

:::::::
represents

::
K
::
=

:::::
1.5S2.
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Figure 3. Standard deviation (σ), skewness and excess kurtosis of CMIP6 multi model
:::::::::
multi-model

:
mean (MMM) noise for the E−P

:::::
E−P

:
flux (a) – (c). Differences with ERA5 data (i.e. ERA5 minus CMIP6 MMM) are shown in (d) – (f). The numbers in the top right

corner of (a) – (c) reflect the spatial correlation and root mean square error. Units for (a) and (d) are mm/day.

4 Noise model

The CMIP6 MMM appears to do a decent job in capturing the observed
::::::::::::::
observation-based

:
noise field of both E−P

::::::
E−P160

and T2m. However, there is still a large spread in the model ensemble, meaning not all models are able to capture these noise

fields adequately. Our aim in this section is to develop a statistical model of the noise in both E−P
:::::
E−P

:
and T2m that can

be used as forcing in ocean models. We have tried several methods to construct such a model and we will present four of those

below.
::
All

:::::
these

::::::
models

:::
are

:::::
based

:::
on

:::
the

:::::
ERA5

:::::::::
reanalysis

::::
data.

Three of the methods are based on a principal component analysis (PCA) in which we base the noise model on the Principal165

Components (PCs) and corresponding Empirical Orthogonal Functions (EOFs). The PCA is performed on the noise and is

8
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Figure 4. As Fig. 3 but for T2m in ◦C.

weighted to account for the grid cell areas. For all three methods we use the number of EOFs necessary to explain 90% of

the variance in the noise (i.e. 289 EOFs and PCs for E−P
::::::
E−P , and 53 for T2m). For the first two methods we directly

sample
:::::
(using

:::::::::::
replacement)

:
from the PCs. The first method we name PC (1),

::
as we select one random time step (i.e. month)

for all PCs. This means we have 996 possible combinations for this method since
::
For

:::
the

::::::
PC(1)

::::::
method

:::
we

:::::::::
uniformly

::::::
sample170

:::
one

::::::
integer

:::::
from

:
1
:::
to the length of the PCsis ,

:::
i.e.

:::::
996.

:::
We

:::::
apply

:::
this

:::::::
integer

:::
for

::
all

:::::
PCs.

:::
For

::::::::
example,

::
if

:::
our

:::::::
integer

::
is

::
7,

:::
then

:::
we

:::::::
sample

:::
the

:::
7th

::::::
month

::
of

:::::
each

:::
PC

::
to

::::::::
construct

:::
the

:::::
noise

::::::
model.

::::::
Using

:::
this

:::::::
method

:::
we

::::::::
therefore

:::::
have

::
in

::::
total

:
996

months
:::::::
different

::::::::::
realizations

::
to

::::::
sample

::::
from, meaning this method is not strictly stochastic. The second method (PC (N)), we

sample a random time step out of the PCs, but a different time step for each PC. For the third method (PC (NIG)), we fit a

Normal Inverse Gaussian distribution to the individual PCs, and next sample randomly from these distributions in a similar175

fashion as the PC (N) method. The NIG distribution used in the PC (NIG) model has a probability density function determined

9



by

f(x,α,β,δ,µ) =
αδK1(α

√
δ2 +(x−µ)2

π
√
δ2 +(x−µ)2

eδ
√

α2−β2+β(x−µ), (1)

Where
::::
Here

:
α is a tail heaviness parameter, β an asymmetry parameter, µ regulates the shift of the distribution, and δ the

scale of the distribution. K1 represents a modified Bessel function of the second kind.
::::
Note

:::
that

:::
we

::::
have

:::::
tried

::::::
several

:::::
other180

::::::::::
distributions

::
as

:::::
well,

::
all

:::
of

:::::
which

:::::::::
performed

:::::
worse

::::
than

::::
the

::::
NIG

::::::::::
distribution.

:::::::
Among

::::
these

:::::::::::
distributions

:::
are

:::
the

::::::::::
generalized

:::::::::
hyperbolic

::::::::::
distribution,

:::
the

::::::
gamma

::::::::::
distribution,

:::
the

::::
beta

::::::::::
distribution

:::
and

:::
the

::::::::
skewed-t

::::::::::
distribution.

:::
We

::::::
choose

::
to

:::
use

::::
three

::::::::
different

:::::::::
PCA-based

:::::::
models.

::::
The

:::
PC

:::
(1)

:::::
model

::
is

::::
used

::
to

:::
test

:::::::
whether

:::
the

::::::
PCAs

:::
can

::
in

:::
fact

:::::::
capture

::
the

::::::::
statistics

::
of

:::
the

:::::
noise

::::
well.

:::::::::
However,

::::
since

::::
this

::::::
method

::
is
:::
not

:::::
fully

::::::::
stochastic

:::
we

::::
also

:::::
chose

::
to

:::
use

:::::
other

:::::::
models.

::::
The

:::
PC

:::
(N)

:::::
model

::
is

::
in

:::::
set-up

::::
very

::::::
similar

:::
but

:::::
more

::::::::
stochastic

::::
than

:::
the

:::::
PC(1)

:::::::
method.

:::
As

:::
the

:::
PC

:::
(N)

:::::
model

::::
also

:::
has

:
a
:::::::
discrete

:::::::
number185

::
of

:::::
values

::
to
:::::::

sample
:::::
from,

:::
we

:::
also

:::::
used

:::
the

:::
PC

:::::
(NIG)

::::::
model,

::::::
which

::::
does

:::
not

::::
have

::::
this

::::::::
problem. For all three methods, noise

fields are constructed by multiplying the value sampled from the PCs with the spatial patterns captured by the EOFs and next

summing over the number of PCs/EOFs. Results for the PC (1) and PC (N) models can be found in the Appendix (Fig. A6 to

Fig. A9). The PC (NIG) models
:::::
model

:
shows a good agreement with the noise diagnosed from the ERA5 data for the spatial

patterns of the standard deviation (Fig. 5a, d), but it is unable to capture the spatial patterns of the skewness (Fig. 5b, e) and190

excess kurtosis (Fig. 5c, f). The standard deviation in the noise is captured reasonably well (Fig. 5d). Looking at the skewness

(Fig. 5e), and the excess kurtosis (Fig. 5f), we can see that this model is unable to represent these metrics correctly, since the

PC (NIG) model simulates near zero skewness and excess kurtosis. Just as for the E−P
:::::
E−P

:
flux, the PC (NIG) model

represents the spatial pattern of the noise in the T2m well in the standard deviation (Fig. 6a, d), but not in the skewness (Fig. 6b,

e), and excess kurtosis (Fig. 6c, f). Again
:
, the skewness and excess kurtosis are near zero in all regions, except for the excess195

kurtosis in the sea ice covered regions in the North Atlantic.

Since the models using the PCA show difficulty in representing the ERA5 noise we have, as the fourth method, also fitted

several statistical distributions directly to the noise for each grid cell. For both the E−P
:::::
E−P

:
and T2m, the Normal Inverse

Gaussian (NIG) distribution appeared to be the best fit. Most

:::
We

::::
have

:::::
tested

:::
the

:::::::::::::
goodness-of-fit

::::
with

::::::
several

::::::::
measures

::::
(Fig.

::::::
A16).

::::::
Firstly,

:::
we

::::
have

:::::::::
performed

::
an

:::::::::::::::
Anderson-Darling

::::
test200

::
on

:::::::::
normality.

:::
We

:::
find

::::
that

:::
for

:::
the

::::::
E−P

:::::
noise,

::::
only

:::
8%

::
of

:::
the

:
grid points pass a

:::
this

:::
test

::
(p

::
<
:::::
0.05)

::::
(Fig.

::::::
A16b).

:::
For

::::
T2m::::

this

:
is
::::::
higher,

:::
i.e.

:::::
42%

::::
(Fig.

::::::
A16f).

::::
Next

:::
we

:::::
have

:::::
tested

:::::::
whether

:::
the

::::
NIG

:::::::
provides

::
a
:::::
better

::
fit

::::
than

::
a

::::::
normal

::::::::::
distribution

::
for

:::::
each

:::
grid

:::::
point.

::::
For

:::
this

:::
we

:::
use

:::
the

::::::::
following

::::::::
measure:

χn =
1

N

N∑
i=1

(fi −mi)
2

m2
i

,

::::::::::::::::::::

(2)

:::::
where

::
N

::
is

:::
the

::::::
number

::
of
::::
bins

:::::
used

:::
(i.e.

::::
50),

::
fi:::

the
:::::::::
probability

:::::::
density

:::::::
function

::
of

:::
the

::::::::
timeseries

::::
per

:::
grid

:::::
point,

::::
and

:::
mi :::

the205

::::
fitted

:::::::::
probability

:::::::
density

:::::::
function

:::::
which

::
is

:::::
either

::::
fitted

::
to

:::
an

::::
NIG

:::::::::
distribution

::
or

::
a

::::::
normal

::::::::::
distribution.

:::
We

:::::::
compute

:::
χn:::

for
::::
both

::
an

::::
NIG

:::
and

::::::::
Gaussian

::
fit

::::
and

:::::::
compare

:::
the

::::
two.

:::
For

::::
98%

::
of

:::
the

::::
grid

:::::
points

:::
the

::::
NIG

:::
fit

:::::::
performs

:::::
better

::::
(i.e.

:::
χn ::

is
::::::
smaller

:::
for

:::
the

10
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Figure 5. Standard deviation (σ), skewness and excess kurtosis of the noise from the PC (NIG) model for the E−P
:::::
E−P

:
flux (a) –

(c). Differences with ERA5 data (i.e. ERA5 minus PC (NIG)) are shown in (d) – (f). The statistics of the noise model are based on 10000

realisations (months). The numbers in the top right corner of (a) – (c) reflect the spatial correlation and root mean square error. Units for (a)

and (d) are mm/day.

::::
NIG

::
fit)

:::
for

:::
the

::::::
E−P

:::::
noise

::::
(Fig.

::::::
A16a),

:::
and

:::::
94%

::
for

:::
the

::::
T2m:::::

noise
::::
(Fig.

::::::
A16e).

:::
To

:::
test

:::::::
whether

:::
the

::::
NIG

:::::
model

::
is
::
a

::::
good

:::
fit,

::
we

:::::
apply

::
a Kolmogorov - Smirnov goodness of fit test. For the E−P

:::::
E−P , only 27 grid points do not pass this test, and for

T2m, 8 grid points
::
do

::::
not (out of 138,788 (ocean) grid points) . With this method, we

::
(p

:
<
::::::

0.05).
::::::::
However,

:::
the

:::::::::::
Kolmogorov210

:
-
:::::::
Smirnov

::::
test

::
is

:::
not

::::
well

:::::
suited

:::
for

::::::
heavy

:::::
tailed

:::::::::::
distributions

::
as

:::
we

::::
find

::
in

:::
our

:::::
data.

::::::
Ideally,

:::
we

::::::
would

::::
like

::
to

:::::::
perform

:::
an

:::::::::::::::
Anderson-Darling

:::
test,

:::
or

:
a
::::::
similar

::::
test,

:::
as

:
a
:::::::::::::
goodness-of-fit

:::
test

:::
to
::::

test
:::::::
whether

:::
the

::::
NIG

:::
fits

:::
are

::::::::::
statistically

::::::::::
significant,

:::
but

:::
this

::
is

:::::::::::::
computationally

::::
too

:::::::::
expensive.

:::
For

:::
the

::::::::
Anderson

::
-
:::::::
Darling

:::
test

:::
we

::::
need

::
to
::::::::

compute
::::::
critical

::::::
values.

::::
For

:::
the

::::::::
Gaussian

:::::::::
distribution

:::::
these

:::
are

::::::
known,

:::
and

:::::::::::
independent

::
of

:::
the

:::::::::
parameters

:::::::::
describing

:::
the

::::::::::
distribution

:::
(i.e.

:::::
mean

:::
and

::::::::
standard

:::::::::
deviation).

:::
For

:::
the

::::
NIG

::::::::::
distribution,

:::::::
however,

:::::
these

::::::
critical

::::::
values

::
are

:::::::::
dependent

:::
on

::
the

::::::::::
parameters

::
of

:::
the

::::::::::
distribution.

::::
This

:::::
means

::::
that

:::
we215
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Figure 6. As Fig. 5 but for T2m in ◦C

:::::
should

::::::::
compute

:::
the

::::::
critical

:::::
values

:::
for

::::
each

::::
grid

:::::
point

:::::::::
separately,

:::::
which

::
is
::::::::::::::
computationally

:::
too

::::::::
expensive

::::
and

:::::::
therefore

:::
we

:::
do

:::
not

:::
use

:::
the

::::::::
Anderson

:
-
:::::::
Darling

:::
test

:::
for

:::
the

::::
NIG

::::::::::
distribution.

::::::
Lastly,

::
we

::::
test

::
the

:::::::::::
significance

::
of

:::
the

::::::::
skewness

:::
and

:::::::
kurtosis

::
of

:::
the

:::::
E−P

::::
and

::::
T2m:::::

noise.
:::
We

:::
do

::::
this

::
by

::::::
fitting

::
an

::::::
AR(1)

:::::
model

::
to
::::

the
::::
data,

:::
and

:::::::::::
subsequently

::::::::
generate

::::::::
sampling

:::::::
statistics

:::::
from

:::
this

::::::
model.

::::
The

::::
fitted

::::::::::
(Gaussian)

:::::
AR(1)

::::::
model

::::
fails

::
to

:::::::
provide

::::
good

::::::::
statistics

::
(p

::
<

::::
0.05)

:::
for

::::
93%

::::
and

::::
85%

::
of

:::
the

::::
grid

::::::
points

::
for

:::
the

::::::
E−P

::::::::
skewness

:::
and

::::::
excess

:::::::
kurtosis

::::
(Fig.

::::::
A16c,

::
d),

::::
and

::
38

::
%

::::
and

::::
53%

:::
for

:::
the

::::
T2m ::::::::

skewness
:::
and

::::::
excess

::::::
kurtosis

:::::
(Fig.220

:::::
A16g,

:::
h).

:::::
Based

:::
on

:::
this

:::::::::
collection

::
of

:::::
tests,

:::
we

::::
think

::::
that

:::
for

::::
most

:::
of

:::
the

::::
grid

:::::
points

:::
the

::::
NIG

::::::
model

::::::::
provides

:
a
:::::
good

::
fit

::
to

:::
the

:::::
data.

::::::::::
Furthermore,

:::::::::
following

:::
the

::::::::::::::::
Anderson-Darling

:::
test

:::
on

:::::::::
normality

:::
and

::::
the

:::::
fitted

::::::
AR(1)

::::::
model,

:::::
most

::
of

:::
the

:::::::
E−P

:::::
noise

::
is

:::::::::::
non-Gaussian,

::::
and

::
to

::
a
:::::
lesser

::::::
degree

::::
this

:::
also

:::::::
applies

::
to

:::
the

::::
T2m::::::

noise.
:::
The

::::
grid

::::::
points

:::
for

:::
the

::::::
E−P

:::::
noise

:::
that

::::
are

:::::
likely

:::::::
Gaussian

:::
are

:::::::
located

::
in

::::::
clusters

::
4
:::
and

:::
11,

::::::
which

:::
are

::::::
indeed

::::::
clusters

::::
with

::::::::
skewness

::::
and

::::::
excess

::::::
kurtosis

:::::
close

::
to

::
0

::::
(Fig.

:::
2a,

:::
b).225

:::
For

:::
the

::::
T2m:::::

noise
:::
the

::::
grid

:::::
points

::::
that

::::
show

::::::::
Gaussian

::::::::
behavior

:::
are

::::::
mainly

:::::::
located

::
in

:::
the

::::::
sea-ice

::::
free

:::::::
subpolar

::::::
Ocean.

::::::
These

12



:::
grid

::::::
points

::::::
mainly

::::::
belong

::
to

:::::::
clusters

::
1,

:
7
::::
and

::
12

::::::
which

:::
are

:::
also

:::
the

:::::::
clusters

::::
with

::::::::::::
approximately

::::
zero

::::::::
skewness

::::
and

::::::::
near-zero

:::::
excess

:::::::
kurtosis

::::
(Fig.

:::
2c,

:::
d).

:::::
Using

:::
the

:::::
fitted

::::
NIG

::::::::::
distribution,

:::
we can generate a fully stochastic noise field for each month using the 4 parameters per

grid cell.230

The fitted NIG distribution
:::
The

:::::
model

:
shows a good agreement with the noise diagnosed from the ERA5 data for the spatial

patterns of the standard deviation (Fig. 7a, d), skewness (Fig. 7b, e) and excess kurtosis (Fig. 7c, f). Especially the standard

deviation in the noise is captured well with only small deviations between 10◦S and 25◦N (Fig. 7d). The NIG distribution

underestimates the regions with strong negative skewness over the latitude bands 0◦N to 10◦S and 10◦N to 25◦N (Fig. 7e).

For excess kurtosis we see a similar underestimation in these regions, meaning that the excess kurtosis is higher in the ERA5235

data (Fig. 7f). However, the region between these two latitude bands shows a much higher excess kurtosis in the NIG model

compared to the ERA5 noise.

Just as for the E−P
:::::
E−P

:
flux, the NIG model represents the spatial pattern of the noise in the T2m well in the standard

deviation (Fig. 8a, d), skewness (Fig. 8b, e), and excess kurtosis (Fig. 8c, f). Also here the standard deviation is captured very

well by the NIG model with only very small differences in the sea ice covered regions (Fig. 8d). The same applies to the240

skewness, where we also see some deviations in these same regions (Fig. 8e). For most regions the NIG model captures the

excess kurtosis quite well (Fig. 8f). However, for regions with a high excess kurtosis in the ERA5 noise, such as the sea ice

covered regions and the Gulf of Mexico, the NIG model strongly overestimates the excess kurtosis.

5 Performance CMIP6 and NIG models

In this section, we compare the noise models and the CMIP6 models with the ERA5 noise using Taylor diagrams (Fig. 9) to245

provide a more in depth
::::::
in-depth

:
discussion on the performance of the individual models. We compare how well the different

models represent the standard deviation (Fig. 9a, b), the skewness (Fig. 9c, d), and the excess kurtosis (Fig. 9e, f) found

in the ERA5 noise. In the Taylor diagram, the standard deviation of
:::::
Taylor

::::::::
diagrams

:::
are

::
a
::::
good

::::
tool

::
to

:::::
better

::::::::::
understand

:::
the

::::::::::
performance

::
of

:::
all

::
the

::::::::
different

::::::
models

::::::
against

:::
the

:::::::::::::::
observation-based

:::::
noise.

::
In

:
a
:::::
Taylor

::::::::
diagram,

::::
three

:::::::
metrics

::
are

:::::::::
displayed:

:::
(1)

the specific field (e.g. skewness), the Root Mean Square Error (RMSE; circular contours) , and spatial correlation coefficientare250

displayed. These metrics are determined using weights taking into account the area of each grid cell.

For E – P, the NIG model standard deviation correlates strongly (1.0) with the ERA5 noise, and also the RMSE (0.03) is

very small. Also for the skewness the spatial correlation is very high (0.82), and the RMSE is also relatively low (0.36),
:::
(2)

:::
the

:::::::
variation

::
in

:::
the

::::
data

::
as

:::::::::
represented

:::
by

:::
the

:::::::
standard

::::::::
deviation,

::::
and

::
(3)

:::
the

::::
root

:::::
mean

:::::
square

:::::
error

:::::::
between

:::
the

:::::::::::::::
observation-based

:::
data

::::
and

:::
the

::::::
model. The spatial correlation between the NIG model and ERA5 noise for excess kurtosis (0.54) is lower255

compared to the skewness and standard deviation, and the RMSE is 3.60. For the standard deviation, the NIG model performs

better than the PC (1) and PC (N) model, that both overestimate
:::::::::
coefficient

:
is
:::::::::
displayed

::
on

:::
the

::::
outer

:::::
circle

::
in
:::
the

:::::
figure

::::
and

:::
the

::::::
straight

:::::
dotted

:::::
lines

::
in

:::
Fig.

::
9,

:::::::::
connecting

:::
the

:::::
origin

::::
with

:::
the

:::::
outer

::::
circle

:::
are

::::
lines

:::
of

:::::::
constant

:::::::::
correlation.

::::
The

:::::::
standard

::::::::
deviation

:
is
:::::::::
displayed

::
on

::::
both

:::
the

::::::
x-axis

:::
and

::::::
y-axis.

:::::
Lines

:::
of

:::::
equal

:::::::
standard

::::::::
deviation

:::
are

::::::
circles

::::
with

::::
their

::::::
center

::
in

:::
the

:::::
origin

:::
of

:::
the
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Figure 7. Standard deviation (σ), skewness and excess kurtosis of the noise from the NIG model for the E−P
:::::
E−P

:
flux (a) – (c).

Differences with ERA5 data (i.e. ERA5 minus NIG) are shown in (d) – (f). The statistics of the noise model are based on 5000 realisations

(months). The numbers in the top right corner of (a) – (c) reflect the spatial correlation and root mean square error. Units for (a) and (d) are

mm/day.

::::
plot.

:::
The

:::::
black

::::::
dashed

::::
line

::
in

::::
Fig.

::
9

:::::::
displays the standard deviation , and similar to the PC (NIG) model. For the skewness,260

the spatial correlation of the NIG model is slightly lower than those of the PC (1) and PC (N) models (i.e. 0.82 versus 0.93

and 0.91, respectively). The RMSE is similar for the NIG and PC (1) model but much larger for the PC (N) model (0.36 versus

0.34 and 0.74, respectively). As discussed in Section 4, the PC (NIG) model completely underestimates the skewness with a

spatial correlation of -0.05 and an RMSE of 0.98. The spatial correlationis lower for the NIG model
::
in

:::
the

:::::::::::::::
observation-based

:::::
noise.

::::
The

::::::
RMSE

::
is

::::::::
displayed

::::
with

::::
the

:::::
black

::::::
contour

::::::
circles

:::::
with

::::
their

::::::
center

::
in

:::
the

:::::::::::::::
observation-based

:::::
noise

:::::::
marker.

::::
The265

::::::
location

:::
of

::::
each

::
of

:::
the

:::::::
markers

::::::::
therefore

::::::::
provides

::::::::::
information

:::::
about

:::::
three

::::::::
important

:::::::
metrics

:::
and

::::::::
therefore

:::
the

:::::::::::
performance

::
of

:::
the

:::::::::
individual

::::::
models

:::::::::
compared

::
to

:::
the

:::::::::::::::
observation-based

::::::
noise.

::::::
Ideally,

::
a
::::::
model

:::
will

:::
be

::
in

:::
the

::::::
lower

:::
part

:::
of

:::
the

::::::
graph,
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d e f

Figure 8. As Fig. 7 but for T2m in ◦C.

::::
since

::::
this

:::::::
indicates

:::::
high

:::::
spatial

::::::::::
correlation,

:::::
close

::
to

:::
the

:::::
black

::::::
dashed

:::::
lines,

:::::
since

:::
this

::::::::
indicates

::::::
similar

:::::::::
variability

:
compared

to the PC (1) and PC (N) models (0.54 versus 0.84 and 0.82, respectively). For the RMSE, the NIG model is outperformed

by the
::::::::::::::
observation-based

::::::
noise,

:::
and

:::
by

:::::::::
combining

:::::
these

:::
two

:::
the

::::::
RMSE

::::
will

:::::::::::
consequently

::::
also

::
be

::::
low.

::::
All

::::
three

:::::::
metrics

:::
are270

:::::::::
determined

:::::
using

:::::::
weights

:::::::::
considering

:::
the

::::
area

::
of

::::
each

::::
grid

::::
cell.

:

:::
For

:::
the

::::::
E−P

:::::
noise

:::::::
models,

:::
the PC (1) model , but outperforms

:::::::
performs

::::
best

:::
for

:::
the

::::::::
standard

::::::::
deviation,

::::::::
skewness

::::
and

:::::
excess

:::::::
kurtosis

:::
and

:
the PC (N) model (3.60 versus 2.82 and 4.45, respectively), and again the PC (NIG) model fails to capture

the excess kurtosis in the noise (spatial correlationof 0.12 and RMSE of 5.07)
::::
NIG)

:::
the

:::::
worst

:::::
(Fig.

:
9
::
a,

::
c

:::
and

:::
e).

:::
The

:::
PC

::::
(N)

:::::
model

::::::::
performs

:::::::
equally

::::
well

:::
for

:::
the

::::::
spatial

::::::::::
correlation,

:::
but

:::::::
strongly

:::::::::::::
underestimates

:::
the

:::::::::
variability

::
in

::::::::
skewness

::::
and

::::::
excess275

:::::::
kurtosis.

::::
The

::::
NIG

:::::
model

::::
has

:
a
:::::
lower

::::::
spatial

::::::::::
correlation,

:::
but

::
is

:::::
much

:::::
better

::
in

::::::::
capturing

:::
the

:::::::::
variability

::
in

:::
all

:::::
three

::::::::
statistical

:::::::
moments. All models have trouble representing the excess kurtosis in the latitudinal bands 10◦S to 25◦N. The PC (1) and PC

(N) models overestimate the excess kurtosis in almost the entire region, whereas the NIG model underestimates the excess
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kurtosis over the ITCZ region , and overestimates it in the other regions. This is because this region can experience very

extreme rainfall episodes with a very low number of occurrences which severely affects the excess kurtosis diagnosed from the280

ERA5 noise .
::
as

:::
was

::::
also

:::::
found

::::
with

:::
the

::::::::
clustering

:::::::
analysis

:::::
(Fig.

::
2).

:
Because these episodes only occur a few times in the time

series, these are not represented well by the NIG model, and are also difficult to represent in the PC (1) model.

We can explain the failure of the PC (NIG) model to accurately resemble the observed
:::::::::::::::
observation-based

:
skewness and

excess kurtosis by
::
the

:
Central Limit Theorem. This theorem states that when summing over random variables, the distribution

of this sum converges towards a Gaussian distribution, which, by definition, has zero skewness and excess kurtosis. What we285

do in these PC-models is that we sample values from the PCs, multiply those with the EOFs and sum these, which, following

Central Limit Theorem, converges towards a Gaussian distribution. The same applies to the PC (N) model which performs well

for spatial correlation skill, but
:
(based on a timeseries of 10,000

::::::::::
realisations) underestimates the amplitude of the skewness

and excess kurtosis. This underestimation increases when longer timeseries are used, and the model slowly converges to one of

Gaussian noise
:
a
::::::::
Gaussian

:::
one. Methods based on a PCA, except for the PC (1) model, will therefore be unable to represent the290

skewness and excess kurtosis in the observed noise. Lastly, when a longer timeseries is used to determine the statistics, e.g. 20,

000 realizations instead of 10, 000 as used now,
:::::::::::::::
observation-based

:::::
noise.

:::
An

:::::::::
alternative

::::::::::
explanation

::
as

::
to
::::

why
:::

the
:::::::::

PC-based

::::::
models

:::
fail

::
to

:::::::
capture

:::
the

::::::::
skewness

:::
and

::::::
excess

:::::::
kurtosis

::
is

::::
that

:::
the

::::
PCs

:::::
might

::
be

::::::::::::
(non-linearly)

:::::::::
dependent

:::
on

::::
each

:::::
other.

:::
To

:::
test

::::
this,

:::
we

::::
have

::::::::
calculated

:::
the

:::::::
distance

::::::::::
correlation

:::::::
between

:::
the

::::
PCs,

::::::::
including

:::::::
whether

:::
the

:::::::
distance

:::::::::
correlation

::
is

:::::::::
significant

:::::::
(p-value

:
<
:::::

0.05)
:::::
based

:::
on

::
a
::::::::::
permutation

::::
test

::
of

::
n

:
=
:::::
1000

::::
(Fig.

::::::
A17).

:::
For

::::
both

::::
the

::::::
E−P

:::
and

::::
T2m:::::

PCs,
::::::
around

:::
5%

:::
of

:::
the295

:::::::
possible

:::
PC

:::::::::::
combinations

::::::::::
experiences

::
a

::::::::
significant

:::::::::::
dependence.

::::::::
However,

:::
the

::::::::
strongest

:::::::
distance

::::::::::
correlation

::
is

::::
only

::::
0.14

:::
for

::
the

::::
PCs

::::::::::::
corresponding

::
to

:
the statistics of the PC (1) model converge toward those of the observed noise

:::::
E−P

:::::
noise,

::::
and

::::
0.11

::
for

:::
the

::::
PCs

::::::::::::
corresponding

::
to

:::
the

::::
T2m:::::

noise,
::::::::

meaning
::::
there

::
is
::
at
::::
best

::
a

::::
very

::::
weak

::::::::::
dependence

::::::::
between

:::
the

::::
PCs.

:::
We

::::::::
therefore

::
do

:::
not

::::::
expect

:::
that

:::
the

:::::
weak

:::::::::
non-linear

::::::::::
dependence

:::::::
between

:::::
some

::
of

:::
the

::::
PCs

::
is

:::
the

:::::
reason

::::
why

:::
the

:::::::::
PC-based

::::::
models

::::
fail,

:::
but

:::
that

:::
the

::::::::::
explanation

:::::::::
mentioned

::::::
before,

:::
i.e.

:::
the

::::::
Central

:::::
Limit

::::::::
Theorem,

::
is

:::
the

:::::
main

:::::
reason.300

For T2m,
::::
Fig.

::
9

::
b,

:
d
::::
and

:
f
:::::
show

:::
that

:::
the

:::::
NIG

:::
and

:::
PC

:::
(1)

::::::
models

:::::::
perform

:::::::::::
consistently

::::
best.

:::
All

::::::
models

:::::::
capture

:::
the

::::::
spatial

::::::
pattern

::
in

:::
the

::::::::
standard

::::::::
deviation

::
of

:::
the

:::::
noise

:::
as

:::::
shown

:::
by

:::
the

:::::
near

::::
unity

::::::
spatial

::::::::::
correlation

:::::::::
coefficient,

::::::::
however,

:
the NIG

model captures the standard deviation in the ERA5 very well with almost perfect metrics. The skewness is captured relatively

well with a high spatial correlation (0.87) and low RMSE (0.12) . Compared to E−P , the excess kurtosis of the T2m noise

is better captured by the NIG model with a spatial correlation of 0.82, but a relatively high RMSE of 1.32. The NIG model305

performs better than the PC (1
:
N) and PC (N) model for the standard deviation and similar to the PC (NIG) model. For the

skewness the spatial correlation is very similar to the
::::::
models

::::
both

:::::::::::
overestimate

:::
the

::::::::
variability

::
in

:::
the

::::::::
standard

::::::::
deviation

::
of

:::
the

::::
noise

:::
as

:::::
shown

:::
by

:::
the

:::::
high

::::::
RMSE

:::
and

::::::
larger

:::::::
standard

::::::::
deviation

:::::
(Fig.

:::
9b).

::::
The

::::::
spatial

::::::
pattern

:::
of

:::
the

::::::::
skewness

::
is
::::::::
captured

:::::::::
reasonably

::::
well

::
by

:::
the

:::::
NIG,

:
PC (1) and PC (N) models(i.e. 0.87 versus 0.90, 0.86, respectively), and the RMSE is slightly

lower (0.12 versus 0.13 and 0.17, respectively) . For the excess kurtosis the spatial correlation is also higher for the NIG model310

:
,
:::
but

:::
not

::
by

:::
the

::::
PC

:::::
(NIG)

::::::
model

::::
(Fig.

::::
9d).

::::
The

:::
PC

:::
(N)

::::::
shows

:
a
:::::::
stronger

::::::::::::::
underestimation

::
of

:::
the

:::::::::
variability

:
compared to the

PC (1) and PC (N) models (0.82 versus 0.85 and 0.83, respectively). The RMSE is much higher though (1.32 versus 0.58 and

0.84, respectively
::::
NIG

::::::
model.

:::
For

:::
the

::::::
excess

:::::::
kurtosis

:
a
::::::
similar

::::::::::
conclusion

:::
can

::
be

:::::::
drawn,

:::::
except

::::
that

:::
the

::::
NIG

::::::
model

:::::::
strongly
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:::::::::::
overestimates

:::
the

:::::::::
variability

::::
(Fig.

::
9f). The worse performance for excess kurtosis can be explained by the overestimation of

the sea ice covered regions and the Gulf of Mexico by the NIG model. Both the skewness and excess kurtosis are very poorly315

represented in the PC (NIG) model with a spatial correlation of -0.01 for the skewness and 0.28 for the excess kurtosis. The

RMSEs are 0.23 for the skewness and 1.05 for the excess kurtosis and therefore relatively high compared to the other PC

models. In this region
:
In

:::::
these

:::::::
regions,

:
the distribution of the ERA5 noise has a relatively broad, flat peak or sometimes a

slightly bimodal peak. This is the reason the NIG fit does not perform very well in these regions. In the Southern Ocean the

estimates for excess kurtosis in the NIG model are off because of relatively extreme cold episodes in the ERA5 noise. Similar320

as to the E˘P noise, the PC (N) and PC (NIG) models are unable to explain the
::::::::
variability

::
in

:::
the skewness and excess kurtosis

as explained by Central Limit Theorem
:::::
above.

For E−P
::
As

::::::::
discussed

::
in
:::::::

Section
:::
3.2, the CMIP6 MMM captures the standard deviation of the ERA5

:::::
E−P

:
noise rea-

sonably well, though the MMM underestimates the standard deviation in large parts of the basin. The spatial correlation is

high (0.86), and the RMSE is low (0.44). The performance for the skewness is less with a lower spatial correlation (0.61),325

and the RMSE is 0.51. Just as with the NIG model, the excess kurtosis is also the statistic that is not captured well. The

spatial correlation is 0.45, and the RMSE 4.04. The strongest biases are found
::::::::::
performance

::::::::
decreases

:::
for

:::
the

::::::
higher

::::::::
statistical

::::::::
moments.

::::
This

::
is

:::::
likely

::::::
related

::
to

::::::
strong

:::::
biases

:
over the South Equatorial Current where the skewness is too negative in the

CMIP6 MMM, and the excess kurtosis too positive compared to the ERA5 noise. This is potentially related to the double

ITCZ bias present in most CMIP6 models
::::::::::::::::::
(Tian and Dong, 2020). The latitudinal extent of the ITCZ is too southward in many330

models, which also causes a shift in the higher order statistical moments in this region resulting in relatively large biases. The

::::
From

::::
Fig.

::
9
:::
we

:::
see

::::
that

:::
the

:
individual models that consistently perform the best are CESM2-WACCM (30), CESM2 (31)

and NorESM2-MM (32) (except for excess kurtosis where NorESM2-MM has quite a large RMSE). What these models have

in common is that their atmospheric model is the Community Atmopshere
::::::::::
Atmosphere

:
Model 6 (CAM6), or in the case of

CESM2-WACCM based on CAM6 and run on a nominal 1◦ horizontal resolution. This suggests that this atmospheric model335

is able to capture the observed
::::::::::::::
observation-based

:
noise reasonably well.

Liu et al. (2022) also found that these models are performing relatively well for precipitation biases which they suggest is due

to the specific two-moment prognostic cloud microphysics scheme (Gettelman and Morrison, 2015) used in CAM6. TaiESM1,

which uses CAM5 and an earlier version of the prognostic cloud microphysics scheme also performs relatively well. There are

also two other CESM2 models that use a form of CAM6, i.e. CESM2 – WACCM – FV2 (27) and CESM2 – FV2 (29). These340

models perform less well as the other three, which might be explained by the fact that these models are run on a lower (i.e. 2◦)

resolution. The CMIP6 MMM has the same biases in the latitudinal band between 10◦S and 25◦N, though less strong in some

regions. This is probably because the high rainfall episodes in the ERA5 data are smoothed when regridded to a 1◦ grid, which

is done before comparing it to the CMIP6 models and MMM.

The
::
For

::::
T2m:::

the
:
CMIP6 MMM is able to capture the standard deviation in the

:::
also

::::::::
performs

:::::::::
reasonably

::::
well

:::::::::
compared

::
to345

::
the

:
ERA5 T2m well with a high spatial correlation (0.96), and low RMSE (0.31). Also the skewness is captured relatively well

with a spatial correlation of 0.72, and RMSE of 0.17, and the same applies to the excess kurtosis with a spatial correlation

of 0.80, and RMSE of 0.61
:::::
noise,

::::
and

:::
just

::
as

:::
for

:::
the

::::::
E−P

::::::
noise,

:::::::::::
performance

:
is
::::::

lower
:::
for

:::::
higher

:::::::::
statistical

:::::::
moments. The

17



strongest biases (both positive and negative) for the excess kurtosis are found over the sea ice covered regions. This might

be related to biases in sea-ice cover in the CMIP6 models (Watts et al., 2021). For the individual models it is more difficult350

to point towards consistently well performing models. The UKESM1-0-LL (22) model simulations performed by the MOHC

shows the most consistency. Other models that perform relatively well in 2 out of 3 statistical moments are CESM2-FV2 (29)

and CAS-ESM2-0 (8). Interestingly, the UKESM1-0-LL (33) simulations performed by the NIMS-KMA are among the worst

performing models. The only difference between the two models is the computer on which the model is run on, and the initial

conditions. This suggests that there is also a depedency
::::::::::
dependency on initial conditions in the performance of the CMIP6355

models.

Except for the excess kurtosis in the T2m noise, the NIG model outperforms the individual CMIP6 models and MMM which

is due to the overestimation of the excess kurtosis over sea ice covered regions by the NIG model. The PC (NIG) model only

outperforms the CMIP6 MMM for the standard deviation and is very poor for the skewness and excess kurtosis. The PC (1)

model outperforms the CMIP6 models and MMM for the skewness and excess kurtosis. The PC (N) model outerpeforms360

::::::::::
outperforms the CMIP6 MMM for all moments with respect to the spatial correlation , and is very similar to the CMIP6 MMM

and the best CMIP6 models for RMSE. This means that we can capture ‘realistic’ noise better with the statistical model than

the fully coupled Earth System Models. Among the PC-based models, the PC (1) model performs best and similar to the NIG

model, but this model is not fully stochastic as the other noise models.

6 Summary and discussion365

In this study we have analysed ERA5 evaporation minus precipitation (E−P
:::::
E−P ) and 2 m air temperature (T2m) fields

to determine what observed
:::::::::::::::
observation-based noise is in these variables. We find that due to nonzero skewness and excess

kurtosis, the noise in both variables typically cannot be classified as white and studies that assume white noise in either of

the two variables might not resolve the response of the ocean to atmospheric noise realistically. We have analysed the noise

in 36 different CMIP6 Earth System Models and the CMIP6 multi model
::::::::::
multi-model mean (MMM) and compared those to370

the ERA5 noise. There is quite a spread in the performance of the CMIP6 models, but the MMM is performing relatively well

compared to the individual models. Typically
:
, the models perform best for the standard deviation and worst for the excess

kurtosis. Furthermore, we have fitted a Normal Inverse Gaussian (NIG) distribution to the ERA5 noise of both variables. This

results in a stochastic noise model that can be used as input in Ocean General Circulation Models (OGCMs). We have shown

that the NIG model captures the standard deviation, skewness and excess kurtosis of the ERA5 noise reasonably well in both375

the E−P
:::::
E−P

:
and T2m except for the excess kurtosis in the T2m noise where the NIG model strongly overestimates the

positive excess kurtosis in sea ice covered regions. For most metrics and statistics, the NIG model performs better than the

individual CMIP6 models and CMIP6 MMM.

Previous studies have looked into biases in CMIP6 models. However, these studies typically look into the biases in the

mean state or the seasonality of the variables. Here, we have specifically looked at variability up to interannual timescales and380

specifically the distribution and related metrics (i.e. standard deviation, skewness and excess kurtosis). We found that biases in
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c d
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Figure 9. Taylor diagrams for statistics of the noise. (a) and (b) standard deviation. (c) and (d) skewness, and (e) and (f) excess kurtosis. (a),

(c) and (e) are for the E – P noise, and (b), (d) and (f) for the noise in the T2m. The star refers to the ERA5 data, the different red numbers

refer to the different CMIP6 models, the blue letters to the noise models, and the square black marker represents the CMIP6 MMM. Note

that UKESM1-0-LL number 22 is performed by the MOHC and number 33 by NIMS-KMA. Units for standard deviation in (a) are mm/day,

and ◦C in (b).
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these quantities are still to some extent connected to biases in the mean state. For example, the biases in skewness and excess

kurtosis in the E−P
:::::
E−P noise in the South Atlantic are for example likely to be related to the double ITCZ bias described

in earlier studies (Tian and Dong, 2020; Li et al., 2020). Differences in the excess kurtosis in sea ice covered regions can also

be related to the biases in Arctic sea-ice thickness and cover (Watts et al., 2021).385

In the development of a noise model the best variant turned out to be a point wise statistical fit of a Normal Inverse Gaussian

(NIG) distribution. As shown in Section 3, the model performs relatively well in most grid points, but can still deviate quite a

bit for especially the excess kurtosis. One major drawback of fitting a statistical distribution point wise to the data is that for the

individual noise fields (i.e. one random realisation) we lose spatially coherent structures, and potentially auto-correlation in the

noise. We have constructed alternative models based on a principle
::::::::
principal component analysis (PCA) where the correspond-390

ing Empirical Orthogonal Functions (EOFs) captured
::::::
capture

:
the spatial structures. However, these models underestimate the

skewness and excess kurtosis in the noise fields because of the Central Limit Theorem, or (for the PC (1) model, )
:

are not

fully stochastic. Therefore, we eventually decided to fit a model to the data that can relatively accurately represent the standard

deviation, skewness and excess kurtosis in the ERA5 noise. However, when the spatially coherent structures captured by the

EOFs are deemed more important than an accurate representation of the skewness and kurtosis of the noise, PC-based models395

can be used.
:::
The

::::
loss

::
of

:::::::
spatially

::::::::
coherent

::::::::
structures

:::
can

:::
be

::::::::
important

:::::
when

:::::::
studying

::::::::::::
noise-induced

:::::::::
transitions

::
of

:::
the

:::::::
AMOC.

:::::
Noise

:::
that

::
is

:::::::
spatially

::::::::
coherent

::::::::
influence

:::::
larger

::::
areas

:::
of

:::::
ocean.

::::
This

::::::
could,

:::
for

::::::::
example,

::::
mean

::::
that

:
a
:::::::::
freshening

::
of
:::
the

:::::::
surface

:::::
ocean

:::::
could

::::::
happen

::::
over

:
a
::::::

larger
::::
area

::
of

:::
the

:::::
ocean

:::
and

::::::::
therefore

:::::
might

:::
be

:::::
more

:::::::
efficient

::
in

::::::::
inhibiting

::::
deep

::::::::::
convection

::
in

:::
the

:::::
North

:::::::
Atlantic.

:::::::
Whether

::
it
::
is

:::::::
actually

::::::::
important

::::::
should

::
be

:::::
tested

::
in
:::
an

:::::
ocean

::::::
model

:::
but

:::
this

::
is

::::::
outside

:::
the

:::::
scope

::
of

::::
this

:::::
study.

::::::
Similar

::::::
studies

::::
that

::::
look

:::
into

:::
the

::::::::::::
characteristics

:::
of

::::::::
E−P and

::::
T2m:::::

noise
:::
are

::::::
sparse.

::
In

:::::::::::::::::::::::::
Sura and Sardeshmukh (2008)

:
,
::::
they400

:::::::::
investigate

:::
the

:::::::::::::
non-Gaussianity

:::
of

::::
daily

::::
SST

::::::::::
variability.

:::
The

:::::::::
timescales

::::::::
assessed

::
in

:::::::::::::::::::::::::
Sura and Sardeshmukh (2008)

:::
are

:::::
faster

:::
(i.e.

:::::
daily

:::::
versus

:::::::::
monthly),

:::
and

::::
they

::::
look

::
at

:::::
SSTs,

:::::::
whereas

:::
we

::::
look

::
at

:::
air

:::::::::::
temperatures.

::::::::
However,

::::::::
relatively

::::::
similar

::::::
results

:::
are

:::::::
achieved

::
in

:::
our

:::::
study

::::::::
compared

::
to

:::::::::::::::::::::::::
Sura and Sardeshmukh (2008).

:::::::::
Skewness

::
in

::::
daily

::::
SST

:::::::::
variability

:
is
::::::::
typically

:::::::
negative

::
in

:::
the

::::::
Atlantic

:::::::
Ocean,

:::::::
whereas

:::
the

:::::
excess

:::::::
kurtosis

::
is

::::::
mostly

:::::::
positive,

::::::
similar

::
to

:::::
what

::
we

::::
find

:::
for

:::
the

::
air

:::::::::::
temperature.

::::
They

:::::
relate

::::
this

::
to

:::::::::::
multiplicative

:::::
noise

::
in

:::::
mixed

:::::
layer

:::::::::
dynamics.

::::::::
However,

::::
they

::::
make

:::
the

::::::::::
assumption

::::
that

::::
daily

::::::::::
fluctuations

::
in

:::
air

::::::::::
temperature405

::
are

:::::::::
Gaussian.

::::
Our

:::::
study

::::::
shows,

:::
that

::
at

:::::
least

::
on

:::::::
monthly

::::::::::
timescales,

:::
this

::
is
:::
not

:::
the

:::::
case

::::
over

::::
most

::
of

:::
the

::::::
ocean.

::::::::
Whether

:::
the

:::::::::::
multiplicative

:::::
noise

:::::
signal

:::
we

:::
find

::
in

:::
the

::::
T2m:::::

noise
::::::::
originates

::::
from

::::
SST

:::::::::
variability

::
or

::::::::::
atmospheric

:::::::::
dynamics,

::
or

:
a
:::::::::::
combination

::
of

:::
the

::::
two,

:
is
::::
left

::
for

::::::
further

::::::
study.

To conclude, we have provided an analysis of observed
:::::::::::::::
observation-based noise from ERA5 reanalysis data. Based on this

realistic noise we have constructed a noise model based on a Normal Inverse Gaussian distribution fit to the ERA5 noise. This410

product is made publicly available in the repository related to this paper (citation)
::::::::::::::::::::
(Boot and Dijkstra, 2024). The noise model

can,
:::
for

::::::::
example, be used as a forcing on ocean models to for example study noise induced

::::
study

::::::::::::
noise-induced transitions of

the AMOC under ‘realistic’ noise forcing.
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Figure A1. Standard deviation (σ), skewness and excess kurtosis of
::::::
Metrics

::
for

:
the noise from

:::::::
k-means

:::::::
clustering

::::::
method

:::::
versus the PC (1)

model
:::::
number

::
of
::::::
clusters

:
for the E−P flux

:::::
E−P

::::::
clusters

:
(a

::
a-c) – (c)

::
and

:::
the

::::
T2m ::::::

clusters. Differences with ERA5 data (i.e. ERA5 minus

PC (1
:
a) ) are shown in

:::
and (d) – (f). The statistics of

:::::::
represent the noise model are based on 10000 realisations

::::
elbow

:::::::
method, (months

:
b)

. The numbers in the top right corner of
::
and

:
(a

:
e) – (c) reflect

:::::::
represent the spatial correlation

:::::::
silhouette

:::::
score,

:
and root mean square error.

Units for (a
:
c) and (df) are mm/day

::
the

:::
gap

::::::
statistic.

Code and data availability. ERA5 data can be downloaded from the Copernicus Climate Data Store (CDS). CMIP6 data can be downloaded

from the Earth System Grid Federation (ESGF) or using the scripts in the repository (Boot and Dijkstra, 2024). Directions on which exact415

data needs to be downloaded and all scripts used for analyses and making the figures can be found at Boot and Dijkstra (2024). Here also a

script that contains the noise models can be found.
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Figure A2.
::
The

:::
12

::::::
clusters

::
for

:::
the

:::::
E−P

:::::
noise

::::
fields.

::::
The

::::::
columns

::
1

:::
and

:
2
:::::::::
correspond

:
to
:::
the

:::::::
standard

:::::::
deviation

::
of

::
the

:::::::
clusters,

::::::
columns

::
3

:::
and

:
4
:::::::
represent

:::
the

:::::::
skewness,

:::
and

:::::::
columns

:
5
:::
and

::
6

:::::
excess

::::::
kurtosis.

:::::::
Numbers

::
in
:::
the

:::
top

::::
right

:::::::
represent

:::
area

:::::::
weighted

::::
mean

::
of
:::
the

:::::
metric.

:
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Figure A3.
::
As

:::
Fig.

:::
A2

::
but

:::
for

::
the

::::
T2m:::::::

clusters.
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Figure A4.
::::::::
Probability

::::::
density

:::::::
functions

:::
for

::
the

::
12

::::::
clusters

:::
for

::
the

::::::
E−P

::::
noise.

::::
Red

:::
lines

:::::::
represent

::
a
::::::
Normal

:::::
Inverse

:::::::
Gaussian

::
fit,

::::
blue

::::
lines

:
a
:::::::
Gaussian

::
fit,

:::
and

:::
the

:::::
yellow

:::::::::
histrogram

::
the

::::
data

:::::
(using

::
50

::::
bins).

::::
The

::::
y-axis

:::::
shows

:::
the

::::::
density,

:::
and

:::
the

::::
x-axis

:::
the

::::::
E−P

::::
noise

::
in

::::::
mm/day.

a b c d

e f g h

i j k l

Figure A5.
::
As

:::
Fig.

:::
A4

::
but

:::
for

::
the

::::
T2m::::::

clusters
::
in

::

◦C
::::::

instead
::
of

:::::::
mm/day.
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Figure A6.
::::::

Standard
:::::::
deviation

:::
(σ),

:::::::
skewness

:::
and

:::::
excess

::::::
kurtosis

::
of
:::
the

::::
noise

::::
from

:::
the

::
PC

:::
(1)

:::::
model

::
for

:::
the

:::::
E−P

:::
flux

:::
(a)

:
–
:::
(c).

:::::::::
Differences

:::
with

:::::
ERA5

::::
data

:::
(i.e.

:::::
ERA5

:::::
minus

::
PC

:::
(1))

:::
are

:::::
shown

::
in

:::
(d)

:
–
:::
(f).

:::
The

:::::::
statistics

:
of
:::

the
::::
noise

:::::
model

:::
are

::::
based

:::
on

:::::
10000

::::::::
realisations

::::::::
(months).

:::
The

::::::
numbers

::
in
:::
the

:::
top

::::
right

:::::
corner

::
of

::
(a)

:
–
:::
(c)

:::::
reflect

::
the

::::::
spatial

::::::::
correlation

:::
and

:::
root

:::::
mean

:::::
square

::::
error.

::::
Units

:::
for

::
(a)

:::
and

:::
(d)

:::
are

::::::
mm/day.

:
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Figure A7. As Fig. A6 but for T2m.
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project 101055096).
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Figure A8. Standard deviation (σ), skewness and excess kurtosis of the noise from the PC (N) model for the E−P
:::::
E−P

:
flux (a) – (c).

Differences with ERA5 data (i.e. ERA5 minus PC (N)) are shown in (d) – (f). The statistics of the noise model are based on 10000 realisations

(months). The numbers in the top right corner of (a) – (c) reflect the spatial correlation and root mean square error. Units for (a) and (d) are

mm/day.

References

Bentsen, M., Oliviè, D. J. L., ?yvind Seland, Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y., Kirkevag,

A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren,425

O. A., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: NCC

NorESM2-MM model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8040, 2019.

Boot, A. A. and Dijkstra, H. A.: ESDnoise2024,https://doi.org/10.5281/zenodo.13148972,2024.

Boot, A. A., Steenbeek, J. G., Coll, M., von der Heydt, A. S., and Dijkstra, H. A.: Global marine ecosystem response to a strong AMOC

weakening under low and high future emission scenarios, https://doi.org/10.22541/essoar.171319366.64840276/v1, 2024a.

27

https://doi.org/10.22033/ESGF/CMIP6.8040
https://doi.org/10.5281/zenodo.13148972
https://doi.org/10.22541/essoar.171319366.64840276/v1


a b c

d e f

Figure A9. As Fig. A8 but for T2m.

Boot, A. A., von der Heydt, A. S., and Dijkstra, H. A.: Response of atmospheric pCO2 to a strong AMOC weakening under low and high430

emission scenarios, Climate Dynamics, https://doi.org/10.1007/s00382-024-07295-y, 2024b.

Byun, Y.-H.: NIMS-KMA UKESM1.0-LL model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8379,

2020.

Cao, J. and Wang, B.: NUIST NESMv3 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8769,

2019.435

Castellana, D., Baars, S., Wubs, F. W., and Dijkstra, H. A.: Transition Probabilities of Noise-induced Transitions of the Atlantic Ocean

Circulation, Scientific Reports, 9, 20 284, https://doi.org/10.1038/s41598-019-56435-6, 2019.

Chai, Z.: CAS CAS-ESM1.0 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3353, 2020.

Choudhury, A. D., Raghavan, K., Gopinathan, P. A., Narayanasetti, S., Singh, M., Panickal, S., and Modi, A.: CCCR-IITM IITM-ESM model

output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3708, 2019.440

28

https://doi.org/10.1007/s00382-024-07295-y
https://doi.org/10.22033/ESGF/CMIP6.8379
https://doi.org/10.22033/ESGF/CMIP6.8769
https://doi.org/10.1038/s41598-019-56435-6
https://doi.org/10.22033/ESGF/CMIP6.3353
https://doi.org/10.22033/ESGF/CMIP6.3708


Cini, M., Zappa, G., Ragone, F., and Corti, S.: Simulating AMOC tipping driven by internal climate variability with a rare event algorithm,

npj Climate and Atmospheric Science, 7, 31, https://doi.org/10.1038/s41612-024-00568-7, 2024.

Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.7627, 2019a.

Danabasoglu, G.: NCAR CESM2-WACCM-FV2 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.11298, 2019b.445

Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.10071, 2019c.

Danabasoglu, G.: NCAR CESM2-FV2 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.11297,

2019d.

Danek, C., Shi, X., Stepanek, C., Yang, H., Barbi, D., Hegewald, J., and Lohmann, G.: AWI AWI-ESM1.1LR model output prepared for450

CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.9328, 2020.

Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O’Farrell, S., Rashid, H., Srbinovsky,

J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F. B., Domingues, C. M.,

Hannah, N., Heerdegen, A., Savita, A., Wales, S., Allen, C., Druken, K., Evans, B., Richards, C., Ridzwan, S. M., Roberts, D.,

Smillie, J., Snow, K., Ward, M., and Yang, R.: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP historical,455

https://doi.org/10.22033/ESGF/CMIP6.4271, 2019.

Eyring, V., Gillett, N., Rao, K. A., Barimalala, R., Parrillo, M. B., Bellouin, N., Cassou, C., Durack, P., Kosaka, Y., McGregor,

S., Min, S., Morgenstern, O., and Sun, Y.: Human Influence on the Climate System, pp. 423–552, Cambridge University Press,

https://doi.org/10.1017/9781009157896.005, 2023.

Gettelman, A. and Morrison, H.: Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with460

Other Schemes, Journal of Climate, 28, 1268 – 1287, https://doi.org/10.1175/JCLI-D-14-00102.1, 2015.

Hajima, T., Abe, M., Arakawa, O., Suzuki, T., Komuro, Y., Ogura, T., Ogochi, K., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A.,

Ohgaito, R., Ito, A., Yamazaki, D., Ito, A., Takata, K., Watanabe, S., Kawamiya, M., and Tachiiri, K.: MIROC MIROC-ES2L model output

prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.5602, 2019.

Hasselmann, K.: Stochastic climate models Part I. Theory, Tellus, 28, 473–485, https://doi.org/https://doi.org/10.1111/j.2153-465

3490.1976.tb00696.x, 1976.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren,

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-470

laume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/https://doi.org/10.1002/qj.3803, 2020.

Lee, W.-L. and Liang, H.-C.: AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.9755, 2020.

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth’s climate475

system, Proceedings of the National Academy of Sciences, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.

29

https://doi.org/10.1038/s41612-024-00568-7
https://doi.org/10.22033/ESGF/CMIP6.7627
https://doi.org/10.22033/ESGF/CMIP6.11298
https://doi.org/10.22033/ESGF/CMIP6.10071
https://doi.org/10.22033/ESGF/CMIP6.11297
https://doi.org/10.22033/ESGF/CMIP6.9328
https://doi.org/10.22033/ESGF/CMIP6.4271
https://doi.org/10.1017/9781009157896.005
https://doi.org/10.1175/JCLI-D-14-00102.1
https://doi.org/10.22033/ESGF/CMIP6.5602
https://doi.org/https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/https://doi.org/10.1111/j.2153-3490.1976.tb00696.x
https://doi.org/https://doi.org/10.1002/qj.3803
https://doi.org/10.22033/ESGF/CMIP6.9755
https://doi.org/10.1073/pnas.0705414105


Li, J.-L. F., Xu, K.-M., Richardson, M., Lee, W.-L., Jiang, J. H., Yu, J.-Y., Wang, Y.-H., Fetzer, E., Wang, L.-C., Stephens, G., and Liang, H.-

C.: Annual and seasonal mean tropical and subtropical precipitation bias in CMIP5 and CMIP6 models, Environmental Research Letters,

15, 124 068, https://doi.org/10.1088/1748-9326/abc7dd, 2020.

Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3356, 2019.480

Liu, Y., Cheng, L., Pan, Y., Tan, Z., Abraham, J., Zhang, B., Zhu, J., and Song, J.: How Well Do CMIP6 and CMIP5 Models Simulate the Cli-

matological Seasonal Variations in Ocean Salinity?, Advances in Atmospheric Sciences, 39, 1650–1672, https://doi.org/10.1007/s00376-

022-1381-2, 2022.

Lovato, T. and Peano, D.: CMCC CMCC-CM2-SR5 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.3825, 2020.485

Lovato, T., Peano, D., and Butenschön, M.: CMCC CMCC-ESM2 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.13195, 2021.

McKay, D. I. A., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström,

J., and Lenton, T. M.: Exceeding 1.5°C global warming could trigger multiple climate tipping points, Science, 377, eabn7950,

https://doi.org/10.1126/science.abn7950, 2022.490

Monahan, A. H.: A Simple Model for the Skewness of Global Sea Surface Winds, Journal of the Atmospheric Sciences, 61, 2037 – 2049,

https://doi.org/10.1175/1520-0469(2004)061<2037:ASMFTS>2.0.CO;2, 2004.

Monahan, A. H.: Temporal Filtering Enhances the Skewness of Sea Surface Winds, Journal of Climate, 31, 5695 – 5706,

https://doi.org/10.1175/JCLI-D-17-0814.1, 2018.

NASA/GISS): NASA-GISS GISS-E2-1-G-CC model output prepared for CMIP6 CMIP historical,495

https://doi.org/10.22033/ESGF/CMIP6.11762, 2019.

NASA/GISS: NASA-GISS GISS-E2.1H model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.7128,

2019a.

NASA/GISS: NASA-GISS GISS-E2.2H model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.15871,

2019b.500

Neubauer, D., Ferrachat, S., Drian, C. S.-L., Stoll, J., Folini, D. S., Tegen, I., Wieners, K.-H., Mauritsen, T., Stemmler, I., Barthel,

S., Bey, I., Daskalakis, N., Heinold, B., Kokkola, H., Partridge, D., Rast, S., Schmidt, H., Schutgens, N., Stanelle, T., Stier, P.,

Watson-Parris, D., and Lohmann, U.: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.5016, 2019.

Orihuela-Pinto, B., England, M. H., and Taschetto, A. S.: Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning505

Circulation, Nature Climate Change, 12, 558–565, https://doi.org/10.1038/s41558-022-01380-y, 2022.

Park, S. and Shin, J.: SNU SAM0-UNICON model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.7789, 2019.

Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M., and Andrews, T.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP

historical, https://doi.org/10.22033/ESGF/CMIP6.6109, 2019a.510

Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M., and Andrews, T.: MOHC HadGEM3-GC31-MM model output prepared for CMIP6

CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6112, 2019b.

30

https://doi.org/10.1088/1748-9326/abc7dd
https://doi.org/10.22033/ESGF/CMIP6.3356
https://doi.org/10.1007/s00376-022-1381-2
https://doi.org/10.1007/s00376-022-1381-2
https://doi.org/10.1007/s00376-022-1381-2
https://doi.org/10.22033/ESGF/CMIP6.3825
https://doi.org/10.22033/ESGF/CMIP6.13195
https://doi.org/10.1126/science.abn7950
https://doi.org/10.1175/1520-0469(2004)061%3C2037:ASMFTS%3E2.0.CO;2
https://doi.org/10.1175/JCLI-D-17-0814.1
https://doi.org/10.22033/ESGF/CMIP6.11762
https://doi.org/10.22033/ESGF/CMIP6.7128
https://doi.org/10.22033/ESGF/CMIP6.15871
https://doi.org/10.22033/ESGF/CMIP6.5016
https://doi.org/10.1038/s41558-022-01380-y
https://doi.org/10.22033/ESGF/CMIP6.7789
https://doi.org/10.22033/ESGF/CMIP6.6109
https://doi.org/10.22033/ESGF/CMIP6.6112


Romanou, A., Rind, D., Jonas, J., Miller, R., Kelley, M., Russell, G., Orbe, C., Nazarenko, L., Latto, R., and Schmidt, G. A.: Stochastic

Bifurcation of the North Atlantic Circulation under a Midrange Future Climate Scenario with the NASA-GISS ModelE, Journal of Climate,

36, 6141 – 6161, https://doi.org/10.1175/JCLI-D-22-0536.1, 2023.515

Schmittner, A.: Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation, Nature, 434, 628–633,

https://doi.org/10.1038/nature03476, 2005.

Scoccimarro, E., Bellucci, A., and Peano, D.: CMCC CMCC-CM2-HR4 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.3823, 2020.

Semmler, T., Danilov, S., Rackow, T., Sidorenko, D., Barbi, D., Hegewald, J., Sein, D., Wang, Q., and Jung, T.: AWI AWI-CM1.1MR model520

output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.2686, 2018.

Song, Z., Qiao, F., Bao, Y., Shu, Q., Song, Y., and Yang, X.: FIO-QLNM FIO-ESM2.0 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.9199, 2019.

Stouffer, R.: UA MCM-UA-1-0 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.8888, 2019.

Sura, P.: Stochastic Analysis of Southern and Pacific Ocean Sea Surface Winds, Journal of the Atmospheric Sciences, 60, 654 – 666,525

https://doi.org/10.1175/1520-0469(2003)060<0654:SAOSAP>2.0.CO;2, 2003.

Sura, P. and Sardeshmukh, P. D.: A Global View of Non-Gaussian SST Variability, Journal of Physical Oceanography, 38, 639 – 647,

https://doi.org/10.1175/2007JPO3761.1, 2008.

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma530

CanESM5-CanOE model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.10260, 2019a.

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,

Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma

CanESM5 model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.3610, 2019b.

Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Mulcahy, J., Sellar, A., Walton, J., and Jones, C.: MOHC UKESM1.0-LL model output prepared535

for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6113, 2019.

Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.5603, 2018.

Tian, B. and Dong, X.: The Double-ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean Precipitation, Geophysical

Research Letters, 47, e2020GL087 232, https://doi.org/https://doi.org/10.1029/2020GL087232, e2020GL087232 2020GL087232, 2020.540

van Westen, R. M. and Dijkstra, H. A.: Asymmetry of AMOC Hysteresis in a State-Of-The-Art Global Climate Model, Geophysical Research

Letters, 50, e2023GL106 088, https://doi.org/https://doi.org/10.1029/2023GL106088, e2023GL106088 2023GL106088, 2023.

van Westen, R. M. and Dijkstra, H. A.: Persistent climate model biases in the Atlantic Ocean’s freshwater transport, Ocean Science, 20,

549–567, https://doi.org/10.5194/os-20-549-2024, 2024.

van Westen, R. M., Jacques-Dumas, V., Boot, A. A., and Dijkstra, H. A.: The Role of Sea-ice Processes on the Probability of AMOC545

Transitions, arXiv, 2024a.

van Westen, R. M., Kliphuis, M., and Dijkstra, H. A.: Physics-based early warning signal shows that AMOC is on tipping course, Science

Advances, 10, eadk1189, https://doi.org/10.1126/sciadv.adk1189, 2024b.

Watts, M., Maslowski, W., Lee, Y. J., Kinney, J. C., and Osinski, R.: A Spatial Evaluation of Arctic Sea Ice and Regional Limitations in

CMIP6 Historical Simulations, Journal of Climate, 34, 6399 – 6420, https://doi.org/10.1175/JCLI-D-20-0491.1, 2021.550

31

https://doi.org/10.1175/JCLI-D-22-0536.1
https://doi.org/10.1038/nature03476
https://doi.org/10.22033/ESGF/CMIP6.3823
https://doi.org/10.22033/ESGF/CMIP6.2686
https://doi.org/10.22033/ESGF/CMIP6.9199
https://doi.org/10.22033/ESGF/CMIP6.8888
https://doi.org/10.1175/1520-0469(2003)060%3C0654:SAOSAP%3E2.0.CO;2
https://doi.org/10.1175/2007JPO3761.1
https://doi.org/10.22033/ESGF/CMIP6.10260
https://doi.org/10.22033/ESGF/CMIP6.3610
https://doi.org/10.22033/ESGF/CMIP6.6113
https://doi.org/10.22033/ESGF/CMIP6.5603
https://doi.org/https://doi.org/10.1029/2020GL087232
https://doi.org/https://doi.org/10.1029/2023GL106088
https://doi.org/10.5194/os-20-549-2024
https://doi.org/10.1126/sciadv.adk1189
https://doi.org/10.1175/JCLI-D-20-0491.1


Weijer, W., Cheng, W., Drijfhout, S. S., Fedorov, A. V., Hu, A., Jackson, L. C., Liu, W., McDonagh, E. L., Mecking, J. V., and Zhang, J.:

Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis, Journal of Geophysical Research: Oceans, 124,

5336–5375, https://doi.org/https://doi.org/10.1029/2019JC015083, 2019.

Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V.,

Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler,555

S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,

Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., von Gehlen, K. P., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt,

H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for

CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.6595, 2019.

Wu, T., Chu, M., Dong, M., Fang, Y., Jie, W., Li, J., Li, W., Liu, Q., Shi, X., Xin, X., Yan, J., Zhang, F., Zhang, J., Zhang, L., and Zhang, Y.:560

BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.2948, 2018.

Wunderling, N., von der Heydt, A. S., Aksenov, Y., Barker, S., Bastiaansen, R., Brovkin, V., Brunetti, M., Couplet, V., Kleinen, T., Lear,

C. H., Lohmann, J., Roman-Cuesta, R. M., Sinet, S., Swingedouw, D., Winkelmann, R., Anand, P., Barichivich, J., Bathiany, S., Baudena,

M., Bruun, J. T., Chiessi, C. M., Coxall, H. K., Docquier, D., Donges, J. F., Falkena, S. K. J., Klose, A. K., Obura, D., Rocha, J.,

Rynders, S., Steinert, N. J., and Willeit, M.: Climate tipping point interactions and cascades: a review, Earth System Dynamics, 15, 41–74,565

https://doi.org/10.5194/esd-15-41-2024, 2024.

Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura,

H., Shindo, E., Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.6842, 2019.

Zhang, J., Wu, T., Shi, X., Zhang, F., Li, J., Chu, M., Liu, Q., Yan, J., Ma, Q., and Wei, M.: BCC BCC-ESM1 model output prepared for570

CMIP6 CMIP historical, https://doi.org/10.22033/ESGF/CMIP6.2949, 2018.

Zhang, Q., Liu, B., Li, S., and Zhou, T.: Understanding Models’ Global Sea Surface Temperature Bias in Mean State: From CMIP5 to

CMIP6, Geophysical Research Letters, 50, e2022GL100 888, https://doi.org/https://doi.org/10.1029/2022GL100888, e2022GL100888

2022GL100888, 2023.

Zickfeld, K., Eby, M., and Weaver, A. J.: Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future575

atmospheric CO2, Global Biogeochemical Cycles, 22, https://doi.org/https://doi.org/10.1029/2007GB003118, 2008.

Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., Wang, Y., Dobrohotoff, P., Srbinovsky, J., Stevens, L., Vohralik, P.,

Mackallah, C., Sullivan, A., O’Farrell, S., and Druken, K.: CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP historical,

https://doi.org/10.22033/ESGF/CMIP6.4272, 2019.

32

https://doi.org/https://doi.org/10.1029/2019JC015083
https://doi.org/10.22033/ESGF/CMIP6.6595
https://doi.org/10.22033/ESGF/CMIP6.2948
https://doi.org/10.5194/esd-15-41-2024
https://doi.org/10.22033/ESGF/CMIP6.6842
https://doi.org/10.22033/ESGF/CMIP6.2949
https://doi.org/https://doi.org/10.1029/2022GL100888
https://doi.org/https://doi.org/10.1029/2007GB003118
https://doi.org/10.22033/ESGF/CMIP6.4272


Figure A10. Standard deviation (σ) in the noise of the E−P
:::::
E−P

:
for the analysed CMIP6 models. Numbers in the top right corner reflect

the spatial correlation and root mean square error.
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Figure A11. Skewness in the noise of the E−P
:::::
E−P for the analysed CMIP6 models. Numbers in the top right corner reflect the spatial

correlation and root mean square error.
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Figure A12. Excess kurtosis in the noise of the E−P
:::::
E−P

:
for the analysed CMIP6 models. Numbers in the top right corner reflect the

spatial correlation and root mean square error.

35



Figure A13. As Fig. A10 but for T2m.
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Figure A14. As Fig. A11 but for T2m.
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Figure A15. As Fig. A12 but for T2m.
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::
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:::::
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::
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:::::::
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:::
row

::
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::
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:::
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:::::
E−P

:::::
noise

:::
and

::
the

::::::
bottom

:::
row

::
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:::
the

:::
T2m:::::

noise.
::
(a,
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e)

::
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:::::
where

::::
white

::::::
regions

:::::::
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:::
grid

:::::
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where
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Normal

::::::
Inverse
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distribution
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than
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Gaussian

::::::::::
distribution.
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f)
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Results
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from
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Anderson-Darling
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normality
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kurtosis.
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Table A1. CMIP6 model list.

Number Name Member Reference

1. TaiESM1 r1i1p1f1 Lee and Liang (2020)

2. AWI-CM-1-1-MR r1i1p1f1 Semmler et al. (2018)

3. AWI-ESM-1-1-LR r1i1p1f1 Danek et al. (2020)

4. BCC-CSM2-MR r1i1p1f1 Wu et al. (2018)

5. BCC-ESM1 r1i1p1f1 Zhang et al. (2018)

6. FGOALS-g3 r1i1p1f1 Li (2019)

7. CanESM5-CanOE r1i1p2f1 Swart et al. (2019a)

8. CAS-ESM2-0 r1i1p1f1 Chai (2020)

9. CMCC-CM2-HR4 r1i1p1f1 Scoccimarro et al. (2020)

10. CanESM5 r1i1p1f1 Swart et al. (2019b)

11. IITM-ESM r1i1p1f1 Choudhury et al. (2019)

12. CMCC-CM2-SR5 r1i1p1f1 Lovato and Peano (2020)

13. CMCC-ESM2 r1i1p1f1 Lovato et al. (2021)

14. ACCESS-CM2 r1i1p1f1 Dix et al. (2019)

15. ACCESS-ESM1-5 r1i1p1f1 Ziehn et al. (2019)

16. FIO-ESM-2-0 r1i1p1f1 Song et al. (2019)

17. MPI-ESM-1-2-HAM r1i1p1f1 Neubauer et al. (2019)

18. MIROC-ES2L r1i1p1f2 Hajima et al. (2019)

19. MIROC6 r1i1p1f1 Tatebe and Watanabe (2018)

20. HadGEM3-GC31-LL r1i1p1f3 Ridley et al. (2019a)

21. HadGEM3-GC31-MM r1i1p1f3 Ridley et al. (2019b)

22. UKESM1-0-LL (MOHC) r1i1p1f2 Tang et al. (2019)

23. MPI-ESM1-2-LR r1i1p1f1 Wieners et al. (2019)

24. MRI-ESM2-0 r1i1p1f1 Yukimoto et al. (2019)

25. GISS-E2-1-G-CC r1i1p1f1 NASA/GISS) (2019)

26. GISS-E2-1-H r1i1p1f1 NASA/GISS (2019a)

27. CESM2-WACCM-FV2 r1i1p1f1 Danabasoglu (2019b)

28. GISS-E2-2-H r1i1p1f1 NASA/GISS (2019b)

29. CESM2-FV2 r1i1p1f1 Danabasoglu (2019d)

30. CESM2-WACCM r1i1p1f1 Danabasoglu (2019c)

31. CESM2 r1i1p1f1 Danabasoglu (2019a)

32. NorESM2-MM r1i1p1f1 Bentsen et al. (2019)

33. UKESM1-0-LL (NIMS-KMA) r13i1p1f2 Byun (2020)

34. NESM3 r1i1p1f1 Cao and Wang (2019)

35. SAMO0-UNICON r1i1p1f1 Park and Shin (2019)

36. MCM-UA-1-0 r1i1p1f1 Stouffer (2019)
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